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 Abstract 

Background & Aims:  Minocycline hepatotoxicity can present with prominent autoimmune features in 

previously healthy individuals. The aim of this study was to identify genetic determinants of minocycline 

DILI in a well-phenotyped cohort of patients. Methods:  Caucasian patients with minocycline DILI 

underwent genome-wide genotyping and were compared to unexposed population controls. Human 

leukocyte antigen (HLA) binding of minocycline was assessed using AutoDock Vina. Results:   Amongst 

the 25 cases, 80% were female, median age was 19 years and median latency from drug start to DILI 

onset was 318 days.  At presentation, 76% had acute hepatocellular liver injury, median ALT 1077 U/L 

(range: 63 to 2333), median bilirubin 4.5 mg/dl (range: 0.2 to 16.7), and 90% had a +ANA. During follow-

up, 50% were treated with corticosteroids and no subjects died or required a liver transplant. A 

significant association was noted between HLA-B*35:02 and risk for minocycline-DILI;  a 16% carrier 

frequency in DILI cases compared to 0.6% in population controls (Odds Ratio: 29.6, 95% CI: 7.8-89.8, 

p=2.5 x 10
-8

). Verification of HLA-B*35:02 imputation was confirmed by sequence-based HLA typing.  

HLA-B*35:02 carriers had similar presenting features and outcomes compared to non-carriers. In silico 

modeling studies support the hypothesis that direct binding of minocycline to this novel HLA risk allele 

might be an important initiating event in minocycline-DILI. Conclusion:  HLA-B*35:02 is a rare HLA allele 

that was more frequently identified in the 25 minocycline-DILI cases compared to population controls. If 

confirmed in other cohorts, this HLA allele may prove to be a useful diagnostic marker of minocycline 

DILI.  

 

Words:  252 

 

Lay summary:   Development of liver injury following prolonged use of minocycline for acne is a rare but 

potentially severe form of drug induced liver injury.  Our study demonstrates that individuals who are 

HLA-B *35:02 carriers are at increased risk of developing minocycline related liver injury.  These results 

may help doctors more rapidly and confidently diagnose affected patients and possibly reduce the risk 

of liver injury in individuals receiving minocycline going forward.  

 

Graphical abstract:  See attached PDF 
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Idiosyncratic drug induced liver injury (DILI) is an important cause of acute and chronic liver injury in 

western patients.  In addition to being a leading reason for regulatory actions amongst drugs in 

development and in the marketplace, DILI also accounts for 13% of adults with acute liver failure (1).  A 

recent population based study indicated that the annual incidence of DILI was 19.1 per 100,000 person 

years in Iceland and that antibiotics were the most commonly implicated agents (2). Similarly, analyses 

from the ongoing Drug induced Liver Injury Network (DILIN) prospective study in the United States also 

identified antibiotics as the leading cause of DILI, with amoxicillin-clavulanate being most frequently 

implicated (3).   Prior reports have also implicated minocycline as a cause of DILI with characteristic 

clinical features including systemic arthralgias and detectable autoantibodies arising in young women 

(4).    Recent studies have suggested that various laboratory, histological and clinical features can help 

differentiate auto-immune like DILI from sporadic autoimmune hepatitis but confirmatory studies are 

needed (4).   

Several groups have begun studies to better define the presenting features, risk factors, and outcomes 

of patients with DILI. In addition to identifying improved causality assessment methods and DILI 

biomarkers, studies exploring the potential genetic susceptibility in these rare patients with DILI have 

been undertaken.  Prior genome wide association studies (GWAS) have identified single nucleotide 

polymorphisms in the Human Leukocyte Antigen (HLA) locus that are associated with DILI susceptibility 

to several drugs (5-8).   The aim of the current study is to report upon the presenting clinical features 

and outcomes of patients with DILI attributed to minocycline that have enrolled into the ongoing DILIN 

prospective and retrospective studies.  In addition to exploring clinical phenotypes, we also set out to 

identify potential genetic susceptibility factors in patients with minocycline DILI compared to population 

controls, using GWAS and confirmatory sequence-based HLA typing. Finally, preliminary results 

exploring the potential mechanism of the HLA-B*35:02 association with minocycline DILI using in silico 

modelling are presented. 

Methods 

DILIN Prospective study-   Most of the subjects were enrolled in the DILIN prospective study protocol. 

