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Abstract

The objective of this chapter isto provide acomprehensive and systematic account on the
subject of representative volume e ements (RVESs) and unit cells (UCs). To construct an RVE or
UC, intuition has been often perceived sufficient to facilitate the analysis, but down to the
details, approaches taken turn out to be rather mythological. It will be demonstrated in this
chapter that thereis absolutely no room for any myth on the subject if the basic concepts of
mathematics and mechanics, viz. symmetry and free body diagrams, have been applied correctly
and consistently. Only then, effective and reliable means of material characterisation based on
the use of RVEs and UCs can be established, in particular, for composites where micro/meso-
structures often dictate their behaviours. The logic employed defines the boundary of
applicability of the methodology.

Keywords: Representative volume element (RVE); Unit cell (UC); Symmetry; Boundary
conditions;, Material characterisation; Micro/meso scales; Key degrees of freedom; 'Sanity
checks.
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1. Introduction

This chapter represents the very first attempt of putting together a systematic and comprehensive
account on a specific subject of representative volume element (RVE) and unit cell (UC), which
have found wide applications in modelling and characterisation of materias, in particular,
composites. In the literature, they have been employed to facilitate specific analysis, oftenina
casual manner unfortunately. Readers are easily left with an impression that it issimply a
routine step. However, once one hasto put it in practice, all sorts of difficultiesarise. The
exerciseisin fact full of pitfallsif one intends to adopt it as a serious means of material
characterisation. There are so many seemingly trivia issues, but, without putting them right, one
cannot even apply the analysis to an actualy trivia problem!

It is not the objective of this chapter to provide a comprehensive literature review to list who did
what and when. One of the reasons for not doing so isthe fact that often one cannot find enough
details in these publications in order to understand how they were done. Roughly, in nine out ten
publications, one would not be able to reproduce the work due to the lack of information such as
boundary conditions, load application and result processing. Amongst those cared to include an



account on boundary conditions, for instance, it was not uncommon to find statements, such as
the boundary conditions were ‘proposed to be', ‘assumed to be', *approximated as' or simply
‘boundary conditions employed are’, asif it was meant to be an account as |oose as it was
presented on one hand, or awell-known practice and hence does not require any justification, on
the other hand. Where full details had been provided, few would stand scrutiny. Sometimes,
simple anomalies could be identified straightaway, if the readers cared to observe. Simple
testimonies can be the so-called * sanity checks' as will be described fully later in the chapter.
Another simple measure readers might exercise is to observe whether and how the analysis has
involved shear stress state. Magjority of the analyses using RVEs or UCs did not touch shear asif
shear is either implied by the considerations made or unimportant. The truth is of course far
from that. Shear isjust asimportant as any other matrix dominated behaviour of composites.
Even for a macroscopically isotropic material, prediction of shear stiffnessisimportant to check
if the isotropy has been preserved in the theoretical model as one of conditions for isotropy is
G=E/2(1+v).

Multiscale modelling using RVEs and UCs can be a very effective tool for material
characterisation, if it can be carried out systematically and consistently in areliable manner. It
has its own clearly defined boundary of applicability. The objective of this chapter istherefore
to provide a comprehensive account on how it can be done systematically and consistently. The
methodology can thus be established logically and hence reliably. Whilst following the logic
behind each consideration, the myth over the subject can be dispelled, returning the subject a
crystal clear account as it deserves.

2. Length Scales

The categorisation and characterisation of amaterial are always associated with a specific length
scale. Historically, the length scale in engineering is macro, which was taken for granted in
traditional studies, such as mechanics of materials, heat transfer, etc. Modern science and
technology have allowed the human vision to be extended to substantially more refined scales.
Materials can now be manipulated at meso (typically around millimetre), micro (from afew to
tens of microns) and, nowadays, nano (from tens to hundreds of nanometers) scales. However,
for practical applications of fibre reinforced composites, micro, meso and macro scales are
common places. The discussion of this chapter will be confined within these scales. Even so, it
crosses three scales. Without being overly restrictive in narrative, length scales will be referred
toin arelative relationship as alower length scale and an upper length scale. If the micro scale
is considered as |ower, the upper one could be meso as well as macro, while meso is the upper
for micro but lower for macro. Meso scaleis particularly relevant for textile composites, where
fibre tows are interlocked into structures of regular patterns.



Multiscale nature is one of characteristics of composites. For material design and
characterisation, it is often desirable to derive effective properties of a composite at an upper
length scale from those of its constituents at alower scale. The methodology established in
present chapter isto offer a powerful means to facilitate this process.

3. Symmetry

The reflectional symmetries are undoubtedly the most familiar type to the readers. However, it
will be very wrong to perceive that it isthe only type of symmetry or the most important type of
symmetry. In fact, there are three generic types of symmetries: trandlations, reflections and
rotations [1]. One can of course cite more types, such as reflection about an axis, reflection
about a point, etc. A careful examination will reveal that they are some combinations of these
three generic ones. For instance, reflection about a point, or central reflection [2], isthe
combination of areflection about a plane followed by a 180° rotation about the axis
perpendicular to the plane of reflection.

A rotation of 360° is an identity transformation which is of little significance in the present
discussion. A useful rotational symmetry about an axisis characterised by an angle which must
be 360°/n, with n being an integer. It isoften denoted as C". Rotational symmetries are just as
important as reflectional symmetries. Reflectional symmetries can be absent from many
micro/meso/macro structures where rotational symmetries are available. For example, laminates
of arbitrary layup usually do not show any reflectional symmetry. However, they can be 180°
rotationally symmetric about the axis perpendicular to the plane of the laminate [3].

Translational symmetry is often overlooked. However, in many ways, it is probably the most
important type of symmetry in applications to material characterisation [4, 5, 6]. Without it,
materials cannot be homogenised and unit cells cannot be established, as will be discussed in due
course later.

4. Continuity and Free Body Diagrams

A physical problem is always defined in a domain over which some fields describe the contents
of the problem. A physical field can be scalar, e.g. temperature, vectorial, e.g. displacement, or
tensorial, e.g. stress. Continuity conditions are usually an essential requirement as a part of
formulation of the physical problem. In a mechanical problem of deformation, for instance,
continuity of displacement field is required by the deformation kinematics. In addition to the
vectorial displacement field, this problem also involves tensor fields of stress, o, and strain, &.
The continuity condition on stress is common place of confusion.



Stressfield as atensor does not have to be continuous. Equilibrium condition is not the
continuity condition for stress. The continuity condition associated with stressis Newton’s third
law, as will be elaborated later in this section.

Free Body Diagram (FBD) isavery basic, yet essential, tool throughout this study. The essence
of it isthe continuity. Assume abody is separated into two free bodies by a plane perpendicular
to the x axis at a coordinate x with the two surfaces created on each side of the two free bodies
denoted as x~ and x*, respectively. The continuity of the displacement field requires
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Without such continuity condition as expressed through the vehicle of FBD, deformation of the
body would result in slits or overlapsin the body, which violates the deformation kinematics.

The continuity condition associated with the stress is presented in terms of traction. On aplane
with an outward normal, {n}, traction is defined as{ S} =[5]{ n}, in general. On the plane
perpendicular to the x axis,
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At x and x*, i.e. the two surfaces created in the free bodies as mentioned above, the outward
normals are
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It should be noted clearly here that the stress components shown above form the tractions as
vectors on the exposed surfaces of the free bodies. Continuity of them asin (5) isrequired by
Newton’s third law, not equilibrium, which is governed by Newton’sfirst law. Readers are
reminded that the action and reaction act on different bodies and hence are not in equilibrium. It
is obvious that the continuity associated with stressis not for the stress as awhole, but for those
components exposed on the surface concerned to form the traction. Other stress components are
irrelevant, as Newton’ s third law does not have any bearing on them.

Equations (1) and (5) are the continuity conditions as obtained from the FBD.

5. Symmetry Conditions

A transformation means a change in shape or position of an object. If the shape or position
remains unchanged after a transformation, the transformation is a symmetry transformation. Itis
often referred to ssimply as a symmetry.

Symmetry in the context of the present discussion is a geometric, as well as a physical property.
Its applications in physical disciplines require alittle extension of the concept to the physical
fields under consideration. Physical fields usualy have their senses. If afield ismultiplied by
-1, it isconverted to its opposite sense. The involvement of the sense enriches the concept of
symmetry, but also causes confusion as a by-product. Under a symmetry transformation in
accordance with the geometric symmetry, aphysical field could be symmetric, if the field keeps
its sense under the symmetry transformation, or antisymmetric if the field changes to its opposite
sense under the symmetry transformation.

When symmetries are made use of in a physical problem, they will result in some conditions
which are implied by the symmetry. To make these conditions explicit, free body diagrams will
have to be resorted to. Once these conditions are combined with the continuity conditions, they
offer the so-called symmetry conditions. Thiswill beillustrated for each of the three symmetries
asfollows. Without losing generaity, a mechanical problem of deformation will be considered,
which involves a vector field of displacement, u, and atensor field of stress, o.

5.1 Trandational symmetry

Assume the trandlation isin the x direction by a distance of Ax. An arbitrary segment of length
Ax in the domain for the physical problem between xo and Xo+Ax will be selected to produce the
free body diagram. The presence of trandational symmetry for the geometry and the physical



properties does not necessary imply that al physical fields involved possess the same symmetry.
In fact, even with perfectly uniform stress distribution, where the translational symmetry for
stressfield is obvious, the associated displacement field does not possess translational symmetry.
Consider auniform deformation at the upper length scalein a 1D case as an example. The
displacement field, u, can be defined as alinear function of coordinate x as follows:

u(x) = ex+u, , (6)

where ¢ and u, are constants with the former being the effective strain and latter the
displacement at a reference point.
Asshown in Figure 1, such displacement field is obviously not periodic and thereisno

tranglational symmetry. At the sametime, stress and strain fields associated with it are both
periodic and hence translationally symmetric, because they are both uniform.

Xo Xo+AX Xot+NAX
[ * ° * ' 3

u(xo)  u(Xot+Ax) u(Xo+nAX)

Figure1 Linear 1D displacement field corresponding to a uniform strain field

This has often been a source of confusion. In order to apply the transational symmetry to
displacement, one hasto resort to the relative displacement field instead. Select any point R at

X, asareference within segment [Xo, Xo+AX]. Assume the point of interest is P at x within the
segment. The displacement of P relative to that of Ris given as

v =dvy (7)
x Xg
and that in the next segment is
Vv —dv , (8)
w
X+AX Xg+AX



and so on and so forth. Relative displacementsin both segments referred to above are identical.
A relative displacement field can thus be defined segment by segment. Thereisatranslational
symmetry, or periodicity, in the relative displacement field as defined, as shown (red) in Figure
2. Itisworth noting that the relative displacement field is not continuous. However, this should
not be any cause for concern as long as the displacement field associated with it is continuous, as
itisindeed the case, given its linear appearance (green in Figure 2).

Xo XotAX Xo+NAX

Figure 2 Schematic illustration of the relative displacement field (zigzag) in contrast with the
displacement field (straight line)

When x is placed on the boundary of the segment, the symmetry transformation gives
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The displacement (not the relative displacement) field must be continuous across the boundaries
of segments as established from the consideration of FBD in the previous section. Thus
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Therefore, (9) can be re-written as follows



u u
Vel =9V =<V —qV . (12)
w

X5 X] Xo +AX Xg+AX

Eliminating those at ()| and ()

which are not part of the segment concerned, one
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obtains the translational symmetry condition for the displacement as
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Similarly, through the same argument, the translational symmetry condition for the traction can
be obtained as

GX GX
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These are conditions for displacement and stress components on the two sides of the segment
that have to be satisfied. If the segment is to be analysed as a UC, these will be the boundary
conditions for the UC in this one-dimensional case. The relative displacements between
segments at fixed points within respective segment as appearing on the right hand side of (12)
can be easily associated with the average strains. Thiswill be discussed in detailsin Section 9.

For practicality, only symmetric transformations of physical fields will be considered for
tranglational symmetries. Antisymmetry is not dealt with here.

5.2 Reflectional symmetry

Assume the reflection is about a plane perpendicular to the x axis located at xo. Split the domain
by the plane in the sense of free body diagram as shown in Figure 3(a). The continuity of the
displacements and traction requires
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If the physical fields under consideration are symmetric as shown in Figure 3(b), the symmetry
transformation requires
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Figure 3 (a) Free body diagram to show the continuity of displacements and stresses, and (b)
symmetric and (c) antisymmetric reflectional symmetry of the displacements and stresses

-u o, o,
Vil =9V and Tyl =1 Tw(l - (15)
T -T
) % g g

If the physical fields under consideration are antisymmetric, the symmetry transformation
reguires

(16)

X X % X
In each case, symmetric or antisymmetric, one can eliminate those at ( )|X by considering (14)

and (15), or (14) and (16) as a set of simultaneous equations. For symmetric case, one obtains

“|xa =0 and Ty

. =0, a7
for antisymmetric case, one obtains

V,.=w.,=0 ad o,
X X X

=0, (18)

which are conditions for displacements and stresses on the symmetry plane that have to be
satisfied for symmetric and antisymmetric cases, respectively.

