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In many remote sensing projects one is usually interested in a small number of land
cover classes present in a study area and not in all the land cover classes that make-up
the landscape. Previous studies in supervised classification of satellite images have
tackled specific class mapping problem by isolating the classes of interest and combin-
ing all other classes into one large class, usually called others, and by developing a bi-
nary classifier to discriminate the class of interest from the others. Here, this approach
is called focused approach. The strength of the focused approach is to decompose the
original multi-class supervised classification problem into a binary classification prob-
lem, focusing the process on the discrimination of the class of interest. Previous studies
have shown that this method is able to discriminate more accurately the classes of
interest when compared with the standard multi-class supervised approach. However,
it may be susceptible to data imbalance problems present in the training data set,
since the classes of interest are often a small part of the training set. A result the
classification may be biased towards the largest classes and, thus, be sub-optimal for
the discrimination of the classes of interest. This study presents a way to minimise
the effects of data imbalance problems in specific class mapping using cost-sensitive
learning. In this approach errors committed in the minority class are treated as being
costlier than errors committed in the majority class. Cost-sensitive approaches are
typically implemented by weighting training data points accordingly to their impor-
tance to the analysis. By changing the weight of individual data points, it is possible
to shift the weight from the larger classes to the smaller ones, balancing the data set.
To illustrate the use of the cost-sensitive approach to map specific classes of interest,
a series of experiments with weighted support vector machines classifier and Landsat
Thematic Mapper data were conducted to discriminate two types of mangrove forest
(high-mangrove and low-mangrove) in Saloum estuary, Senegal, a United Nations Ed-
ucational, Scientific and Cultural Organisation World Heritage site. Results suggest
an increase in overall classification accuracy with the use of cost-sensitive method
(97.3%) over the standard multi-class (94.3%) and the focused approach (91.0%). In
particular, cost-sensitive method yielded higher sensitivity and specificity values on the
discrimination of the classes of interest when compared with the standard multi-class
and focused approaches.
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1. Introduction

Supervised classification has become an important method to derive land cover
information from remotely sensed imagery (Mountrakis et al. 2011). One significant
advantage of supervised classification is that it allows tailoring the classification
process in order to obtain a map depicting only the classes of interest (Foody
et al. 2006). Indeed, users are often not interested in a complete characterisation of
the landscape but rather on a sub-set of the classes existing in the study area. For
example, the analysis may have to be focused on mapping urban classes (Feng et al.
2015; Cockx et al. 2014), abandoned agriculture (Alcantara et al. 2012), specific
tree species (Foody et al. 2005; Atkinson et al. 2007), invasive wetland species
(Laba et al. 2008), and mangrove ecosystems (Lee and Yeh 2009; Vo et al. 2015).
Fundamentally, the accurate discrimination of some classes is more important than
the discrimination of others for some applications.

When users are only interested in a sub-set of the classes present in the study
area, the use of conventional multi-class supervised classification may be sub-
optimal for the purpose (Foody 2004). One of the reasons for this situation has to do
with the classification algorithm fine-tuning process. This procedure, necessary in
many classification algorithms, consists of finding the parameterisation that yields
the maximum overall classification accuracy, that is to find the parameterisation
that best discriminates all classes of the classification problem (Hastie et al. 2009).
The common approach often seeks, by cross-validation grid-search, to maximise the
overall classification accuracy, rather than the specific accuracy in the classification
of particular classes. However, the parameterisation that yields the highest overall
classification accuracy may not be necessarily the best to discriminate the classes
of interest, since these are usually only a small part of the problem (Lark 1995).
Indeed, overall accuracy is only one component of classification quality assessment
and may not be suited to the requirements of a particular study (Lark 1995). Thus
the conventional multi-class supervised classification algorithm is neither tuned nor
trained to discriminate the classes of interest, since the class composition of the
training set contains all classes regardless of their interest in the analysis and the
tuning process searches for the best parameterisation in that larger problem.

The literature shows that there are essentially two alternatives to the standard
multi-class supervised approach: one-class learning algorithms and the binarisation
strategy (Krawczyk 2015; Galar et al. 2011; Tax 2001).

With the one-class learning algorithms, the user adopts a one-class learning al-
gorithm to develop a classifier to identify a single class of interest (e.g. Sanchez-
Hernandez et al. 2007; Mack et al. 2014). In this approach only training data
belonging to the class of interest is utilised to develop the classifier, which is its
most attractive feature in terms of focusing effort and resources on the class of in-
terest. However, the one-class classifier may not always be the best approach, since
only data about one class is available and thus only one side of the discriminative
boundary can be determined (Tax 2001). It can then be difficult to determine how
tightly the boundary should fit in all directions around the data in feature space.
To overcome this difficulty some one-class classifiers (e.g. support vector data de-
scription) assume that the non-interest class has a particular distribution around
the class of interest. When the true distribution deviates from the assumption,
the method may underperform. That deviation however can only be assessed with
training points outside of the class of interest (Tax 2001).

With binarisation strategy, users decompose the multi-class problem in a series
of small binary classification problems where one seeks to separate the classes of
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interest from all irrelevant classes (Krawczyk et al. 2015; Fernandez et al. 2013;
Galar et al. 2011; Boyd et al. 2006). As binary classification is well-studied, bi-
nary decomposition of multi-class classification problems have attracted significant
attention in machine learning research and has been shown to perform well in
most multi-class problem (Krawczyk et al. 2015). Indeed, binary decomposition
has been widely used to develop multi-class SVM showing better generalisation
ability than other multi-class SVM approaches (Hsu and Lin 2002). The possibility
to parallelise the training and testing of the component binary classifiers is also
a big advantage in favour of binarisation apart of their good performance (Galar
et al. 2011). In particular, binarisation can be achieved by combining all land cover
classes of no interest into a large nominal class, called for example ‘others’ (Foody
et al. 2007). In this way the class of interest can be regarded as the positive class
and all others as the negative class in the binary classification scenario. Previous
studies (Lee and Yeh 2009; Foody et al. 2007; Boyd et al. 2006) have shown it to
be possible to decompose the multi-class classification problem in a series of small
binary classification problems and achieve results that are more suitable for the
particular users’ requests, namely the improvement of the discrimination of partic-
ular land cover classes of interest. Although specific class mapping can potentially
be a better approach compared to the multi-class supervised classification, it has
some particular difficulties, namely data imbalance in the training set. This is be-
cause often the classes of interest are only on a small component of the study area
(Lark 1995). In fact, applying directly a binary decomposition to the classification
problem may result in a highly unproportional allocation of training points to the
negative class, leading to imbalance in the training data set (Bishop 2006).

