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Abstract

We apply deep recurrent neural networks, which are capable of learning complex sequential information, to
classify supernovae (code available at https://github.com/adammoss/supernovae). The observational time and
filter fluxes are used as inputs to the network, but since the inputs are agnostic, additional data such as host galaxy
information can also be included. Using the Supernovae Photometric Classification Challenge (SPCC) data, we
find that deep networks are capable of learning about light curves, however the performance of the network is
highly sensitive to the amount of training data. For a training size of 50% of the representational SPCC data set
(around 104 supernovae) we obtain a type-Ia versus non-type-Ia classification accuracy of 94.7%, an area under the
Receiver Operating Characteristic curve AUC of 0.986 and an SPCC figure-of-merit F1=0.64. When using only
the data for the early-epoch challenge defined by the SPCC, we achieve a classification accuracy of 93.1%, AUC of
0.977, and F1=0.58, results almost as good as with the whole light curve. By employing bidirectional neural
networks, we can acquire impressive classification results between supernovae types I, II and III at an accuracy of
90.4% and AUC of 0.974. We also apply a pre-trained model to obtain classification probabilities as a function of
time and show that it can give early indications of supernovae type. Our method is competitive with existing
algorithms and has applications for future large-scale photometric surveys.

Key words: methods: data analysis – supernovae: general – techniques: miscellaneous

1. Introduction

Future large, wide-field photometric surveys such as the
Large Synoptic Survey Telescope (LSST) will produce a vast
amount of data, covering a large fraction of the sky every few
nights. The amount of data produced lends itself to new
analysis methods that can learn abstract representations of
complex data. Deep learning is a powerful method for gaining
multiple levels of abstraction and has recently produced state-
of-the-art results in tasks such as image classification and
natural language processing (see Lecun et al. 2015 for an
excellent overview of deep learning and references within for
more details).

There are many applications of deep learning for large
photometric surveys, such as: (1) the measurement of galaxy
shapes from images; (2) automated strong lens identification
from multi-band images; (3) automated classification of
supernovae; (4) galaxy cluster identification. In this Letter,
we will focus on supernovae classification using deep recurrent
neural networks. The LSST, for example, is expected to find
over 107 supernova (LSST Science Collaboration et al. 2009).
However, it is estimated that only 5000 to 10,000 will be
spectroscopically1 confirmed by follow-up surveys (Matheson
et al. 2013), so classification methods need to be developed for
photometry. All previous approaches to automated classifica-
tion (Newling et al. 2011; Karpenka et al. 2013; Lochner et al.
2016) have first extracted features from supernovae light curves
before using machine-learning algorithms. One of the advan-
tages of deep learning is replacing this feature extraction.

In this work, we will use supervised deep learning. During
training, the machine is given inputs and produces a set of
output predictions. It is also given the correct set of outputs. An
objective loss function then measures the error between the
predicted and target outputs, and the machine updates its

adjustable parameters to reduce the error. It can then make
predictions for unknown outputs.
Recurrent neural networks (RNNs) are a class of artificial

neural network that can learn about sequential data (for an
extremely comprehensive overview, see Medsker & Jain 1999).
They are commonly used for tasks such as speech recognition
and language translation, but have several possible applications
in astronomy and cosmology for processing temporal or spatial
sequential data. RNNs have several properties that make them
suitable for sequential information. The inputs to the network
are flexible, and they are able to recognize patterns with noisy
data (for example, the context of a word in a sentence relative
to others can vary, or a time stream can contain instrument
noise).
The main problem with vanilla RNNs is that they are unable

to store long-term information, so inputs at the end of a
sequence have no knowledge of inputs at the start. This is a
problem if the data have long-term correlations. Several
types of RNNs have been proposed to solve this problem,
including long short-term memory (LSTM) units (Hochreiter &
Schmidhuber 1997) and gated recurrent units (GRU; Chung
et al. 2014). These are similar in concept, in that information is
able to flow through the network via a gating mechanism.
Another problem with RNNs is that information can only flow
in one direction. In bidirectional RNNs, information is able to
pass both forward and backward. Bidirectional LSTM net-
works have been shown to be particularly powerful where
sequential data are accompanied by a set of discrete labels.
The architecture of a typical bidirectional RNN for sequence