DILI onset was defined as the first date after a subject taking minocycline met the predefined 

laboratory criteria for study entry, of either a serum aspartate aminotransferase (AST) or 

alanine aminotransferase (ALT) level that exceeded 5 x the upper limit of normal (ULN) (or 5 X 

pretreatment baseline if baseline abnormal), a serum alkaline phosphatase (Alk P) that 

exceeded 2 X the ULN (or 2 X pretreatment baseline if baseline abnormal), a total bilirubin > 2.5 

mg/dl, or an international normalized ratio (INR) greater than 1.5 on two consecutive blood 

draws.  All study participants were enrolled within 6 months of DILI onset.   

A detailed medical history was obtained at the baseline study visit and additional laboratory 

and radiological testing were performed to more fully characterize the DILI event and exclude 

competing etiologies.  Specifically, testing for hepatitis A, B, C, HIV, autoantibodies including 

anti-nuclear antibody titers, CMV, and EBV infection were obtained at the local laboratory.   

Enrolled patients were seen for a follow-up study visit at 6 months after initial enrollment and 
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those with evidence of chronic DILI within 6 months of DILI onset were asked to return for 

additional follow-up visits at 12 and 24 months (9).   Chronic DILI was defined as having a 

persistently elevated serum AST, ALT, or alk phos level, histological evidence of liver injury, or clinical 

evidence of portal hypertension at 6 months after DILI onset.   Written informed consent was obtained 

from subjects and the study was approved by the Institutional Review Boards of all participating clinical 

sites.    

The severity of the DILI episode was categorized on a 5-point scale from mild (1), moderate (2), 

moderate-hospitalized (3), severe (4), and fatal (5), where a fatal score was assigned only if the 

patient died or had liver transplant due to DILI (9).   Of note, the clinical features of some of the 

minocycline patients were previously presented in a separate report (10). In addition, clinical 

features from 2 of these cases have been posted as brief vignettes on the LiverTox website (see 

http://livertox.nlm.nih.gov/minocycline).  

DILIN Retrospective study-  DNA samples and phenotypic data from subjects with minocycline 

hepatotoxicity enrolled in the DILIN retrospective study were included.   Study inclusion criteria were 

patients that developed DILI due to one of 8 prespecified drugs that included minocycline with a DILI 

onset date after 1994.  Subjects had to have a total bilirubin of > 2.5 mg/dl and a complete set of labs at 

DILI onset, exclusion of competing causes, and outcome available for review.   Retrospective study 

patients were either interviewed in person or over the phone to review the dose and duration of 

suspect medication use and facilitate collection of a DNA sample after obtaining written informed 

consent.    

DILIGEN study-  Only Caucasian subjects with DILI attributed to minocycline enrolled in the DILIGEN 

study with an available DNA sample were included.  All subjects had (a) clinically apparent jaundice or 

bilirubin > 40 umol/L, or (b) a serum ALT > 5 X ULN or (c) Alk P > 2 X ULN plus any raised bilirubin above 

ULN (7). All patients had a Roussel Uclaf Causality Assessment Method (RUCAM) causality score of 3 

or greater. 

Liver histopathology-  Available liver biopsies were reviewed by a single expert liver histopathologist 

(DEK).  All samples were scored for multiple histological features as well as an overall pattern of liver 

injury (11).   

Causality assessment-   The causal relationship between the liver injury episode and the 

minocycline use were evaluated in a standardized fashion by the DILIN causality committee 

(12).   A DILIN expert opinion causality score varying from 1 (Definite > 95% likelihood), 2 

(Highly Likely 75%-95% likelihood), 3 (Probable 50%-74% likelihood), 4 (Possible 25%-49% 

likelihood) to 5 (unlikely < 25% likelihood) was assigned by consensus agreement of committee 

members for all of the retrospective and prospective DILIN cases.  In addition, a RUCAM score 

was calculated for each case and implicated agent (13).   In subjects with 2 or more implicated 

drugs, an overall causality score was assigned to the case and then an individual causality score 

for each drug was given.    
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Controls  

Since DILI has a very low prevalence and minocycline is widely prescribed in healthy individuals 

with an estimated 4.2 million prescriptions of tetracylines per year in the US, unselected 

population samples were used as study controls (14).  We selected 10,588 Caucasian controls 

from different available sources; the Welcome Trust Case Control Consortium (WTCCC) 

(http://www.wtccc.org.uk), the population reference sample (POPRES)and PGX4000118 and 

Spanish Bladder cancer cohort from dbGAP (phs000346.v1).  Since all cases of minocycline DILI 

were determined to be of primarily Northern European ancestry, the set of ancestry-matched 

controls totaled 6,835 individuals.  Since prior medication exposure history was not available 

for the controls, we presume that none of these patients previously received minocycline.    

