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Abstract

The objective of this chapter is to provide a comprehensive and systematic account on the

subject of representative volume elements (RVEs) and unit cells (UCs). To construct an RVE or

UC, intuition has been often perceived sufficient to facilitate the analysis, but down to the

details, approaches taken turn out to be rather mythological. It will be demonstrated in this

chapter that there is absolutely no room for any myth on the subject if the basic concepts of

mathematics and mechanics, viz. symmetry and free body diagrams, have been applied correctly

and consistently. Only then, effective and reliable means of material characterisation based on

the use of RVEs and UCs can be established, in particular, for composites where micro/meso-

structures often dictate their behaviours. The logic employed defines the boundary of

applicability of the methodology.

Keywords: Representative volume element (RVE); Unit cell (UC); Symmetry; Boundary

conditions; Material characterisation; Micro/meso scales; Key degrees of freedom; 'Sanity

checks'.
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Introduction

This chapter represents the very first attempt of putting together a systematic and comprehensive

account on a specific subject of representative volume element (RVE) and unit cell (UC), which

have found wide applications in modelling and characterisation of materials, in particular,

composites. In the literature, they have been employed to facilitate specific analysis, often in a

casual manner unfortunately. Readers are easily left with an impression that it is simply a

routine step. However, once one has to put it in practice, all sorts of difficulties arise. The

exercise is in fact full of pitfalls if one intends to adopt it as a serious means of material

characterisation. There are so many seemingly trivial issues, but, without putting them right, one

cannot even apply the analysis to an actually trivial problem!

It is not the objective of this chapter to provide a comprehensive literature review to list who did

what and when. One of the reasons for not doing so is the fact that often one cannot find enough

details in these publications in order to understand how they were done. Roughly, in nine out ten

publications, one would not be able to reproduce the work due to the lack of information such as

boundary conditions, load application and result processing. Amongst those cared to include an
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account on boundary conditions, for instance, it was not uncommon to find statements, such as

the boundary conditions were ‘proposed to be’, ‘assumed to be’, ‘approximated as’ or simply

‘boundary conditions employed are’, as if it was meant to be an account as loose as it was

presented on one hand, or a well-known practice and hence does not require any justification, on

the other hand. Where full details had been provided, few would stand scrutiny. Sometimes,

simple anomalies could be identified straightaway, if the readers cared to observe. Simple

testimonies can be the so-called ‘sanity checks’ as will be described fully later in the chapter.

Another simple measure readers might exercise is to observe whether and how the analysis has

involved shear stress state. Majority of the analyses using RVEs or UCs did not touch shear as if

shear is either implied by the considerations made or unimportant. The truth is of course far

from that. Shear is just as important as any other matrix dominated behaviour of composites.

Even for a macroscopically isotropic material, prediction of shear stiffness is important to check

if the isotropy has been preserved in the theoretical model as one of conditions for isotropy is

 / 2 1G E   .

Multiscale modelling using RVEs and UCs can be a very effective tool for material

characterisation, if it can be carried out systematically and consistently in a reliable manner. It

has its own clearly defined boundary of applicability. The objective of this chapter is therefore

to provide a comprehensive account on how it can be done systematically and consistently. The

methodology can thus be established logically and hence reliably. Whilst following the logic

behind each consideration, the myth over the subject can be dispelled, returning the subject a

crystal clear account as it deserves.

Length Scales

The categorisation and characterisation of a material are always associated with a specific length

scale. Historically, the length scale in engineering is macro, which was taken for granted in

traditional studies, such as mechanics of materials, heat transfer, etc. Modern science and

technology have allowed the human vision to be extended to substantially more refined scales.

Materials can now be manipulated at meso (typically around millimetre), micro (from a few to

tens of microns) and, nowadays, nano (from tens to hundreds of nanometers) scales. However,

for practical applications of fibre reinforced composites, micro, meso and macro scales are

common places. The discussion of this chapter will be confined within these scales. Even so, it

crosses three scales. Without being overly restrictive in narrative, length scales will be referred

to in a relative relationship as a lower length scale and an upper length scale. If the micro scale

is considered as lower, the upper one could be meso as well as macro, while meso is the upper

for micro but lower for macro. Meso scale is particularly relevant for textile composites, where

fibre tows are interlocked into structures of regular patterns.
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Multiscale nature is one of characteristics of composites. For material design and

characterisation, it is often desirable to derive effective properties of a composite at an upper

length scale from those of its constituents at a lower scale. The methodology established in

present chapter is to offer a powerful means to facilitate this process.

Symmetry

The reflectional symmetries are undoubtedly the most familiar type to the readers. However, it

will be very wrong to perceive that it is the only type of symmetry or the most important type of

symmetry. In fact, there are three generic types of symmetries: translations, reflections and

rotations [1]. One can of course cite more types, such as reflection about an axis, reflection

about a point, etc. A careful examination will reveal that they are some combinations of these

three generic ones. For instance, reflection about a point, or central reflection [2], is the

combination of a reflection about a plane followed by a 180 rotation about the axis

perpendicular to the plane of reflection.

A rotation of 360 is an identity transformation which is of little significance in the present

discussion. A useful rotational symmetry about an axis is characterised by an angle which must

be 360/n, with n being an integer. It is often denoted as Cn. Rotational symmetries are just as

important as reflectional symmetries. Reflectional symmetries can be absent from many

micro/meso/macro structures where rotational symmetries are available. For example, laminates

of arbitrary layup usually do not show any reflectional symmetry. However, they can be 180

rotationally symmetric about the axis perpendicular to the plane of the laminate [3].

Translational symmetry is often overlooked. However, in many ways, it is probably the most

important type of symmetry in applications to material characterisation [4, 5, 6]. Without it,

materials cannot be homogenised and unit cells cannot be established, as will be discussed in due

course later.

Continuity and Free Body Diagrams

A physical problem is always defined in a domain over which some fields describe the contents

of the problem. A physical field can be scalar, e.g. temperature, vectorial, e.g. displacement, or

tensorial, e.g. stress. Continuity conditions are usually an essential requirement as a part of

formulation of the physical problem. In a mechanical problem of deformation, for instance,

continuity of displacement field is required by the deformation kinematics. In addition to the

vectorial displacement field, this problem also involves tensor fields of stress, , and strain, .

The continuity condition on stress is common place of confusion.
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Stress field as a tensor does not have to be continuous. Equilibrium condition is not the

continuity condition for stress. The continuity condition associated with stress is Newton’s third

law, as will be elaborated later in this section.

Free Body Diagram (FBD) is a very basic, yet essential, tool throughout this study. The essence

of it is the continuity. Assume a body is separated into two free bodies by a plane perpendicular

to the x axis at a coordinate x with the two surfaces created on each side of the two free bodies

denoted as x and x+, respectively. The continuity of the displacement field requires

x x

u u

v v

w w 

   
   

   
   
   

. (1)

Without such continuity condition as expressed through the vehicle of FBD, deformation of the

body would result in slits or overlaps in the body, which violates the deformation kinematics.

The continuity condition associated with the stress is presented in terms of traction. On a plane
with an outward normal, {n}, traction is defined as {S}=[]{n}, in general. On the plane
perpendicular to the x axis,

 
1

0

0

n

 
 

  
 
 

thus  
x

xy

xz

S







 
 

  
 
 

. (2)

At x and x+, i.e. the two surfaces created in the free bodies as mentioned above, the outward

normals are

 
1

0

0
x

n 

 
 

  
 
 

and  
1

0

0
x

n 

 
 

  
 
 

, respectively. (3)

The traction on them are therefore

 
x

xyx

xz

S









 
 

  
 
 

and  
x

xyx

xz

S









 
 

  
 
 

, respectively. (4)

 
x

S 
and  

x
S 

are action and reaction for each other. Newton’s third law requires
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   
x x

S S   i.e.
x x

xy xy

xz xzx x

 

 

  

   
   

   
   
   

. (5)

It should be noted clearly here that the stress components shown above form the tractions as

vectors on the exposed surfaces of the free bodies. Continuity of them as in (5) is required by

Newton’s third law, not equilibrium, which is governed by Newton’s first law. Readers are

reminded that the action and reaction act on different bodies and hence are not in equilibrium. It

is obvious that the continuity associated with stress is not for the stress as a whole, but for those

components exposed on the surface concerned to form the traction. Other stress components are

irrelevant, as Newton’s third law does not have any bearing on them.

Equations (1) and (5) are the continuity conditions as obtained from the FBD.

Symmetry Conditions

A transformation means a change in shape or position of an object. If the shape or position

remains unchanged after a transformation, the transformation is a symmetry transformation. It is

often referred to simply as a symmetry.

Symmetry in the context of the present discussion is a geometric, as well as a physical property.

Its applications in physical disciplines require a little extension of the concept to the physical

fields under consideration. Physical fields usually have their senses. If a field is multiplied by

1, it is converted to its opposite sense. The involvement of the sense enriches the concept of

symmetry, but also causes confusion as a by-product. Under a symmetry transformation in

accordance with the geometric symmetry, a physical field could be symmetric, if the field keeps

its sense under the symmetry transformation, or antisymmetric if the field changes to its opposite

sense under the symmetry transformation.

When symmetries are made use of in a physical problem, they will result in some conditions

which are implied by the symmetry. To make these conditions explicit, free body diagrams will

have to be resorted to. Once these conditions are combined with the continuity conditions, they

offer the so-called symmetry conditions. This will be illustrated for each of the three symmetries

as follows. Without losing generality, a mechanical problem of deformation will be considered,

which involves a vector field of displacement, u, and a tensor field of stress, .

5.1 Translational symmetry

Assume the translation is in the x direction by a distance of x. An arbitrary segment of length

x in the domain for the physical problem between x0 and x0+x will be selected to produce the

free body diagram. The presence of translational symmetry for the geometry and the physical
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properties does not necessary imply that all physical fields involved possess the same symmetry.

In fact, even with perfectly uniform stress distribution, where the translational symmetry for

stress field is obvious, the associated displacement field does not possess translational symmetry.

Consider a uniform deformation at the upper length scale in a 1D case as an example. The

displacement field, u, can be defined as a linear function of coordinate x as follows:

( ) Ru x x u  , (6)

where  and Ru are constants with the former being the effective strain and latter the

displacement at a reference point.

As shown in Figure 1, such displacement field is obviously not periodic and there is no
translational symmetry. At the same time, stress and strain fields associated with it are both
periodic and hence translationally symmetric, because they are both uniform.

Figure 1 Linear 1D displacement field corresponding to a uniform strain field

This has often been a source of confusion. In order to apply the translational symmetry to

displacement, one has to resort to the relative displacement field instead. Select any point R at

Rx as a reference within segment [x0, x0+x]. Assume the point of interest is P at x within the

segment. The displacement of P relative to that of R is given as

Rx x

u u

v v

w w

   
   

   
   
   

, (7)

and that in the next segment is

Rx x x x

u u

v v

w w
 

   
   

   
   
   

, (8)

x0 x0+x x0+nx

u(x0) u(x0+nx)u(x0+x)
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and so on and so forth. Relative displacements in both segments referred to above are identical.

A relative displacement field can thus be defined segment by segment. There is a translational

symmetry, or periodicity, in the relative displacement field as defined, as shown (red) in Figure

2. It is worth noting that the relative displacement field is not continuous. However, this should

not be any cause for concern as long as the displacement field associated with it is continuous, as

it is indeed the case, given its linear appearance (green in Figure 2).

Figure 2 Schematic illustration of the relative displacement field (zigzag) in contrast with the
displacement field (straight line)

When x is placed on the boundary of the segment, the symmetry transformation gives

0 0R Rx x x x x x

u u u u

v v v v

w w w w
   

       
       

         
       
       

, (9)

0 0R Rx x x x x x

u u u u

v v v v

w w w w
  

       
       

         
       
       

.