labeling is shown in Figure 1, where the squares represent
neurons. In this case, the inputs, which are vectors at each
sequential step, are connected to two hidden RNN layers, either
vanilla RNN or memory units. Each hidden layer contains a
number of hidden units (capable of storing information), and in
each layer information flows either forward or backward, but
no information passes between the two directions. Several
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hidden layers can be stacked to form deep neural networks.
Deep networks are capable of learning higher-level temporal or
spatial representations, and complex relationships between the
inputs and outputs.

The output from the final set of hidden layers in each
direction is merged at each sequential step and mean pooled
(averaged) over all steps to obtain a consensus view of the
network.2 Finally, the mean output is fed to a softmax layer,
taking an input vector z and returning normalized, exponential
outputs for each class label i, z zexp expi i iå( ) ( ), i.e., a vector
of probabilities.

Each neuron is connected to another by a weight matrix, and
the optimal weights are found by back-propagating the errors
from a loss function of the output layer. For classification
problems, this is typically the categorical cross-entropy
between predictions and targets, defined as

L t plog , 1
i j

i j i j
,

, ,å= - ( ) ( )

where i, j run over the class labels, ti,j are the targets for each
class (either 0 or 1), and pi,j are the predicted probabilities.
Back-propagation takes the derivative of the loss with respect
to the weights W of the output layer, ∂L/∂W, and uses the
chain rule to update the weights in the network.

2. Example Data

In this Letter, we will consider data from the Supernovae
Photometric Classification Challenge (SPCC; Kessler et al.
2010a, 2010b), consisting of 21,319 simulated supernova light
curves. Each supernovae sample consists of a time series of
flux measurements, with errors, in the g, r, i, z bands (one band
for each time step), along with the position on the sky and dust
extinction. An example set of light curves is shown in Figure 3.

Due to the format of the input data, we first do a small
amount of data processing to obtain values of the g, r, i, z fluxes
and errors at each sequential step. We assume the time
sequence begins at day 0 for each supernovae, rather than

counting days forward and backward from the maxima of the
light curve. For observations less than ∼1 hr apart, we group
the g, r, i, z values into a single vector, ensuring there is at most
one filter-type in each group. If there is more than one filter-
type, we further subdivide the group using a finer time interval.
The group time is the mean of the times of each observation,
which is reasonable, as the time intervals are small compared to
the characteristic time of the light curve.
In Figure 2, we show how the length of the grouped time

data vector is related to the duration of the light curve. The
bottom left subplot shows that more total number of days since
the beginning of observation of the light curve results in a
greater number of grouped time elements in the vector. The
upper subplot shows that the distribution of observation lengths
in the SPCC data varies significantly with two distinct peaks.
These are grouped into an average of 40-element data vectors
as can be seen in the bottom right subplot.
Observations are of the form in Table 1, where any missing

values are denoted by a dash. In order to impute the missing
value of i, we use data augmentation and randomly select a
value between i1 and i3. We make five random augmentations
of all missing data, thereby increasing the size of the data set
fivefold. We can test the importance of this by training each
augmentation separately and comparing the change in accur-
acy, which we find is ∼1%. Training with multiple augmenta-
tions at once gives the best performance since the network
learns to ignore random-filled values.
The data come in two types, those with and those without the

host galaxy photometric redshift. Each data set is split into a
training and test set, with the training set containing a
spectroscopically confirmed supernovae type and redshift. It
is important that augmented data with the same supernovae ID
go into either the training or test set; otherwise, they will not be
independent. The original SPCC data consisted of 1103
training samples. The answer keys were subsequently made
available for the test set (Kessler et al. 2010a).

Figure 1. Bidirectional recurrent neural network for sequence classification.
The input vectors at each sequential step are fed into a pair of bidirectional
hidden layers, which can propagate information forward and backward. These
are then merged to obtain a consensus view of the network, and finally a
softmax layer computes classification probabilities.