Learning from imbalanced data sets is an important and challenging problem
in knowledge discovery in many real-world applications (He and Garcia 2009).
Learning from imbalanced data means learning from data in which the classes
have unequal numbers of training data points (He and Yunqian 2013). Although
there are several degrees of data imbalance, there is no agreement or standard
concerning the exact degree of class imbalance required to have a negative effect in
the learning process. The central issue with learning from imbalanced data sets is
the effect of this condition on the performance of most standard learning algorithms
(Kotsiantis et al. 2006). Indeed, most learning algorithms aim to derive the simplest
classifier that best fits the training data; this can represent a serious challenge to
the development of classifiers with imbalanced data, since such classifier is often
biased towards the majority class (Fernandez et al. 2013; Japkowiciz N. 2002). For
example, a classifier that omits a large proportion of the minority class cases can
yield high overall accuracy, although it may underperform in the discrimination of
that class. When trained with this type of data sets, learning algorithms usually fail
to accurately learn the distributive characteristics of the data and, consequently,
may provide inaccurate results (Lopez et al. 2012). A balanced data set is, therefore,
a desirable feature of the training set.

In general, the methods to mitigate the effect of imbalances in data sets consist
of either methods that manipulate data by oversampling the minority class or
under-sampling the majority class, or methods that adapt the algorithm to the
imbalance condition (Kotsiantis et al. 2006). Data manipulating approaches can
be problematic, since under-sampling may remove important data points for the
discrimination of the classes (Chawla 2005) and oversampling may render longer
training time and over-fitted classifiers (Rahman and Davis 2014; He and Garcia
2009). The methods that adapt the learning algorithm to the imbalance condition
seek to bias towards the minority class (Xanthopoulos and Razzaghi 2014). These
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methods are commonly known as cost-sensitive learning (Hastie et al. 2009).
In cost-sensitive learning, misclassifications are not treat equally. Data points

are assigned a weight representing their relative value: more weight accredits more
value. By assigning more weight to a particular data point than to another, the
analyst is highlighting its relative importance, and thus informing the learning
algorithm that an error in the former is costlier than an error in the latter (Xan-
thopoulos and Razzaghi 2014). This additional information directs the learning
process to the under-represented classes and thus minimises the effect of learning
in imbalanced datasets. In this paper a support vector machine (SVM) classifier
is used to demonstrate the use of cost-sensitive learning to minimise the effects of
data imbalances in specific class mapping.

Although data imbalance in the training set has been recognised as an important
factor in the learning process and is common in natural resource applications using
remotely sensed data (Mellor et al. 2015), little attention has been given to its
effects and errors in land cover mapping. Thus studies reporting its effects, or esti-
mating its effects from previous studies, are rare in literature. Examples addressing
data imbalance in remote sensing have been reported mostly in tree species classifi-
cation problems. In Baldeck et al. (2015) authors explore the use of standard SVM
and biased SVM classification of three tropical tree species using airborne imag-
ing spectroscopy. To mitigate the effects of data imbalance, the authors carefully
tuned the classification algorithm using the harmonic mean between sensitivity and
specificity of the classes of interest, also known as F-score. In Graves et al. (2016)
authors examine the effects of data imbalance in the supervised classification of
tree species in eight reported studies and address the problem in a twenty-class
classification problem. The authors conclude that species with more training data
points were consistently over-predicted while species with fewer data points were
under-predicted. In Sheeren et al. (2016), authors explore the multiple classifica-
tion methods for tree species identification in temperate forests using Formosat-2
satellite image time series, reporting that minority classes were often the most con-
fused. Thus, data imbalance problems are occurring in application studies where
classifications are being used to infer information about land cover.

In this study to demonstrate the effects of data imbalance in the training set
and how to mitigate them using cost-sensitive learning, two experiments were con-
ducted: first, artificially generated data set was used to illustrate the effects of data
imbalance in the development of a classifier.

Second, a series of experiments are presented in a study area located in the
Saloum estuary, Senegal. Two land cover classes were defined as the classes of
interest. These were classes of mangrove forest that differ in height: high-mangrove
and low-mangrove. The distinction between these two classes is important since the
transition from high-mangrove to low-mangrove is often a symptom of mangrove
degradation (Vo et al. 2015; Dieng et al. 2014).

Three classification approaches are explored: a standard multi-class, a focused
and a cost-sensitive approach to classification. In the standard multi-class approach,
a single algorithm is used to solve a multi-class classification problem. The classes
of interest are, in this case, derived after the classification process. In the focused
approach, all classes of no interest are combined in one single nominal class (others).
The classes of interest are derived in the classification process but nothing is done
to mitigate possible class imbalances in the data set. In the cost-sensitive approach,
similarly to the focused approach, all classes of no interest are merged into one large
class “others” but here weights are utilised in each training data point to inform
the learning algorithm of the relative misclassification cost value.

4



March 22, 2017 International Journal of Remote Sensing ”Improving specific class mapping by
cost-sensitive learning”

The innovations presented in this article are three-fold: first, cost-sensitive learn-
ing is presented as a way to mitigate problems associated with the use of an im-
balanced training set in specific class mapping. In other words, this applicational
study intents not only to show that imbalance data sets can undermine the map-
ping process, but also to show that cost-sensitive learning can minimise its effects.
Second, three classes were used, the two classes of mangrove constituting the classes
of interest and the class “others”. This is relevant since the definition of more than
one class of interest requires a process to combine the different outcomes of several
binary classifiers which is not always trivial and was not fully addressed in previous
studies, that have typically focused on a single class. Third, it is shown that the
classifier parameterisation is an important step in specific class mapping and more
accurate classifiers can be obtained using class specific metrics instead of an overall
classification metrics, as is commonly utilised.