5.3 180° rotational symmetry

Like reflectional symmetries, rotational symmetries can be either symmetric or antisymmetric
depending on the loading conditions. The conditions implied by the symmetry can again be
derived from two considerations, continuity and symmetry. Illustrated in Figure 4 arethefree
body diagram and the symmetric symmetry transformation of displacements and the tractionsin
the surface, whilst the antisymmetric counterparts to Figure 4(b) and (c) can be produced by the
readers easily and hence are not included here. In Figure 4, the coordinate system is deliberately
chosen to be different from that in Figure 3. Aswill be seen later, materials having a reflectional
symmetry about a plane perpendicular to the x-axis are categorised in exactly the same group as
those having arotational symmetry about the x-axis.
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In this study, rotational symmetries will be limited to 180° rotations, i.e. C2. An example
involving other angles in the context of polar coordinate applications can be found in [7]
although it will not be covered in this chapter.
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Figure 4(a) Free body diagram to show the continuity of displacements and stresses, (b)
symmietric rotational symmetry of the displacements and (c) symmetric rotational symmetry of
the stresses

Assume the 180° rotational symmetry is about the x axis. The way to split the domain into two
halves in the sense of free body diagram is no longer unique. The partitioning surface does not
even have to be aplane. The conditionsfor it are that it passes the axis of rotation and is
rotationally symmetric about the same axis. For argument’s sake, it is chosen as the plane
perpendicular to they axis. The continuity of the displacement and stress fields requires

u
% =JV , (29
y=0",z w y=0",z
Tyx TYX
o, =40, ) (20)
Ty y=0",z Tye y=0",z

If the physical fields under consideration are symmetric, the symmetry transformation requires

u
% =<V , (21)
y=0,z —w y=0",-z
Tyx Ty
o, =4 0, . (22)
Ty y=0' 2 Ty y=0" -2

If the physical fields under consideration are antisymmetric, the symmetry transformation
requires
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After eliminating those on ( )|y for symmetric or antisymmetric cases respectively, the

conditions are

u T W -7 VX
v =<V and o, =4 0, (25
- T -7
y=0",z y=0" -z ¥2J ly=0" z Y2 ) ly=0* -z
for the symmetric case, and
—-u T X T X
v =<V and o, =41-0, (26)
T T
y=0",z y=0" -z Y2 ly=0"z Y2 ) ly=0" -z

for the antisymmetric case. These are conditions of displacement and stress field to be satisfied
on the y-plane selected as the partition plane, for symmetric and antisymmetric cases
respectively. They will be the boundary conditions for the half domain to be analysed on the y>0
side.

It can be seen above that the translational symmetry is the only one which can reduce the domain
frominfiniteto finite. The priceto pay isto accept and to deal with the concept of relative
displacement field.

Either reflectional or rotational symmetry can only reduce an infinite domain to semi-infinite,
whichisgtill infinitein extent. In this respect, reflectional and rotational symmetries have often
been subjected to abuses. In order to reduce an infinite domain using reflectional or rotational
symmetries aone, there have been attempts, as have often been observed in the literature, to use
the symmetry twice with the partition planes placed adjacent to each other in paralel by a
distance equal to the distance for the existing translational symmetry, without using the
tranglational symmetry. Thiswas done sometimes explicitly, where error can be easily tracked,
and sometimes implicitly whilst giving no justification whatsoever. In fact, users of the latter
group soon found that it was not quite right and they had to artificially relax the constraints
imposed by the symmetry somehow to alow certain patterns of deformation prohibited by the
symmetry consideration in place. Any relaxation therefore conflicts the symmetry by definition.
It is not difficult to dismiss such an approach. Thefirst use of areflectional or rotational
symmetry has reduced the infinite domain to a semi-infinite one. The semi-infinite domain does
no longer possess the same symmetry anymore, asis schematicaly illustrated in Figure 5(a). A
typical example of such confusion can be found in the so-called equivalent coordinate systems
(ECS) [8].
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On the other hand, via the use of the trandational symmetry an infinite domain can be reduced to
afinite extent, as shown in Figure 5(b). Infact, out of the three generic types of symmetries,
only the translational ones have the capability of reducing an infinite domain to afinite one.

15
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Figure5 (a) Applicability of reflectional symmetry and (b) the use of trandlational symmetry to
reduce from an infinite domain to finite

Another factor associated with reflectional and rotational symmetriesis that the sense of
symmetry transformation can be symmetric as well as antisymmetric. This causes complications
aswell as confusions from time to time. When using them to formulate unit cells, sufficient care
must be exercised to avoid mistakes.
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To summarise the discussion on the conditions resulting from symmetry considerations to be
used as boundary conditions for the physical problem concerned in adomain of reduced size, it
has been clearly demonstrated above that it can be done systematically. There are only two
considerations, continuity as reflected in the use of afree body diagram and the symmetry
transformation on physical fields concerned. Typical error in the application of symmetries often
resulted from plausible extension of intuition without due respect to scientific rigor. Whilst rigor
could be tedious from time to time, intuition has its own limit. Unfounded extension has aways
been the recipe for errors.

The boundary conditions given in terms of stress components above are called traction boundary
conditionsin the theory of elasticity. If the subsequent analyses are carried out using finite
elements (FE), as is the case for most applications, another important point should be made. The
theory of FE isformulated on avariational principle, typically the minimum total potential
principle, which is displacement-based. Variationa calculus states that the stationary value
condition of the energy functiona is equivaent to the satisfaction of the Euler’ s equation and the
natural boundary condition, together [9]. For an elasticity problem, the Euler’ s equation
reproduces the equilibrium equation and the natural boundary condition is the traction boundary
condition. Asaresult, in practical FE analyses, traction boundary conditions as obtained from
symmetry considerations should not be imposed as they have been satisfied, usually,
approximately, when the stiffness equation from the FE analysis are satisfied, again
approximately usually, because the satisfaction of the stiffness equation is equivalent to the
satisfaction of the stationary value condition which includes the satisfaction of the natural
boundary. It should also be pointed out that the approximation in the natural boundary condition
should not be improved by imposing the traction boundary conditions upfront as displacement
boundary conditions. Although this could have the natural boundary condition satisfied exactly,
it isalways at the cost of the worst overall approximation, as doing so prevents the energy
functional to be minimised. According to the error theory of finite elements, the lower the value
of the energy functional, the better the overall approximation. In reality, imposition of traction
boundary conditionsis very hard to implement. One could make enormous efforts only to spail
the accuracy of the results, without a clear concept of natural boundary conditions. An
illustration can be found in [10].

6. Material Categorisation

Any serious application of amaterial requires relevant properties of the material to become
known. The process of obtaining such propertiesis often referred to as materia characterisation.
Asmateria characterisation is such an important procedure, there is adanger to jump to it
blindly. It istherefore wiseto put up awarning sign here by splitting the process into two steps,
material categorisation and material characterisation. The former is more of qualitative nature
while the latter is quantitative.

17



Categorisation isto put the material concerned into an appropriate category, in particular, in
terms of its heterogeneity and anisotropy. The simplest descriptors, such as homogeneity,
isotropy and linearity, are usually assumed in introductory courses, such as, strength of materials,
theory of elasticity, mechanics of composites, etc.. They are therefore often been taken for
granted, asin this case there is nothing left for categorisation. However, when heterogeneous
and anisotropic materials are involved, categorisation is no longer a step that can be skipped.
The extent of heterogeneity, degree of anisotropy and severity of nonlinearity are always
significant considerations in the material selection phase of any serious engineering design.

In material categorisation, homogeneity is undoubtedly the most important descriptor to
examine, although it is often taken for granted. Without it, the behaviour of a material will vary
from point to point. Whilst there are materials, natura or engineered, such as bones and
functionally graded materials, showing noticeable variation of material propertiesin space, a
plane or adirection, their characterisation isinevitably arather specialised study and therefore
will be beyond the scope of this chapter. The materias concerned in the present discussion are
assumed to be homogeneous at |least at one length scale and the material is expected to be used in
engineering within this length scale or above. Heterogeneity is present at lower length scales.
The task of so-called micromechanicsisto homogenise the heterogeneity at alower length scale
so that the materia can be treated as homogeneous for engineering applications at the upper
length scale. In order to achieve such homogenisation, one can find the concept of RVEs for
materials of random structures and UCs for materials of regular structures at alower length scale
useful means. The underlying type of symmetry to facilitate this categorisation istransation. A
material is effectively homogeneous if it possesses translational symmetries in three non-
coplanar directions, either in a statistical sense or arigorous geometric sense, where the
minimum distances of these transations determine the characteristic dimensions of the RVE or
UC.

Having achieved the homogeneity, the next logical step is to categorise the material’ s anisotropy,
where one will find reflectional and rotational symmetries to be of great assistance, either in a
statistical sense or a rigorous geometric sense.

With areflectional symmetry about one plane, the material can be categorised as monoclinic.
The planeisthe principal plane of the monoclinic material. With this, the number of material
constant required to characterise its behaviour drops from 21 to 13 for easticity and from 6 to 4
for thermal expansion and for a diffusion problem, such as hest/el ectric conduction and
permeability of fluid in porous materials. The existence of afurther reflectional symmetry about
aplane perpendicular to the existing principal plane reduces the material to orthotropy. The
presence of two perpendicular principa planes implies that the third plane perpendicular to the
two principal planesisalso aprincipa plane. For an orthotropic material, one only requires 9
constants for elasticity and 3 for thermal expansion and for diffusion. Most engineering
materials fall into this category. It should be pointed out that existing industrial standards only
allow for materia characterisation to go as far as orthotropy [11, 12]. Thereis no standard that
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applies to material more anisotropic than orthotropy. Examples of abuses of such standards will
beillustrated later in Section 18 in the chapter in relation to the twill weave composites.

Further categorisation along the line is possible, e.g. transversely isotropic, cubically symmetric,
isotropic, etc.. For thermal expansion and for diffusion problems, cubic symmetry implies
isotropy.

Therole of rotational symmetries in material categorisation has hardly been mentioned anywhere
in the literature. In an unpublished article [13], the leading author established that the presence
of a180° rotational symmetry identifies the axis of rotation as a principa axis of the material.
Asaresult, amaterial is monoclinic if there exists a 180° rotational symmetry init. Itis
generally true that the plane perpendicular to aprincipa axisisaprincipa plane and vice versa
With this, it can be concluded that a 180° rotational symmetry about an axisis of the same
effects as having a reflectional symmetry about the plane perpendicular to the axis of rotational
symmetry, as far as material categorisation is concerned.

Apparently, existence of more rotational symmetries will bring further simplifications to the
material characteristics. One can comfortably follow the line of reflectional symmetries without
any problem. However, it should be stated that the equival ence between rotationa and
reflectional symmetriesin terms of material categorisation should not be blindly extended to any
other field of application. They are certainly not equivalent in geometric sense.

7. Material Characterisation

Having categorised a material, material characterisation becomes relevant. Same as
categorisation, in order to characterise a material, one needs to specify an appropriate length
scale at which the outcomes of the characterisation will be presented. Usually, homogeneity can
be assumed at this scale, to be referred to as the upper length scale. The objective of
micromechanica material characterisation isto obtain effective materia properties of the
material at the upper length scale from the properties of its constituents and the structure a a
lower length scale. The objective of such exercisesis to reduce the demand on testing the
material at its upper length scale.

Micromechanical material characterisation can be achieved by analysing an appropriately
formulated RVE or UC. The analysesinvolved are to simulate physical experiments through
which desired effective material properties are measured. For instance, in order to determine the
Y oung’ s modulus and the Poisson’ s ratios of the material in a specific direction, auniaxial stress,
uniform in the upper length scale, should be applied. For it to be effectively uniaxial stress, one
has to ensure all other stress components in the same length scale vanish identically. Failing to
obtain an effectively uniaxial stress state has been atypical error in such analysesin the
literature. The immediate outcome of such analysesis effective strains in response to the stress
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applied, very much likein the physical experiments. The effective material properties can then
readily obtained according to their definitions. The effective Y oung’'s modulusis equal to the
ratio between the applied effective stress and the obtained effective strain in the same direction.
The ratios between the obtained strains in three directions will provide the Poisson’ s ratios.

Similarly, a shear modulus should be obtained under an effectively pure shear stress state. The
simulation of this loading case tends to be more prone to mistakes. Among the publications on
micromechanica analysis, nine out of ten of them tended to avoid involving shear, often without
any reason.

The same considerations can be given to all other physical disciplines, e.g. the diffusion problem.
A key ruleto bear in mind is that any effective property should be obtained according to its
physical definition. Micromechanical analysisisto provide a means of virtua testing and it is
the user’ sresponsibility that all required testing conditions are observed in the simulation as well
asinthe physical testing. In many ways, it should be alot easier to observe these conditionsin
theoretical simulation than on the physical lab floor. Having said so, there are probably as many
pitfalsin virtual testing asin physical testing where mistakes can be made. Right attitudeis
often the key to success and nothing of this kind is meant to be easily achievable through casual
tampering.

8. RVEsand Unit Cdlls

When analyses are made to materials of micro/meso-structures at alower length scale in order to
determine their effective propertiesin an upper length scale, it is often necessary to resort to the
concepts of representative volume elements (RVES) or unit cells (UCs) at the lower length scale
where analyses are conducted before the effective material propertiesin the upper length scale
can be extracted. The terminologies of RVEs and UCs could be interchanged sometimes,
resulting in adegree of confusion. It istherefore helpful for the subsequent discussion if they are
logically defined as follows.

81 RVEs

A representative volume element (RVE) is volume of the material of asize large enough so that
any volume of an increased size will be equally representative. Apparently, for computational
efficiency, one will be naturally interested in the minimum size of the RVE. Any volume of the
material of asize smaller than that will no longer be representative. The minimum size of RVE
may vary from material to material, from discipline to discipline, and sometimes from one
effective property of interest to another. For instance, some properties, such as heat capacity,

Y oung’s modulus of unidirectional fibre reinforced composites (UD) in the fibre direction, etc.,
are dominated by the constituent volume fractions. For them, any RVE of theright volume
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fraction will serve the purpose. Other properties might need a substantial chunk of the materia
in order to be representative, especially those based on statistical homogeneity.