Genome-wide SNP and HLA analysis 

Genome-wide genotyping of DILI cases was performed by the Broad Institute in Boston by 

Illumina Infinium HumanCoreExome BeadChip (n=19) or at the Duke Center for Human Genome 

Variation on the Illumina 1Mduo array (n=6).  A total of 505,740 markers shared across the 

different genotyping platforms used for DILI cases and controls passed quality control (QC) and 

no samples were excluded for low quality profile.  

For each cohort, single nucleotide polymorphisms (SNPs) with poor quality data were pruned 

before the imputation to avoid false positives. The imputation was performed by batches 

dividing the cohorts by the genotyping platform used. For each batch, we first phased the data 

by SHAPEIT (version v2.r727)(15), to increase the accuracy of the imputation. Then, imputation 

was carried out using IMPUTE2 (version 3) with the 1000 Genomes Project (release v321) 

dataset as the reference panel (16). We used an ethnically mixed panel to improve the quality 

of the imputation for rare variants. We retained imputed genotypes with: (a) posterior 

probability > 0.9  in each genotyping batch, (b) no significant difference in missingness between 

cases and controls (χ2 test, p-value > 0.0001), (c) no significant deviation from Hardy-Weinberg 

equilibrium (p-value > 0.0001), (d) missing data not greater than 5% in each single genotyping 

batch, (e) info score greater than 0.8 in each genotyping batch. Since the imputation quality is 

higher for common variants, we selected SNPs with MAF in the 1000 Genomes Project greater 

or equal of 0.01. The imputed cohorts were then merged and genotyped SNPs were used to 

replace imputed SNP genotypes if previously eliminated during the build of the batch groups. 

For each imputed SNP, possible batch effects were detected by testing the association (by 

logistic regression) between controls within the same population typed by different platforms. 

SNPs with association p-values less than 0.005 in this control comparison were excluded from 

the analysis. For each cohort, HLA alleles were also inferred using HIBAG (17) using the 

reference predictor panels specific for each genotyped chip. The top associated HLA type was 

further validated by sequence-based HLA typing at Histogenetics (Ossining, NY, USA).  A proxy 
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for HLA-B*35:02, rs148631562, was typed with a TaqMan® SNP genotyping assay (ThermoFisher 

Scientific, Waltham, MA) in accordance with the manufacturer's recommendations in 7 

additional European ethnicity cases. 

Statistical analysis 

The effect of population structure was assessed through principal components analysis (PCA) 

using the smartPCA program from the EIGENSTRAT package (version 3.0) (18). The statistical 

association of each marker (HLA allele or SNP) with risk for minocycline DILI was determined by 

logistic regression with the first ten significant principal components as covariates under an 

additive genetic model. The lack of association between the HLA-B*35:02 allele and 

EIGENSTRAT axes can be seen in Figure S1.  Association and heterogeneity tests were carried 

out using PLINK (19). We set the genome-wide significance p-value threshold to 1.0 x 10
-8

 to 

correct for multiple testing.  Given the high prior probability of HLA association with risk for 

DILI, an HLA-wide significance threshold was determined by Bonferroni correction for the 217 

HLA alleles tested for association (p=2.3 X 10
-4

). No test statistic inflation was observed for the 

results (Figures S2 and S3). To test for independent effects within regions having multiple 

associated variants, we included one or more variants as covariates and tested the residual 

effect of these variants after adjusting for the top associated allele.  Differences in clinical 

characteristics among sample groups were tested by Fisher's Exact test or one-way ANOVA. All 

detailed analyses and Manhattan plots were performed with R (Version 3.0.2). Regional plots 

were drawn by LocusZoom (20). 