2. Classification with imbalanced data sets

Learning with an imbalanced data set is one of the most challenging problems in
many real-world applications and it has been recognised as a crucial problem in
machine learning and data mining (Cao et al. 2013; Chawla 2005). Class imbal-
ance problems may occur when the training set is not evenly distributed among the
classes (Chawla 2005). There is no agreement, or standard, concerning the exact
degree of class imbalance required for a dataset to lead to a biased classifier (He and
Yunqian 2013). This uneven condition is usually quantified by the ratio between
the size of the minority class and the size of the majority class, usually called bal-
ance ratio (Weiss 2004). Data set balance ratios can vary greatly, for example from
1:1 (balance data set) to extreme cases such as 1:100 or more (e.g. Weiss 2004). In
Weiss and Provost (2003), a 26 binary-class datasets were analysed showing how
class imbalance impacts minority class classification performance. The results sug-
gest that class imbalance leads to poorer performance when classifying data points
belonging to the minority class. Geometrically, a classifier developed with a im-
balanced training set pushes the discrimination boundary away from the majority
class, bring it closer to the minority class He and Yunqian (2013). This happens
because by pushing the boundary away from the majority class toward to minority
class, the number of misclassifications on the majority class are minimised, which is
the term that contributes the most for the overall classification error. This impact
can be quite severe, as datasets with class imbalances between 1:5 and 1:10 can
have a minority class error rate more than 10 times that of the error rate on the
majority class (Weiss and Provost 2003). This suggests that datasets with even
moderate levels of class imbalance (e.g. 1:2) can suffer from class imbalance issues
(He and Yunqian 2013).

Most classifiers assume the classes present in the training set contain the same
or similar number of data points (Xanthopoulos and Razzaghi 2014). Since classi-
fication algorithms are designed to generalise from data and output the simplest
classifier that best fits the training data, classifiers will then typically seek to max-
imise overall accuracy, and thus tend to underperform on imbalanced data sets
(Akbani et al. 2004).

The methods to address the problem of imbalanced training data sets can be
grouped into two categories: methods focusing on the data and methods focusing
on the classification algorithm (Kotsiantis et al. 2006). The first group of methods
attempt to solve the problem of imbalanced training data sets by purposely manip-
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ulating the classes’ distributions in the training data set either by over-sampling
the minority class or by under-sampling the majority class (Qiao and Zhang 2013).
In other words, in these methods data points are added to the minority class or re-
moved from the majority class to balance the training set. There are however some
issues with these procedures. Over-sampling may, for example, render longer train-
ing time and over-fitted classifiers (Rahman and Davis 2014; He and Garcia 2009).
Since over-sampling, at its simplest way, appends replicated data to the original
data set, the algorithm may become too specific and may not generalise well (Jap-
kowiciz N. 2002). Under-sampling, on the other hand, may remove important data
points for class discrimination (Chawla 2005). The methods on the second group,
on the other hand, adapt a classification algorithm to bias towards the minority
class, for example defining a cost function that penalises more misclassifications
committed on data points of the minority class. The training data set is then
balanced by shifting the weight of the training set from the larger classes to the
smallest. These methods are generally named as cost-sensitive learning methods
(Xanthopoulos and Razzaghi 2014). A way to implement the cost-sensitive ap-
proach is by incorporating the weight of data points weight in the SVM classifier
(Xanthopoulos and Razzaghi 2014).

2.1. Weighted support vector machine

The SVM is a popular supervised classification algorithm that has been successfully
applied in many domains (Shalev-Shwartz and Ben-David 2014). In particular, in
the classification of remotely sensed imagery, the study and application of SVM
is extensive and well known (Mountrakis et al. 2011). In its origin, the SVM was
developed to solve binary classification problems with linearly separable classes.
However, SVM was extended with the introduction of the kernel trick and slack
variables to solve non-linearly separable classes (Deng et al. 2012). The use of ker-
nels allowed the SVM to solve non-linear problems by mapping the original data
points into a higher dimensional space where a linear classifier is able to discrimi-
nate them (Shawe-Taylor and Cristianini 2004). The introduction of slack variables,
on the other hand, relaxed the original SVM optimisation problem; a non-zero
slack variable allows a particular data point to not meet the margin requirement
at a cost proportional to its magnitude, allowing some training data points to be
misclassified (Xanthopoulos and Razzaghi 2014). This version is usually known as
soft-margin SVM. The corresponding optimisation problem is formulated as follows
(Shawe-Taylor and Cristianini 2004):

min
w,ξ

1

2
wTw + CeTξ (1)

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi for i = 1 . . .m where yi is the label of the i-th

data point xi of the training set, b is the bias term, m is the number of training
data points, w is the hyperplane normal vector, φ is the kernel function, e is the
all 1’s vector and ξ is the vector of slack variables. The parameter C represents
the magnitude of penalisation. If C is a large value, the optimal solution defines
narrower margins in order to accommodate the misclassified training data points; in
contrast, smaller values of C lead to wider margins (Schölkopf et al. 2000). Applying
the Karush-Kuhn-Tucker (KKT) conditions, the original soft-margin SVM problem
is usually reformulated in its Lagrangian dual form (Shawe-Taylor and Cristianini
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2004):

min
α

1

2

∑
i,j

αiαjyiyjK(xi,xj)−
∑
i

αi (2)

subject to
∑

i yiαi = 0 and 0 ≤ αi ≤ C for i, j = 1 . . .m, where αi are the Lagrange

multipliers, K(xi,xj) = φT(xi)φ(xj), quantifies the similarity between two arbi-
trary training data points, xi and xj in the kernel space. The index variables i
and j both ranging from 1 to m to define a pairwise combination of training data
points.

Note that under these conditions, the Lagrange multipliers are bounded by the
parameter C and thus all misclassifications of training cases are penalised in the
same amount. This might not be appropriate especially if the data set is imbal-
anced. For example, when trained with imbalanced data sets in which the number
of negative instances outnumbers the positive instances, the performance of SVM
may drop significantly (Yang et al. 2007). Indeed, SVM may end up classifying
all testing data set as belonging to the majority class (Zhang et al. 2015). The
optimisation problem (2) tries to minimise first term, responsible to maximise the
margin between the support vectors, and the second term, responsible to minimise
the number of misclassified training cases. The regularisation parameter C defines
the trade-off between maximising the margin and minimising the classification er-
ror in the training set (Hwang et al. 2011). Thus, if C is not large enough, SVM
learns to classify everything as belonging to the negative class, since that makes
the margin larger with maximum accuracy in the training set (Xanthopoulos and
Razzaghi 2014).