Figure 2. (Top) Distribution of the total number of days for each light curve
with the minimum, maximum, mean, and median values indicated. (Bottom
right) Distribution of the number of elements in the grouped time vector with
the minimum, maximum, mean, and median values indicated. (Bottom left)
The trend showing that more days in the light curve result in longer group time
vectors.

2 We find that obtaining a consensus view improves the performance of the
network.
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The input vector to each sequential step consists of: time in
days since the first observation; flux in each of the four bands;
flux errors in each of the four bands; R.A. and decl.; dust
extinction; and host photo-z if relevant. While we do not expect
some of these variables to impact the classifier accuracy, we do
not attempt any feature engineering and leave it to the network
to decide if they are relevant.

RNNs typically perform better with more training data, so
we train using the SPCC test set with answer keys (which is a
non-biased representational data set3), and select a random
fraction to act as the training set. We consider 1103 supernovae
(a training fraction of 0.052), the same size as the original
challenge, and fractions of 0.25 and 0.5 (around 5000 and 104

supernovae, respectively), nearly an order of magnitude larger,
and closer to the number likely to be followed up for the LSST.
The training performance of RNNs is also improved if the data
are processed in mini-batches. In order to do this, the input data
must be of the same length, so we set the sequence length to be
the maximum length over all supernovae observations and
prepend the input with padding. In training the network, we
ensure the padding is ignored by masking the padded input.

The times of the observations in the light curve are
irregularly spaced and while this may not be optimal for the
network, we find that it is better to use the data padded at the

end of the sequence than to place observations at similar times
in similar sequence positions. There may even be hidden
connections between the clustering of observation times and
supernovae type, although it is hard to test for this.
The goal of the classifier is to determine the supernovae type

in the test set. We consider two problems, (1) to categorize two
classes (type-Ia versus non-type-Ia), and (2) to categorize three
classes (supernovae types 1, 2, and 3). We denote these as
“SN1a” and “123” respectively. We also attempt the first two
problems using only the first six observations with S/N>4
and the data taken on the night of the sixth observation as
described in Kessler et al. (2010b).
Several metrics are used to assess the classifier. The simplest

is the accuracy, defined as the ratio between the number of
correct predictions and total number of predictions. With two
classes, a random classifier would have an accuracy of 0.5, and
with three classes, an accuracy of 1/3.
Next are a variety of metrics coming from the confusion

matrix of predictions. For binary classification problems, the
confusion matrix splits predictions into true positives(TPs),
false positives(FPs), false negatives(FNs), and true negati-
ves(TNs). We consider the purity and completeness of the
classifier. These are defined as

Purity
TP

TP FP
, Completeness

TP

TP FN
. 2=

+
=

+
( )

We evaluate these for each class separately versus “the rest”
(e.g., type-Ia versus non-type-Ia). The SPCC also defined the
F1 figure-of-merit for the SN1a classification problem. This is

F
1

TP FN

TP

TP 3 FP
, 31

2
=

+ + ´
( )

so incorrectly classifying a non-type-Ia supernovae as a type-Ia
is penalized more heavily.
Finally, we calculate the area under the curve (AUC). The

AUC is the area under the curve of the TP rate versus FP rate,
as the threshold probability for classification is increased from
0 to 1. A perfect classifier has an AUC of 1, and a random
classifier 0.5. For multi-class problems, we calculate the AUC
for each class versus the rest and take an unweighted average to
give the final AUC score.

3. Network Architecture

We consider several combinations of the network architec-
ture. For the RNN type in the hidden layers, we test both
vanilla RNN and long-term memory (LSTM and GRU) units.
We also consider unidirectional and bidirectional networks. For
unidirectional networks we fix the direction to be forward. For
bidirectional networks, the number of hidden units in each
RNN layer is equal in the forward and backward directions.
We also test stacking two sets of layers to form a deep

network. In the unidirectional case, we stack two hidden layers.
In the bidirectional case, the two stacks consists of a pair of
forward and backward layers. We denote the number of hidden
units in a network with a single stack by [h1], and the number
of hidden layers in a two-stack model by [h1, h2]. We vary the
number of hidden units, testing h=[4], [8], [16], [32], [4, 4],
[8, 8], [16, 16], and[32, 32]. We do not go beyond a stack of
two layers due to the limited size of the data set.
For each network we perform five randomized runs over the