The displacement (not the relative displacement) field must be continuous across the boundaries

of segments as established from the consideration of FBD in the previous section. Thus

0 0x x

u u

v v

w w
 

   
   

   
   
   

and

0 0x x x x

u u

v v

w w
  

   
   

   
   
   

. (10)

Therefore, (9) can be re-written as follows

x0

u(x)
u’-u

x0+x x0+nx
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0 0R Rx x x x x x

u u u u

v v v v

w w w w
   

       
       

         
       
       

. (11)

Eliminating those at  
0x

and  
x x 

which are not part of the segment concerned, one

obtains the translational symmetry condition for the displacement as

0 0 R Rx x x x x x

u u u u

v v v v

w w w w
  

       
       

         
       
       

. (12)

Similarly, through the same argument, the translational symmetry condition for the traction can

be obtained as

0 0

x x

xy xy

xz xzx x x

 

 

 
 

   
   

   
   
   

. (13)

These are conditions for displacement and stress components on the two sides of the segment

that have to be satisfied. If the segment is to be analysed as a UC, these will be the boundary

conditions for the UC in this one-dimensional case. The relative displacements between

segments at fixed points within respective segment as appearing on the right hand side of (12)

can be easily associated with the average strains. This will be discussed in details in Section 9.

For practicality, only symmetric transformations of physical fields will be considered for

translational symmetries. Antisymmetry is not dealt with here.

5.2 Reflectional symmetry

Assume the reflection is about a plane perpendicular to the x axis located at x0. Split the domain

by the plane in the sense of free body diagram as shown in Figure 3(a). The continuity of the

displacements and traction requires

0 0 0 0

and
x x

xy xy

xz xzx x x x

u u

v v

w w

 

 

 
   

       
       

        
       
       

. (14)
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If the physical fields under consideration are symmetric as shown in Figure 3(b), the symmetry

transformation requires

(a)

(b)

(c)

y

v’ v

u’ u

x

’xy

’ x

x

xy

v’

u’

v

u

x

’xy

’x x

xy

y

v’

u’

v

u

x

’xy

’x x

xy

y



11

Figure 3 (a) Free body diagram to show the continuity of displacements and stresses, and (b)
symmetric and (c) antisymmetric reflectional symmetry of the displacements and stresses

0 0 0 0

and
x x

xy xy

xz xzx x x x

u u

v v

w w

 

 

 
   

       
       

         
              

. (15)

If the physical fields under consideration are antisymmetric, the symmetry transformation

requires

0 0 0 0

and
x x

xy xy

xz xzx x x x

u u

v v

w w

 

 

 
   

       
       

         
              

. (16)

In each case, symmetric or antisymmetric, one can eliminate those at  
x

by considering (14)

and (15), or (14) and (16) as a set of simultaneous equations. For symmetric case, one obtains

0 00

0 and 0xy xzx xx
u   

   , (17)

for antisymmetric case, one obtains

0 00

0 and 0xx xx
v w     , (18)

which are conditions for displacements and stresses on the symmetry plane that have to be

satisfied for symmetric and antisymmetric cases, respectively.

5.3 180 rotational symmetry

Like reflectional symmetries, rotational symmetries can be either symmetric or antisymmetric

depending on the loading conditions. The conditions implied by the symmetry can again be

derived from two considerations, continuity and symmetry. Illustrated in Figure 4 are the free

body diagram and the symmetric symmetry transformation of displacements and the tractions in

the surface, whilst the antisymmetric counterparts to Figure 4(b) and (c) can be produced by the

readers easily and hence are not included here. In Figure 4, the coordinate system is deliberately

chosen to be different from that in Figure 3. As will be seen later, materials having a reflectional

symmetry about a plane perpendicular to the x-axis are categorised in exactly the same group as

those having a rotational symmetry about the x-axis.
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In this study, rotational symmetries will be limited to 180 rotations, i.e. C2. An example

involving other angles in the context of polar coordinate applications can be found in [7]

although it will not be covered in this chapter.

(a)

(b)

(c)

z

y
O

wz

vzv’z

w’z

O’

y-z

’yz-z

z

-z’y-z

yz-z

z

y
O

wz

vz

O’

v’-z z

v’z

w’z

w’-z

-z

w-z

v-z

z

y
O

’yzz

z
’yz

O’

yz-z

y-z

-z

yzz

yz

’yz-z

’y-z
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Figure 4(a) Free body diagram to show the continuity of displacements and stresses, (b)
symmetric rotational symmetry of the displacements and (c) symmetric rotational symmetry of
the stresses

Assume the 180 rotational symmetry is about the x axis. The way to split the domain into two

halves in the sense of free body diagram is no longer unique. The partitioning surface does not

even have to be a plane. The conditions for it are that it passes the axis of rotation and is

rotationally symmetric about the same axis. For argument’s sake, it is chosen as the plane

perpendicular to the y axis. The continuity of the displacement and stress fields requires
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If the physical fields under consideration are symmetric, the symmetry transformation requires
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If the physical fields under consideration are antisymmetric, the symmetry transformation

requires
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After eliminating those on  
y

for symmetric or antisymmetric cases respectively, the

conditions are

0 , 0 ,y z y z

u u

v v

w w
   

   
   

    
      

and

0 , 0 ,

yx yx

y y

yz yz
y z y z

 

 

 
   

   
   

   
      

(25)

for the symmetric case, and
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for the antisymmetric case. These are conditions of displacement and stress field to be satisfied

on the y-plane selected as the partition plane, for symmetric and antisymmetric cases

respectively. They will be the boundary conditions for the half domain to be analysed on the y0

side.

It can be seen above that the translational symmetry is the only one which can reduce the domain

from infinite to finite. The price to pay is to accept and to deal with the concept of relative

displacement field.

Either reflectional or rotational symmetry can only reduce an infinite domain to semi-infinite,

which is still infinite in extent. In this respect, reflectional and rotational symmetries have often

been subjected to abuses. In order to reduce an infinite domain using reflectional or rotational

symmetries alone, there have been attempts, as have often been observed in the literature, to use

the symmetry twice with the partition planes placed adjacent to each other in parallel by a

distance equal to the distance for the existing translational symmetry, without using the

translational symmetry. This was done sometimes explicitly, where error can be easily tracked,

and sometimes implicitly whilst giving no justification whatsoever. In fact, users of the latter

group soon found that it was not quite right and they had to artificially relax the constraints

imposed by the symmetry somehow to allow certain patterns of deformation prohibited by the

symmetry consideration in place. Any relaxation therefore conflicts the symmetry by definition.

It is not difficult to dismiss such an approach. The first use of a reflectional or rotational

symmetry has reduced the infinite domain to a semi-infinite one. The semi-infinite domain does

no longer possess the same symmetry anymore, as is schematically illustrated in Figure 5(a). A

typical example of such confusion can be found in the so-called equivalent coordinate systems

(ECS) [8].
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On the other hand, via the use of the translational symmetry an infinite domain can be reduced to

a finite extent, as shown in Figure 5(b). In fact, out of the three generic types of symmetries,

only the translational ones have the capability of reducing an infinite domain to a finite one.
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(a)

(b)

Figure 5 (a) Applicability of reflectional symmetry and (b) the use of translational symmetry to
reduce from an infinite domain to finite

Another factor associated with reflectional and rotational symmetries is that the sense of

symmetry transformation can be symmetric as well as antisymmetric. This causes complications

as well as confusions from time to time. When using them to formulate unit cells, sufficient care

must be exercised to avoid mistakes.

Reflectional symmetry is no longer available

Symmetry
conditions

Infinite Infinite

Infinite Infinite

Periodic
boundary
conditions

Periodic
boundary
conditions

Translational symmetry / Periodicity  always applies
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To summarise the discussion on the conditions resulting from symmetry considerations to be

used as boundary conditions for the physical problem concerned in a domain of reduced size, it

has been clearly demonstrated above that it can be done systematically. There are only two

considerations, continuity as reflected in the use of a free body diagram and the symmetry

transformation on physical fields concerned. Typical error in the application of symmetries often

resulted from plausible extension of intuition without due respect to scientific rigor. Whilst rigor

could be tedious from time to time, intuition has its own limit. Unfounded extension has always

been the recipe for errors.

The boundary conditions given in terms of stress components above are called traction boundary

conditions in the theory of elasticity. If the subsequent analyses are carried out using finite

elements (FE), as is the case for most applications, another important point should be made. The

theory of FE is formulated on a variational principle, typically the minimum total potential

principle, which is displacement-based. Variational calculus states that the stationary value

condition of the energy functional is equivalent to the satisfaction of the Euler’s equation and the

natural boundary condition, together [9]. For an elasticity problem, the Euler’s equation

reproduces the equilibrium equation and the natural boundary condition is the traction boundary

condition. As a result, in practical FE analyses, traction boundary conditions as obtained from

symmetry considerations should not be imposed as they have been satisfied, usually,

approximately, when the stiffness equation from the FE analysis are satisfied, again

approximately usually, because the satisfaction of the stiffness equation is equivalent to the

satisfaction of the stationary value condition which includes the satisfaction of the natural

boundary. It should also be pointed out that the approximation in the natural boundary condition

should not be improved by imposing the traction boundary conditions upfront as displacement

boundary conditions. Although this could have the natural boundary condition satisfied exactly,

it is always at the cost of the worst overall approximation, as doing so prevents the energy

functional to be minimised. According to the error theory of finite elements, the lower the value

of the energy functional, the better the overall approximation. In reality, imposition of traction

boundary conditions is very hard to implement. One could make enormous efforts only to spoil

the accuracy of the results, without a clear concept of natural boundary conditions. An

illustration can be found in [10].

Material Categorisation

Any serious application of a material requires relevant properties of the material to become

known. The process of obtaining such properties is often referred to as material characterisation.

As material characterisation is such an important procedure, there is a danger to jump to it

blindly. It is therefore wise to put up a warning sign here by splitting the process into two steps,

material categorisation and material characterisation. The former is more of qualitative nature

while the latter is quantitative.
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Categorisation is to put the material concerned into an appropriate category, in particular, in

terms of its heterogeneity and anisotropy. The simplest descriptors, such as homogeneity,

isotropy and linearity, are usually assumed in introductory courses, such as, strength of materials,

theory of elasticity, mechanics of composites, etc.. They are therefore often been taken for

granted, as in this case there is nothing left for categorisation. However, when heterogeneous

and anisotropic materials are involved, categorisation is no longer a step that can be skipped.

The extent of heterogeneity, degree of anisotropy and severity of nonlinearity are always

significant considerations in the material selection phase of any serious engineering design.

In material categorisation, homogeneity is undoubtedly the most important descriptor to

examine, although it is often taken for granted. Without it, the behaviour of a material will vary

from point to point. Whilst there are materials, natural or engineered, such as bones and

functionally graded materials, showing noticeable variation of material properties in space, a

plane or a direction, their characterisation is inevitably a rather specialised study and therefore

will be beyond the scope of this chapter. The materials concerned in the present discussion are

assumed to be homogeneous at least at one length scale and the material is expected to be used in

engineering within this length scale or above. Heterogeneity is present at lower length scales.

The task of so-called micromechanics is to homogenise the heterogeneity at a lower length scale

so that the material can be treated as homogeneous for engineering applications at the upper

length scale. In order to achieve such homogenisation, one can find the concept of RVEs for

materials of random structures and UCs for materials of regular structures at a lower length scale

useful means. The underlying type of symmetry to facilitate this categorisation is translation. A

material is effectively homogeneous if it possesses translational symmetries in three non-

coplanar directions, either in a statistical sense or a rigorous geometric sense, where the

minimum distances of these translations determine the characteristic dimensions of the RVE or

UC.

Having achieved the homogeneity, the next logical step is to categorise the material’s anisotropy,

where one will find reflectional and rotational symmetries to be of great assistance, either in a

statistical sense or a rigorous geometric sense.

With a reflectional symmetry about one plane, the material can be categorised as monoclinic.

The plane is the principal plane of the monoclinic material. With this, the number of material

constant required to characterise its behaviour drops from 21 to 13 for elasticity and from 6 to 4

for thermal expansion and for a diffusion problem, such as heat/electric conduction and

permeability of fluid in porous materials. The existence of a further reflectional symmetry about

a plane perpendicular to the existing principal plane reduces the material to orthotropy. The

presence of two perpendicular principal planes implies that the third plane perpendicular to the

two principal planes is also a principal plane. For an orthotropic material, one only requires 9

constants for elasticity and 3 for thermal expansion and for diffusion. Most engineering

materials fall into this category. It should be pointed out that existing industrial standards only

allow for material characterisation to go as far as orthotropy [11, 12]. There is no standard that
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applies to material more anisotropic than orthotropy. Examples of abuses of such standards will

be illustrated later in Section 18 in the chapter in relation to the twill weave composites.