A way to adapt the SVM approach to cost-sensitive learning is by increasing
the trade-off parameter C associated to the minority class (Hwang et al. 2011;
Xanthopoulos and Razzaghi 2014). With the weighted support vector machines
(WSVM) each data point is assigned a particular weight value; this weight is usually
associated to some class characteristic such as size (Hwang et al. 2011). The original
SVM problem is then reformulated in the following way:

min
w,ξ

1

2
wTw + CσTξ (3)

subject to yi(w
Tφ(xi) + b) ≥ 1 − ξi for i = 1 . . .m, where σ is the vector of

weights. The user can then set different weights to different data points according
to a predetermined criterion. Applying the KKT conditions, the original WSVM
problem can be reformulated in its dual form:

min
α

1

2

∑
i,j

αiαjyiyjK(xi,xj)−
∑
i

αi (4)

subject to
∑

i yiαi = 0 and 0 ≤ αi ≤ Cσi for i, j = 1 . . .m where αi are the
Lagrange multipliers. Note that, unlike problem (2), the Lagrange multipliers are
now bounded according to its weight. For imbalanced classification problems, many
studies (e.g. Xanthopoulos and Razzaghi 2014; Hwang et al. 2011; Liu et al. 2005;
Du and Chen 2005; Huang Yin-Min 2005) have defined the data points weight
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Binary decomposition of multi-class problem. The frames represent the scatter plot in the feature
space of three different classes: circles, stars and crosses. OVR strategy in frames (a), (b), (c) and (d) and

OVO strategy in frames (e), (f), (g) and (h).

by the inverse of its correspondent class size. In this way, the misclassifications
of elements belonging to the majority class receive proportionally less importance
than those belonging to the minority class. Note that if data set is balanced, the
number of negative data points equals the number of positive data points. Thus
the WSVM with this weighting rule reduces to non-weighted SVM.

2.2. Combining binary classifiers

Like SVM, WSVM is at its core a binary classifier. If one wants to apply the
WSVM to a multi-class problem, the two more common strategies are (Chang and
Lin 2011; Galar et al. 2011): the one-vs-rest (OVR) (figure 1 frames (a), (b), (c)
and (d)) and the one-vs-one (OVO) (figure 1 frames (e), (f), (g) and (h)).

The OVR strategy breaks the multi-class classification down into a series of
binary classification problems where each class is in turn compared with all others
(Shalev-Shwartz and Ben-David 2014). In this way, a N -class classification problem
is decomposed into N binary classification problems. For example, in a three-class
classification problem, a first classifier is developed to discriminate the class in
black (frame (a)) from all other classes are combined into a single class, in grey.
The process is then repeated for the other two classes (frames (b) and (c)). The final
step is then performed either by assigning the class with positive outcome or by
selecting the class with the largest decision value (Rifkin and Klautau 2004) (frame
(d)). However, if the label-assigning rule is not based on the decision value directly,
some data points may not be classified, because it is possible for a point to be
rejected from all classes (Shalev-Shwartz and Ben-David 2014). The OVR strategy
is may be susceptible to class imbalances even if the training set is balanced, since
the negative class is effectively composed by all other classes combined into one
large class (Bishop 2006).

The OVO strategy is also known as all-pairs strategy, as it consists in enumer-
ating all possible pairs of classes (frames (e), (f) and (g)) and then to develop
a binary classifier for each pair of classes (Shalev-Shwartz and Ben-David 2014).
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Table 1. Binary confusion matrix.

Predicted ↓ Actual → Positive Negative

Positive TP FP
Negative FN TN

Classification is then done by inputting the data point into each particular binary
classifier and labelling by majority voting. In this way, if there are N classes, the
number of binary classifiers is then 1

2N(N − 1) (Shalev-Shwartz and Ben-David
2014) (frame (h)). Although the number of binary classification problems is of the
order N2 and may represent a significant memory requirement this solution, it may
also provide simpler models (less support vectors), and thus improve generalisation
(Deng et al. 2012). Which strategy is the best is a still an on-going debate (Chang
and Lin 2011; Galar et al. 2011).

2.3. Comparison and evaluation of classifiers

The design and implementation of a learning algorithm require the use of accuracy
metrics to assess the quality and compare the performance of alternative classi-
fiers. For example, when fine-tuning a classification algorithm, it is often necessary
to compute an accuracy metric to determine the parameterisation that yields on
average the highest accuracy value. Although commonly used, the overall classi-
fication accuracy (the proportion of correctly classified data points) may not a
reliable metric when the training set is imbalanced. This is because the majority
class dominates the behaviour of this metric, and thus it gives optimistically biased
results (Xanthopoulos and Razzaghi 2014). Indeed, the definition of the accuracy
metric is particular important for binary classification, since the performance of the
classifiers can be particularly sensitive to the classes’ relative size (Xanthopoulos
and Razzaghi 2014; Shalev-Shwartz and Ben-David 2014). In this conditions, the
results of the fine-tuning process may be unreliable not because of the process but
rather because of the accuracy metric employed in the process. If the training data
set is unbalanced and the classification accuracy is utilised, the outcome of the fine-
tuning process will indicate that a particular parameterisation is the one with the
highest classification accuracy but may indeed biased towards the majority class,
since that parameterisation may yield a classifier that classifies very accurately the
majority class in detriment of the minority class (Hwang et al. 2011). There are
better alternative accuracy metrics to the classification accuracy specially when
the data set is imbalanced, for example sensitivity and specificity (Hastie et al.
2009). At the basis of this analysis is the binary confusion matrix (table 1).

In table 1, TP (true positives) represents the number of actual positive cases cor-
rectly classified, TN (true negatives) the number of actual negative cases correctly
classified, FP (false positives) the number of actual negatives predicted as positives,
and FN (false negatives) the number of actual positives predicted as negatives. The
classification accuracy is then the proportion of true positives and true negatives
which is commonly used to metric classification performance in multi-class prob-
lems (Xanthopoulos and Razzaghi 2014). But in binary classification, classification
accuracy may not be a reliable indicator particularly if the data set is imbalanced,
since the influence of the majority class is much higher than that of the minority
class (Hwang et al. 2011). Alternatively, other quality metrics can be used, such
as sensitivity and specificity (Xanthopoulos and Razzaghi 2014). Sensitivity is the
proportion of true positives correctly classified while specificity is the proportion of
true negatives correctly classified (Hastie et al. 2009). Effectively, sensitivity is the
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producer’s accuracy of the positive class and specificity is the producer’s class of
the negative class. In this way, sensitivity indicates how good the classifier is recog-
nizing positive cases and specificity indicates how good the classifier is recognising
negative cases (Xanthopoulos and Razzaghi 2014).