HLA modelling and molecular docking 

An atomic model of HLA-B*35:02 was generated by SWISS-MODEL (21) using the HLA-B*35:02 

sequence found in IMGT/HLA (22). The SMILES string of minocycline was obtained from 

PubChem and translated into 3 dimensional coordinates using the NCI/CADD translator 

(http://cactus.nci.nih.gov/translate/). AutoDock Tools was used to prepare files for molecular 

docking using AutoDock Vina (23). The top 9 scoring orientations were studied with the highest 

scoring pose shown in Figure 3. 
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RESULTS 

Patient population-  A total of 25 Caucasian patients with DILI attributed to minocycline constitute our 

study population.   Eighteen of the patients were enrolled in the DILIN prospective study, 4 were 

recruited in the DILIN retrospective study and 3 subjects were enrolled from DILIGEN.   As shown in 

Table 1, the majority of subjects were female (80%) with a median age of 19 years (range: 16-61).  

Indications for minocycline use were dermatologic in 100%.   At presentation, the majority of subjects 

had an acute hepatocellular pattern of liver injury with a median serum ALT of 1077 U/L, median Alk P of 

176 U/L, and 52% of the subjects were jaundiced.  The median duration of minocycline use was 55 

weeks (range:   < 1 to >122) with 52% having taken the drug for > 12 months. Hypersensitivity features 

at presentation included 4% with eosinophilia, 32% with fever, and 20% with a rash.  The majority of 

subjects had a + ANA (90%) determined at their local hospital lab, 32% had detectable smooth muscle 

antibody, and 58% had hypergammaglobulinemia. 

A liver biopsy was obtained during the process of clinical evaluation and available for central review in 8 

subjects (Table 2).   The time from DILI onset to liver biopsy varied from 2 to 220 days with a median 

time of 73 days.  The pattern of injury was acute (lobular predominant) hepatitis in 3 patients and 

chronic (portal predominant) hepatitis in 5 patients.  In 2 of the cases of acute hepatitis and one of the 

cases of chronic hepatitis, there was mild to moderate zone 3 bile accumulation (cholestatic hepatitis).  

Half of the cases had marked interface hepatitis and in 2 cases, this was associated with bridging 

necrosis.  Mild confluent necrosis was seen in 3 cases.  Portal plasma cell infiltrates were prominent in 3 

cases, while eosinophils were prominent in 5 cases.  The 3 cases of cholestatic hepatitis all had 

prominent portal neutrophil infiltrates.  On the basis of pattern and plasma cell infiltration only 3 cases 

showed classic features that would suggest autoimmune hepatitis.  Fibrosis was present as periportal 

expansion in most cases, but two cases had evidence of early bridging fibrosis. 

During follow-up, none of the patients died or underwent liver transplantation.   However, 5 (28%) of 

the 18 DILIN prospective patients met pre-determined criteria for chronic DILI at 6 months after injury 

onset.  At 24 months of follow-up, all 5 patients had normalized their labs.   Local physicians treated 12 

subjects (50%) with corticosteroids.  The median duration of steroid use was 160 days (range:  4 to 435 

days) and 27% of the DILIN patients remained on steroids for at least 6 months after DILI onset.   

Genetic association studies-   A genome-wide association study was undertaken on the 25 minocycline 

DILI cases, including association testing of HLA alleles imputed from SNP genotype data in the major 

histocompatibility complex (MHC) region on chromosome 6.   The results of the genome-wide scan did 

not reveal any individual SNP or genomic region showing significant association with risk for 

minocycline-DILI after multiple test correction. However, when assessing the HLA types imputed from 

SNP genotype data in the MHC region, we observed a significant enrichment of the HLA-B*35:02 allele in 

the cases versus population controls (16% vs 0.6%, Odds ratio 29.6, 95% CI:  7.8-89.8, p = 2.5 X 10-
8
) 

(Table 3). The association with the imputed HLA-B*35:02 allele was then confirmed with sequence-

based HLA typing (Figures 1 and 2).  
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HLA docking studies-   Although the mechanistic basis for HLA associations with DILI is not known, it is 

presumed to involve: 1) direct binding of either the drug or a drug metabolite to HLA molecules or a 

metabolite-peptide adduct binding to HLA molecules, 2) effects on selection (expansion or deletion) of 

HLA restricted drug-specific T cells, and/or 3) indirect effects due to linked causative genes. To 

determine if minocycline has the potential to bind HLA-B*35:02, we used molecular docking to predict 

putative interactions. Although the structure of HLA-B*35:02 has not been solved, it is sufficiently 

similar (98.9 %) to a solved crystal structure (HLA-B*35:01, PDB code 1XH3) allowing the generation of a 

high confidence model. The crystal structure of abacavir bound to HLA-B*57:01 provided a rational basis 

for prediction of sites within the antigen binding cleft that permit drug/HLA interactions (24, 25) . We 

used a high confidence model of HLA-B*35:02 and knowledge of drug/HLA contact sites to predict the 

likelihood of direct minocycline interactions with HLA-B*35:02.   We used AutoDock Vina to dock 

minocycline into the antigen binding cleft of HLA-B*35:02 yielding a predicted interaction (estimated 