Further categorisation along the line is possible, e.g. transversely isotropic, cubically symmetric,

isotropic, etc.. For thermal expansion and for diffusion problems, cubic symmetry implies

isotropy.

The role of rotational symmetries in material categorisation has hardly been mentioned anywhere

in the literature. In an unpublished article [13], the leading author established that the presence

of a 180 rotational symmetry identifies the axis of rotation as a principal axis of the material.

As a result, a material is monoclinic if there exists a 180 rotational symmetry in it. It is

generally true that the plane perpendicular to a principal axis is a principal plane and vice versa.

With this, it can be concluded that a 180 rotational symmetry about an axis is of the same

effects as having a reflectional symmetry about the plane perpendicular to the axis of rotational

symmetry, as far as material categorisation is concerned.

Apparently, existence of more rotational symmetries will bring further simplifications to the

material characteristics. One can comfortably follow the line of reflectional symmetries without

any problem. However, it should be stated that the equivalence between rotational and

reflectional symmetries in terms of material categorisation should not be blindly extended to any

other field of application. They are certainly not equivalent in geometric sense.

Material Characterisation

Having categorised a material, material characterisation becomes relevant. Same as

categorisation, in order to characterise a material, one needs to specify an appropriate length

scale at which the outcomes of the characterisation will be presented. Usually, homogeneity can

be assumed at this scale, to be referred to as the upper length scale. The objective of

micromechanical material characterisation is to obtain effective material properties of the

material at the upper length scale from the properties of its constituents and the structure at a

lower length scale. The objective of such exercises is to reduce the demand on testing the

material at its upper length scale.

Micromechanical material characterisation can be achieved by analysing an appropriately

formulated RVE or UC. The analyses involved are to simulate physical experiments through

which desired effective material properties are measured. For instance, in order to determine the

Young’s modulus and the Poisson’s ratios of the material in a specific direction, a uniaxial stress,

uniform in the upper length scale, should be applied. For it to be effectively uniaxial stress, one

has to ensure all other stress components in the same length scale vanish identically. Failing to

obtain an effectively uniaxial stress state has been a typical error in such analyses in the

literature. The immediate outcome of such analyses is effective strains in response to the stress
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applied, very much like in the physical experiments. The effective material properties can then

readily obtained according to their definitions. The effective Young’s modulus is equal to the

ratio between the applied effective stress and the obtained effective strain in the same direction.

The ratios between the obtained strains in three directions will provide the Poisson’s ratios.

Similarly, a shear modulus should be obtained under an effectively pure shear stress state. The

simulation of this loading case tends to be more prone to mistakes. Among the publications on

micromechanical analysis, nine out of ten of them tended to avoid involving shear, often without

any reason.

The same considerations can be given to all other physical disciplines, e.g. the diffusion problem.

A key rule to bear in mind is that any effective property should be obtained according to its

physical definition. Micromechanical analysis is to provide a means of virtual testing and it is

the user’s responsibility that all required testing conditions are observed in the simulation as well

as in the physical testing. In many ways, it should be a lot easier to observe these conditions in

theoretical simulation than on the physical lab floor. Having said so, there are probably as many

pitfalls in virtual testing as in physical testing where mistakes can be made. Right attitude is

often the key to success and nothing of this kind is meant to be easily achievable through casual

tampering.

RVEs and Unit Cells

When analyses are made to materials of micro/meso-structures at a lower length scale in order to

determine their effective properties in an upper length scale, it is often necessary to resort to the

concepts of representative volume elements (RVEs) or unit cells (UCs) at the lower length scale

where analyses are conducted before the effective material properties in the upper length scale

can be extracted. The terminologies of RVEs and UCs could be interchanged sometimes,

resulting in a degree of confusion. It is therefore helpful for the subsequent discussion if they are

logically defined as follows.

8.1 RVEs

A representative volume element (RVE) is volume of the material of a size large enough so that

any volume of an increased size will be equally representative. Apparently, for computational

efficiency, one will be naturally interested in the minimum size of the RVE. Any volume of the

material of a size smaller than that will no longer be representative. The minimum size of RVE

may vary from material to material, from discipline to discipline, and sometimes from one

effective property of interest to another. For instance, some properties, such as heat capacity,

Young’s modulus of unidirectional fibre reinforced composites (UD) in the fibre direction, etc.,

are dominated by the constituent volume fractions. For them, any RVE of the right volume
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fraction will serve the purpose. Other properties might need a substantial chunk of the material

in order to be representative, especially those based on statistical homogeneity.

The representativeness of an RVE is judged based on the effective properties it characterises. It

does not have to be able to reproduce the appearance of any other parts of the material

geometrically. In particular, when the lower length scale structure is at random, no part can

possibly be reproduced by any other part. Even so, an appropriate RVE can be defined as long

as the size of the RVE has been chosen large enough.

When introducing RVEs for random structures, such as that in Figure 6(a), at lower length

scales, there is a practice which has been rather common but fundamentally wrong. In order to

falsify periodicity so that periodic boundary condition can be imposed, truncated features on one

side of the RVE are artificially moved to the opposite side and kept within the RVE, as shown in

Figure 6(b). There are three obvious and fundamental issues associated with this practice.

Figure 6 (a) RVE of a random structure; (b) tampered RVE; and (c) the material represented by
the RVE

a) This interferes the constituent volume fractions, compromising its representativeness.

(a) (b)

(c)
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b) There is not always space available to accommodate the truncated features. The

truncated features can only be dealt with by a number of means: (i) selecting specific

patch where space happens to be available; (ii) allowing overlapping; (iii) artificially

moving existing features around order to free some space; and (iv) artificially deleting

overlapping features. In each case, the randomness of the structure will be undermined.

c) The falsified periodicity means periodicity in the structure at the length scale concerned,

which can be seen if one lays up an array of such RVEs, see Figure 6(c). This spoils the

randomness of the structure completely. With the structure so systematically tampered,

one should question if it is still worthwhile to model such an RVE with the features

seemingly distributed at random but no longer representative anymore in many ways.

It should be pointed out that appropriate approach to analyse untampered RVEs is available as

will be addressed in one of the subsequent sections in the chapter.

8.2 UCs

A unit cell (UC) on the other hand is a portion of material which is meant to be able to reproduce

all other parts of the material through some appropriate symmetry transformations, so that the

UC and its duplicates can fill up the space the material occupies fully without leaving any gap or

overlap. Here, the presence of a symmetry depends not only on the geometry but also on the

physical considerations, e.g. loading conditions. Similar to RVEs, one is interested in the

minimum size of the UC for a given material. In order to define a UC, it is essential that the

regularity is present in the structure. Otherwise, UCs are simply inapplicable.

The definition of a UC relies on correct interpretation of symmetries present in the structure. It

should be pointed out that even for the same pattern, unit cells of different appearances can be

obtained. Sometimes, building blocks are naturally partitioned, such as fish scale pavement tiles

in the 2D case as shown in Figure 7(a). Otherwise, as a generally applicable approach, the

Voronoi diagram [14] as shown in Figure 7(b) can be employed to tessellate the patterned

structure. A Voronoi cell is generated in such a way that each side of it perpendicularly bisects

the segment connecting the centres of the adjacent cells. Just as they represent the same physical

problem, different shapes of the UC follow the same translational symmetries and therefore they

should result in exactly the same outcomes in terms of stress distribution in the lower length

scale and effective properties in the upper scale [4].

Having dismissed the significance of the differences in the appearances of UCs, readers are

reminded one aspect of practicality. When the UCs are analysed eventually, in particular, using

finite elements, different choices of the shapes could make significant differences to the

generation and quality of the meshes. Some choices could leave awkward areas in the UC to

mesh, e.g. those involving extremely sharp corners. It is therefore advisable that serious users of

UCs ought to be ‘mesh-minded’ when deciding the shape of the UC to be employed.



23

Once the shape of a UC has been selected one way or another, the boundary of the UC has been

determined. Sorting out the correspondence between various parts of the boundary associated

with the translational symmetries present in the structure in the relevant length scale is a key

step.

(a) (b)

Figure 7 Unit cells of different shapes for the same pattern

Consider the 2D pattern in Figure 7 for example, whilst the concept can be readily extended to

3D or reduced to 1D applications. In this case, each translational symmetry defines a pair of

segments (patches for 3D cases) of the boundary which are the original and the image under the

translational symmetry transformation. The three pairs involved in the present example,

indicated in coloured segments in Figure 7(a), are associated with the three directions of

translations marked using the same colour codes, but there could be more (in particular, in 3D

cases) or fewer pairs, in general, without changing the principles at all. These translational

symmetries will lead to relationships of displacements between each pair of segments. These

relationships define the boundary conditions for the unit cell. Formulation of boundary

conditions for a UC proves to be the most challenging task in the construction of the UC. A

systematic account on the boundary conditions will be present later in the chapter.

With properly formulated boundary conditions, there will never be a need to analyse an assembly

of an array of unit cells, as has sometimes been seen in the literature [15], since they should

result in identical outcomes. Any attempt of doing so gives a clear sign of incompetence in using

UCs and automatically casts doubt on the results obtained.

In the literature, another terminology, representative unit cells (RUCs), is sometimes seen. This

was probably intended to reconcile between RVEs and UCs but it does not help as it leads to

more confusion. A logic reconciliation between RVEs and UCs it that a UC is always an RVE

but not vice versa. In this sense, RUC is in fact tautology as buttery butter.

Arrows for directions of

translations
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In terms of applications, UCs and RVEs are designated for regular and random micro/meso

structures, respectively. The leading author wishes to confess that, in his publications in the past,

he did not follow this rule of classification, e.g. [16,17]. The classification suggested above only

became clear in his vision afterwards when more thought had been given to this issue in order to

be logical as much as possible.

Relative Displacement Field

A typical multiscale modelling involves two length scales, an upper one and a lower one. The

objective of material characterisation using multiscale modelling is usually to evaluate the

effective material properties in the upper scale based on the analyses conducted with the models

at the lower scale. The basic assumptions made to the material at upper scale are that it is

effectively homogeneous and the stress and strain states prescribed to it are both uniform. The

homogeneity here can be justified either in a statistical sense or based on the periodicity in the

structure at the lower scale. Correspondingly, RVEs or UCs will be resorted to in order to

facilitate the analysis at the lower scale. To obtain the effective properties, one has to follow

their definitions to evaluate them from the uniform stresses and the uniform strains at upper

scale. Between the two sets of values, uniform stresses and uniform strains, if one employs one

as the means of prescribing the loads to the RVE or UC to be analysed, the other will be a part of

the results out of the analysis. To follow the definition of effective properties in their form of

engineering constants, e.g. Young’s moduli, Poisson’s ratio and shear moduli, it is necessary that

the material is loaded in its upper scale with a uniaxial stress states or a pure shear stress state. It

is therefore usually more convenient if such loading conditions can be prescribed. In return,

strains in the upper scale can be obtained as a part of the results. This is a procedure very similar

to what one would follow if these properties had to be measured experimentally. The material

characterisation using RVEs or UCs is therefore a genuine case of virtual testing.

Having sorted out various relationships at the upper scale, the analysis has to be conducted at the

lower scale. A crucial link across both scales is the relationship between the lower scale

displacement field and the upper scale strains. In this respect, RVEs will be addressed later

separately. Discussion below will be focused on UCs for the time being.

In this case, the regularity in the lower scale structure is assumed. The upper scale homogeneity

is based on the existence of translational symmetries in three dimensions, not necessarily along

the coordinate axes. As discussed in Section 5, the translational symmetry is present in the

relative displacement field, i.e.
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where point (x’,y’,z’) and R’ are, respectively, the image of an arbitrary point (x,y,z) within the

UC concerned and a reference point R which is a fixed point within the UC under a translational

symmetry transformation. The translation can be described in the coordinates of an arbitrary

point and its image after the translation as follows.
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Here i (i = 1.. k) are the distances of translations involved, with k being the number of

independent directions of translational symmetries defined by unit vectors qi, respectively.