Often sensitivity and specificity are combined in one metric for better analysis
and comparison (Tang et al. 2009). In particular, the geometric mean between
sensitivity (s) and specificity (S) (Kubat and Matwin 1997) in Equation 5 is par-
ticularly useful:

G =
√
sS (5)

The geometric mean (G) indicates the balance between classification perfor-
mances on the positive and negative class. High misclassification rate in the positive
class will lead to a low geometric mean value, even if all negative data points are
correctly classified (Hwang et al. 2011). This is a desirable feature specially when
the testing sample is asymmetric. Indeed, it can be prove that, in a binary classifi-
cation scenario, classification accuracy is the weighted average between sensitivity
and specificity, where the weights are the proportion of each class in the sample.
For example, if 10% of the sample is in the positive class and 90% is located in the
negative class, a classifier that simply classifies every data point as belonging to the
negative class yields an overall accuracy of 0.90. However, its sensitivity is 0.0 and
specificity 1.0, and thus geometric mean G is 0.0. In this way, if both sensitivity
and specificity are high, the geometric mean G is also a high value; but if one of
the component accuracies, sensitivity or specificity, is low, the geometric mean G
is affected by it. Note that in some cases a testing sample has to be asymmetric,
that is, one class has more testing data points than the other, simply due to its
variability. This is the case in a class specific mapping problem, where the majority
of the study area is typically outside the class of interest and thus contains all other
classes. Thus, the geometric mean can be an important accuracy metric for class
specific mapping, since it is particularly sensitive to the over-fitting to the negative
class (i.e. others class) and to the degree in which the positive class (i.e. class of
interest) is neglected (Nguyen et al. 2010).

3. Data and methods

The study area is located in Saloum river delta in Senegal, Africa (figure 2). The
area is predominantly flat with altitudes ranging from below sea level in the estuar-
ine zone to about 40 m above mean sea level inland. The climate is Sudano-Sahelian
type with a long dry season from November to June and a 4-month rainy season
from July to October (Faye et al. 2008; Dieng et al. 2014). The regional annual pre-
cipitation, which is the main source of freshwater recharge to the superficial aquifer,
increases southward from 600 to 1000 mm. The hydrologic system of the region
is dominated by the river Saloum, its two tributaries (Bandiala and Diomboss),
and numerous small streams locally called “bolons”. Downstream, it forms a large
low-lying estuary bearing tidal wetlands, a mangrove ecosystem, and vast areas of
denuded saline soils locally called “tan” (Dieng et al. 2014). The largest land cover
classes present in the study area are water, mangrove species, shrubs, savannah
and bare soil. The main crop is millet and the urban settlements are usually small
and sparse. Saltpans develop to the north because of excessive salinity (Mitsch
and Gosselink 2015). In this paper interest is focused on two types of mangrove,
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Figure 2. Saloum river delta in Senegal.

high-mangrove and low-mangrove. High-mangrove is generally characterised by a
dense and tall canopy, while low-mangrove tends to show less dense and decayed
canopy. In this study area, high-mangrove class is composed by species like Rhi-
zophora racemose, Rhizophora mangle and Avicennia Africana (Diop 1986), and
low-mangrove by Sesuvium portulacastrum, Sporobolus robustus, Paspalum vagina-
tum, and Philoxerus vermicularis (Diop 1986).

The Saloum river delta was designated a United Nations Educational, Scientific
and Cultural Organization (UNESCO) World Heritage site for its remarkable nat-
ural environment and extensive biodiversity and is listed in the Ramsar List of
Wetlands of International Importance (Mitsch and Gosselink 2015). Particularly
important is Saloum’s mangrove system, occupying roughly 180 000 ha supporting
a wide variety of fauna and flora, and the local economy (Mitsch and Gosselink
2015).

Remotely sensed data of the study area were acquired on 26 November 2010 by
Landsat 5 Thematic Mapper (TM) and downloaded from United States Geological
Survey (USGS) Global Visualisation web site. In this study all non-thermal bands
(bands 1 to 5 and 7) have been used. Since only one image was utilised for analysis
and the atmosphere may be considered to be homogeneous within the study area,
atmospheric correction was not necessary (Song et al. 2001) and, thus, the classi-
fication was performed using the original image digital numbers. In the same year
of the image acquisition, fieldwork and aerial imagery interpretation were under-
taken to derive ground-reference data. This analysis showed that the study area
is composed by six large land cover classes: water, high-mangrove, low-mangrove,
bare soil, savannah and shrubs. The training set comprised of 180 pixels per class
(= 30 times the number of discriminatory variables) for each of the six land cover
classes.

Four experiments were conducted to demonstrate the effects of data imbalance
and the use of cost-sensitive learning. The first two experiments were used as
benchmark. Table 2 summarises the different experiments carried out in this study.

The first benchmark classification constitutes the conventional approach to su-
pervised classification, when interest in on a sub-set of classes present in the study
area. In other words, a multi-class supervised classification is performed to obtain
a land cover map with all classes, and then only the classes of interest are used. A
standard SVM (SSVM) was trained using all six classes and fine-tuned for general

11



March 22, 2017 International Journal of Remote Sensing ”Improving specific class mapping by
cost-sensitive learning”

Table 2. Summary of the different experiments: experiments with (*) indicate benchmark.

SSVM represents the standard use of SVM; FSVM represents the focused approach with
SVM; FOVO represents the focused approach with cost-sensitive and OVO; and FOVR

the focus approach with cost-sensitive and OVR.

Experience Training set Fine-tuning Imbalanced Cost-sensitive Strategy

SSVM(*) All classes General No No OVO
FSVM(*) Three classes Specific Yes No OVR

FOVO Three classes Specific Yes Yes OVO
FOVR Three classes Specific Yes Yes OVR

Table 3. Parameterisation using focused approach.