ΔG=-7.9 kcal per mole, compared to control docking of abacavir into HLA-B*57:01, ΔG=-7.2 kcal per 

mole (Figure 3). These data suggest that minocycline has the potential to bind the HLA-B*35:02 antigen 

binding cleft.  
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Discussion 

Our study demonstrates a higher frequency of HLA-B*35:02 amongst the 25 patients with minocycline 

DILI compared to a large group of population controls.  The GWAS results were confirmed using 

sequence-based HLA typing.   Although further validation in an independent and larger group of patients 

with minocycline DILI are needed, the results are in line with previous genetic studies of DILI showing 

(often drug-specific) risk factors in both HLA Class I and HLA Class II genes (5,6).  HLA-B*35:02 has a low 

frequency in the general population, with an allele frequency of only 0.3% in Caucasians and less than 

0.1% in African Americans. 

A review of the literature demonstrates that HLA-* 35:02 is moderately associated with the rate of HIV 

progression to AIDS in Caucasian patients (26).   It remains possible that HLA*B-35:02 could be a marker 

for the underlying condition of facial acne for which minocycline was prescribed.  However, prior GWAS 

in patients with acne has failed to demonstrate this association (27-29).   Furthermore, our molecular 

docking data suggest that minocycline is capable of binding within the HLA-B*35:02 antigen binding 

cleft, and may potentially alter the profile of peptides that normally bind to HLA-B*35:02, as has been 

shown with abacavir binding to HLA-B*57:01 (30).   Crystal structures demonstrate that abacavir forms 

contact with specific peptides and HLA-B*57:01. Several contacts between the drug, peptide and HLA 

are mediated by ordered water molecules. Molecular docking of minocycline to HLA-B*35:02 is limited 

by lack of knowledge regarding peptides that bind in the presence of the drug. Moreover, it is not 

possible to accurately predict the locations of ordered water molecules in a model of HLA-B*35:02. 

Future studies characterizing peptides bound to HLA-B*35:02 are expected to elucidate functional drug 

interaction mechanisms for this (and other) HLA-DILI associations.    

No significant difference in clinical presentation or outcome based upon HLA-B* 35:02 genotype was 

observed except for lower total bilirubin levels and R-values (Table 1) (see supplemental Table 1 for 

additional information).  This may be due to the limited number of cases enrolled (25), with only 4 HLA-

B*35:02 carriers among this set, or a true lack of difference in presentation or outcomes related to HLA-

B*35:02 carrier status.  A larger number of minocycline DILI cases used for genetic validation could also 

help determine if the HLA-B*35:02 carriers have any unique clinical or laboratory features compared to 

non-carriers with minocycline DILI.  Nonetheless, our data are consistent with other GWAS studies in 

DILI subjects demonstrating an association of HLA region with DILI susceptibility (31-33).  Many of these 

are in the HLA Class I genes (specifically, HLA-A or HLA-B), though the HLA Class II genes have also been 

implicated.    These studies suggest a role for adaptive immunity in DILI pathogenesis.     

Many of our patients had autoimmune like features at presentation.  Furthermore, available liver 

biopsies demonstrated some features of AIH in some patients (Table 2).   Up to 50% of patients were 

treated with steroids and most did well.  Steroids were successfully tapered off in most patients.  

Although there were no liver transplants or deaths, 24% evolved into chronic DILI which is higher than 

our prior report (9).  This may in part be due to prolonged use of the drug in these patients.  

Furthermore, most of these patients did not get routine labs drawn prior to use.    Lastly, a substantial 

delay between first evidence of DILI (abnormal labs) and drug cessation was observed with 11 subjects 

discontinuing the drug after a median of 38 days after DILI onset.  Prior studies have suggested that 
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continued suspect drug use is associated with more severe DILI and chronicity (34).   However, the 

median duration of minocycline use in the 5 DILIN subjects who developed chronic DILI was not 

significantly longer than the duration of use in the 12 without chronic DILI (252 vs 400 days, p=0.6). And 

the duration of minocycline use after DILI onset was not longer in those with chronic vs self-limited DILI 

(1 day for both groups, p=0.8).   Fortunately at month 24 of follow-up, none of the 5 chronic DILI 

patients had evidence of cirrhosis, portal hypertension or liver failure and in fact all had normalized their 

liver biochemistries.    