training data to obtain the classifier metrics. The loss function is

Figure 3. (Top) Example light curve in the four g, r, i, z bands for SN ID
551675 (a type-Ia) in the Supernovae Photometric Classification Challenge
data (Kessler et al. 2010b). The data have been processed using augmentation
so there is a g, r, i, z value at each sequential step. (Bottom) Type-Ia probability
as a function of time from a two-layer LSTM model, trained with around 104

supernovae and SN 551675 excluded. The final probability gives 99.5%
confidence that the supernovae is of type-Ia.

Table 1
Data Augmentation of Missing Observations

Time g r i z

t1 g1 r1 i1 z1
t2 g2 r2 K z2
t3 g3 r3 i3 z3

Note. The missing data are replaced randomly by a value between i1 and i3.

3 The original SPCC training set was non-representational.
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the categorical cross-entropy between the predictions and test
data. The network weights ware trained using back-propagation
with the Adam updater (Kingma & Ba 2014). Mini-batches
containing 10 samples4 were used throughout, and each model
was trained for 200 epochs, where each epoch is a full pass
over the training data.

4. Results

A data set of 21,319 is relatively small by deep learning
standards. Furthermore, the “feature space” of supernovae light
curves is significantly smaller than, say, using RNNs to learn
about language. We therefore need to be careful about
overfitting. Overfitting arises when the network learns about
relations between the inputs and outputs of the training data,
which do not exist in the test data. It can typically be detected
by comparing the loss of the training and test data. If the loss of
training data continues to decrease, but the loss of the test data
increases, this is a sure sign of overfitting. If no sign of
overfitting is observed, the network is not usually complex
enough to fully learn the relationship between inputs and
outputs (called underfitting).

For a training fraction of 0.5, we found the best architecture
was a deep two-layer network with unidirectional LSTM units.
Bidirectional units did not significantly improve the test
accuracy and made the network more difficult to train. There
was a marked improvement in test accuracy using 16 hidden
units in each layer rather than 8, but too much overfitting
occurred using 32 hidden units. Overfitting was still an issue
for 16 hidden units, but a technique called dropout (Srivastava
et al. 2014) could regularize this. Dropout sets a random
fraction of connections to 0 at each update during training only,
preventing the units from adapting too much. We apply
dropout only to non-recurrent connections after each hidden
layer.

In Figure 4, we show the training and tests losses for such a
network, with a dropout of 0.5, applied to type-Ia versus non-
type-Ia classification with host galaxy photo-z information.
Without dropout, the training loss continues to fall and the test
loss rises. For 5 randomized runs, training for 200 epochs, we
obtain a classification accuracy of 94.9±0.2%, AUC of
0.986±0.001, and F1=0.64±0.01. The corresponding
type-Ia purity and completeness are 87.3±0.8% and
91.4±1.1%, respectively. A summary of results and compar-
isons can be found in Table 2. The inclusion of host galaxy
photo-z marginally improves the classifier performance. The 1σ
errors quoted in the table are the result of five runs where the

training data is randomly chosen (and therefore different) each
time. Some random choice of the set of light curves are more
effective for training the network than others, but it is
extremely difficult to optimize this.
To test the robustness of the time-grouping method, we

remove 10% of the known filter values (and/or their errors)
before grouping the data into a single vector and randomly
augmenting the missing values. After training we find there is a
small degradation in the results, i.e., for a training fraction of
0.5 using a deep two-layer, unidirectional network with 16
hidden units, a dropout of 0.5, and including the photo-z
information the obtained results are very similar to the second
line in Table 2. This shows that a reduction in 10% of the
points is similar to the omission of the photo-z data, and
therefore the data augmentation method is extremely robust.
One advantage of our approach is that light curve data can be

directly input to a pre-trained model to give very fast
evaluation (<1s) of supernovae type. In the lower panel of
Figure 3, we input the light curve, as a function of time, of a
type-Ia supernovae (excluded from training) to the pre-trained
two-layer LSTM model discussed above. The classifier (type-Ia
versus non-type-Ia) is initially unsure of classification, with a
type-Ia probability of around 0.5. The probability then
decreases slightly, but rapidly increases near the peak of the
light curve. The classifier has high confidence that the
supernovae is of type-Ia at around 60 days, and the final
probability is in excess of 99.5%. This method could therefore
be useful to give early indication of supernovae type in surveys.
We also test the same model using a training fraction of 0.25