Positive Negative γ C Balance ratio

HM LM + O 0.03125 4.0000 1:5
LM HM + O 0.00195 0.0625 1:5
O LM + HM 0.00391 0.1250 2:1

class discrimination. The training set was balanced over all six classes and thus
cost-sensitive methodology was not applied. The radial-basis function was chosen
as kernel and it was used in all the tested approaches. The free-parameters C and
γ of the radial-basis function were determined using a 5-fold cross-validation grid-
search with overall accuracy as performance metric. In this way the fine-tuning
process is effectively searching for the parameterisation with the highest overall
accuracy regardless of the classes. From this analysis the parameters were set as
γ = 0.00097 and C = 64. The experiment was conducted using LIBSVM-3.12
(Chang and Lin 2011) software interfaced with MATLAB R©. This software package
implements the standard SVM, unweighted analysis, with the OVO strategy for
multi-class problems (Chang and Lin 2011).

The second benchmark constitutes the focused approach to map specific classes
without taking into account the data imbalances present in the training set. This
benchmark classification used the standard SVM (e.g. Boyd et al. 2006). For this
reason this approach is named where as focus SVM (FSVM). All non-mangrove
classes were combined into a large class called ’others’ for use in the training stage.
The training set in the analysis is thus composed of three classes: high-mangrove
(HM), low-mangrove (LM) and others (O) class. In this way three binary classifiers
were developed, each one focusing in the discrimination of one particular class.
The geometric mean between sensitivity and specificity was applied in 5-fold cross-
validation trials for fine-tuning. Table 3 summarises the parameterisations derived
from the fine-tuning analysis and shows the balance ratios to quantify the size
difference present in each pair of classes. The balance ratio is the ratio between the
sizes of each of the pair. For example, the balance ratio between high-mangrove (180
data points) class and rest of the training set (900 data points) is 1:5. To combine
the different outcomes of each classifier, and to avoid non-labelled data points, the
assigned label was that of the class with maximum decision value (Shalev-Shwartz
and Ben-David 2014). These experiments were conducted with the same software
package as in previous experiment.

In contrast with the previous experiment, the fine-tuning does not take the overall
classification accuracy as metric but rather the geometric mean between sensitivity
and specificity, which is specific of each target class. In this paper, and for clarity,
any fine-tuning process that takes into account the overall classification accuracy
and not the classification of specific classes will be qualified as general, and specific
otherwise.

It is important to note that the two benchmarks have their own specific limi-
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Table 4. Parameterisation and weights for each pair of classes: using OVO strategy and

using OVR strategy.

Method Positive Negative Weights (+, -) γ C Balance ratio

OVO HM LM 0.0056, 0.0056 0.00012 1024 1:1
LM O 0.0056, 0.0014 0.00012 128 1:4
O HM 0.0014, 0.0056 0.00098 2 4:1

OVR HM LM + O 0.0056, 0.0011 0.06250 256 1:5
LM HM + O 0.0056, 0.0011 0.00391 8 1:5
O HM + LM 0.0014, 0.0028 0.00098 4 2:1

tations. The first benchmark, although widely used, is not optimised for the dis-
crimination of the classes of interest, since the learning algorithm is evaluated on
a different class composition than that with was tuned and trained. The second
benchmark is an improvement over the first, suggested in previous studies. But,
this leads to an classifier developed with an imbalanced data set, which may bias
the analysis to the larger classes. Thus the first benchmark, while developed with
a balanced training data set, was neither tuned nor trained to discriminate the
classes of interest; and the second benchmark, while trained and tuned to discrim-
inate the classes of interest, suffers the effects of training data imbalances. The
remain approaches tackle these two problems. In other words, they tackle the class
specific mapping while avoiding possible data imbalances issues using cost-sensitive
learning.

To that end, data point weights were defined as the inverse of its training set
size, similar to what has been applied in other studies, such as Xanthopoulos and
Razzaghi (2014). In this way by assigning more weight to the data points in the
smaller classes, the training set weight distribution shifts from the largest class to
the smallest classes minimising the bias towards larger classes. Two approaches
were then analysed, one using OVO strategy and another using OVR (table 4).

In FOVO, on the other hand, all classes of no interest were combined into a large
one, and thus the training set consisted in only three classes, high-mangrove, low-
mangrove and others class. Fine-tuning was specific to each binary classifier and
the training data set was imbalanced, and cost-sensitive analysis was employed.
The multi-class strategy was the OVO; no reclassification was necessary.

High-mangrove and low-mangrove classes have the same amount of data points
(table 4 – Balance ratio), thus the weights associated to their data points is equal,
0.0056. The others class is the majority class, and the weight associated to its data
points is thus comparatively smaller to those of high-mangrove and low-mangrove,
0.0014. The free-parameters were fine-tuned using 5-fold cross-validation trials and
the experiments were conducted with LIBSVM-weights-3.12 (Chang and Lin 2011)
interfaced with MATLAB R©.

Classification accuracy was estimated using an independent testing set of 100
random pixels per land cover class comprising a total of 600 pixels. An image
analyst visually classified each pixel in the same year as the image acquisition with
support of Google Earth and fieldwork data. The accuracy of each classification
was expressed in terms of the proportion of correctly classified testing data points.
Since a single testing set was used for each test site, the statistical significance of
the difference in overall accuracy between different classification approaches will
be assessed using the McNemar test (Foody 2009).

The McNemar test is based on a binary contingency table in which pixels are
classified as correctly or incorrectly allocated by the two classifiers under compar-
ison. The main diagonal of this table shows the number of pixels on which both
classifiers were correct and on which both classifiers were incorrect. The McNe-
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(a) (b) (c) (d)

Figure 3. Illustration of the effects of data imbalance in the training data set with different degrees of

balance ratios. The data set was generated artificially and represents a purposely simple classification
problem, projected in the feature space. The minority class represented with crosses and the majority

class represented with circles. Straight line is the discrimination plane generated with the non-weighted
approach. Dashed line is the discrimination plane generated with the weighted approach. In frame (a)

balance ratio is 1:2, in frame (b) is 1:3, in frame (c) is 1:5 and in frame (d) is 1:10.

mar test however focus on proportion of pixels where one classifier was correct
but the other was incorrect. The analysis will be based upon the evaluation of
the 100(1 − α)% confidence interval, where α is the level of significance, for the
difference between two accuracy values expressed as proportions (say p1 and p2)
expressed as (Fleiss et al. 2003):

p2 − p1 ± zαs (6)

where the term zα is the tabulated Normal distribution value with a level of sig-
nificance of α and s is the standard error derived of the difference between the
proportions, which can be determined by (Fleiss et al. 2003):

s =

√
p01 + p10 − (p01 − p10)2

n
(7)

here p10 the proportion of testing pixels where the first classifier was correct and
the second was incorrect and p01 the proportion of testing pixels where the first
classifier was incorrect and the second was correct and n is the number of testing
samples. In this way, the statistical assessment of the differences was conducted to
determine if these were significantly different or not (Foody 2009).