The representativeness of an RVE isjudged based on the effective propertiesit characterises. It
does not have to be abl e to reproduce the appearance of any other parts of the materia
geometrically. In particular, when the lower length scale structure is at random, no part can
possibly be reproduced by any other part. Even so, an appropriate RVE can be defined as long
asthe size of the RVE has been chosen large enough.

When introducing RVEs for random structures, such asthat in Figure 6(a), at lower length
scales, there is a practice which has been rather common but fundamentally wrong. In order to
falsify periodicity so that periodic boundary condition can be imposed, truncated features on one
side of the RVE are artificially moved to the opposite side and kept within the RVE, as shown in
Figure 6(b). There are three obvious and fundamental issues associated with this practice.
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Figure 6 (a) RVE of arandom structure; (b) tampered RVE; and (c) the materia represented by
the RVE

a) Thisinterferesthe constituent volume fractions, compromising its representativeness.
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b) Thereisnot dways space available to accommodate the truncated features. The
truncated features can only be dealt with by anumber of means: (i) selecting specific
patch where space happensto be available; (ii) allowing overlapping; (iii) artificially
moving existing features around order to free some space; and (iv) artificially deleting
overlapping features. In each case, the randomness of the structure will be undermined.

c) Thefalsified periodicity means periodicity in the structure at the length scale concerned,
which can be seen if one lays up an array of such RVEs, see Figure 6(c). This spoilsthe
randomness of the structure completely. With the structure so systematically tampered,
one should question if it is still worthwhile to model such an RVE with the features
seemingly distributed at random but no longer representative anymore in many ways.

It should be pointed out that appropriate approach to analyse untampered RVEsis available as
will be addressed in one of the subsequent sectionsin the chapter.

82 UGCs

A unit cell (UC) on the other hand is a portion of material which is meant to be able to reproduce
all other parts of the material through some appropriate symmetry transformations, so that the
UC and its duplicates can fill up the space the materia occupies fully without leaving any gap or
overlap. Here, the presence of a symmetry depends not only on the geometry but also on the
physical considerations, e.g. loading conditions. Similar to RVES, oneisinterested in the
minimum size of the UC for agiven material. In order to defineaUC, it is essentia that the
regularity is present in the structure. Otherwise, UCs are simply inapplicable.

The definition of aUC relies on correct interpretation of symmetries present in the structure. It
should be pointed out that even for the same pattern, unit cells of different appearances can be
obtained. Sometimes, building blocks are naturally partitioned, such as fish scale pavement tiles
in the 2D case as shown in Figure 7(a). Otherwise, as a generally applicable approach, the
Voronoi diagram [14] as shown in Figure 7(b) can be employed to tessellate the patterned
structure. A Voronoi cell is generated in such away that each side of it perpendicularly bisects
the segment connecting the centres of the adjacent cells. Just as they represent the same physical
problem, different shapes of the UC follow the same trandlational symmetries and therefore they
should result in exactly the same outcomes in terms of stress distribution in the lower length
scale and effective properties in the upper scae [4].

Having dismissed the significance of the differences in the appearances of UCs, readers are
reminded one aspect of practicality. When the UCs are analysed eventually, in particular, using
finite elements, different choices of the shapes could make significant differencesto the
generation and quality of the meshes. Some choices could leave awvkward areasin the UC to
mesh, e.g. those involving extremely sharp corners. It istherefore advisable that serious users of
UCs ought to be ‘mesh-minded’” when deciding the shape of the UC to be employed.
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Once the shape of a UC has been selected one way or another, the boundary of the UC has been
determined. Sorting out the correspondence between various parts of the boundary associated
with the tranglational symmetries present in the structure in the relevant length scale is akey

step.

S Arrows for directions of
< trandations

@ (b)

Figure 7 Unit cells of different shapes for the same pattern

Consider the 2D pattern in Figure 7 for example, whilst the concept can be readily extended to
3D or reduced to 1D applications. In this case, each trandational symmetry defines a pair of
segments (patches for 3D cases) of the boundary which are the original and the image under the
tranglational symmetry transformation. The three pairsinvolved in the present example,
indicated in coloured segmentsin Figure 7(a), are associated with the three directions of
translations marked using the same colour codes, but there could be more (in particular, in 3D
cases) or fewer pairs, in general, without changing the principles at all. These trandational
symmetries will lead to relationships of displacements between each pair of segments. These
rel ationships define the boundary conditions for the unit cell. Formulation of boundary
conditions for a UC proves to be the most challenging task in the construction of the UC. A
systematic account on the boundary conditions will be present later in the chapter.

With properly formulated boundary conditions, there will never be a need to analyse an assembly
of an array of unit cells, as has sometimes been seen in the literature [ 15], since they should
result in identical outcomes. Any attempt of doing so gives a clear sign of incompetence in using
UCs and automatically casts doubt on the results obtained.

In the literature, another terminology, representative unit cells (RUCS), is sometimes seen. This
was probably intended to reconcile between RVEs and UCs but it does not help as it leadsto
more confusion. A logic reconciliation between RVEs and UCsit that aUC isaways an RVE
but not vice versa. In this sense, RUC isin fact tautology as buttery butter.
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In terms of applications, UCs and RVESs are designated for regular and random micro/meso
structures, respectively. The leading author wishes to confess that, in his publications in the past,
he did not follow thisrule of classification, e.g. [16,17]. The classification suggested above only
became clear in his vision afterwards when more thought had been given to thisissue in order to
be logical as much as possible.

9. Reélative Displacement Field

A typical multiscale modelling involves two length scales, an upper one and alower one. The
objective of material characterisation using multiscale modelling is usually to evaluate the
effective material propertiesin the upper scae based on the analyses conducted with the models
at the lower scale. The basic assumptions made to the material at upper scale arethat it is
effectively homogeneous and the stress and strain states prescribed to it are both uniform. The
homogeneity here can be justified either in a statistical sense or based on the periodicity in the
structure at the lower scale. Correspondingly, RVEs or UCs will be resorted to in order to
facilitate the analysis at the lower scale. To obtain the effective properties, one has to follow
their definitions to evaluate them from the uniform stresses and the uniform strains at upper
scale. Between the two sets of values, uniform stresses and uniform strains, if one employs one
as the means of prescribing the loads to the RVE or UC to be andysed, the other will be a part of
the results out of the analysis. To follow the definition of effective propertiesin their form of
engineering constants, e.g. Young’'s moduli, Poisson’ s ratio and shear moduli, it is necessary that
the material isloaded in its upper scale with auniaxial stress states or a pure shear stress state. It
is therefore usualy more convenient if such loading conditions can be prescribed. In return,
strainsin the upper scale can be obtained as a part of the results. Thisisaprocedure very similar
to what one would follow if these properties had to be measured experimentally. The material
characterisation using RVEs or UCs is therefore a genuine case of virtual testing.

Having sorted out various relationships at the upper scale, the analysis has to be conducted at the
lower scale. A crucia link across both scalesis the relationship between the lower scale
displacement field and the upper scale strains. In thisrespect, RVES will be addressed later
separately. Discussion below will be focused on UCs for the time being.

In this case, the regularity in the lower scale structure is assumed. The upper scale homogeneity
is based on the existence of trandational symmetriesin three dimensions, not necessarily along
the coordinate axes. As discussed in Section 5, the trandlational symmetry is present in the
relative displacement field, i.e.

: (27)
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where point (X,y',Z) and R are, respectively, the image of an arbitrary point (x,y,2) within the
UC concerned and a reference point R which is afixed point within the UC under a transl ational
symmetry transformation. The translation can be described in the coordinates of an arbitrary
point and its image after the trandation as follows.

X' X AX X X AX

y'r=qY+i4dy; and Yel =Y T4Yy, (28)
z' z Az z z AZ

R R

where

AX )

Ay =ZAiqi'

Az|

Here Ai (i = 1.. k) are the distances of translations involved, with k being the number of
independent directions of translational symmetries defined by unit vectors q;, respectively.
Rearranging (27), one obtains the relative displacement field as

<
|
<

u

=<Vl =3V . (29)
(x\y.z') (x.y.2) w R' w R

Since pointsRand R' are located at the same place inside respective unit cell, they can be

employed to construct the uniform strain filed in the upper scale. The relative displacements

between these two pointsin the lower scale in each respective unit cell should be the same as the

relative displacements (U, V, W) in the upper scale, i.e.

u u U U AU
Vi =V =V =V =1AV ;. (30
w w AW
R' R R' R

According to deformation kinematics, the relative displacement field in the upper length scale
corresponding to a uniform strain field can be obtained through the displacement gradient in
general as
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In its general form, displacement gradient (31) describes fully the change in shape of the body
and the rotation as arigid body. In conventional stress analysis, oneisinterested in the
deformation primarily, i.e. apart of (31), whilst therigid body rotation can be left aside. To
facilitate this, displacement gradient is conventionally partitioned into a symmetric and an
antisymmetric part as follows and the symmetric part gives the strain tensor under the
assumption of small deformation (strains are defined differently under finite deformation
involving higher order terms according to the definition of Green strain as a tensor).
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is the strain tensor which happens to be uniform in the upper scale in the present problem, and
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is the rotation vector as a part of the displacement field in the upper scale. In fact, these rotations
can be visualised asfollows. Generate three straight lines, one on each of the three coordinate
planes at 45 degrees (denoted as 45 in the superscripts for expressions to follow) to the
coordinate axes on both sides of it. The components of the rotation vector above give the
rotation of each of these lines about the coordinate axis perpendicular to the line, e.g. the line on
the x-y plane about the z-axis, so on. These rotations can be denoted as

w_ov
o oy o0z
R a);)z 1jo0U oW
{ R45°} _ Rzllso _ a);)z _LJU oW (35)
. o| 2|0z oOX
e v
oxX oy

For material characterisation, oneis aso only interested in deformation part of the displacement
gradient whilst the rotation part does not make any difference. Given the partitionin (32), itis
apparently a straightforward way of expressing the relative displacement field by dropping the
rotation part while keeping the strain part, i.e.

0 0 0
Ex &y &g ||AX
=|g° 0 g2 LA 36
% -V =&y & &, 1AV (36)
0 0 0
w e, & £ AZ
(xvy'2) (xy.2) X vz z

Effectively, thisisto eliminate the rigid body rotations by constraining the rotation of each of the
three 45° lines as described above. It is clear that dropping the second term from (32) is
equivalent to constraining rigid body rotations in the specific way.

Although partitioning the displacement gradient as defined by (32) is perfectly legitimate, one
should not perceive that thisis the only way of associating the relative displacement field with
the strains. It can be shown that a more general form of partitioning the displacement gradient
can be given as

Uy U
AU 5\); aa\y/ ;\Z/ AX AX AX
AV b= — — — [JAy =[F]1AY+[Q]< Ay, (37)
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AW AZ AZ AZ
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where ki (i=1..3) can be arbitrary constants as long as they do not compromise the small
deformation assumption with one exception as will be discussed later. It can be observed that
[©] vanishesif
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o BTk

Take the third equation above for instance and consider arectangle in the x-y plane before
deformation as shown in dashed linein Figure 8. It deformsinto a parallelogram as shown in
ouU

Figure 8 in solid line. 68_V and E are the angles of the rotations of the two sides dueto
X

deformation asindicated. The sum of them gives the shear strain the plane. Therelative
magnitudes of them can vary by rotating the parallelogram as arigid body in the plane without
affecting the strain state. At any given ratio between n = ZV / (ZU , aconstant ks can be
X/ oy
determined as k, = % so that the third equation of (40) will be satisfied identically.
+n
Alternatively, given an arbitrary value of ks, the deformed body can be rotated as arigid body
oV ouU oV ouU

about the z-axis such that the ratio between — and — isadjustedto —:—=(2-k;):k;,.
OX oy ox oy

One can determine k; and k2 in asimilar manner. Alternatively, for arbitrarily given values of ki
and ko, one can rotate the deformed body about x and y axes, respectively, so that [Q2] will
vanish. Then the relative displacement field can be expressed as
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Figure 8 Theline in the x-y plane that does not rotate as the body deforms for an arbitrarily given
displacement gradient

AU g ks&y, ey | [AX
AV b =|(2-k;)ey, N kieg, |SAY | (41)
AW| | (2-k,))ey, (2-k)ey, & ||Az

This captures the same strain field as that given by (31) or (36). The differences between them
are up to some rigid body rotations. Taking the x-y plane as an example again, using ks as

determined by the N to a ratio is equivalent to eliminating the rigid body rotation about the

OX oy
z-axis by constraining alinein the plane. To satisfy an enquiring mind, the line concerned here

2k
Ks

can bedefinedas y= x. Using an arbitrary value of ks in (41), the line as shown in Figure

8 before deformation will rotate as a result of the deformation. Dropping the [Q] term from (37)
is equivaent to giving the deformed body arigid body rotation so that the line after deformation
lines up with that before deformation, which apparently will not alter the strain state. In this
sense, [Q2] can also be considered as a rotation matrix defining the rotation of the line as shown
Figure 8. Asthisadditional rigid body rotation does not affect the strain state, it can be excluded
from the consideration. Having excluded thisrigid body rotation, using an arbitrary value of k3
is equivaent to eliminating the rigid body rotation about the z-axis by constraining the

2k
Ks

y= x lineinthe x-y plane.

Thereis an apparent exception when N = _J , I.e. shear strain yy vanishes. In thiscase, n=-

OX oy
1 and ks approaches infinity. The non-rotating line as shown in Figure 8 does not exist.
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Anything associated with Z—V and ] amounts to arigid body rotation. Asfar asthis specid
X

case of exception is concerned, the line as shown in Figure 8 can be selected arbitrarily without
affecting the strain state.