(around 5000 supernovae), closer to the lower end of the
number likely to be followed up for the LSST. After 5
randomized runs and training for 200 epochs, we obtain an
accuracy of 92.9±0.6%, AUC of 0.975±0.003, and
F1=0.57±0.03. The corresponding type-Ia purity and
completeness are 86.6±2.0% and 83.4±3.4%, respectively.
The F1 metric has degraded by ∼10% for a reduction in data
of 50%.
For 5.2% of the representative SPCC data, the training data

set is so small that overfitting is more severe. Using the same
two-layer LSTM network with 16 hidden units and dropout of
0.5, we find a notable increase in the test loss after ∼20 epochs,
but the accuracy and other metrics remain relatively constant
(F1 values of 0.35 to 0.4 were obtained). The reason for this
apparent discrepancy is that the accuracy, say, simply takes the
maximum value of the softmax output layer. For example, a
two-class problem with output probabilities [0.6, 0.4] and
target [1, 0] has the same accuracy as one with output
probabilities [0.8, 0.2]. The loss in the latter case would be
lower, however, and represents increased confidence of the
network in its predictions. We therefore reject models with
severe overfitting and an increasing cross-entropy loss at the
expense of metrics such as F1, and decrease the model
complexity.
For a training fraction of 5.2% we find a single-layer LSTM

network, with four hidden units, and dropout of 0.5 satisfies
this criteria. For 5 randomized runs, training for 200 epochs, we
obtain a classification accuracy of 85.9±0.9%, AUC of
0.910±0.012, and F1=0.31±0.03. The corresponding
type-Ia purity and completeness are 72.4±0.4% and
66.1±6.0%, respectively.
It is difficult to directly compare the results from the SPCC

challenge in Kessler et al. (2010a) with this work since the

Figure 4. (Left) Training loss (green) vs. test loss (blue) for a unidirectional 2
layer LSTM network with 16 hidden units in each layer. (Right) Training
accuracy (green) vs. test accuracy (blue) for the same network.

4 If training with a GPU, larger mini-batches are recommended to make use of
the GPU cores.
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figure of merit is quoted as a function of redshift and a non-
representative set of light curves was originally used. In Kessler
et al. (2010a), the method of Sako et al. (2008) had the highest
average F1, with 79% purity and 96% accuracy. This is a
somewhat confusing average as F1∼0.4 at a redshift z∼0.1
up to F1∼1 at z∼0.9. Other methods performed similarly.

It is better to consider comparison with other methods using
post-SPCC data, for we obtain results that are competitive with
previous approaches. The analyses by Karpenka et al. (2013)
and Newling et al. (2011) are easier to compare. Along with
Lochner et al. (2016), these employ a two-step process, where
features are first extracted by various methods before machine-
learning classification. The results obtained for similar sized
training sets are comparable, as can be seen in the top section of
Table 2. When using half the data set to train on we get a higher
F1 value, F1=0.64, compared to F1=0.58 in Karpenka et al.
(2013). The value in Newling et al. (2011) is also similar given
that the sample size is smaller. For a smaller sample training set
of 5.2% of all the data we again perform similarly to Karpenka
et al. (2013), but underperform compared to Newling et al.
(2011), taking into account the slightly larger sample size in the
latter case. In Lochner et al. (2016), using the SALT2 fits
provided the best average AUC over a range of machine-
learning techniques. By imposing a purity of 90%, a

completeness of 85% was achieved, while requiring a
completeness of 90% reveals a corresponding purity of 85%.
In the second section of Table 2, the three-class categoriza-