Rearranging (27), one obtains the relative displacement field as
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Since points R and R’ are located at the same place inside respective unit cell, they can be

employed to construct the uniform strain filed in the upper scale. The relative displacements

between these two points in the lower scale in each respective unit cell should be the same as the

relative displacements (U, V, W) in the upper scale, i.e.
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(30)

According to deformation kinematics, the relative displacement field in the upper length scale

corresponding to a uniform strain field can be obtained through the displacement gradient in

general as
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.
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 
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(31)

In its general form, displacement gradient (31) describes fully the change in shape of the body

and the rotation as a rigid body. In conventional stress analysis, one is interested in the

deformation primarily, i.e. a part of (31), whilst the rigid body rotation can be left aside. To

facilitate this, displacement gradient is conventionally partitioned into a symmetric and an

antisymmetric part as follows and the symmetric part gives the strain tensor under the

assumption of small deformation (strains are defined differently under finite deformation

involving higher order terms according to the definition of Green strain as a tensor).
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(32)

where
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(33)

is the strain tensor which happens to be uniform in the upper scale in the present problem, and
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(34)
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is the rotation vector as a part of the displacement field in the upper scale. In fact, these rotations

can be visualised as follows. Generate three straight lines, one on each of the three coordinate

planes at 45 degrees (denoted as 45 in the superscripts for expressions to follow) to the

coordinate axes on both sides of it. The components of the rotation vector above give the

rotation of each of these lines about the coordinate axis perpendicular to the line, e.g. the line on

the x-y plane about the z-axis, so on. These rotations can be denoted as

 

45 0

45 45 0

45 0

1

2

x yz
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z xy
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y z
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R R
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. (35)

For material characterisation, one is also only interested in deformation part of the displacement

gradient whilst the rotation part does not make any difference. Given the partition in (32), it is

apparently a straightforward way of expressing the relative displacement field by dropping the

rotation part while keeping the strain part, i.e.
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(36)

Effectively, this is to eliminate the rigid body rotations by constraining the rotation of each of the

three 45 lines as described above. It is clear that dropping the second term from (32) is

equivalent to constraining rigid body rotations in the specific way.

Although partitioning the displacement gradient as defined by (32) is perfectly legitimate, one

should not perceive that this is the only way of associating the relative displacement field with

the strains. It can be shown that a more general form of partitioning the displacement gradient

can be given as
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, (37)

where
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.(39)

where ki (i=1..3) can be arbitrary constants as long as they do not compromise the small
deformation assumption with one exception as will be discussed later. It can be observed that
[] vanishes if
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 

(40)

Take the third equation above for instance and consider a rectangle in the x-y plane before

deformation as shown in dashed line in Figure 8. It deforms into a parallelogram as shown in

Figure 8 in solid line.
V

x




and

U

y




are the angles of the rotations of the two sides due to

deformation as indicated. The sum of them gives the shear strain the plane. The relative

magnitudes of them can vary by rotating the parallelogram as a rigid body in the plane without

affecting the strain state. At any given ratio between
V U

x y


 

 

, a constant k3 can be

determined as 3

2

1
k





so that the third equation of (40) will be satisfied identically.

Alternatively, given an arbitrary value of k3, the deformed body can be rotated as a rigid body

about the z-axis such that the ratio between
V

x




and

U

y




is adjusted to  3 3: 2 :

V U
k k

x y

 
 

 
.

One can determine k1 and k2 in a similar manner. Alternatively, for arbitrarily given values of k1

and k2, one can rotate the deformed body about x and y axes, respectively, so that [] will

vanish. Then the relative displacement field can be expressed as
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Figure 8 The line in the x-y plane that does not rotate as the body deforms for an arbitrarily given
displacement gradient
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. (41)

This captures the same strain field as that given by (31) or (36). The differences between them

are up to some rigid body rotations. Taking the x-y plane as an example again, using k3 as

determined by the
V

x




to

U

y




ratio is equivalent to eliminating the rigid body rotation about the

z-axis by constraining a line in the plane. To satisfy an enquiring mind, the line concerned here

can be defined as 3

3

2 k
y x

k


 . Using an arbitrary value of k3 in (41), the line as shown in Figure

8 before deformation will rotate as a result of the deformation. Dropping the [] term from (37)

is equivalent to giving the deformed body a rigid body rotation so that the line after deformation

lines up with that before deformation, which apparently will not alter the strain state. In this

sense, [] can also be considered as a rotation matrix defining the rotation of the line as shown

Figure 8. As this additional rigid body rotation does not affect the strain state, it can be excluded

from the consideration. Having excluded this rigid body rotation, using an arbitrary value of k3

is equivalent to eliminating the rigid body rotation about the z-axis by constraining the

3

3

2 k
y x

k


 line in the x-y plane.

There is an apparent exception when
V U

x y

 
 

 
, i.e. shear strain xy vanishes. In this case, =-

1 and k3 approaches infinity. The non-rotating line as shown in Figure 8 does not exist.
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Anything associated with
V

x




and

U

y




amounts to a rigid body rotation. As far as this special

case of exception is concerned, the line as shown in Figure 8 can be selected arbitrarily without

affecting the strain state.

With the general form of partitioning the displacement gradient as established in (37)-(39), the

rigid body rotations can be constrained in different ways from constraining  45R  . Constraining

the rigid body rotations of lines other than the 45 ones simply corresponds to assigning different

values to ki (i=1..3). It is now clear that the way of constraining the rigid body rotations is not

unique. Any of them will be correct as long as it has been carried out logically.

If the extreme value of the 2 for all ki (i=1..3) is taken, from (40) one obtains
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. (42)

The three components on the left hand side happen to correspond to the rotation of the y-axis

about the x-axis, and those of the x-axis about the y- and z-axes, respectively. When they vanish,

the rigid body rotations are eliminated. Effectively, this can be visualised as if these three axes

have been constrained from the rotations as specified.

Following this way to eliminate rigid body rotations, using the engineering strains  instead of

tensor strains  as in (33) and (35), the relative displacement field becomes
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(43)

This does not violate any rules of deformation kinematics and therefore captures the same strain

field as (31) or (36). However, the lack of unique expression for relative displacement field can

easily become a source of confusion if one is driven merely by his/her intuition without due

respect of the basics of deformation kinematics.
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Relative Displacement Boundary Conditions for Unit Cells

Relative displacement field (43) provides the relationship between the displacements at

corresponding points in different unit cells according to the translational symmetries present in

the problem. Point (x,y,z) can be anywhere in the unit cell. When it is on the boundary with

(x’,y’,z’) on another part of the boundary of the same unit cell, (43) delivers the relative

displacement boundary conditions for the unit cell. As discussed in Section 8, the boundary of

the unit cell has to be divided into parts in pairs with each pair associated with a translational

symmetry. There should be neither gap nor overlap between these parts of the boundary.

Relative displacement boundary conditions have been called periodic boundary conditions [18].

However, while stress and strain fields are periodic in presence of translational symmetries,

periodicity is simply not available in displacement field at all. Calling them the displacement

boundary conditions by periodic boundary has undoubtedly been a source of confusion.

Periodicity is observed in the relative displacement field. To avoid further confusion, especially

for new unit cell users, it is suggested to call them as relative displacement boundary conditions.

Relative displacement boundary conditions involve displacements on two different parts of the

boundary of the unit cell, which provide certain relationships between them. The relationships

are in fact the definition of relative displacements, i.e. the differences between the displacements

on the two parts of the boundary related through a translational symmetry of relative

displacements. As established in the previous section, relative displacements can be related to

the uniform strain field in the upper length scale. Unfortunately, as explained in the previous

section, such expression is not unique. Here, relative displacement defined by (43) is chosen for

subsequent applications, i.e.
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. (44)

The reason for the choice of (43) over (36) is purely based on the implementation consideration

where equations imposing these conditions in the analysis will have fewer terms to be defined.

For example, for the displacement in z-direction, using the above, one has

0
zw w z    , (45)

whilst using (36), one would have

0 0 01 1

2 2
xz yz zw w x y z          . (46)

The results in terms of obtained stress field in the lower length scale and the effective properties

in the upper scale would be identical.
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It should be pointed out that corresponding to each translational symmetry present in the

structure, there is a different set of  x y z   , which is the translation given as a vector,

including the direction and the distance.

A range of unit cells both in 2D and 3D cases have been published in [4, 6, 17, 19]. Without

repeating the details, they are categorised as follows.

10.1 2D unit cell with translational symmetries along coordinate axes

The simplest unit cell [5] for this is a rectangle with its side lengths corresponding to the

distances of translations associated with the symmetries, as shown in Figure 9. A special case is

the square unit cell. The relative displacement boundary conditions are given as

For the parts of the boundary perpendicular to the x axis, the relevant translation can be given as
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(47)

and as a result, the relative displacement boundary conditions can be obtained from (44) as
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(48)

Similarly, the translation for the other pair of sides,
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and hence
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Figure 9 Rectangular 2D unit cell
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As both sets of boundary conditions apply to the corners, redundancies emerge. If the solver

employed does not allow such redundancies in the boundary conditions, one will have to remove

them manually. In order to do so, the above boundary conditions are imposed only to the sides

with the corners excluded. A special set of boundary conditions as follows are imposed to the

corners only.
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, (51)
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In imposing the above relative displacement conditions at the corners, attention needs to be paid

to the actual approach employed in the specific FE code used. For instance, in Abaqus/Standard,

such constrains are imposed by eliminating the first degree of freedom (dof) appearing in the

equation. As some degrees of freedom tend to appear in multiple equations, the user must make

sure that such a dof is not listed as the first in the equation. Otherwise, the execution of the

analysis may abort in error as the eliminated dof in a previous condition cannot be eliminated

again when it appears as the first dof the second time. A good practice is to keep such dofs away

from the first in the dof list.

The most popular applications of square unit cells are for the analysis of UD composites with

fibres arranged or idealised in a square packing, although readers are reminded that square fibre

packing does not show transverse isotropy and therefore is not a suitable candidate if it is meant

to be an idealisation of otherwise transversely isotropic material. Given this understanding, if

transverse isotropy is deemed to be unimportant, the following boundary conditions can be used

to facilitate the analysis after extending the 2D UC by adding a third dimension to it, with a

translation distance along this direction being equal to t. For their direct relevance to UD

applications, the coordinate system has been changed from the above such that the present one is

in line with the conventional UD composites description.
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The above boundary conditions are given between paired faces. Redundant boundary conditions

are present at the edges and vertices if they have been included as parts of the faces. If one

wishes to eliminate them, the following procedure can be taken. Exclude the edges from faces

and vertices from the edges. Impose the above boundary conditions to such defined faces first.

The twelve edges can be put into groups, each having four edges parallel to one coordinate axis.

In each group, anyone can reproduce the remaining three through translational symmetries

available in the structure as have been employed to define the unit cell. Relating the

displacements on the one to those at the remaining three results in only independent boundary

conditions on such edges. Similar arguments can be applied to the vertices. Amongst all eight

vertices, any one of them can reproduce the remaining seven through the translational

symmetries available in the structure as have been employed to define the unit cell. Relating the

displacements at the one to those at the remaining seven results in only independent boundary

conditions at the vertices and hence helps to avoid undue redundancies.

Figure 10 3D unit cell for UD composites of square packed fibres

A FE meshed square unit cell representing the UD composite is shown in Figure 10 [20,21].

One message it is intended to transmit is that one only needs a single layer of elements in the x

direction, because correct results will not have any variation in stress field in this direction at all.
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Having more layers of elements in this direction would make absolutely no difference, except an

increased demand on computation. Any stress gradient observed in this direction will indicate an

errors of some kind beyond doubt, most likely in the imposition of the boundary conditions.

Such error can be easily diagnosed using the ‘sanity checks’ as will be described later in Section

15.

With a single layer of elements in the x direction, one might find that there is no node on any of

the faces, having excluded the edges and vertices from them, if linear elements are employed.

However, this does not undermine the significance of the boundary conditions obtained above

for faces, as those for edges and vertices are all derived from them.