With the general form of partitioning the displacement gradient as established in (37)-(39), the
rigid body rotations can be constrained in different ways from constraining {R*'} . Constraining

therigid body rotations of lines other than the 45° ones simply corresponds to assigning different
valuesto k; (i=1..3). Itisnow clear that the way of constraining the rigid body rotationsis not
unique. Any of them will be correct aslong asit has been carried out logically.

If the extreme value of the 2 for al ki (i=1..3) is taken, from (40) one obtains

aw
oy
oW
ox
oV
ox

0
=Jo!. (42)
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The three components on the left hand side happen to correspond to the rotation of the y-axis
about the x-axis, and those of the x-axis about the y- and z-axes, respectively. When they vanish,
the rigid body rotations are eliminated. Effectively, this can be visualised as if these three axes
have been constrained from the rotations as specified.

Following this way to eliminate rigid body rotations, using the engineering strains y instead of
tensor strains ¢ asin (33) and (35), the relative displacement field becomes

U U]
u u X aa\y/ s\i AX) |&] 7 T |[AX
v —v = — — RAY=| 0 & 7y, [1AY;. (43)
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This does not violate any rules of deformation kinematics and therefore captures the same strain
field as (31) or (36). However, the lack of unique expression for relative displacement field can
easily become a source of confusion if one is driven merely by his/her intuition without due
respect of the basics of deformation kinematics.
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10. Relative Displacement Boundary Conditionsfor Unit Cells

Relative displacement field (43) provides the relationship between the displacements at
corresponding pointsin different unit cells according to the translational symmetries present in
the problem. Point (x,y,z) can be anywhere in the unit cell. When it is on the boundary with
(X',y',Z) on another part of the boundary of the same unit cell, (43) deliversthe relative
displacement boundary conditions for the unit cell. Asdiscussed in Section 8, the boundary of
the unit cell hasto be divided into partsin pairs with each pair associated with atrandational
symmetry. There should be neither gap nor overlap between these parts of the boundary.

Relative displacement boundary conditions have been called periodic boundary conditions [18].
However, while stress and strain fields are periodic in presence of translational symmetries,
periodicity is simply not available in displacement field at all. Calling them the displacement
boundary conditions by periodic boundary has undoubtedly been a source of confusion.
Periodicity is observed in the relative displacement field. To avoid further confusion, especialy
for new unit cell users, it is suggested to call them as relative displacement boundary conditions.

Relative displacement boundary conditions involve displacements on two different parts of the
boundary of the unit cell, which provide certain relationships between them. The relationships
arein fact the definition of relative displacements, i.e. the differences between the displacements
on the two parts of the boundary related through a translational symmetry of relative
displacements. As established in the previous section, relative displacements can be related to
the uniform strain field in the upper length scale. Unfortunately, as explained in the previous
section, such expression is not unique. Here, relative displacement defined by (43) is chosen for
subsequent applications, i.e.

Ul (u] & 7y 7 |[AX
Vi—ivi=| 0 &5 y) [{Ayy. (44)
w| |w |0 0 ¢g||Az

The reason for the choice of (43) over (36) is purely based on the implementation consideration
where equations imposing these conditions in the analysis will have fewer terms to be defined.
For example, for the displacement in z-direction, using the above, one has

W-w=g’Az , (45)

whilst using (36), one would have

W — w:%yszx+%yngy+gSAz. (46)

Theresultsin terms of obtained stress field in the lower length scale and the effective properties
in the upper scale would be identical.
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It should be pointed out that corresponding to each trandational symmetry present in the
structure, there is adifferent set of (Ax Ay Az), which isthe translation given as avector,

including the direction and the distance.

A range of unit cells both in 2D and 3D cases have been published in [4, 6, 17, 19]. Without
repeating the details, they are categorised as follows.

10.1 2D unit cell with trandlational symmetries along coordinate axes

The simplest unit cell [5] for thisis arectangle with its side lengths corresponding to the
distances of trandations associated with the symmetries, as shown in Figure 9. A specia caseis
the square unit cell. The relative displacement boundary conditions are given as

y

@] — > X

Figure 9 Rectangular 2D unit cell

For the parts of the boundary perpendicular to the x axis, the relevant translation can be given as
AX| |a )
Ay o

and as aresult, the relative displacement boundary conditions can be obtained from (44) as

_ .0
=¢g,a
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u|x:a - u|x:0
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Similarly, the trandlation for the other pair of sides,
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and hence
u|y:b - u|y:0 = }/Syb

0 (50
v|y:b —v|y:0 =gh.
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As both sets of boundary conditions apply to the corners, redundancies emerge. If the solver
employed does not allow such redundancies in the boundary conditions, one will have to remove
them manually. In order to do so, the above boundary conditions are imposed only to the sides
with the corners excluded. A specia set of boundary conditions as follows are imposed to the
corners only.

0
u|(a,o) - u|(0,0) =é&a . . AX a
corresponding to translation 1ol
V|(a,o) _V|(0,0) =0 Ay
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u|(a,b) - u|(o,o) =&@tyyb _ . AX a 0
. corresponding to translation Avl ™ 0 + bl
V|(a,b) _V|(o,o) =¢&,b y

In imposing the above rel ative displacement conditions at the corners, attention needs to be paid
to the actual approach employed in the specific FE code used. For instance, in Abaqus/Standard,
such constrains are imposed by eliminating the first degree of freedom (dof) appearing in the
equation. As some degrees of freedom tend to appear in multiple equations, the user must make
sure that such adof isnot listed as the first in the equation. Otherwise, the execution of the
analysis may abort in error as the eliminated dof in a previous condition cannot be eliminated
again when it appears as the first dof the second time. A good practice isto keep such dofs away
from the first in the dof list.

The most popular applications of square unit cells are for the analysis of UD composites with
fibres arranged or idealised in a square packing, although readers are reminded that square fibre
packing does not show transverse isotropy and therefore is not a suitable candidate if it is meant
to be an idealisation of otherwise transversely isotropic material. Given this understanding, if
transverse isotropy is deemed to be unimportant, the following boundary conditions can be used
to facilitate the analysis after extending the 2D UC by adding athird dimension to it, with a
trandation distance along this direction being equal to t. For their direct relevance to UD
applications, the coordinate system has been changed from the above such that the present oneis
in line with the conventional UD composites description.
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u|y:b - u|y:—b = Zb}/)?y

V|y:b _V|y:—b - ZbSS (52)

V\4y:b _V\4y:7b =0

u|z:b _u|z:—b = ZbySZ
V|z:b _V|z:—b = 2b7/§,)z

V\42:b _\Mz:—b = 2b82

The above boundary conditions are given between paired faces. Redundant boundary conditions
are present at the edges and verticesif they have been included as parts of the faces. If one
wishes to eliminate them, the following procedure can be taken. Exclude the edges from faces
and vertices from the edges. Impose the above boundary conditions to such defined faces first.
The twelve edges can be put into groups, each having four edges parallel to one coordinate axis.
In each group, anyone can reproduce the remaining three through trand ational symmetries
available in the structure as have been employed to define the unit cell. Relating the
displacements on the one to those at the remaining three results in only independent boundary
conditions on such edges. Similar arguments can be applied to the vertices. Amongst all eight
vertices, any one of them can reproduce the remaining seven through the translational
symmetries available in the structure as have been employed to define the unit cell. Relating the
displacements at the one to those at the remaining seven results in only independent boundary
conditions at the vertices and hence helps to avoid undue redundancies.

h

A

Z b

Figure 10 3D unit cell for UD composites of square packed fibres

A FE meshed square unit cell representing the UD composite is shown in Figure 10 [20,21].
One message it isintended to transmit is that one only needs a single layer of elementsin the x
direction, because correct results will not have any variation in stressfield in thisdirection at all.

34



Having more layers of elementsin this direction would make absolutely no difference, except an
increased demand on computation. Any stress gradient observed in this direction will indicate an
errors of some kind beyond doubt, most likely in the imposition of the boundary conditions.
Such error can be easily diagnosed using the *sanity checks' aswill be described later in Section
15.

With asingle layer of elementsin the x direction, one might find that there is no node on any of
the faces, having excluded the edges and vertices from them, if linear e ements are empl oyed.
However, this does not undermine the significance of the boundary conditions obtained above
for faces, as those for edges and vertices are all derived from them.

10.2 2D unit cell with trandlational symmetries aong two non-orthogonal directions

Thisleadsto unit cell of parallelogramatic shape as shown in Figure 11 [17]. Itssidelengths are
equal to the distances of trandlations associated with the symmetries. The relative displacement
boundary conditions on the sides (excluding corners) are

AY

<2> a <1>

v
x

Figure 11 Unit cell of parallelogramatic shape
ul, —ul, :a(gf COSa+yfysina)
V|A_V|B - aSSSiI”Ia

ul —ul, =b(£lsin B +y, cosp)

(53)
v|C —v|D = ¢ bcosa,

whilst those at the corners are
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ul, ~ul, = a( ey cosa +yy, sina)

V|<4> B V|<3> = 333 sina

ul, —ul., =b(elsnp+y2 cosp
|<2> |<3> ( Xy ) (54)

V|<2> —V|<3> = ngCOSa

ul, —ul, =¢; (acosa +bsin )+, (asina +bcos3)

e, (asina +bcosa).

Vg =Vl

10.3 2D unit cell with trandlational symmetries aong three different directions

The hexagonal unit cell [5], Figure 12, rectangular unit cell from staggered layout [19], Figure
13, and that for the fish scale pattern as shown in Figure 7 all fall in this group. Although the
shapes of them look rather different, they are topologically identical. Take the regular hexagonal
unit cell for example, the relative displacement boundary conditions on the sides (excluding
corners) are as follows with dashed and undashed displacements representing the sides after and
before the corresponding translations in the direction as indicated by the arrows, respectively.

n ﬂ‘ y g
<>
<3> <1> X
<4>\< <E|$ \/3b
b <5>

Figure 12 Hexagonal unit cell with the directions of translations indicated

AY 2 &

M -

(X0,Y0)
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Figure 13 Unit cell for a staggered layout with the directions of translations indicated

Between the sides perpendicular to the x-axis, one has

u'—u=2be!
vV —v=0.

(55)

Between the sides perpendicular to the &-axis (Figure 12), one has

u'—u=bel +/30yy,

(56)
VvV —v= \/§ng )

Between the sides perpendicular to the n-axis (Figure 12), one has

u'—u=-be! +x/§byfy

(57)
V—v= «/§be§

Those for the corners, after eliminating any redundant conditions, are

_ 0

—v<3> + v<1> =0

(58)
g+, =]

_ 0
Uy —Uy = 2bs,,
Vo ~Viy =0

Uy — Uy, =Dbe) + N
Vi, = Vg = el

Here the dofs at corner <1> have swapped positions with those on other nodes because they
appeared in more than one equation. In addition to the above constraints, one can also relate
corners <3> and <5>, but the constraints obtained would not be independent, neither will be
those between corners <2> and <6>. Such dependent conditions, if imposed in some code such
as Abagus/Standard, could result in error for the reason as described earlier. It isagood practice
to avoid them, although in some codes, e.g. Abaqus/Explicit, they are acceptable due to the
explicit algorithm adopted.
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Asisfor the square UC, the most popular applications of hexagonal unit cells are for the analysis
of UD composites with fibres arranged or idealised in a hexagonal packing, which preservesthe
transverse isotropy perfectly. A third dimension has been incorporated in order to obtain the
behaviour of the material in 3D [20,21]. The coordinate system has therefore been adapted to
comply with conventional UD composites description, as shown in Figure 14, where only a
single layer of elementsis required as explained above for square UC.

Hexagon:

V|x:t _V|x:0 = 0

W|x=t _W|x=0 =0

u|y:b - u|y:—b = Zb}/;)y
Vi, — My, =2bey (59)

V\4y:b _\Niy:—b =0

- u|n=7b = b}/fy + x/f_ibyfz
. v|n=7b = be;) + \/ébysz
\N|17=b - \N|r]=—b = \/§ng

u|/l:b o u|/l:—b = _bygy + \/§b7>(<)z
V|/1:b _V|A:—b = —bgg + */§b73z
Vvl/l:b - VVLI:—b = \/§ng'

¥

A

Z X

Figure 14 3D unit cell for UD composites of hexagonally packed fibres
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If one needs to avoid redundant boundary conditions along edges and at vertices, one can put the
eighteen edges into four groups: all in x direction as one group and the remaining edges on the
front and back faces into three groups, each having four edges parallel to each other. There are
twelve vertices, at the ends of six edgesin the x direction. They can be put in two groups, six in
each. Each group is associated with three alternating edgesin the x direction. The grouping of
edges and vertices is so made that within each group any one can reproduce al the rest through
the trandlational symmetries available in establish this UC. When the boundary conditions are
prescribed to each group according to the tranglational symmetries by relating one vertex to the
rest in the group, no redundancy will be introduced.

10.4 3D unit cell with trandational symmetries along three non-coplanar axes

For materials of tranglational symmetries along three non-coplanar axes, the simplest shape for
the unit cell isa parallelepiped with its side lengths corresponding to the distances of translations
associated with the symmetries. A specia caseisacuboidal unit cell [6] as shown in Figure 15
which will be taken as an example to illustrate the relative displacement boundary conditions.

For 3D unit cell, in order to avoid prescribing redundant conditions, the faces (excluding edges),
edges (excluding vertices) and vertices need to be addressed separately.