Recent studies have suggested that certain HLA alleles (i.e.  HLA-DRB1*0301, HLA-DRB1*0401) may be 

associated with susceptibility to autoimmune hepatitis in Caucasians (35).   When we looked for these 

specific alleles, there was no over-representation in our minocycline cases compared to population 

controls (Data not shown).   However, the lack of an association may be due to lack of power owing to 

the small number of minocycline DILI cases.  

Given the low incidence of DILI amongst patients receiving minocycline, HLA typing is unlikely to help 

prevent minocycline DILI.  However, HLA-B*35:02 may be useful as a diagnostic aid in the setting of 

suspected minocycline DILI especially in distinguishing it from sporadic autoimmune hepatitis but 

confirmatory studies are needed.  In addition due to the small number of case patients that carry the 

HLA-B*35:02 allele (n=4), validation of these findings in a larger, independent cohort of patients with 

minocycline DILI is needed.   

The mechanism linking minocycline to HLA-B*35:02 is not clear. One possibility is that the drug binds 

directly to the antigen binding cleft similar to abacavir binding to HLA-B*57:01, and alters the repertoire 

of bound 9mer peptide ligands- presumably presenting novel cell surface antigens. However, 

minocycline (molecular weight  493.9 daltons) is larger than abacavir (molecular weight 286.3 daltons) 

and may hinder conventional 9mer peptide ligand interactions. That is, minocycline may be presented in 

the absence of conventional peptides (e.g., 9mers). An alternative model is that minocycline metabolites 

bind HLA, forming complexes recognized by CD8
+
 cytotoxic T-lymphocytes. Another potential 

mechanism is that stressed/damaged hepatocytes exhibit immunogenic peptide/HLA complexes that act 

as neoantigens. It also remains possible that minocycline or a metabolite binds covalently to cellular 

proteins resulting in the presentation of a drug-peptide complex to T-cells via HLA-B* 35:02, as appears 

to occur with flucloxacillin in HLA-B * 57:01 carriers (36).  Evidence for the formation of a reactive 

intermediate(s) from minocycline but not other tetracyclines has been reported previously (37).   Our 

group and others are planning additional in vitro experiments in patients with and without the HLA-B * 

35:02 allele to follow-up on these preliminary studies.   Elucidating the mechanism(s) underlying the 

association between HLA-B*35:02 and risk for minocycline hepatotoxicity will lead to a greater 

understanding of the pathophysiology of liver injury from minocycline, and perhaps other hepatotoxic 

drugs. 
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Figure legends 

Figure 1.  Manhattan plot showing genome-wide single variant association test results. The  -log10(P 

value) from a logistic regression of each SNP on phenotype is plotted according to physical location  of 

the SNPs on each of the 22 autosomes, with SNPs on different chromosomes colored with alternating 

colors. SNPs that exceeded a  p-value of 10
-5

 threshold are marked in green color. 

Figure 2.  LocusZoom plot of association test results in the MHC region. The -log10(P value) from a 

logistic regression of each SNP as well as HLA-B*35:02 on phenotype is plotted according to physical 

locations in the MHC region. Linkage disequilibrium between each of the SNPs and the lead GWAS SNP 

(rs146765245) is indicated by color. Associations with the GWAS SNPs were not genome-wide 

significant, but imputation of HLA types revealed a genome-wide significant association with HLA-

B*35:02. Local recombination rate in this region is also shown with the second Y-axis on the right. 

Several HLA genes with their direction of transcription are marked by arrows on the bottom and the 

locations of SNPs are marked by vertical bars on the top. This plot is generated using the web tool 

LocusZoom at http://locuszoom.sph.umich.edu/locuszoom/. 