10.2 2D unit cell with translational symmetries along two non-orthogonal directions

This leads to unit cell of parallelogramatic shape as shown in Figure 11 [17]. Its side lengths are

equal to the distances of translations associated with the symmetries. The relative displacement

boundary conditions on the sides (excluding corners) are

Figure 11 Unit cell of parallelogramatic shape
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whilst those at the corners are
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10.3 2D unit cell with translational symmetries along three different directions

The hexagonal unit cell [5], Figure 12, rectangular unit cell from staggered layout [19], Figure

13, and that for the fish scale pattern as shown in Figure 7 all fall in this group. Although the

shapes of them look rather different, they are topologically identical. Take the regular hexagonal

unit cell for example, the relative displacement boundary conditions on the sides (excluding

corners) are as follows with dashed and undashed displacements representing the sides after and

before the corresponding translations in the direction as indicated by the arrows, respectively.

Figure 12 Hexagonal unit cell with the directions of translations indicated
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Figure 13 Unit cell for a staggered layout with the directions of translations indicated
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Between the sides perpendicular to the -axis (Figure 12), one has
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Those for the corners, after eliminating any redundant conditions, are
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Here the dofs at corner <1> have swapped positions with those on other nodes because they

appeared in more than one equation. In addition to the above constraints, one can also relate

corners <3> and <5>, but the constraints obtained would not be independent, neither will be

those between corners <2> and <6>. Such dependent conditions, if imposed in some code such

as Abaqus/Standard, could result in error for the reason as described earlier. It is a good practice

to avoid them, although in some codes, e.g. Abaqus/Explicit, they are acceptable due to the

explicit algorithm adopted.
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As is for the square UC, the most popular applications of hexagonal unit cells are for the analysis

of UD composites with fibres arranged or idealised in a hexagonal packing, which preserves the

transverse isotropy perfectly. A third dimension has been incorporated in order to obtain the

behaviour of the material in 3D [20,21]. The coordinate system has therefore been adapted to

comply with conventional UD composites description, as shown in Figure 14, where only a

single layer of elements is required as explained above for square UC.
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Figure 14 3D unit cell for UD composites of hexagonally packed fibres
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If one needs to avoid redundant boundary conditions along edges and at vertices, one can put the

eighteen edges into four groups: all in x direction as one group and the remaining edges on the

front and back faces into three groups, each having four edges parallel to each other. There are

twelve vertices, at the ends of six edges in the x direction. They can be put in two groups, six in

each. Each group is associated with three alternating edges in the x direction. The grouping of

edges and vertices is so made that within each group any one can reproduce all the rest through

the translational symmetries available in establish this UC. When the boundary conditions are

prescribed to each group according to the translational symmetries by relating one vertex to the

rest in the group, no redundancy will be introduced.

10.4 3D unit cell with translational symmetries along three non-coplanar axes

For materials of translational symmetries along three non-coplanar axes, the simplest shape for

the unit cell is a parallelepiped with its side lengths corresponding to the distances of translations

associated with the symmetries. A special case is a cuboidal unit cell [6] as shown in Figure 15

which will be taken as an example to illustrate the relative displacement boundary conditions.

For 3D unit cell, in order to avoid prescribing redundant conditions, the faces (excluding edges),

edges (excluding vertices) and vertices need to be addressed separately.

Figure 15 Cuboidal unit cell
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For faces y=0 and y=b (excluding edges)
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For faces z=0 and z=c (excluding edges)
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For edges parallel to the x-axis (excluding vertices)
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For edges parallel to the y-axis (excluding vertices), after eliminating any redundant conditions
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For edges parallel to the z-axis (excluding vertices), after eliminating any redundant conditions
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For the vertices, after eliminating any redundant conditions, one has

0

, 0, 0 0, 0, 0

, 0, 0 0, 0, 0

, 0, 0 0, 0, 0

0

0, , 0 0, 0, 0

0

0, , 0 0, 0, 0

0, , 0 0, 0, 0

, , 0 0, 0, 0

0

0

0

xx a y z x y z

x a y z x y z

x a y z x y z

xyx y b z x y z

yx y b z x y z

x y b z x y z

x a y b z x y z

u u a

v v

w w

u u b

v v b

w w

u u a









     

     

     

     

     

     

     

 

 

 

 

 

 

  0 0

0

, , 0 0, 0, 0

, , 0 0, 0, 0
0

x xy

yx a y b z x y z

x a y b z x y z

b

v v b

w w




     

     



 

 
(66)

0

0, 0, 0, 0, 0

0

0, 0, 0, 0, 0

0

0, 0, 0, 0, 0

xzx y z c x y z

yzx y z c x y z

zx y z c x y z

u u c

v v c

w w c







     

     

     

 

 

 



42

0 0

, 0, 0, 0, 0

0

, 0, 0, 0, 0

0

, 0, 0, 0, 0

0 0

0, , 0, 0, 0

0 0

0, , 0, 0, 0

0

0, , 0, 0, 0

x xzx a y z c x y z

yzx a y z c x y z

zx a y z c x y z

xy xzx y b z c x y z

y yzx y b z c x y z

zx y b z c x y z

u u a c

v v c

w w c

u u b c

v v b c

w w c

 





 

 



     

     

     

     

     

     

  

 

 

  

  

 

0 0 0

, , 0, 0, 0

0 0

, , 0, 0, 0

0

, , 0, 0, 0
.

x xy xzx a y b z c x y z

y yzx a y b z c x y z

zx a y b z c x y z

u u a b c

v v b c

w w c

  

 



     

     

     

   

  

 

In this way, one can eliminate all redundant boundary conditions. It is a shame that one has to

filter out redundant ones manually if the code does not allow them. They are tedious to

implement. However, this can also be done systematically if one is capable of a little

programming. With Abaqus/Standard, the authors with their co-worker have developed a code

called UnitCells© [20,21] which was written in Python script as a secondary development of

Abaqus. A range of common unit cells have been included with relative displacement boundary

conditions imposed systemically in an automated manner.

10.5 3D unit cells for various packed systems

The unit cells for face centred cubic packing and body centred cubic packing were obtained in

[6], where Voronoi tessellations were employed in order to obtain their shapes systematically.

They are shown in Figure 16. Each of them can be generalised to other shapes of the same

topologies. For close packed hexagonal packing, unfortunately, the Voronoi cell would not

make a unit cell as explained in [6]. A compromise is to use a hexagonal prism as the simplest

geometry one can obtain for this packing. In this particular case, the boundary conditions will be

identical to those as given in Section 10.3 if the same coordinate system is adopted, although

many elements will have to be employed in the x direction in this case in general.

As has been pointed out, the shape of a unit cell does not dictate its behaviour. The dictating

factors are the translational symmetries underlying the construction of the unit cell. Unit cells

could have identical shapes, but rather different boundary conditions due to different symmetries

involved and hence different structures. Naturally, the obtained effective properties are also

different [10].
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(a) (b) (c)

Figure 16 Unit cells for (a) body centred cubic packing (tetrakaidecahedron); (b) face centred
cubic packing (rhombic dodecahedron) and (c) closed packed hexagonal packing (hexagonal
prism).

For each of them, the boundary conditions can be found in [6] and will therefore not be

reproduced here. Several practical issues when boundary conditions are prescribed are discussed

below.

i) All boundary conditions obtained from translational symmetries are presented in terms of

relative displacements between one part of the boundary and another, associated with one of the

translational symmetries. They are defined in a piecewise manner. Where those parts meet,

redundant conditions are obtained at the border, which belongs to both parts. Depending on the

nature of the FE code employed for the analysis, the redundant boundary conditions can

sometimes cause difficulties. For instance, they cause errors and hence abort the analysis on

Abaqus/Standard. In order to facilitate the analysis, one has to filter out all redundant boundary

conditions. Systematic descriptions can be found in [5, 6]. However, they do not bother

Abaqus/Explicit at all as explicit algorithm does not involve solving equations.

ii) In order to impose relative displacement boundary conditions to unit cells, the parts of the

boundary related through a translational symmetry should be tessellated identically. This

includes the location of the nodes within each part, as well as the mesh, since identical node

locations does not guarantee identical tessellation [6]. An illustration is shown in Figure 17,

where the top and bottom surface share the same tessellation, while the front and back faces do

not. Readers are reminded that symmetry conditions have been established based on the concept

of free body diagrams, which implies the continuity between adjacent unit cells over the part of

boundary they share. Continuity can only be maintained if the adjacent sides of the neighbouring

unit cells are tessellated identically.

iii) When the symmetry conditions were established in Section 5, traction conditions were

obtained along with those for displacements. When applied here to formulate boundary

conditions for unit cells, they are presented as relative traction and displacements between
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different parts of the boundary of the unit cell. Throughout this section, the prescription of

relative displacement boundary conditions to unit cells has been illustrated. Along with the

relative displacement boundary conditions as the essential boundary conditions, the relative

traction boundary conditions can be proven to be natural boundary conditions [22] according to

variational calculus [9]. For finite element analyses, natural boundary conditions are

approximately satisfied as the total potential energy is minimised, in the same way as

equilibrium conditions are satisfied. They should not be imposed but be left alone. An example

was shown in [10] where a worse approximation was obtained if the natural boundary condition

was imposed.

Figure 17 Compatibility of tessellations on opposite sides of a unit cell

Key degrees of freedom

It can be seen in the previous section that the effective strains in the upper scale are involved in

the relative displacement boundary conditions. They offer some extremely useful handles for the

subsequent micromechanical analysis and useful and convenient links between the two scales

involved. They are not any part of the unit cell directly, but introduced into the lower scale

analysis through the boundary conditions for the unit cell as extra degrees of freedom. These

extra dofs can be introduced through a single node with all effective strains involved as its

effective dofs. Alternatively, one can introduce extra nodes, each having one dof associated with

an effective strain. They can be prescribed to the values of desirable effective strains as

prescribed ‘displacements’. Out of the analysis, reactions at these dofs can be obtained. It can

be shown that these reaction ‘forces’ are associated with the effective stresses corresponding to

the effective strains.

Alternatively, concentrated ‘forces’ can be prescribed to these extra dofs. In this way, effective

stresses are prescribed. Out of the analysis, the nodal ‘displacements’ can be obtained at these

extra dofs. They give the effective strains directly.

Each of the two approaches described above in terms of the use of the extra dofs have their

convenience, depending on the outcome required. If one is interested in the stiffness matrix of

the material, one can obtain a column of the stiffness matrix by prescribing a unit effective strain

at a time. When all the effective strains have been exhausted, the complete stiffness matrix is
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obtained. However, if one is interested in the effective elastic constants, such as Young’s

moduli, Poisson’s ratios and shear moduli, applying uniaxial effective stress or pure shear stress

will help to obtain these material properties more directly.

These extra dofs are effective strains at the upper length scale, but involved in the boundary

conditions for the analysis at the lower length scale. They are therefore the key links between

the two scales involved in the problem and are referred to as the key degrees of freedom (Kdofs).

Their significances will be further explored in the next section.

Average Stresses, Average Strains and Effective Material Properties

The average stresses and strains over the unit cell as obtained from the lower length scale

analysis give the effective stresses and strains in the upper length scale. Without the concept of

the key degrees of freedom, one would have to average stresses and strains over the unit cell in

order to find the effective stresses and strains. This is usually not a process as perceived by

many as often found in the literature. These averages should not be arithmetic averages of the

stresses and strains obtained at the integration points. They should be weighted by the volume of

the elements and the weights associated with specific integration points. A substantial post-

processing is required, which is usually outside the standard provision of most commercial FE

codes. Failing to incorporate these in the calculation is certainly another possible confusion

associated the use of unit cells. As an observation, very rarely, if any, the details of the

procedure of finding such averages have been included in publications involving the use of unit

cells. In at least some of these cases, it was probably a subject better to be kept under the carpet.

Having introduced the Kdofs, such effective stresses and strains can be obtained effortlessly as

direct output from the FE analysis. The Kdofs are effective strains directly, whether they have

been prescribed or obtained as the analysis outcomes. The concentrated forces at them, whether

as reactions to the prescribed effective strains or as the prescribed loads, are associated with the

effective stresses as follows.
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, (67)

where V is the volume of the unit cell, or, in the case of 2D unit cells, the area of the unit cell.

One might have doubt about the volume involved in the expression above. It is correct. The
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correct dimension of these ‘forces’ is force time length, unlike conventional forces. The reason

is that their conjugates, the Kdofs, are dimensionless, rather than conventional displacements of

the dimension of length.