Figure 15 Cuboidal unit cell

For faces x=0 and x=a (excluding edges)

u|x=a - u|x=0 - ag;)
V|x:a - V|x:0 = 0 (60)

W|x=a _W|x=0 =0.
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For faces y=0 and y=b (excluding edges)

y=b - u|y:0 = b}/)(()y
V|y:b _V|y:0 = bg)?

\le:b _W1y:o =0.

For faces z=0 and z=c (excluding edges)

u|z:c - u|z:0 = CySZ

V|z:c _V|z:0 = CJ/SZ
\N|z:c _Vv|z:0 = ng

For edges paralé to the x-axis (excluding vertices)

u|y=b,z=0 - u|y=0,z=0 = b}/xy
v|y=b,z=0 _V|y=0,z=0 = b&‘S

\N|y:b,z:0 o \N|y:0,z:0 = O

U, 0,0 =Yy 00 =
Wymoze ~Vlyoom0 =73
Wy g e ™ W00 = CE2
Ul e =Yl gs0 = BYay +CT
Vlyp oo ~Vyoo.00 = DEY +C7,

_ 0
\N|y=b,z=c \N|y=0,z=0 =Ce,.

(61)

(62)

(63)

For edges paralel to the y-axis (excluding vertices), after eliminating any redundant conditions

_ 0
|x:a,z:0 u|x:0,z:0 - aSX

V|x:a,z:0 _V|X:012:0 =0
\N|x:a,z:0 B \N|X:O,z:0 = O

u|x=0,z=c - u|><=0,z=0 = Cygz

V|x:0,z:c _V|x:0,z:0 = Cy)?l

_ 0
\N|x:0,z:c V\4X:0,Z:0 - ng
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|x:a,z:c - u|x:0,z:0
_ 0
V|x:a,z:c V|x:0,z:0 - nyz

0
\N|><=a,z:c - \N|><=O,z:0 =Ce;.

For edges paralel to the z-axis (excluding vertices), after eliminating any redundant conditions

_ 0
x=a,y=0 u|x:0,y:0 - agx

v|><:a,y:0 _V|X:0‘y:0 =0
\N|><:a,y:0 - \N|x:0,y:0 = 0

ul

ul

_ 0
x=0,y=b u|x:0,y:0 - beV

_ 0
v|><:0,y:b _v|x:0,y:0 - b8y

\N|x:0,y:b - \N|X:0,y:0 = O

ul

(65)

_ 0 0
x=a,y=b - u|x:0,y:0 - agx + b}/x)’

V|x:a,y:b _v|x:0,y:0 = bg)(/)

\N|x:a,y:b - \N|x:o,y:0 = 0

For the vertices, after eliminating any redundant conditions, one has

u|><:a,y:0,z:0 a u|x:0,y:0,z:0 = agf
V|><:a,y:0,z:0 _V|x:0,y:0,z:0 = O
\N|x:a,y:0,z:0 - \N|x:0,y:0,z:0 = O
u|x:0,y:b,z:0 a u|x:0,y:0,z:0 = b}/)(()y
V|x:0,y:b,z:0 - V|x:0,y:0,z:0 = bS;)

\N|x:0,y:b,z:0 a Vv|><:0,y:0,z:0 = o

.0 0
u|x:a,y:b,z:0 - u|x:0,y:0,z:0 - a&'x + byxy
V| =be?

x=a,y=b,z=0 a V|x:0,y:0,z:0 y

\N|x:a,y:b,z:0 - \N|><:O,y:0,z:0 =0 (66)

_ 0
u|x:0,y:0,z:c u|x:0,y:0,z:0 - CyXZ

.0
V|x:0,y:0,z:c V|x:0,y:0,z:0 - nyz

_ 0
\N|x:0,y:0,z:c \N|x:0,y:0,z:0 - ng
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.0 0
u|x:a,y:0,z:c N u|x:0,y:0,z:0 - agx + nyz

_ 0
V|x:a,y:0,z:c V|x:0,y:0,z:0 - nyz

_ 0
\N|><:a,y:0,z:c \N|x:0,y:0,z:0 - CSZ

) 0
u|x:0,y:b,z:c - u|x:0,y:0,z:0 - byx}’ + CyXZ

_ 0 0
V|x:0,y:b,z:c V|x:0,y:0,z:0 - b8y + nyZ

_ 0

V\4x:0,yzb,z:c V\4X:O,y:0,z:0 - z
0

X

_ 0 0
u|x:a,y:b,z:c - u|x:O,y:O,z:O =as, + b]/xy + CJ/XZ

_ 0 0
V|x:a,y:b,z:c V|x:0,y:0,z:0 - bSy + nyz

_ 0
\N|x:a,y:b,z:c \N|x:0,y:0,z:0 - CSZ )

In this way, one can eliminate al redundant boundary conditions. It is a shame that one has to
filter out redundant ones manually if the code does not allow them. They are tedious to
implement. However, this can also be done systematically if oneis capable of alittle
programming. With Abagus/Standard, the authors with their co-worker have developed a code
called UnitCells© [20,21] which was written in Python script as a secondary devel opment of
Abaqus. A range of common unit cells have been included with relative displacement boundary
conditions imposed systemically in an automated manner.

10.5 3D unit cellsfor various packed systems

The unit cells for face centred cubic packing and body centred cubic packing were obtained in
[6], where Voronoi tessellations were employed in order to obtain their shapes systematically.
They are shown in Figure 16. Each of them can be generalised to other shapes of the same
topologies. For close packed hexagona packing, unfortunately, the Voronoi cell would not
make aunit cell as explained in[6]. A compromiseisto use ahexagonal prism as the simplest
geometry one can obtain for this packing. In this particular case, the boundary conditions will be
identical to those as given in Section 10.3 if the same coordinate system is adopted, although
many elements will have to be employed in the x direction in this case in general.

As has been pointed out, the shape of aunit cell does not dictateits behaviour. The dictating
factors are the trandational symmetries underlying the construction of the unit cell. Unit cells
could have identical shapes, but rather different boundary conditions due to different symmetries
involved and hence different structures. Naturally, the obtained effective properties are also
different [10].

42



(@

P FE. NS

(b) (©)
»' AV

Figure 16 Unit cellsfor (a) body centred cubic packing (tetrakai decahedron); (b) face centred
cubic packing (rhombic dodecahedron) and (c) closed packed hexagonal packing (hexagonal
prism).

For each of them, the boundary conditions can be found in [6] and will therefore not be
reproduced here. Several practical issues when boundary conditions are prescribed are discussed
below.

i) All boundary conditions obtained from translational symmetries are presented in terms of
relative displacements between one part of the boundary and another, associated with one of the
tranglational symmetries. They are defined in a piecewise manner. Where those parts mest,
redundant conditions are obtained at the border, which belongs to both parts. Depending on the
nature of the FE code employed for the analysis, the redundant boundary conditions can
sometimes cause difficulties. For instance, they cause errors and hence abort the anadysis on
Abaqus/Standard. In order to facilitate the analysis, one has to filter out al redundant boundary
conditions. Systematic descriptions can be found in [5, 6]. However, they do not bother
Abaqus/Explicit at all asexplicit agorithm does not involve solving equations.

i) In order to impose relative displacement boundary conditions to unit cells, the parts of the
boundary related through a translational symmetry should be tessellated identically. This
includes the location of the nodes within each part, as well as the mesh, since identical node
locations does not guarantee identical tessellation [6]. Anillustration is shown in Figure 17,
where the top and bottom surface share the same tessellation, while the front and back faces do
not. Readers are reminded that symmetry conditions have been established based on the concept
of free body diagrams, which implies the continuity between adjacent unit cells over the part of
boundary they share. Continuity can only be maintained if the adjacent sides of the neighbouring
unit cells are tessellated identically.

iil)  When the symmetry conditions were established in Section 5, traction conditions were
obtained along with those for displacements. When applied here to formulate boundary
conditions for unit cells, they are presented as rel ative traction and displacements between
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different parts of the boundary of the unit cell. Throughout this section, the prescription of
relative displacement boundary conditions to unit cells has been illustrated. Along with the
relative displacement boundary conditions as the essential boundary conditions, the relative
traction boundary conditions can be proven to be natural boundary conditions [22] according to
variational calculus[9]. For finite element analyses, natural boundary conditions are
approximately satisfied as the total potential energy is minimised, in the same way as
equilibrium conditions are satisfied. They should not be imposed but be left dlone. An example
was shown in [10] where a worse approximation was obtained if the natural boundary condition
was imposed.

Figure 17 Compatibility of tessellations on opposite sides of a unit cell

11. Key degrees of freedom

It can be seen in the previous section that the effective strains in the upper scale are involved in
the relative displacement boundary conditions. They offer some extremely useful handles for the
subseguent micromechanical analysis and useful and convenient links between the two scales
involved. They are not any part of the unit cell directly, but introduced into the lower scale
analysis through the boundary conditions for the unit cell as extra degrees of freedom. These
extra dofs can be introduced through a single node with al effective strainsinvolved as its
effective dofs. Alternatively, one can introduce extra nodes, each having one dof associated with
an effective strain. They can be prescribed to the values of desirable effective strains as
prescribed *displacements’. Out of the analysis, reactions at these dofs can be obtained. It can
be shown that these reaction ‘forces’ are associated with the effective stresses corresponding to
the effective strains.

Alternatively, concentrated ‘forces’ can be prescribed to these extradofs. Inthisway, effective
stresses are prescribed. Out of the analysis, the nodal ‘ displacements’ can be obtained at these
extradofs. They give the effective strains directly.

Each of the two approaches described above in terms of the use of the extra dofs have their
convenience, depending on the outcome required. If oneisinterested in the stiffness matrix of
the material, one can obtain a column of the stiffness matrix by prescribing aunit effective strain
at atime. When al the effective strains have been exhausted, the compl ete stiffness matrix is



obtained. However, if oneisinterested in the effective elastic constants, such as Young's
moduli, Poisson’s ratios and shear moduli, applying uniaxial effective stress or pure shear stress
will help to obtain these material properties more directly.

These extra dofs are effective strains at the upper length scale, but involved in the boundary
conditions for the analysis at the lower length scale. They are therefore the key links between
the two scalesinvolved in the problem and are referred to as the key degrees of freedom (Kdofs).
Their significances will be further explored in the next section.

12. Average Stresses, Average Strains and Effective Material Properties

The average stresses and strains over the unit cell as obtained from the lower length scale
analysis give the effective stresses and strains in the upper length scale. Without the concept of
the key degrees of freedom, one would have to average stresses and strains over the unit cell in
order to find the effective stresses and strains. Thisis usually not a process as perceived by
many as often found in the literature. These averages should not be arithmetic averages of the
stresses and strains obtained at the integration points. They should be weighted by the volume of
the elements and the wei ghts associated with specific integration points. A substantial post-
processing is required, which is usually outside the standard provision of most commercial FE
codes. Failing to incorporate these in the calculation is certainly another possible confusion
associated the use of unit cells. Asan observation, very rarely, if any, the details of the
procedure of finding such averages have been included in publications involving the use of unit
cells. In at least some of these cases, it was probably a subject better to be kept under the carpet.

Having introduced the Kdofs, such effective stresses and strains can be obtained effortlessly as
direct output from the FE analysis. The Kdofs are effective strains directly, whether they have
been prescribed or obtained as the analysis outcomes. The concentrated forces at them, whether
as reactions to the prescribed effective strains or as the prescribed |oads, are associated with the
effective stresses as follows.

F =Vo?
0

F,=Vo,

F,=Vo? (67)
0 )

FyZ :VryZ

F, =Vt
0

ny :ery

where V is the volume of the unit cdll, or, in the case of 2D unit cells, the area of the unit cell.
One might have doubt about the volume involved in the expression above. It iscorrect. The
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correct dimension of these ‘forces’ isforce time length, unlike conventional forces. The reason
isthat their conjugates, the Kdofs, are dimensionless, rather than conventional displacements of
the dimension of length.

If these concentrated forces are prescribed at the values equal to the volume of the unit cell one
after another in a series of analyses, equivalently, oneis prescribing a unit stress, and the
obtained effective strains can lead to effective material properties. In general, the effective
properties can be evauated from concentrated ‘forces and the ‘nodal displacements’ as these
Kdofs asfollows.

El=cl/el=F IVe,

0 0

vy =—&) 1 &) (68)

0o _ 0.0
v,=-¢,1¢,,

xz =

0=t =AT=0 o F,=F=F,=F,=F, =AT=0;

H o_ __0__0 _
while 0,=0,=T,=T,=T, y =T T =y
0_ 0y .0 __ 0
Ey—Gy/E,‘y—Fy/VE,‘y,

v =—gll 83, (69)

yx

0 _ 070
vyz——gzlsy,

while o) =0, =1, =71, =7, =AT=0 o F,=F,=F,=F,=F, =AT=0;

Xz Xy X z yz x Xy
0 0 0 0
E,=0,/¢,=F,IVeg,,
0

V, = —gf / sf, (70)

0_ .0y.0
vzy——gylgz,

while GS=GS=TSZ=TO =1 =AT=0 o F =F =F =F_=F_=AT=0;

Xz Xy X y yz X xy

ngzrgzlygz:Fyz /V;/SZ, (71
H 0 0 0 0 0 .

while o, =0,=0,=1,=7,=AT=0 or F=F=F=F,=F =AT=0;

Gy =To ! 7o =Fp V7o, (72

while GS=68=GS=TSZ=TSY=AT=O oo F=F=F=F_ =F_=AT=0;
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Gy =1y /75 =Fy IV7y, (73)
H 0 0 0 0 0 .

while o, =0,=0,=1,=1,=AT=0 o F=F=F=F,=F,=AT=0,

al=¢el | AT, ay =g, | AT, al=el | AT, (74)

while o? =GS =o? =T;)Z =7 =Tfy =0 o F=F=F=F,=F,=F =0.