4. Results and discussion

A sequence of experiments with synthetic data were performed to illustrate the
effects of data imbalance in the resulted classifiers. For this purpose two normal
distributed classes, the circles and crosses, were artificially generated with the same
variability but different class sizes. The classes are linearly separable and thus a
linear SVM classification algorithm is capable of developing a classifier without
errors in the training data set. That is, it is able to find the optimal discrimination
plane. The example is purposely simple to illustrate the effects of data imbalances in
the training set. In other words, in real-world applications the relative size between
classes is not the only factor contributing to the classification algorithm. The class
mean location, variance and overlapping for example are also important informing
the learning algorithm.

In figure 3, the effects of data imbalance in the training data set are observed
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Table 5. Summary of the accuracy results in percentage obtained with each experiment. OA stands for

overall accuracy, Ss. for sensitivity and Sp. for specificity, Gm the geometric mean between sensitivity
and specificity for each class of interest.

High-mangrove Low-mangrove
Method OA (%) Ss (%) Sp (%) Gm (%) Ss (%) Sp (%) Gm (%)

SSVM 94.3 88.0 95.6 91.7 85.0 96.2 90.4
FSVM 91.0 86.0 92.9 88.9 72.0 94.8 82.6
FOVO 97.3 95.0 97.8 96.4 93.9 98.2 95.6
FOVR 96.7 93.0 97.4 95.2 91.0 97.8 94.3

with different balance ratios. The minority class represented with crosses and the
majority class represented with circles. In frame (a) balance ratio is 1:2, in frame
(b) is 1:3, in frame (c) is 1:5 and in frame (d) is 1:10. Straight line is the discrim-
ination plane generated with the non-weighted approach and dashed line is the
discrimination plane generated with the weighted approach. When data sets are
not balanced, the discrimination boundary (straight line) is pushed away from the
majority class. This gives more room to the majority class to accommodate atypical
pixels, that is pixels with low frequency of occurrence or that were not represented
in the training data set. However, the decision boundary is closer to the minority
class, providing less room to accommodate pixels that deviate from the training
data set distribution. Thus, the classifier is overfitted around the minority class. In
other words, a point belonging to the minority class that deviates from the training
data set distribution may be misclassified, because the discrimination boundary is
too close to its true class. Thus, a classifier developed with an imbalanced data
set may induce a classification with high number of false negatives in the minority
class. That is, the minority class may be underestimated. This explains the findings
of previous studies, like Graves et al. (2016), that have shown a trend where classes
with more samples were consistently over-predicted while classes with fewer sam-
ples were under-predicted. With the discrimination plane induced by the weighted
approach, the effects of data imbalanced are mitigated. The training data points
were weighted according to its class, using the same rule as presented in section
2.1. Here the decision boundary is further from the minority class compared to the
plane induced by the non-weighted approach (straight line). This provides enough
room to include atypical pixels, thus mitigating the effects of the overabundance of
data points belonging to the majority class. In this way, by controlling the weight
of the minority class data points, it is possible to inform the learning algorithm to
push away the decision boundary to avoid over-fitting around the minority class.

The overall accuracy yielded by the two benchmarks was 94.3% and 91.0% for
SSVM and FSVM, respectively (table 5). The difference in overall accuracy between
these two approaches can be attributed mainly to the data imbalance present in the
training set used in the FSVM experiment. Indeed, the training set used for SSVM
is balanced since the six classes have precisely the same number of data points,
in contrast with the FSVM where roughly 66.7% of the training consists in one
class (others class), with the rest being equally distributed by high-mangrove and
low-mangrove. Then when the binarisation process in FSVM is applied, the binary
classifiers used to discriminate the target classes are developed with an imbalanced
training set. The imbalance ratio in the training data set for the classes of interest
is 1:9.

FSVM yielded lower sensitivity and specificity values in the classes of interest
than SSVM. For high-mangrove, the difference in sensitivity between SSVM and
FSVM is 2.0% while specificity differs 3.6%. For low-mangrove, on the other hand,
sensitivity differs 13.0% while specificity differs 1.4%. With lower sensitivity, FSVM
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omits more positive cases than SSVM, which are precisely the pixels belonging to
the classes of interest. On the other hand, with lower specificity FSVM commits
more negative cases (elements of the class of non-interest) to the class of interest.
These errors led to a decrease of the geometric mean of 2.8% and 7.8% in the
discrimination of high-mangrove and low-mangrove respectively.

It is also important to notice that, although FSVM was tuned using the geometric
mean, specific for each class of interest, that was not sufficient to overcome the
effects of imbalance data. The determination of the parameters is an important
factor in the sense that provides more sensibility to the learning algorithm about
the boundaries of the classes of interest. However the issue introduced by the data
imbalance remains, since the decision boundary will still be pushed way from the
majority class.

The FOVO and FOVR experiments were conducted with the same training set
as that of FSVM, but the data imbalance was mitigated with the use of data
point weights. Overall accuracies were 97.3% and 96.7% for FOVO and FOVR,
respectively, 6.3% and 5.7% higher than the FSVM. Sensitivity and specificity were
higher in both classes of interest. The geometric mean yielded by FOVO and FOVR
were 7.5% and 6.3% higher, respectively, for high-mangrove and 13.0% and 11.7%
higher for low-mangrove. These results show how the use of weighted observations
can be used to mitigate the effects of data imbalance in the training set for specific
class mapping. In fact, the cost-sensitive approaches (FOVO and FOVR) yielded
the highest geometric mean values in the discrimination of the classes of interest.