If these concentrated forces are prescribed at the values equal to the volume of the unit cell one

after another in a series of analyses, equivalently, one is prescribing a unit stress, and the

obtained effective strains can lead to effective material properties. In general, the effective

properties can be evaluated from concentrated ‘forces’ and the ‘nodal displacements’ as these

Kdofs as follows.

0 0 0 0/ /x x x x xE F V    ,

0 0 0/xy y x    , (68)

0 0 0/xz z x    ,

0 0 0 0 0while 0 or 0y z yz xz xy y z yz zx xyT F F F F F T                  ;

0 0 0 0/ /y y y y yE F V    ,

0 0 0/yx x y    , (69)

0 0 0/yz z y    ,

0 0 0 0 0while 0 or 0x z yz xz xy x z yz zx xyT F F F F F T                  ;

0 0 0 0/ /z z z z zE F V    ,

0 0 0/zx x z    , (70)

0 0 0/zy y z    ,

0 0 0 0 0while 0 or 0x y yz xz xy x y yz zx xyT F F F F F T                  ;

0 0 0 0/ /yz yz yz yz yzG F V    , (71)

0 0 0 0 0while 0 or 0x y z xz xy x y z zx xyT F F F F F T                  ;

0 0 0 0/ /zx zx zx zx zxG F V    , (72)

0 0 0 0 0while 0 or 0x y z yz xy x y z yz xyT F F F F F T                  ;
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0 0 0 0/ /xy xy xy xy xyG F V    , (73)

0 0 0 0 0while 0 or 0x y z yz xz x y z yz xzT F F F F F T                  ;

0 0 /x x T   , 0 0 /y y T   , 0 0 /z z T   , (74)

0 0 0 0 0 0while 0 or 0x y z yz xz xy x y z yz zx xyF F F F F F                 .

In the above formulae for effective properties, it is essential that each of them is applied strictly

under the conditions specified. In principle, Young’s moduli and Poisson’s ratios should be

obtained under respective uniaxial stress state and shear modulus under pure shear stress state at

constant temperature and thermal expansion under a stress-free state. Any violation of the

conditions will inevitably result in misinterpretation of the outcomes as the conditions are

required according to the definitions of these material properties.

In the above expressions, one can observe once again the convenience of the Kdofs introduced to

the formulation of unit cells. With them, effective stresses, strains and properties in the upper

length scale can be obtained directly out of the lower scale modelling, serving as the most

effective links between the two scales.

Further Symmetries within a Unit Cell

Materials of regular structures in their lower length scale often possess additional symmetries,

typically, reflectional and rotational ones, in addition to translational ones which have been made

extensive use of above in order to establish the unit cells and to formulate the relative

displacement boundary conditions. Just like the shapes of the unit cells defined through

translational symmetries lack uniqueness, the applications of further symmetries present in the

unit cell obtained add a substantial variety to the subject. Without due care and systematic

approach, one can easily get confused.

Before committing to any attempt along this line, readers must be made aware the following.

Translational symmetry transformations do not upset the sense of loading, nor the sense of any

stress and strain component. A common set of boundary conditions can be used for all loading

cases. However, reflectional and rotational symmetry transformations alter the sense of loading

sometimes, as well as the senses of some of the stress and strain components. As a result, one

may have to impose different boundary conditions to the same unit cell obtained in order to

analyse it under different loading conditions specified through the effective stresses or strains in

the upper length scale.

Additional symmetries cannot be taken for granted. They depend on the selection of the shape of

the unit cell out of translational symmetries alone. For instance, each of the two unit cells A and

B as shown in Figure 18 makes a unit cell based on translational symmetries in horizontal and
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vertical directions. Apparently, there are quite a few reflectional and rotational symmetries

within A, but none in B. If one wishes to take advantages of further symmetries available in a

unit cell in order to further reduce its size to be analysed, he/she needs to be mindful of such

symmetries.

Figure 18 Examples of choices of unit cells for plain weave textile composite

As it has been pointed out previously, the shape of a unit cell does not dictate the material it

represents. Under different boundary conditions derived from different symmetries, the unit

cells of an identical shape can be related to different structures and hence represent different

materials [10].

A typical use of additional symmetries to unit cells for hexagonally packed UD composites was

elaborated in [2,4,10,23]. Employing orthogonal translational symmetries alone, a unit cell can

be obtained as shown in Figure 10, which has often been employed in the literature. The benefits

of it are its rectangular shape and, most importantly, the one common set of boundary conditions

out of translational symmetries applies to all loading cases. Within it, the presence of

reflectional symmetries about central axes in horizontal and vertical directions reduce the size to

a quarter of it. Use of it can also be found in the literature but it should be regarded as the least

competent application. Apart from being rectangular, there has hardly any benefit from using it.

The most efficient use is to apply a further 180 rotational symmetry and one ends up with a unit

cell of the size reduced to 1/8 of the original one. The down side of it is that different boundary

conditions have to be imposed for different loading conditions, same as its quarter sized

counterpart in this respect. Depending on the borderline chosen to partition the quarter sized unit

cell using the rotational symmetry in order to obtain the 1/8 sized one, a range of unit cells of

various shapes as can be found in the literature have been unified. If anything, the most

significant differences between them turn out to be their friendliness to FE meshing. The actual

boundary conditions can all be found in [4].

A

B
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For the same problem of UD composites of hexagonal packing, if one is prepared to adapt to

non-orthogonal translational symmetries, the hexagonal unit cell as shown also in Figure 14 is a

nice candidate. It is half of the size as the original rectangular one as obtained from orthogonal

translations alone. If one further employs the reflectional symmetries, the same unit cell would

be obtained as described in the previous paragraph.

Another example is with the plain weave composite as shown in Figure 19. By using reflectional

symmetries about the horizontal and vertical central axes, it can be reduced to a quarter. Further,

using the rotational symmetries horizontal and vertical axes passing the centre of the quarter unit

cell, the final size can be reduced to 1/16 of the original size, as shown by the red square. Again,

because of the use of reflectional and rotational symmetries, different boundary conditions will

have to be imposed for different loading conditions. The actual boundary conditions can be

found in [23] for interested readers.

Figure 19 Plain weave and unit cell models based on the use of various symmetries

Whenever a reflectional or rotation symmetry has been used, one has to accept the consequence,

i.e. boundary conditions would vary from loading case to loading case, as the price to be paid for

the reduced size in the unit cell. However, there could be one compromise when a special

symmetry is present, central reflection. Earlier in this chapter, it has been said that there were

only three types of independent symmetries, translation, reflection and rotation. Central

reflection is indeed not independent. In fact, it is a combination of a reflection and a rotation. A

special feature of this is that the sense of the effective stresses and strains which defined the

loading cases remain unchanged under this particular symmetry transformation. If it is available,

by making use of it, the size of the unit cell can be halved while all loading cases can be analysed

using a single set of boundary conditions. Interested readers are advised to consult Ref. [2].

Additional symmetries present in the structure offer the opportunity of minimising the size of the

unit cell to be analysed but this comes at a price. One of the complications is the fact that some

of the loading conditions associated with the shear have to be analysed under different boundary

conditions, as has been mentioned already. Even worse, they bring a lot of confusion into the

x

y

O
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study to such an extent that the study is some kind of myth, where certainty about boundary

conditions is presumed to be irrelevant, and they had to be ‘proposed’, ‘assumed’,

‘approximated’ or simply just as they are without any justification, as was cited in the

Introduction. An example can be shown through the construction of the UC for UD composites

of hexagonal packing. Most of shaded shapes shown in Figure 20 had been employed by some

researchers, in particular, the one with curved side, in addition to some more to be discussed

later. They had not been unified until Ref. [4]. Orthogonal translations leads to either of the two

large rectangular unit cells. Reflectional symmetries further bring them to a quarter as

highlighted. The final rotational symmetry about the centre P of the quarter reduce the UC to

those as shaded using various borderlines to partition the quarter UC. The requirements for the

borderline is that it passes P and it is 180 rotationally symmetric about P. Special selections of

this borderline have been illustrated in Figure 20 using dash-double-dot chain to reproduce all

shapes cited, including the curved sided one, although absolutely no benefit whatsoever can be

gained by doing so, except adding to the myth.

Figure 20 Various periodic elements and unit cells

In fact, the rectangular quarter sized UC as shown in Figure 21 has been the most popular one in

use in the literature. In fact, the use of it exposes the user’s incompetence in formulating UCs.

Having employed reflectional symmetries, one has lost the simplicity of a single set of boundary
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conditions for all loading conditions. If so, why not take a step further to half the size of it by

taking advantage of the rotational symmetry about the centre as marked? Of course, the

boundary conditions will be a little more complicated and hence require a slightly higher level of

competence to formulate. The same can be said about the triangular UC as also shown in Figure

21, where there is still a reflectional symmetry left unused. In this particular case, had the

boundary conditions been formulated correctly, those for a further reduced sized UC would not

be any more complicated, if any difference, simpler. The competence required is to spot the

presence of a further symmetry, before it has been pointed out, of course.

Figure 21 Shapes of unit cells which can be further simplified using available symmetries

For the particular problem of UD composite of hexagonal packing, more shapes can be found as

shown in Figure 22. All of them have used only the translational symmetries and hence a single

set of boundary conditions applied to all the loading conditions. The diamond-shaped and the

hexagonal unit cells are exactly of the same size. The diamond-shaped involves two

translational symmetries, while the hexagonal three. On the other hand, the former is partitioned

into five zones, while the latter into two. This could make a bit of difference in meshing. The

commonality between them is that the translations involved are non-orthogonal. As a result, in

the obtained boundary conditions the average strains appear to be coupled, i.e. multiplicity of

them is seen in a single equation, and the derivation of them is relatively demanding.

If one wish to trade the computational efficiency for the complications in derivation, the

rectangular unit cell as also shown in Figure 22 can be used. It is twice of the size of the other

two. However, because the translations involved are orthogonal and are both along the
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coordinate axes, the obtained boundary conditions are slightly simpler. Users are reminded that

a mesh of twice the size usually take much more than twice the computational time. Eight times

is the norm, but slightly more conservative as an estimate.

Figure 22 Unit cells for UD composites of hexagonal packing generated using translational
symmetries alone

The Roles of Each Type of Symmetry in Material Categorisation and Characterisation

The study as presented in this chapter rests heavily on the understanding of symmetry and

systematic approaches of taking advantage of them. They have been used in multiple ways. To

avoid any confusion, the roles each of them plays are summarised here under the headings of

material categorisation and characterisation, respectively.

14.1 Material categorisation

Translational symmetries are the basis of homogenisation of materials from their lower length

scale heterogeneity to upper scale homogeneity. For materials of regular structure at lower scale,

the translational symmetries can be literal. Otherwise, for materials of random structures, they

will have to be justified under a statistic sense. The magnitudes of these translations define the

boundary up to which materials can be assumed to be homogeneous.

Reflectional symmetries identify principal plane of the material. Materials having one principal

plane are categorised as monoclinic. Materials having two principal planes perpendicular to each

other are categorised as orthotropic. A third plane perpendicular to both principal plane is also a
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principal plane, whether there exists or not any obvious reflectional symmetry about this plane.

However, the third principal plane does not add any new feature to the material. Axes

perpendicular to principal planes are principal axes.

180 rotational symmetries identify principal axis of the material. Materials having one principal

axes are categorised as monoclinic. Materials having two principal axes perpendicular to each

other are categorised as orthotropic. A third axes perpendicular to both principal axes is also a

principal axis, whether there exists or not any obvious rotational symmetry about this axis.

However, the third principal axis does not add any new feature to the material. Planes

perpendicular to principal axes are principal planes.

14.2 Material characterisation

Translational symmetries are the basis of defining UCs at their lower length scale. The outcomes

of the analysis of the UCs characterise the materials represented by the corresponding UCs.

Reflectional and rotational symmetries, where exist, can help to reduce the sizes of the UC as

obtained from translational symmetries alone. However, this usually comes at a price, i.e. a UC

needs to be analysed using different boundary conditions for different loading conditions. On

the other hand, the UCs obtained from translational symmetries alone can be analysed using a

single set of boundary conditions for all loading conditions.