In the above formulae for effective properties, it is essential that each of them is applied strictly
under the conditions specified. In principle, Young's moduli and Poisson’s ratios should be
obtained under respective uniaxia stress state and shear modulus under pure shear stress state at
constant temperature and thermal expansion under a stress-free state. Any violation of the
conditions will inevitably result in misinterpretation of the outcomes as the conditions are
required according to the definitions of these materia properties.

In the above expressions, one can observe once again the convenience of the Kdofs introduced to
the formulation of unit cells. With them, effective stresses, strains and properties in the upper
length scale can be obtained directly out of the lower scale modelling, serving as the most
effective links between the two scales.

13. Further Symmetrieswithin a Unit Cell

Materials of regular structuresin their lower length scale often possess additional symmetries,
typically, reflectional and rotational ones, in addition to translational ones which have been made
extensive use of abovein order to establish the unit cells and to formulate the relative
displacement boundary conditions. Just like the shapes of the unit cells defined through
tranglational symmetries lack uniqueness, the applications of further symmetries present in the
unit cell obtained add a substantial variety to the subject. Without due care and systematic
approach, one can easily get confused.

Before committing to any attempt along this line, readers must be made aware the following.
Translational symmetry transformations do not upset the sense of loading, nor the sense of any
stress and strain component. A common set of boundary conditions can be used for al loading
cases. However, reflectional and rotational symmetry transformations ater the sense of loading
sometimes, as well as the senses of some of the stress and strain components. As aresult, one
may have to impose different boundary conditions to the same unit cell obtained in order to
analyse it under different loading conditions specified through the effective stresses or strainsin
the upper length scale.

Additional symmetries cannot be taken for granted. They depend on the selection of the shape of
the unit cell out of tranglational symmetries alone. For instance, each of the two unit cells A and
B as shown in Figure 18 makes a unit cell based on translational symmetries in horizontal and
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vertical directions. Apparently, there are quite afew reflectional and rotational symmetries
within A, but nonein B. If one wishesto take advantages of further symmetries availablein a
unit cell in order to further reduce its size to be analysed, he/she needs to be mindful of such
symmetries.

Figure 18 Examples of choices of unit cellsfor plain weave textile composite

Asit has been pointed out previously, the shape of a unit cell does not dictate the material it
represents. Under different boundary conditions derived from different symmetries, the unit
cells of an identical shape can be related to different structures and hence represent different
materials [10].

A typical use of additional symmetriesto unit cells for hexagonally packed UD composites was
elaborated in [2,4,10,23]. Employing orthogonal trandational symmetries alone, a unit cell can
be obtained as shown in Figure 10, which has often been employed in the literature. The benefits
of it areits rectangular shape and, most importantly, the one common set of boundary conditions
out of tranglational symmetries appliesto all loading cases. Within it, the presence of

reflectional symmetries about central axesin horizontal and vertical directions reduce the size to
aquarter of it. Useof it can also be found in the literature but it should be regarded as the | east
competent application. Apart from being rectangular, there has hardly any benefit from using it.
The most efficient use is to apply a further 180° rotational symmetry and one ends up with a unit
cell of the size reduced to 1/8 of the original one. The down side of it is that different boundary
conditions have to be imposed for different loading conditions, same asits quarter sized
counterpart in this respect. Depending on the borderline chosen to partition the quarter sized unit
cell using the rotational symmetry in order to obtain the 1/8 sized one, arange of unit cells of
various shapes as can be found in the literature have been unified. If anything, the most
significant differences between them turn out to be their friendliness to FE meshing. The actual
boundary conditions can al be found in [4].
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For the same problem of UD composites of hexagonal packing, if oneis prepared to adapt to
non-orthogona translational symmetries, the hexagonal unit cell as shown also in Figure 14 isa
nice candidate. Itishalf of the size asthe original rectangular one as obtained from orthogonal
tranglations aone. If one further employs the reflectional symmetries, the same unit cell would
be obtained as described in the previous paragraph.

Another example is with the plain weave composite as shown in Figure 19. By using reflectional
symmetries about the horizontal and vertical central axes, it can be reduced to aquarter. Further,
using the rotational symmetries horizontal and vertical axes passing the centre of the quarter unit
cell, the final size can be reduced to 1/16 of the original size, as shown by the red square. Again,
because of the use of reflectional and rotational symmetries, different boundary conditions will
have to be imposed for different loading conditions. The actual boundary conditions can be
found in [23] for interested readers.

V

i

Figure 19 Plain weave and unit cell models based on the use of various symmetries

Whenever areflectional or rotation symmetry has been used, one has to accept the consequence,
i.e. boundary conditions would vary from loading case to |oading case, as the priceto be paid for
the reduced sizein the unit cell. However, there could be one compromise when a special
symmetry is present, central reflection. Earlier in this chapter, it has been said that there were
only three types of independent symmetries, translation, reflection and rotation. Central
reflection isindeed not independent. In fact, it isacombination of areflection and arotation. A
specid feature of thisisthat the sense of the effective stresses and strains which defined the
loading cases remain unchanged under this particular symmetry transformation. If it isavailable,
by making use of it, the size of the unit cell can be halved while all loading cases can be anal ysed
using asingle set of boundary conditions. Interested readers are advised to consult Ref. [2].

Additional symmetries present in the structure offer the opportunity of minimising the size of the
unit cell to be analysed but this comes at aprice. One of the complicationsis the fact that some
of the loading conditions associated with the shear have to be analysed under different boundary
conditions, as has been mentioned aready. Even worse, they bring alot of confusion into the
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study to such an extent that the study is some kind of myth, where certainty about boundary
conditionsis presumed to beirrelevant, and they had to be ‘ proposed’, ‘ assumed’,
‘approximated’ or simply just as they are without any justification, as was cited in the
Introduction. An example can be shown through the construction of the UC for UD composites
of hexagonal packing. Most of shaded shapes shown in Figure 20 had been employed by some
researchers, in particular, the one with curved side, in addition to some more to be discussed
later. They had not been unified until Ref. [4]. Orthogonal translations leads to either of the two
large rectangular unit cells. Reflectiona symmetries further bring them to a quarter as
highlighted. Thefinal rotational symmetry about the centre P of the quarter reduce the UC to
those as shaded using various borderlines to partition the quarter UC. The requirements for the
borderlineisthat it passes P and it is 180° rotationally symmetric about P. Special selections of
this borderline have been illustrated in Figure 20 using dash-double-dot chain to reproduce all
shapes cited, including the curved sided one, although absolutely no benefit whatsoever can be
gained by doing so, except adding to the myth.

Figure 20 Various periodic elements and unit cells

In fact, the rectangular quarter sized UC as shown in Figure 21 has been the most popular onein
usein theliterature. Infact, the use of it exposes the user’ s incompetence in formulating UCs.
Having employed reflectional symmetries, one has lost the simplicity of a single set of boundary
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conditions for all loading conditions. If so, why not take a step further to half the size of it by
taking advantage of the rotational symmetry about the centre as marked? Of course, the
boundary conditions will be alittle more complicated and hence require adightly higher level of
competence to formulate. The same can be said about the triangular UC as also shown in Figure
21, where thereis still areflectiona symmetry left unused. In this particular case, had the
boundary conditions been formulated correctly, those for afurther reduced sized UC would not
be any more complicated, if any difference, smpler. The competence required is to spot the
presence of afurther symmetry, before it has been pointed out, of course.

Figure 21 Shapes of unit cells which can be further simplified using available symmetries

For the particular problem of UD composite of hexagonal packing, more shapes can be found as
shown in Figure 22. All of them have used only the translational symmetries and hence asingle
set of boundary conditions applied to al the loading conditions. The diamond-shaped and the
hexagonal unit cells are exactly of the same size. The diamond-shaped involves two
trandational symmetries, while the hexagonal three. On the other hand, the former is partitioned
into five zones, while the latter into two. This could make a bit of differencein meshing. The
commonality between them is that the translations involved are non-orthogonal. Asaresult, in
the obtained boundary conditions the average strains appear to be coupled, i.e. multiplicity of
them is seen in asingle equation, and the derivation of them isrelatively demanding.

If one wish to trade the computational efficiency for the complications in derivation, the
rectangular unit cell as also shown in Figure 22 can be used. It istwice of the size of the other
two. However, because the translations involved are orthogonal and are both along the
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coordinate axes, the obtained boundary conditions are slightly simpler. Users are reminded that
amesh of twice the size usually take much more than twice the computational time. Eight times
is the norm, but slightly more conservative as an estimate.
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Figure 22 Unit cellsfor UD composites of hexagonal packing generated using translational
symmetries alone
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14. The Rolesof Each Type of Symmetry in Material Categorisation and Char acterisation

The study as presented in this chapter rests heavily on the understanding of symmetry and
systematic approaches of taking advantage of them. They have been used in multipleways. To
avoid any confusion, the roles each of them plays are summarised here under the headings of
material categorisation and characterisation, respectively.

141 Material categorisation

Trandlational symmetries are the basis of homogenisation of materials from their lower length
scale heterogeneity to upper scale homogeneity. For materials of regular structure at lower scale,
the tranglational symmetries can beliteral. Otherwise, for materials of random structures, they
will haveto be justified under a statistic sense. The magnitudes of these translations define the
boundary up to which materials can be assumed to be homogeneous.

Reflectional symmetries identify principa plane of the material. Materials having one principal
plane are categorised as monoclinic. Materials having two principal planes perpendicular to each
other are categorised as orthotropic. A third plane perpendicular to both principal planeisaso a
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principal plane, whether there exists or not any obvious reflectional symmetry about this plane.
However, the third principa plane does not add any new feature to the material. Axes
perpendicular to principal planes are principal axes.

180° rotational symmetriesidentify principal axis of the material. Materials having one principal
axes are categorised as monoclinic. Materials having two principal axes perpendicular to each
other are categorised as orthotropic. A third axes perpendicular to both principa axesisalso a
principa axis, whether there exists or not any obvious rotational symmetry about this axis.
However, the third principal axis does not add any new feature to the material. Planes
perpendicular to principal axes are principal planes.

14.2 Materid characterisation

Translational symmetries are the basis of defining UCs at their lower length scale. The outcomes
of the analysis of the UCs characterise the materials represented by the corresponding UCs.

Reflectiona and rotational symmetries, where exist, can help to reduce the sizes of the UC as
obtained from translational symmetries alone. However, thisusually comesat aprice, i.e. aUC
needs to be analysed using different boundary conditions for different loading conditions. On
the other hand, the UCs obtained from trandational symmetries alone can be analysed using a
single set of boundary conditions for al loading conditions.

An exception is central reflection as a combination of areflectional symmetry and a rotational
symmetry. Whilst it can halve the size of the UC to be analysed, a single set of boundary
conditionswill be sufficient for all loading conditions.

15. ‘Sanity Checks asBasic Verifications

The procedure of formulating unit cells as presented in previous sections of this Chapter has
been systematic, but could be tedious to implement. There are many places mistakes could be
easily made. Filtering out such mistakesis not straightforward. This has probably been one of
the reasons for some users to follow an intuitive approach and create unit cellsin arather casual
manner. They have probably been much encouraged when they could get something working
fairly easily, in particular, casesinvolving uniaxial direct stress. However, the reliable range of
one'sintuition isusualy limited. The trend may turn sharply once the shear isinvolved. Thisis
perhaps the reason why 9 out of 10 publicationsin the literature shied away from shear, asif
shear was irrelevant. For any serious micromechanical material characterisation, the systematic
approach as presented in this chapter is the way forward. Being systematic, it can berelatively
easily programmed into some fixed templates. An extreme case of such development has been
demonstrated through a code developed at Nottingham, UnitCells© [20,21]. Itishighly
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automated with literally no need of any user’sinterference in setting up the boundary conditions
and processing the results.

Whether the analysisisto be carried out manually or automatically, it is crucial that means are
availableto verify that all the measures have been implemented correctly. In this respect, unit
cell users are often desperately keen to validate their results against the experimenta results.
However, the redlity isthat experimental data are always limited, and there are only limited
aspects that can be examined and measured experimentally. Fitting to one aspect of the
experiment can hardly be considered as validation, especially when there are obvious anomalies
where the predicted results are against common sense in other aspects.

Asfar asthe development of the micromechanical material characterisation toolsis concerned,
one needs verifications more than the experimental validations. There are a number of ‘ sanity
checks' aswill be described in detail below. If any unit cell formulated and implemented fails to
pass any of the ‘sanity checks', it isincorrect, no matter how well some of the results agree with
experimental data.

Thefirst set of ‘sanity checks' can be set up asfollows. A single set of materia propertiesareis
assigned to all phases of the constituents involved in the unit cell, so that the unit cell would
essentially represent a homogeneous and isotropic material. The analyses are carried out under
all loading conditions. In each case, perfectly uniform stress and strain fields should be obtained
for each loading case. Otherwise, the unit cell has not been either formulated or implemented
correctly. When stress contours are plotted in this case, multi-coloured images indicate fault, as
correct stress distributions must be uniform and hence uni-coloured. Typical stress
concentrations are found around the vertices which signify the incorrect boundary conditionsin
most cases.

Having achieved uniform stress and strain field, a check on their valuesis simple and essential,
as they must correspond to the prescribed loading identically. The stresses and strains should be
related according to the material properties as assumed for these analyses. One aso needs to
check the ratios between the strains, as they should coincide with the Poisson’ s ratios as assigned
to the material to facilitate the analyses.