Figure 3. Molecular docking of minocycline in the HLA-B*35:02 antigen binding cleft.  (a) A ribbon 

diagram of HLA-B*35:02 showing minocycline with white sticks for carbon, blue for nitrogen, red for 

oxygen, and white for hydrogen. Yellow dashes represent polar interactions between minocycline and 

HLA-B*35:02. (b). Minocycline is shown in the top scoring binding orientation predicted by molecular 

docking using AutoDock Vina. The molecular surface of HLA-B*35:02 is showing as violet for carbon, 

blue for nitrogen, red for oxygen, and white for hydrogen. 
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Table 1.  Presenting features and outcomes of 25 patients with minocycline hepatotoxicity 

 

Characteristic n Total Sample 

HLA-B*35:02 (-) 

N=21          

HLA B-35:02 (+) 

N=4 p-value 

Demographics   
   

Age, median 

(interquartile range) 25  
19  

(17.9-41.0) 

19.5  

(17.3-41.0) 

19.6 

(19.5-30.2) 
0.96 

% Female 
25 80%  81%  75%  1 

BMI (mean +/- SD) 21 22.9 +/- 3.9 22.7 +/- 4.2 23.8 +/- 2.6 0.56 

Clinical Features 

Latency (days)   

(mean +/- SD) 
24 346 +/- 268 387 +/- 249 416 +/- 376 0.69 

R-value at onset 

(mean +/- SD) 
25 15.6 +/- 11.5 17.6 +/- 12.8 8.4 +/- 4.8 0.030 

ALT (U/L) at onset,          

median (25th, 75th) 
22 1111(278, 1996) 1474 (278, 2009) 545 (343, 1169) 0.50 

Bilirubin (mg/dL) at 

onset, median (25th, 

75th) 

22 4.5 (0.5, 7.6) 4.9 (0.7, 7.7) 0.4 (0.3, 3.6) 0.05 

Immunoallergic features: 

     Fever 25 8/25 (32%) 7/21 (33%) 1/4 (25%) 1 

     Rash 25 5/25 (20%) 5/21 (24%) 0/4 (0%) 0.55 

     Eosinophilia 23 1/23 (4.3%) 1/19 (5.3%) 0/4 (0%) 1 

+ANA 21 19/21 (90%) 15/17 (88%) 4/4 (100%) 1 
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+SmAb 21 7/21 (33%) 6/17 (35%) 1/4 (25%) 1 

Received 

Corticosteroids 
22 11/22 (50%) 9/18 (50%) 2/4 (50%) 1 

Chronic DILI 21 5/17 (24%) 3/17 (18%) 2/4 (50%) 0.23 

DILIN Severity Score, 

median (25th, 75th)  
22 2.0 (1.0, 2.0) 2.0 (1.0, 2.0) 1.0 (1.0, 2.0) 0.36 
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Table 2-  Liver histopathology in 8 DILIN subjects with minocycline hepatotoxicity 

Age 

(years) 

Gender HLA-

B*35:02 

carrier 

Duration of 

Minocycline 

use (d) 

Days from 

DILI onset 

to biopsy 

Findings 

17 Male - 

570 144 

Marked chronic 

hepatitis, eosinophils 

18 Female  

- 

701 22 

Marked chronic 

hepatitis, plasma 

cells and eosinophils, 

bridging fibrosis 

16 Female  

- 197 101 

Moderate chronic 

hepatitis 

55 Female  

- 

588 8 

Moderate cholestatic 

chronic hepatitis, 

plasma cells, 

eosinophils 

17 Female  

- 

387 220 

Mild chronic 

hepatitis, plasma 

cells 

31 Female  

- 

43 10 

Marked acute 

cholestatic hepatitis, 

plasma cells, 

eosinophils 

19 Female  

+ 

74 5 

Marked acute 

hepatitis, plasma 

cells, early bridging 

fibrosis 

19 Male  

- 

384 2 

Marked acute 

cholestatic hepatitis, 

eosinophils 
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Table 3. Association test results for top imputed HLA allele and top GWAS SNP in MHC region  

 
MAF 

(cases) 

MAF 

(controls) 

 

Carrier 

Frequency 

(cases, N = 25) 

 

Carrier 

Frequency 

(controls, N= 

6,835) 

Odds Ratio 

 (95% CI) 
p-value 

HLA-B*35:02 8% 0.3% 16.0% 0.6% 
29.6  

(7.8, 89.8) 
2.57 x 10

-8 

rs146765245 10% 0.2% 16.0% 0.4% 
29.9  

(8.1, 97.6) 
1.01 x 10

-7 

 

MAF=  minor allele frequency 
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Example:   A ribbon diagram of HLA-B *35:02 demonstrating docking of a minocycline molecule in 

protein binding cleft. 

 

 

 