An exception is central reflection as a combination of a reflectional symmetry and a rotational

symmetry. Whilst it can halve the size of the UC to be analysed, a single set of boundary

conditions will be sufficient for all loading conditions.

‘Sanity Checks’ as Basic Verifications

The procedure of formulating unit cells as presented in previous sections of this Chapter has

been systematic, but could be tedious to implement. There are many places mistakes could be

easily made. Filtering out such mistakes is not straightforward. This has probably been one of

the reasons for some users to follow an intuitive approach and create unit cells in a rather casual

manner. They have probably been much encouraged when they could get something working

fairly easily, in particular, cases involving uniaxial direct stress. However, the reliable range of

one’s intuition is usually limited. The trend may turn sharply once the shear is involved. This is

perhaps the reason why 9 out of 10 publications in the literature shied away from shear, as if

shear was irrelevant. For any serious micromechanical material characterisation, the systematic

approach as presented in this chapter is the way forward. Being systematic, it can be relatively

easily programmed into some fixed templates. An extreme case of such development has been

demonstrated through a code developed at Nottingham, UnitCells© [20,21]. It is highly
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automated with literally no need of any user’s interference in setting up the boundary conditions

and processing the results.

Whether the analysis is to be carried out manually or automatically, it is crucial that means are

available to verify that all the measures have been implemented correctly. In this respect, unit

cell users are often desperately keen to validate their results against the experimental results.

However, the reality is that experimental data are always limited, and there are only limited

aspects that can be examined and measured experimentally. Fitting to one aspect of the

experiment can hardly be considered as validation, especially when there are obvious anomalies

where the predicted results are against common sense in other aspects.

As far as the development of the micromechanical material characterisation tools is concerned,

one needs verifications more than the experimental validations. There are a number of ‘sanity

checks’ as will be described in detail below. If any unit cell formulated and implemented fails to

pass any of the ‘sanity checks’, it is incorrect, no matter how well some of the results agree with

experimental data.

The first set of ‘sanity checks’ can be set up as follows. A single set of material properties are is

assigned to all phases of the constituents involved in the unit cell, so that the unit cell would

essentially represent a homogeneous and isotropic material. The analyses are carried out under

all loading conditions. In each case, perfectly uniform stress and strain fields should be obtained

for each loading case. Otherwise, the unit cell has not been either formulated or implemented

correctly. When stress contours are plotted in this case, multi-coloured images indicate fault, as

correct stress distributions must be uniform and hence uni-coloured. Typical stress

concentrations are found around the vertices which signify the incorrect boundary conditions in

most cases.

Having achieved uniform stress and strain field, a check on their values is simple and essential,

as they must correspond to the prescribed loading identically. The stresses and strains should be

related according to the material properties as assumed for these analyses. One also needs to

check the ratios between the strains, as they should coincide with the Poisson’s ratios as assigned

to the material to facilitate the analyses.

Finally, the data processing phase of the analyses should be conducted. The predicted effective

properties must be identical to those assigned to the material to facilitate the analyses.

Having passed the ‘sanity checks’ as proposed above, one must have eliminated 90% of the

errors made in the implementation of a unit cell one way or another. One probably finds at least

90% of efforts to implement a unit cell would have been consumed in order to pass these checks.

Without offending users, one would probably find 90% of the unit cells as presented in the

literature would not have been able to pass these ‘sanity checks’ in one respect or another. Of

course, most of them did not have the boundary conditions employed shown in the sources where

they were published, as if boundary conditions were irrelevant or obvious.
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UD Composites and Transverse Isotropy

Unidirectionally fibre reinforced composites (UD) are the most common type of composites.

They can constitute individual plies in laminated structures or tows in textile composites. Their

characterisation is one of the most popular and fundamental exercises in micromechanical

analysis. Fibres in a UD composite are usually distributed at random over its cross section

perpendicular to the fibres. Their statistical uniformity often serves as the basis for idealisations,

in which fibres are assumed to be packed in a regular pattern, typically, square packing and

hexagonal packing. Unit cells can then be constructed as shown in previous sections. They have

been adopted in most cases without much justification in terms of their representativeness.

Often, experimental data were brought in too swiftly as the ultimate authoritarian measure. One

aspect often being overlooked is the transverse isotropy.

A square packing as an idealisation of UD composites does not preserve transverse isotropy.

Excellent comparison with the experimental data, e.g. transverse Young’s modulus E2, obtained

in one direction, has automatically guaranteed a bad comparison if the value was obtained in a

different direction, e.g. 45 between axes y and z [5]. On the other hand, a hexagonal packing

preserves the transverse isotropy.

RVE for Randomly Distributed Inclusions

In Section 8, the falsification of periodicity for random structures was dismissed. However,

there still remains a question as to how an untampered RVE should be analysed. Without

geometric periodicity, it is no longer possible to obtain the precise boundary conditions for the

RVE to be analysed, whether in terms of displacements or traction. Inside a large/infinite

medium, before the solution to the problem has been found, it is impossible to identify a path

along which either displacements or traction would be constant to enable the definition of the

path as a part of the boundary of the RVE. Along the boundary of an RVE, no matter how the

displacements or the traction is prescribed, significant errors will be introduced. However, in

[16], it was shown that such errors are only of local effects. Several characteristic lengths away

from the boundary, the errors tend to diminish. The characteristic length can usually be defined

in terms of the dimensions of the inclusions or the average spacing between them. This was not

by coincidence. The underlying rule is the St. Venant principle. Guided by this, an approach

can be readily put forward.

The methodology of formulating an appropriate RVE for micromechanical analysis is as follows.

Assuming that the smallest RVE has been identified, it is defined as the inner zone. Next, an

extended zone is introduced around it, with the sides which are several characteristic lengths

beyond the sides of the inner zone, as illustrated in Figure 23. The extended zone is also an RVE
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by definition. Both RVEs should at least share the volume fraction with the material as a whole.

The extended RVE is analysed by applying constant displacements to the boundary according to

the desirable loading conditions, and the solution can be found, which is known to be erroneous.

However, errors are meant to be found only around the boundary of the extended zone. Within

the inner zone, which is the smallest RVE, sufficiently accurate solution can be obtained. It is

easy to envisage that the boundary of the inner RVE does not deform into any regular shape after

the deformation, in general. If the average stresses and strains are found from the inner zone,

effective material properties can be worked out. They are free from the effects of erroneous

boundary conditions. Thus, no tampering is required and the randomness of the structure has not

been compromised in any way. More examples of applications of the methodology can be found

in [24,25,26].

Figure 23 RVE for a UD composite with random fibre distribution over its transverse cross
section

In addition to the extended size of the RVE to be analysed as the price to pay, another increased

the demand is in the post-processing. The average stresses and strains will have to be found.

This will have to involve assigning correct weight to the stresses and strain obtained at each

integration point.

Another observation made in [16] was that prescribing constant traction to the boundary of the

larger RVE tended to result in greater errors and therefore it takes longer distance for the errors

to diminish than prescribing constant displacement.

Applications to Textile Composites

Textile composites are particularly relevant to the theoretical development as presented in this

chapter due to their regular and periodic structures at a mesoscale. The considerations as given

to symmetries are particularly useful. Given their regularity in the fibre tow interlacing



57

structures, macroscale homogeneity can be easily justified based on the presence of translational

symmetries. However, the homogeneity is an acceptable assumption only at a macroscale, i.e. at

a characteristic dimension orders of magnitude larger than the periods in the meso-structure.

Textile composites are typical multiscale materials. Under the visible features is a micro-

structure at mesoscale, where UD fibres are bonded together into fibre tows. Micromechanics

can be employed to characterise the tow material as a UD composite, where use can be made of

the unit cells as presented in Section 10.1 and 10.3 for this purpose.

The microscale to mesoscale homogenisation is straightforward as the relevant unit cells to

facilitate the process have been presented in Section 10. Discussion below will be made on

homogenisation from the mesoscale to the macroscale only.

18.1 Reflectional and rotational symmetries for material categorisation

Textile composites made of simple woven preforms, such as plain weaves as shown in Figure 18,

can be easily categorised into the orthotropic family due to the apparent presence of planes of

reflectional symmetries. However, reflectional symmetries are not always available, whilst

rotational symmetries are sometimes present.

In particular, there is not a single reflectional symmetry in a 3D 4-axial braid, as shown in Figure

24, which is a typical form of reinforcement in 3D braided composites [27]. 3D braiding offers

superb integrity and it allows the cross-section to vary relatively easily. The structure of the

braid is such that there are rotational symmetries about 3 perpendicular axes, x, y and z, as shown

in Figure 24 and, as a result, 3D 4-axial braided composites are orthotropic. The principal axes

of orthotropy are the axes of rotational symmetries, which do not usually coincide with the

direction of any fibre tows.

Figure 24 Unit cell of four-axial 3D braided composite
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Another example is twill weave composites, see Figure 25. Twill weaves are usually much

easier to drape to conform to curved shapes than plain weaves, and hence they have significant

potential in applications. Again, in a typical twill weave, no reflectional symmetry is available,

while rotational symmetries are present [13]. The in-plane principal axis identified by the

rotational symmetry in a twill weave composite is inclined at 45 to the direction of fibre tows.

It is also rotationally symmetric about an axis out of the plane of the weave, identifying another

principal axis. The material is therefore orthotropic although none of the principal axes of the

orthotropy coincides with the directions of fibre tows. The third principal axis, being

perpendicular to the two identified through rotational symmetries, is inclined at the other 45 to

the direction to the fibre tows. It is worth noting that there is no obvious symmetry of any kind,

either rotation about the third principal axis, or reflection about the plane perpendicular to the

third principal axis.

Figure 25 Twill weave, its principal axes resulting from rotational symmetries (inset: the
diagonal axis and the axis out of the plane represented by the dot), correct directions for material
characterisation (green), their misperception (red)



59

Readers are reminded that there is no available industrial standard applicable to generally

anisotropic materials. Existing standards requires the materials to be tested to fall in the category

of orthotropy. Applying the standards blindly amounts to abuse of them and the consequences

could be serious. Without appropriate emphasis, the pre-conditions of these standards could be

easily overlooked. There is perhaps no lack of examples where twill weave composites are being

characterised directly in the fibre tow directions in the plane of the twill weave. This is the

reason for advocating material categorisation as an essential step before material

characterisation. Whilst it could sound like stating the obvious, obvious rules are there to

observe, not to ignore. The authors are taking this opportunity to make a serious call as a first

attempt to the best of their knowledge for future practices in this field: categorise a material

before its characterisation!

18.2 Unit cells

Having categorised a textile composite, an appropriate unit cell can be formulated, first of all

based on the translational symmetries present in the meso-structure. The sizes of such unit cells

can often be significantly reduced by taking advantage of additional reflectional and/or rotational

symmetries present in the meso-structure. Two examples are shown below.

18.2.1 Plain weave composites

The plain weave unit cell obtained through translational symmetries alone can be seen in Figure

26(a). The boundary conditions obtained in Section 10.4 for the rectangular parallelepiped can

be readily applied to it.

(a) (b) (c)

Figure 26 Unit cells for plain weave based on the use of various symmetries: (a) Full sized UC
based on translational symmetries alone, (b) Quarter sized UC after the use of reflectional
symmetries, and (c) 1/8 sized UC after further use of 180 degrees rotational symmetries
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As was mentioned in Section 13, there exist two reflectional symmetries about the horizontal and

vertical axes. Using them, the size of the unit cell can be reduced to 1/4 of its original size.

However, there is not much benefit to stay at this point. In this quarter sized unit cell, there are

two more rotational symmetries about the horizontal and vertical axes passing through the centre

of it. Making use of them, the size of the unit cell can be further reduced to 1/16 of the original

size. Having used the reflectional and rotational symmetries, boundary conditions are different

for different loading conditions. They are summarised as follows, while the detailed derivation

can be found in [23].