Finally, the data processing phase of the analyses should be conducted. The predicted effective
properties must be identical to those assigned to the material to facilitate the analyses.

Having passed the ‘sanity checks' as proposed above, one must have eliminated 90% of the
errors made in the implementation of a unit cell one way or another. One probably finds at |east
90% of efforts to implement a unit cell would have been consumed in order to pass these checks.
Without offending users, one would probably find 90% of the unit cells as presented in the
literature would not have been able to pass these * sanity checks' in one respect or another. Of
course, most of them did not have the boundary conditions employed shown in the sources where
they were published, as if boundary conditions wereirrelevant or obvious.
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16. UD Compositesand Transverse | sotropy

Unidirectionally fibre reinforced composites (UD) are the most common type of composites.
They can constitute individual pliesin laminated structures or tows in textile composites. Their
characterisation is one of the most popular and fundamenta exercisesin micromechanical
analysis. Fibresin aUD composite are usually distributed at random over its cross section
perpendicular to thefibres. Their statistical uniformity often serves as the basis for idealisations,
in which fibres are assumed to be packed in aregular pattern, typically, square packing and
hexagonal packing. Unit cells can then be constructed as shown in previous sections. They have
been adopted in most cases without much justification in terms of their representativeness.

Often, experimental data were brought in too swiftly as the ultimate authoritarian measure. One
aspect often being overlooked is the transverse i sotropy.

A sguare packing as an idealisation of UD composites does not preserve transverse isotropy.
Excellent comparison with the experimental data, e.g. transverse Y oung’ s modul us E», obtained
in one direction, has automatically guaranteed a bad comparison if the value was obtained in a
different direction, e.g. 45° between axesy and z[5]. On the other hand, a hexagonal packing
preserves the transverse i sotropy.

17. RVE for Randomly Distributed I nclusions

In Section 8, the falsification of periodicity for random structures was dismissed. However,
there still remains a question as to how an untampered RV E should be analysed. Without
geometric periodicity, it isno longer possible to obtain the precise boundary conditions for the
RVE to be analysed, whether in terms of displacements or traction. Inside alarge/infinite
medium, before the solution to the problem has been found, it isimpossible to identify a path
along which either displacements or traction would be constant to enable the definition of the
path as a part of the boundary of the RVE. Along the boundary of an RVE, no matter how the
displacements or the traction is prescribed, significant errorswill be introduced. However, in
[16], it was shown that such errors are only of local effects. Several characteristic lengths away
from the boundary, the errors tend to diminish. The characteristic length can usually be defined
in terms of the dimensions of the inclusions or the average spacing between them. Thiswas not
by coincidence. The underlying ruleisthe St. Venant principle. Guided by this, an approach
can be readily put forward.

The methodology of formulating an appropriate RV E for micromechanical analysisis as follows.
Assuming that the smallest RVE has been identified, it is defined as the inner zone. Next, an
extended zoneis introduced around it, with the sides which are severa characteristic lengths
beyond the sides of the inner zone, asillustrated in Figure 23. The extended zoneis adso an RVE
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by definition. Both RVEs should at |east share the volume fraction with the material as awhole.
The extended RVE is analysed by applying constant displacements to the boundary according to
the desirable loading conditions, and the solution can be found, which is known to be erroneous.
However, errors are meant to be found only around the boundary of the extended zone. Within
theinner zone, which isthe smallest RVE, sufficiently accurate solution can be obtained. Itis
easy to envisage that the boundary of the inner RVE does not deform into any regular shape after
the deformation, in general. If the average stresses and strains are found from the inner zone,
effective material properties can be worked out. They are free from the effects of erroneous
boundary conditions. Thus, no tampering is required and the randomness of the structure has not
been compromised in any way. More examples of applications of the methodology can be found
in[24,25,26].
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Figure 23 RVE for aUD composite with random fibre distribution over its transverse cross
section

In addition to the extended size of the RVE to be anaysed as the price to pay, another increased
the demand isin the post-processing. The average stresses and strainswill have to be found.
Thiswill have to involve assigning correct weight to the stresses and strain obtained at each
integration point.

Another observation made in [16] was that prescribing constant traction to the boundary of the
larger RVE tended to result in greater errors and therefore it takes longer distance for the errors
to diminish than prescribing constant displacement.

18. Applicationsto Textile Composites

Textile composites are particularly relevant to the theoretical development as presented in this
chapter due to their regular and periodic structures at amesoscale. The considerations as given
to symmetries are particularly useful. Given their regularity in the fibre tow interlacing
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structures, macroscale homogeneity can be easily justified based on the presence of trandlational
symmetries. However, the homogeneity is an acceptable assumption only at amacroscale, i.e. a
acharacteristic dimension orders of magnitude larger than the periods in the meso-structure.

Textile composites are typical multiscale materials. Under the visible features is amicro-
structure at mesoscale, where UD fibres are bonded together into fibre tows. Micromechanics
can be employed to characterise the tow material asaUD composite, where use can be made of
the unit cells as presented in Section 10.1 and 10.3 for this purpose.

The microscale to mesoscale homogenisation is straightforward as the relevant unit cellsto
facilitate the process have been presented in Section 10. Discussion below will be made on
homogenisation from the mesoscal e to the macroscale only.

18.1 Reflectiona and rotational symmetries for material categorisation

Textile composites made of simple woven preforms, such as plain weaves as shown in Figure 18,
can be easily categorised into the orthotropic family due to the apparent presence of planes of
reflectional symmetries. However, reflectional symmetries are not always available, whilst
rotational symmetries are sometimes present.

In particular, there is not a single reflectional symmetry in a3D 4-axial braid, as shown in Figure
24, which isatypical form of reinforcement in 3D braided composites [27]. 3D braiding offers
superb integrity and it allows the cross-section to vary relatively easily. The structure of the
braid is such that there are rotational symmetries about 3 perpendicular axes, X, y and z, as shown
in Figure 24 and, as aresult, 3D 4-axial braided composites are orthotropic. The principal axes
of orthotropy are the axes of rotational symmetries, which do not usually coincide with the
direction of any fibre tows.

Figure 24 Unit cell of four-axia 3D braided composite
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Another exampleistwill weave composites, see Figure 25. Twill weaves are usually much
easier to drape to conform to curved shapes than plain weaves, and hence they have significant
potential in applications. Again, inatypica twill weave, no reflectional symmetry is available,
while rotational symmetries are present [13]. The in-plane principal axisidentified by the
rotational symmetry in atwill weave composite isinclined at 45° to the direction of fibre tows.
It isalso rotationally symmetric about an axis out of the plane of the weave, identifying another
principal axis. The materia is therefore orthotropic although none of the principal axes of the
orthotropy coincides with the directions of fibretows. Thethird principal axis, being
perpendicular to the two identified through rotational symmetries, isinclined at the other 45° to
the direction to the fibre tows. It isworth noting that there is no obvious symmetry of any kind,
either rotation about the third principal axis, or reflection about the plane perpendicular to the
third principal axis.

Figure 25 Twill weave, its principal axes resulting from rotational symmetries (inset: the
diagonal axis and the axis out of the plane represented by the dot), correct directions for material
characterisation (green), their misperception (red)
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Readers are reminded that there is no available industrial standard applicable to generally
anisotropic materials. Existing standards requires the materials to be tested to fall in the category
of orthotropy. Applying the standards blindly amounts to abuse of them and the consequences
could be serious. Without appropriate emphasis, the pre-conditions of these standards could be
easily overlooked. Thereis perhaps no lack of examples where twill weave composites are being
characterised directly in the fibre tow directionsin the plane of the twill weave. Thisisthe
reason for advocating material categorisation as an essential step before material

characterisation. Whilst it could sound like stating the obvious, obvious rules are there to
observe, not to ignore. The authors are taking this opportunity to make a serious call as afirst
attempt to the best of their knowledge for future practicesin this field: categorise a material
before its characterisation!

18.2 Unitcells

Having categorised atextile composite, an appropriate unit cell can be formulated, first of all
based on the tranglational symmetries present in the meso-structure. The sizes of such unit cells
can often be significantly reduced by taking advantage of additional reflectional and/or rotational
symmetries present in the meso-structure. Two examples are shown below.

18.2.1 Plain weave composites

The plain weave unit cell obtained through tranglational symmetries alone can be seen in Figure
26(a). The boundary conditions obtained in Section 10.4 for the rectangular parallelepiped can
be readily applied to it.
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Figure 26 Unit cellsfor plain weave based on the use of various symmetries: (a) Full sized UC
based on trandlational symmetries alone, (b) Quarter sized UC after the use of reflectional
symmetries, and (c) 1/8 sized UC after further use of 180 degrees rotational symmetries
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Aswas mentioned in Section 13, there exist two reflectional symmetries about the horizontal and
vertical axes. Using them, the size of the unit cell can be reduced to 1/4 of itsoriginal size.
However, there is not much benefit to stay at this point. In this quarter sized unit cell, there are
two more rotational symmetries about the horizontal and vertical axes passing through the centre
of it. Making use of them, the size of the unit cell can be further reduced to 1/16 of the original
size. Having used the reflectional and rotational symmetries, boundary conditions are different
for different loading conditions. They are summarised as follows, while the detailed derivation
can befound in [23].

Under 62,0y, o7 or any combination of them:

u-u=0
V+v=he) on y=hy/2, (75a)
w+w=0

1o
v=3b2, at y=by/2 & z=0, (75b)
w=0
u+u=he’
V-v=0 on x=by/2, (75¢)
w+w=0

1

—Tpe
=508 a x=by2 & z=0. (750)
w=0

Unda'r;:
u-u=0
V+v=0 on y=hy/2, (763)
w+w=0
v=0
0 a y=hy/2 & z=0, (76b)

W=
u-u=0
V+v=0 on x=hy/2, (76c)
w-w=0
v=0 at x=bJ2 & z=0. (76d)
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u+u=0
V-v=0 on y=hy/2, (773)
w-w=0
U=ug a y=hy/2 & z=0, (77b)
u'+uU, =
V-V, =0 on x=hby/2, (770)
wW+w, =0
u=0
a x=byJ2 & z=0. (77d)
w=0
Under ) :
' 0

u+u=by,
V-v=0 on y=hy/2, (784)
w-w=0

1. o
u=20,7, at y=b/2 & z=0, (780)
u-u=0
V+v=0 on x=hy/2, (78c)
w-w=0
v=0 at x=by/2 & z=0. (78d)

To impose boundary conditions as given by (75)-(78), the mesh for the unit cell must be so
generated that each of the two sides, y=by/2 and x=byx/2, must be partitioned by plane z=0, i.e. each
side being split into two faces. The tessellations on each pair of the faces on both sides of z=0
plane must be identical under the corresponding symmetries. Effectively, as far as geometric
symmetries between the corresponding faces are concerned, the rotational symmetries for faces at
y=by/2 and x=b,/2 on opposite sides of z=0, as well as the translational symmetry for the top and
bottom surfaces, share the same characteristics as the reflectional symmetry about z=0.

Apparently, each edge is shared by two faces of the unit cell. Redundant constraints arise if the
conditions for each of the two faces are imposed to the same edge individually. Any redundant
boundary condition can be eliminated. Asit is a tedious process, it could be a rather confusing
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step. The principle however is simple. Since an edge is shared by two faces, the boundary
conditions on both intersecting faces apply to the edge. What one needsto do isto take thelogical
sum of the available conditions from both faces at the edge concerned. Detailed derivations will
not be presented here, but interested readers are referred to [23] for full information.

18.2.2 3D 4-axia braided composites

Geometric periodicity is an obvious feature in the meso-structures of 3D braided fabrics and
composites formed from them. The geometric symmetries associated with periodicity are
tranglations. Using translational symmetries aone, a unit cell as sketched in Figure 27(a) can be
defined, which will be referred to as full-size unit cell. In Figure 27, the blobs on various edges
are truncated segments of tows.

Within the full-size unit cell, other symmetries are also present. Specifically, 180° rotations about
all three coordinate axes are present, but only two of them are independent. Without losing
generality, using the rotation about the z-axis, size of the unit cell can be reduced to ahalf, referred
to as half-size unit cell, as shown in Figure 27(b). Another rotation about the x-axis can bring the
size of the unit cell a quarter of the full-size unit cell, as shown in Figure 27(c), referred to as the
quarter-size unit cell. Although this unit cell has been an apparent choice geometrically [27], it is
not an optimum one as there is another useful symmetry unexploited.

Within the quarter-size unit cell, thereis afurther obvious symmetry. It is 180° rotation about
axisyi, which is paralel to the y-axis and passes through the centre of the quarter-size unit cell,
as depicted in the Figure 27(c). By employing this symmetry, the size of the unit cell can be
further halved, as shown in Figure 27(d), into one eighth of the full-size unit cell, referred to as
1/8 unit cell.

The boundary conditions have been derived systematically in [28]. Extracted from it, after
constraining the rigid body trandlations of the UC by fixing the origin O from any displacements,
the boundary conditions for the unit cell of significantly reduced size as in Figure 27(d) can be
presented as follows.