The main difference between SSVM and the cost-sensitive approaches is on the
fine-tuning process, since both data sets are balanced, the first by design and the
second by application of data point weights. The fine-tuning process in SSVM is
generic; in other words, a single set of parameters was determined as the best
set of parameters for the discrimination of each possible pair of classes since the
utilised software implements OVO strategy to deal with multi-class problems. Thus,
the fine-tuning process is effectively estimating the parameterisation yielding the
maximum overall discrimination accuracy for the discrimination of the six land
cover classes and not the best parameterisation for the particular discrimination
of the classes of interest.

On the other hand, in FOVO and FOVR, the fine-tuning process is specific, that
is it was applied to each particular pair of classes, and thus instead of determining
the parameters that best fit the discrimination of all classes, each pair of classes had
its own particular parameterisation. In contrast with SSVM, the training set and
the fine-tuning process applied in FSVM is the same as those utilised in the two
cost-sensitive approaches. In FSVM, although the fine-tuning process was specific
to each particular binary classification problem, and not global as in SSVM, the
imbalances present in the training set were not addressed.

To illustrate how the two best approaches compare regarding mapping the classes
of interest, in figure 4, two binary classifications extracted from SSVM and FOVO
are presented. For brevity sake and simplicity only the classifications of high-
mangrove are presented, since similar observations can be done for low-mangrove.
In general, the classifications show patches with similar geometrical structure, how-
ever the FOVO classification appears to be an expanded version of the SSVM clas-
sification. That is, FOVO classifier appears in general to add positive classifications
around the positive classifications of SSVM. Although, data imbalance cannot be
used to explain this effect, since SSVM was developed with a balanced data set, a
similar effect to that observed in figure 3 may occur. That is, the decision boundary
being located too close to the class of interest class. This may be caused by class
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(b)(a)

Figure 4. Binary map showing the areas of high-mangrove (white) and no-high-mangrove (black) classified

by the standard SVM (SSVM) frame (a) and the focused SVM with one-vs-one (FOVO) frame (b). Top
left corner at (313659,1541131) and bottom right corner (333858,1540057) EPSG 32628.

Table 6. 95% confidence interval (CI) on the estimated dif-
ference in overall accuracy (DA) obtained between the ap-

proaches. Results are presented in percentage and decision

is done at 5% level of significance

Method DA 95% CI for DA Decision

SSVM vs. FSVM 3.3 1.7 - 4.9 Different
FOVO vs. SSVM 3.0 1.5 - 4.5 Different
FOVR vs. SSVM 2.4 1.2 - 3.6 Different
FOVO vs. FOVR 0.6 0.3 - 0.9 Equivalent

composition of the training data set and in the way the learning algorithm param-
eters were fixed. Concretely, since the class of interest is only one small class in a
larger group of six, a set of parameters inducing a classifier that correctly predicts
the majority of the classes but neglecting the small class of interest, scores high in
fine-tuning process. Such model ultimately defines a decision boundary closer to
the class of interest, which may lead to a model that under-predicts this class. In
other words, the classifier that is less sensitive to the class of interest. Note that the
pixels added by FOVO are located near the interface between the class of interest
and its negative. This suggests that these are pixels localised on edge of the class
distribution, and thus are more likely to be misclassified by a classifier with low
sensitivity to the class of interest, such SSVM. In other words, the classification
errors committed by SSVM tend to be localised in such regions. This led the FOVO
approach to predict roughly 7.0% more pixels of the classes of interest than the
SSVM.

Table 6 summarises the statistical test results based on 95% confidence interval
on the estimated difference in overall accuracy derived from different experiments.
The 95% confidence interval for the estimated difference between the accuracies
derived from FOVO and FOVR spanned from 0.3% to 0.9%, with centre at 0.6%,
and lay within zone of indifference, indicating that FOVR classification was non-
inferior to that of FOVO at 5% level of significance. The 95% confidence level for
the difference between the classification accuracies yielded by the cost-sensitive
approaches, FOVO and FOVR, spanned from 1.5% to 4.5% for FOVO and 1.2%
to 3.6% for FOVR. The lower extremes of both intervals did not cross the zone
of indifference, thus indicating that the classifications derived from FOVO and
FOVR were significantly different from those derived from SSVM at 5% level of
significance.
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5. Summary and conclusions

Often users’ interest is on a small sub-set of land cover classes present in the
study area and not in a complete characterisation of the landscape. In these cases,
conventional supervised classification techniques may not be appropriate for the
derivation of information about these classes. Previous studies have shown that by
combining the classes of no interest into a large single class and by decomposing the
multi-class problem into a series of binary classification problems is sometimes a
better approach than the conventional supervised classification method. However,
this approach may suffer from data imbalance issues, since the classes of interest
are usually a small component of the training set. In this article, cost-sensitive
learning was applied to overcome data imbalances problems present in the training
data. Experiments were conducted with Landsat 5 Thematic Mapper in Saloum,
Senegal, where the classes of interest were high-mangrove and low-mangrove. The
cost-sensitive learning outperformed the conventional multi-class approach and the
focused approach in the discrimination of each class of interest. Classification ac-
curacies derived from cost-sensitive approaches were significantly different from
those derived from the standard multi-class and the focused approaches. Cost-
sensitive approach also improved class specific discrimination. Indeed, for high-
mangrove, the cost-sensitive learning approach yielded sensitivity and specificity
geometric mean of 96.4% against 91.7% yielded by the multi-class approach and
88.9% yielded by the focused approach. And for low-mangrove, the cost-sensitive
learning approach yielded a geometric mean of 95.6% against 90.4% yielded by the
multi-class approach and 82.6% yielded by the focused approach. The cost-sensitive
approaches as predicted roughly 7.0% more pixels of the classes of interest than the
conventional supervised classification. Since interest was on more that one class,
it is necessary to combine the outcomes of several binary classifiers. The two most
common approaches, the one-vs-one (OVO) and the one-vs-rest (OVR), were com-
pared. The differences between the accuracies derived from OVO and OVR were
not statistically significant. Indeed, although OVO show higher classification ac-
curacy than OVR (97.3% against 96.7%), OVR accuracy was non-inferior to that
of OVO at 5% significance level and using a 1.0% zone of indifference. From an
operational point of view, the effort to apply OVO or OVR was the same, because
the number of classes of interest was small. Since that is the case in most practical
cases, the use of OVO or OVR may then be of little if any relevance. In summary,
the study results suggest that the cost-sensitive learning is an effective solution
to overcome data imbalances present in the training set and thus contribute to
improve the classification accuracy of specific mapping of classes of interest.
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