Under 0
x , 0

y , 0
z or any combination of them:
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0

0

y y
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Under 0
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0

0

0

u u

v v

w w

  

  

  

on y=by/2, (77a)

Cu u at y=by/2 & z=0, (77b)

0

0

0

P

P

P

u u

v v

w w

  

 

 

on x=bx/2, (77c)

0

0

u

w




at x=bx/2 & z=0. (77d)

Under 0
xy :

0

0

0

y xyu u b

v v

w w

  

  

  

on y=by/2, (78a)

01

2
y xyu b  at y=by/2 & z=0, (78b)

0

0

0

u u

v v

w w

  

 

  

on x=bx/2, (78c)

0v  at x=bx/2 & z=0. (78d)

To impose boundary conditions as given by (75)-(78), the mesh for the unit cell must be so

generated that each of the two sides, y=by/2 and x=bx/2, must be partitioned by plane z=0, i.e. each

side being split into two faces. The tessellations on each pair of the faces on both sides of z=0

plane must be identical under the corresponding symmetries. Effectively, as far as geometric

symmetries between the corresponding faces are concerned, the rotational symmetries for faces at

y=by/2 and x=bx/2 on opposite sides of z=0, as well as the translational symmetry for the top and

bottom surfaces, share the same characteristics as the reflectional symmetry about z=0.

Apparently, each edge is shared by two faces of the unit cell. Redundant constraints arise if the

conditions for each of the two faces are imposed to the same edge individually. Any redundant

boundary condition can be eliminated. As it is a tedious process, it could be a rather confusing
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step. The principle however is simple. Since an edge is shared by two faces, the boundary

conditions on both intersecting faces apply to the edge. What one needs to do is to take the logical

sum of the available conditions from both faces at the edge concerned. Detailed derivations will

not be presented here, but interested readers are referred to [23] for full information.

18.2.2 3D 4-axial braided composites

Geometric periodicity is an obvious feature in the meso-structures of 3D braided fabrics and

composites formed from them. The geometric symmetries associated with periodicity are

translations. Using translational symmetries alone, a unit cell as sketched in Figure 27(a) can be

defined, which will be referred to as full-size unit cell. In Figure 27, the blobs on various edges

are truncated segments of tows.

Within the full-size unit cell, other symmetries are also present. Specifically, 180º rotations about

all three coordinate axes are present, but only two of them are independent. Without losing

generality, using the rotation about the z-axis, size of the unit cell can be reduced to a half, referred

to as half-size unit cell, as shown in Figure 27(b). Another rotation about the x-axis can bring the

size of the unit cell a quarter of the full-size unit cell, as shown in Figure 27(c), referred to as the

quarter-size unit cell. Although this unit cell has been an apparent choice geometrically [27], it is

not an optimum one as there is another useful symmetry unexploited.

Within the quarter-size unit cell, there is a further obvious symmetry. It is 180º rotation about

axis y1, which is parallel to the y-axis and passes through the centre of the quarter-size unit cell,

as depicted in the Figure 27(c). By employing this symmetry, the size of the unit cell can be

further halved, as shown in Figure 27(d), into one eighth of the full-size unit cell, referred to as

1/8 unit cell.

The boundary conditions have been derived systematically in [28]. Extracted from it, after

constraining the rigid body translations of the UC by fixing the origin O from any displacements,

the boundary conditions for the unit cell of significantly reduced size as in Figure 27(d) can be

presented as follows.
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(a) (b)

(c) (d)

Figure 27 Unit cells for 3D 4-axial braided composite based on the use of rotational symmetries:
(a) full size unit cell; (b) half size unit cell; (c) quarter size unit cell; (d) 1/8 unit cell.
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The unit cell obtained in this section is of 1/8 of the full-size unit cell, but it remains applicable for

characterising the composite fully. However, macroscopic direct stresses and each macroscopic

shear stress will have to be treated separately as the boundary conditions are different for each

case.

The implementation of the boundary conditions presented above will require the mesh of the unit

cell so created that opposite faces y=±b are tessellated in exactly the same form, while faces x=0

and x=b show symmetry about their respective centrelines parallel to the z-axis, and face z=0 and

z=h about their respective centrelines parallel to the x-axis. Similar to the full-size unit cell,

redundant conditions arise at edges and vertices of the unit cell, as well as along the centreline on

the x-faces. Sufficient guidance can be found in Section 10 as well as in [5, 6] if they need to be

eliminated and the underlying considerations remain the same, although the symmetries involved

are slightly different.

18.3 3D weaves

The use of 3D weaves as preforms for composites is attracting more and more attention in

engineering. The most common types are the interlocking weave fabric as shown in Figure 28

and the non-crimp fabrics (NCFs) which will not be addressed here. The former employs

straight fibre tows to form the main part of the fabric, which are bound together using a limited

amount of interlacing tows. In the latter, fibre tows are placed either as the warp or the weft.

While weft tows remain straight, the warp tows interlace the weft tows in a range of designed

manners resulting in various fabrics, such as angle interlock, layer to layer interlock, etc.

One may find the cuboidal unit cells to be applicable to most of such 3D woven composites. The

only significant extra consideration is that the textures of these weaves on the surface of the

fabrics tend to be noticeably different from those in the core of the fabric. If the surface layers

constitute a relatively small part of the fabric, the differences they make may be considered

insignificant, hence the presence of surface layers can be neglected. Otherwise, they need to be

taken into proper account.
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Figure 28 The most common types of 3D woven reinforcements: (a) Layer to layer angle
interlock, (b) Layer to layer straight interlock, and (c) Through thickness interlock

When the full thickness is included in a UC, one may have to make a decision whether the

through-thickness properties are desirable. If not, the top and bottom surfaces should be left free.

Otherwise, an appropriate loading mechanism will have to be introduced. However,

development of such a mechanism is beyond the scope of the present chapter.

Diffusion Problems

There is a large class of physical problems, including heat/electricity conduction, fluid

permeability in porous medium, etc., that can be classified into the mathematical problem of

diffusion, as has been addressed in [29,30,31,32]. The constitutive relationship for the diffusion

problem is defined by the diffusion coefficient matrix [k], which couples the field (e.g.

temperature) gradient, T, with the flux (e.g. heat), {q}.
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All arguments made before are readily interpreted to offer necessary means to facilitate the

multiscale material characterisation of this class of problems. The relative field can be given as

A. Layer to layer
angle interlock

B. Layer to layer
straight interlock

C. Through thickness
interlock
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is the effective field gradient in the upper length scale, and the constants x,

y and z are periods in x, y, and z directions, respectively, associated with the translational

symmetries available in the structure in the lower length scale, although the translations do not

have to be in the same directions as the coordinate axes. Boundary conditions for the unit cell

can be obtained from (100) in a straightforward manner.

If any substantial difference from their mechanical counterpart, there are fewer material

constants to be determined and the categorisation of anisotropy is slightly simpler, as the cubic

symmetry implies isotropy.

The concepts of RVE and unit cells and their implementations are directly extended from the

mechanical problem to the diffusion problem.

Boundary of Applicability of RVEs and UCs

Having been established as in previous sections, the RVEs and UCs, if applied appropriately, can

offer an effective tool for material characterisation. However, correct formulation does not

necessarily guarantee appropriate application. Coming with the formulation are the limitations

on their range of applicability. The assumptions introduced in their formulation have provided

good indications about such limits.

The length scale at which homogeneity can be assumed is one of the important measures. The

dimensions of an RVE or UC, whilst remaining representative, should be significantly smaller

than the characteristic features in its upper length scale for the uniform stress and strain field in

the upper scale to be valid.

The homogeneity also places a restriction on the extent of deformation. As it is based on the

regularity, in either statistical or geometric sense, any deformation violating the regularity, e.g.

when deformation starts to localise, resulting in necking, discrete cracks and any other signs of

material softening, is deemed to be beyond the applicability of the UCs and RVEs. There is

probably no lack of examples of such abuses in the literature.

The magnitude of deformation places another restriction to the applicability of RVEs and UCs.

The deformation kinematics underlying the formulation of RVEs and UCs are based on the

assumption of small deformation, although blind application of the RVEs and UCs beyond the

range of small deformation might be found in the literature. However, the effects of finite

geometric deformation have to be taken into account when finite deformation is involved. Then
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there will be nonlinear terms in the deformation kinematic equation. The relative displacement

field will no longer be related to the effective strains in a form as simple as in (32). This in turn

defines the applicability of RVEs and UCs in terms of the magnitude of deformation involved.

Concluding Statement

Traditionally, material characterisation has been associated with material testing to obtain

desired material properties. The establishment of RVEs and UCs is to facilitate a computational

means as an alternative to the physical testing, as is often referred to virtual testing. While

virtual testing has never been introduced to replace physical testing completely, and it will never

do, it can help to minimise the demand on physical testing, which is usually expensive and time-

consuming. In many of the modern materials, in particular, in fibre reinforced composites,

heterogeneity and anisotropy are often the key features. Appropriate categorisation of such

materials in terms of the degree of heterogeneity and anisotropy is an essential step before their

characterisation becomes meaningful. Readers are reminded that available industrial standards

only support characterisation of materials in a limited category, e.g. orthotropic materials.

Without appropriate categorisation, these standards could be abused, e.g. the specimens would

not be loaded in their principal directions. It is important to note that the virtual testing can go

beyond such limitation, although one would have to worry about its validation.

A crucial aspect underlying the applicability of RVEs and UCs is the homogeneity of the

material concerned at a certain length scale. Appropriate application of them offers an effective

means to homogenise the material from its lower length scale, where heterogeneity is observed

in terms of the different phases as the constituents of the material. The analysis associated with

them is multiscale modelling in nature, viz., the analysis is conducted at a lower length scale in

order to deliver effective material properties at the upper length scale, where homogeneity can be

assumed. Associated length scales are therefore a crucial measure of the applicability of the

analysis.

For materials of random structures at the lower length scale, homogeneity can only be justified in

a statistical sense. RVEs are the appropriate means to characterise such materials. However, it

should be noted that RVEs can only be representative only if they are (a) large enough in size

and (b) free from artificial manipulations. A systematic approach has been represented in the

Section 17 of this chapter.

In presence of symmetries in materials of regular structure at the lower length scale, use can be

made of them to establish UCs to drastically reduce the demand on the material characterisation

by the virtual testing means. In this respect, translations are the most important type of

symmetries. Identifying their geometric presence is a relatively easy step. Interpreting their

implications on the UC to be formulated, in particular, the derivation of precise boundary

conditions for the analysis of the UC, requires a new concept, i.e. the relative displacement field.
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With it, the formulation of the UC will then rest on a firm ground, whilst most mistakes found in

the field were due to the lack of this concept as a starting point. Further reflectional and

rotational symmetries, if present in the UC identified, can be taken advantage of to reduce the

size of the UC to be analysed. However, there is usually a price to pay, i.e. different sets of

boundary conditions have to be imposed under different loading conditions, with the only

exception of central reflection.

Properly formulated boundary conditions bring the effective strains at the upper length scale

(they are in fact average strains at lower length scale) into the UC concerned. They have been

referred to as the Kdofs, which are the crucial part of the UC concerned, and also offer a

profound convenience to the process of material characterisation. Whilst the ‘displacement’ at

each key dof gives the corresponding effective strain directly, the ‘nodal force’ at this dof is

simply related to the effective stress or average stress in the UC. They do not only simplify the

post-processing greatly, but can also be seen vividly as the link between the two length scales

involved.

The significance of ‘sanity checks’ simply cannot be overstated. In fact, for any newly created

UC, passing these checks is the most demanding task. The credibility of any UC not subjected to

these checks should never be accepted. Failing any check signifies at least a mistake somewhere

beyond any doubt. Resorting to experimental validations without these checks is deemed dodgy

and futile.

The rules of formulating UCs can readily be applied to modern textile composites, both 2D and

3D. Their extension to other physical field, e.g. a wide range of physical processes classified

under the diffusion problems, such as heat/electric conduction, fluid permeability in porous

medium, etc. is straightforward. The RVEs and UCs as formulated in this chapter can be

employed to characterise the relevant diffusion coefficients effectively.

The formulations of RVEs and UCs as presented in this chapter often appear to be tedious.

However, they are systematic and hence suitable for programming. Readers are reminded that

the finite element method was unthinkable to apply manually, but, once coded appropriately, it

has become a universally applicable tool, without which modern engineering can hardly sustain

itself. The claimed systematic nature has been demonstrated through a code, UnitCells©, as a

secondary development of Abaqus/CAE [20, 21].
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