Under o7, oy, o, or any combination of them:

u+u'=hey <x<b/?2

0<x<
VoV =0 Facez=h2:  — y<b (79)
wW+W = hg? T
u|(x,y,0) - u|(x,fy,0) =0 Eace 7=0: 0<x<b (80)
V|(><,y,0) + V|(><,—y,0) =0 e —b < y < b

\N|(x,y,0) + (x,-y.0) =0
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Figure 27 Unit cellsfor 3D 4-axia braided composite based on the use of rotational symmetries:
(@) full size unit cell; (b) half size unit cell; (c) quarter size unit cell; (d) 1/8 unit cell.
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u Ul =0

(x.b,2) (x-b,z)

: -V = 2be

(x,-b,z)

\N|(x,b,z) - (x,—b,z) =0

ul

v

(x,b,z

(0y2)+u‘(0 y.2)

V‘Oyz +V‘O yz:O
W‘Oyz_ ‘O yz):0
u|(b,y,z) + u|(b,—y,z) = 2b83

V|(byz +v|(b y.z) =0
\Nl(byz \N|(b -Y.2) =0

Under r;’z:

ul
V|(x,y,h/2) + V|(b—x,y,hl2)

W|(x,y,h/2)_ (b-x,y,h/2)

u|(x,y,0) _u|(><,—y,0) =0

V|(x,y,0) +V|(><,—y,0) =0
\NI(x,y,O) + \NI(X,—y,O) =0

u|(x b,z) - u|(x,—b,z) -

(x.b,2) V|(><,—b,z) =0

\N|(x,b,z) - \N|(x,—b,z) = 0

u

v

(Oyz)_u|(0 y.z) =0

V|Oyz V|0 yz:
\NIOyz \N|0 v.,2) =0

=0
=0

u|(b,y,z) - u|(b,—y,z)
V|(b,y,z) _V|(b,—y,z)

W|(byyv2) + W|(b,—y,z) =0

Under T)?ZZ

(xy.h/2) u|(b-x,y,h/2) -
=0

Faces y=tb:

Faces x=0:

Faces x=h:

Face z=h/2:

Face z=0:

Faces y=+b:

Faces x=0:

Faces x=h:
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0<x<h
0<z<h/2

0<y<b
0<z<h/2

0<y<b
0<z<h/2

0<x<b
0<z<h/2

0<y<b
0<z<h/2

0<y<b
0<z<h/2

(81)

(82)

(83)

(84)

(85)

(86)
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0.
Under Ty

u|(x,y,h/2) + u|(b—x,y,h/2) = hygz E H2: 0<x<b/2
V|(x,y,h/2) - V|(b—x,y,h/2) =0 acez=he -b<y<b
W|(x,y,h/2) + W|(b—x,y.h/2) =0
Uy + Uiy =0 i ~0=xg
V|(><y0) _V|(><,—y,0) 0 ace z=0. 0< y_b
V\4(X y,0) _\N|(x,—y,0) =0
u| | =0
(x.b,2) (x,-b,2)
. 0<x<b
B _ Faces y=zxh:
V|(x,b,z) V|(x,—b,z) =0 y— 0<z<h/2
\N|(>< b,z) - \N|(><,—b,z) = O
u|(0 y.z) - u|(0 -y.2) =0
—0 0<y<b
Moys Vo ym = Faces x=0: y
0<z<h/2
\NI(O y.z) + \N|(0,—y,z) =0
u|(b,y,z) - u|(b,—y,z) =0
- 0<y<
Vo~V yy =0 Faces x=b: y<b
0<z<h/2
\NI(b,y,z) + \N|(b,—y,z) =0
u|(x,y,h/2) N u|(b-x,y,h/2) =0 . 0< /2
V|(x,y,h/2) + V|(b—x,y,h/2) =0 Face z=V2: —-b<v<hb
V\4(x,y,h/2) - \NI(b—x,y,h/Z) =0
Uy Uy =0
(xy.0) (% y,O)_ - - 0<x
"|(x,y,0) B V|<x,—y,0) =0 ace z=0: 0<y<b
\N|(x,y,0) - (x-y.0) =0.
u|(x,b,z) - u|(x,—b,z) = Zbygy
V|(x,b,z) _V| x,-b,z) =0 Faces yzib 0= x=b
’ 0<z<h/2

\N|(x,b,z) - (x,~b,z) =0
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(90)

(91)

(92)

(93)

(94)

(95)

(96)



u|(0,y,z) + u|(0,—y,z) =0

B —0r 0<y<b
V|(o,y,z) +V|(o,—y,z) =0 Facesx=0 0<z<h/2 &0
V\4(O,y,z) - \N|(0,—y,z) =0
u|(b,y,z) + u|(b,—y,z) = O 0 b

. sys
"|(b,y,z) +V|(b,—y,z) =0 Facesx=b: —b<z<b 49
V\4(b,y,z) _\N|(b,—y,z) =0

The unit cell obtained in thissection is of 1/8 of the full-size unit cell, but it remains applicable for
characterising the composite fully. However, macroscopic direct stresses and each macroscopic
shear stress will have to be treated separately as the boundary conditions are different for each
case.

The implementation of the boundary conditions presented above will require the mesh of the unit
cell so created that opposite faces y=tb are tessellated in exactly the same form, while faces x=0
and x=b show symmetry about their respective centrelines parallel to the z-axis, and face z=0 and
z=h about their respective centrelines parallel to the x-axis. Similar to the full-size unit cell,
redundant conditions arise at edges and vertices of the unit cell, as well as along the centreline on
the x-faces. Sufficient guidance can be found in Section 10 aswell asin [5, 6] if they need to be
eliminated and the underlying considerations remain the same, athough the symmetriesinvolved
aredightly different.

18.3 3D weaves

The use of 3D weaves as preforms for composites is attracting more and more attention in
engineering. The most common types are the interlocking weave fabric as shown in Figure 28
and the non-crimp fabrics (NCFs) which will not be addressed here. The former employs
straight fibre tows to form the main part of the fabric, which are bound together using alimited
amount of interlacing tows. In the latter, fibre tows are placed either as the warp or the weft.
While weft tows remain straight, the warp tows interlace the weft tows in arange of designed
manners resulting in various fabrics, such as angle interlock, layer to layer interlock, etc.

One may find the cuboidal unit cells to be applicable to most of such 3D woven composites. The
only significant extra consideration is that the textures of these weaves on the surface of the
fabrics tend to be noticeably different from those in the core of the fabric. If the surface layers
constitute arelatively small part of the fabric, the differences they make may be considered
insignificant, hence the presence of surface layers can be neglected. Otherwise, they need to be
taken into proper account.
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A. Layer to layer B. Layer to layer C. Through thickness
angle interlock straight interlock interlock

Figure 28 The most common types of 3D woven reinforcements: (a) Layer to layer angle
interlock, (b) Layer to layer straight interlock, and (c) Through thickness interlock

When the full thicknessisincluded in a UC, one may have to make a decision whether the
through-thickness properties are desirable. If not, the top and bottom surfaces should be | eft free.
Otherwise, an appropriate |oading mechanism will have to be introduced. However,
development of such a mechanism is beyond the scope of the present chapter.

19. Diffusion Problems

Thereisalarge class of physical problems, including heat/electricity conduction, fluid
permeability in porous medium, etc., that can be classified into the mathematical problem of
diffusion, as has been addressed in [29,30,31,32]. The constitutive relationship for the diffusion
problem is defined by the diffusion coefficient matrix [k], which couplesthe field (e.g.
temperature) gradient, VT, with the flux (e.g. heat), {q} .

a
Oy ky Ky kg g_)l(_
O r=—| ke kyp ky|VT, where VT = vk (99)
d, ks Ks Kg ar

0z

All arguments made before are readily interpreted to offer necessary means to facilitate the
multiscale material characterisation of this class of problems. The relative field can be given as
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T’—T=TX°AX+Ty°Ay+'I'Z°Az , (100)

TO

X

where VT® =T ¢ isthe effective field gradient in the upper length scale, and the constants Ax,
T 0

Ay and Az are periodsin X, y, and z directions, respectively, associated with the translational

symmetries available in the structure in the lower length scale, although the trand ations do not

have to be in the same directions as the coordinate axes. Boundary conditions for the unit cell
can be obtained from (100) in a straightforward manner.

If any substantial difference from their mechanical counterpart, there are fewer material
constants to be determined and the categorisation of anisotropy is slightly simpler, as the cubic
symmetry impliesisotropy.

The concepts of RV E and unit cells and their implementations are directly extended from the
mechanical problem to the diffusion problem.

20. Boundary of Applicability of RVEsand UCs

Having been established asin previous sections, the RVEs and UCs, if applied appropriately, can
offer an effective tool for materia characterisation. However, correct formulation does not
necessarily guarantee appropriate application. Coming with the formulation are the limitations
on their range of applicability. The assumptions introduced in their formulation have provided
good indications about such limits.

The length sca e at which homogeneity can be assumed is one of the important measures. The
dimensions of an RVE or UC, whilst remaining representative, should be significantly smaller

than the characteristic features in its upper length scale for the uniform stress and strain field in
the upper scaleto be valid.

The homogeneity a so places arestriction on the extent of deformation. Asit is based on the
regularity, in either statistical or geometric sense, any deformation violating the regularity, e.g.
when deformation starts to localise, resulting in necking, discrete cracks and any other signs of
material softening, is deemed to be beyond the applicability of the UCsand RVEs. Thereis
probably no lack of examples of such abusesin the literature.

The magnitude of deformation places another restriction to the applicability of RVEs and UCs.
The deformation kinematics underlying the formulation of RVEs and UCs are based on the
assumption of small deformation, although blind application of the RVEs and UCs beyond the
range of small deformation might be found in the literature. However, the effects of finite
geometric deformation have to be taken into account when finite deformation isinvolved. Then
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there will be nonlinear terms in the deformation kinematic equation. The relative displacement
field will no longer be related to the effective strainsin aform assimpleasin (32). Thisinturn
defines the applicability of RVEs and UCs in terms of the magnitude of deformation involved.

21. Concluding Statement

Traditionally, material characterisation has been associated with material testing to obtain
desired material properties. The establishment of RVEs and UCs s to facilitate a computational
means as an aternative to the physical testing, asis often referred to virtual testing. While
virtual testing has never been introduced to replace physical testing completely, and it will never
do, it can help to minimise the demand on physical testing, which is usually expensive and time-
consuming. In many of the modern materias, in particular, in fibre reinforced composites,
heterogeneity and anisotropy are often the key features. Appropriate categorisation of such
materials in terms of the degree of heterogeneity and anisotropy is an essential step before their
characterisation becomes meaningful. Readers are reminded that available industrial standards
only support characterisation of materialsin alimited category, e.g. orthotropic materials.
Without appropriate categorisation, these standards could be abused, e.g. the specimens would
not be loaded in their principal directions. It isimportant to note that the virtua testing can go
beyond such limitation, although one would have to worry about its validation.

A crucia aspect underlying the applicability of RVEs and UCs is the homogeneity of the
material concerned at a certain length scale. Appropriate application of them offers an effective
means to homogenise the material from its lower length scale, where heterogeneity is observed
in terms of the different phases as the constituents of the material. The analysis associated with
them is multiscale modelling in nature, viz,, the analysis is conducted at alower length scalein
order to deliver effective material properties at the upper length scale, where homogeneity can be
assumed. Associated length scales are therefore a crucia measure of the applicability of the
analysis.

For materials of random structures at the lower length scale, homogeneity can only be justified in
astatistical sense. RVES are the appropriate means to characterise such materials. However, it
should be noted that RV ES can only be representative only if they are (@) large enough in size
and (b) free from artificial manipulations. A systematic approach has been represented in the
Section 17 of this chapter.

In presence of symmetriesin materias of regular structure at the lower length scale, use can be
made of them to establish UCsto drastically reduce the demand on the material characterisation
by the virtual testing means. In this respect, trand ations are the most important type of
symmetries. ldentifying their geometric presence is arelatively easy step. Interpreting their
implications on the UC to be formulated, in particular, the derivation of precise boundary
conditions for the analysis of the UC, requires a new concept, i.e. the relative displacement field.
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Withit, the formulation of the UC will then rest on afirm ground, whilst most mistakes found in
the field were due to the lack of this concept as a starting point. Further reflectiona and
rotational symmetries, if present in the UC identified, can be taken advantage of to reduce the
size of the UC to be analysed. However, thereisusually apriceto pay, i.e. different sets of
boundary conditions have to be imposed under different loading conditions, with the only
exception of central reflection.

Properly formulated boundary conditions bring the effective strains at the upper length scale
(they arein fact average strains at lower length scale) into the UC concerned. They have been
referred to as the Kdofs, which are the crucia part of the UC concerned, and also offer a
profound convenience to the process of material characterisation. Whilst the ‘ displacement’ at
each key dof gives the corresponding effective strain directly, the ‘nodal force' at thisdof is
simply related to the effective stress or average stressin the UC. They do not only simplify the
post-processing greatly, but can also be seen vividly as the link between the two length scales
involved.

The significance of ‘sanity checks simply cannot be overstated. In fact, for any newly created
UC, passing these checks is the most demanding task. The credibility of any UC not subjected to
these checks should never be accepted. Failing any check signifies at least a mistake somewhere
beyond any doubt. Resorting to experimental validations without these checks is deemed dodgy
and futile.

The rules of formulating UCs can readily be applied to modern textile composites, both 2D and
3D. Their extension to other physical field, e.g. awide range of physical processes classified
under the diffusion problems, such as heat/electric conduction, fluid permeability in porous
medium, etc. is straightforward. The RVEs and UCs as formulated in this chapter can be
employed to characterise the relevant diffusion coefficients effectively.

The formulations of RV Es and UCs as presented in this chapter often appear to be tedious.
However, they are systematic and hence suitable for programming. Readers are reminded that
the finite e ement method was unthinkable to apply manually, but, once coded appropriately, it
has become a universally applicable tool, without which modern engineering can hardly sustain
itself. The claimed systematic nature has been demonstrated through a code, UnitCellSO, asa
secondary development of Abaqus/CAE [20, 21].
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