tion is shown. There are no available data for comparison of
this problem, but compared to classification between type-Ia
versus non-type-Ia, bidirectional recurrent neural networks do
well. The AUC and accuracy remain high, still above 90%,
when the host-z is included using a training fraction of 0.5.
Using a smaller training fraction of 0.052, the results are
worsened, similar to the two-class categorization in the top
section of Table 2.
The third section of Table 2 shows the results of the early-

epoch challenge from SPCC. Here, only the data before the
night of the sixth observation with S/N>4 for each light
curve can be used—a great reduction from the use of the full
light curve. We do surprisingly well in this case obtaining an
accuracy of 93.1±0.4%, AUC of 0.977±0.002, and an
F1=0.58±0.01 with a training fraction of 0.5 and including
host-z. These values are not far from those obtained using the
whole light curve and are equivalent to the full results of
Karpenka et al. (2013). The results are not as good with a
training fraction of 0.052, but still comparable to our results
using the whole light curve. The network trained on the partial
light curves does better than suggested from feeding the early-

Table 2
Summary of Results

Method Training size AUC Accuracy (%) F1 Purity (%) Completeness (%) Host-z

A 10,660 0.986±0.001 94.7±0.2 0.64±0.01 87.3±0.8 91.4±1.1 True
A 10,660 0.981±0.001 93.6±0.3 0.60±0.02 87.4±1.7 85.4±2.6 False
A 5,330 0.975±0.003 92.9±0.6 0.57±0.03 86.6±2.0 83.4±3.4 True
A 5,330 0.973±0.002 92.3±0.4 0.55±0.02 86.2±2.4 80.8±3.8 False
B 1,103 0.910±0.012 85.9±0.9 0.31±0.03 72.4±0.4 66.1±6.0 True
B 1,103 0.901±0.016 84.6±1.7 0.28±0.05 68.2±3.4 66.3±5.5 False
C ∼10,660 K K 0.58 85 88 True
C ∼10,660 K K 0.51 82 85 False
C 1,045 K K 0.33 70 75 True
C 1,045 K K 0.29 67 71 False
D ∼8,000 K K 0.55 K K True
D ∼2,000 K K 0.45 K K True
E 1,103 0.94±0.03 K K K K True
E 1,103 0.89±0.53 K K K K False
E 1,103 K K K 90 85 True
E 1,103 K K K 87 90 True

F 10,660 0.974±0.001 90.4±0.3 K 90.6±0.7 86.5±0.7 True
F 10,660 0.959±0.006 88.5±1.1 K 87.6±1.1 85.9±4.1 False
G 1,103 0.868±0.015 78.1±0.9 K 70.8±3.4 70.6±4.1 True
G 1,103 0.865±0.011 78.0±1.2 K 66.9±3.2 74.5±4.2 False

A 10,660 0.977±0.002 93.1±0.4 0.58±0.01 88.0±1.1 82.2±2.8 True
A 10,660 0.970±0.001 92.0±0.3 0.53±0.01 86.0±0.9 79.5±2.2 False
B 1,103 0.902±0.014 85.2±1.2 0.29±0.04 71.5±1.6 62.8±5.6 True
B 1,103 0.860±0.017 81.6±1.2 0.21±0.02 62.6±3.0 57.6±2.7 False

A 10,660 0.960±0.006 87.9±0.9 K 86.4±0.8 84.4±3.5 True
A 10,660 0.948±0.002 86.8±0.3 K 84.1±1.1 83.7±1.4 False
B 1,103 0.851±0.013 76.8±1.3 K 64.7±3.8 71.0±4.1 True
B 1,103 0.819±0.010 74.2±1.0 K 58.1±3.8 73.6±6.6 False

Note. (Top section) Summary of results for type-Ia vs. non-type-Ia classification with a training fraction of 0.5, 0.25, and 0.052 with comparisons to similar methods
in Karpenka et al. (2013) and Newling et al. (2011). (Second section) Summary of results for types I, II, and III classification. (Third section) Summary of results for
SPCC early-epoch challenge. (Bottom section) Summary of the results for the SPCC early-epoch challenge when classifying between Type I, II, and III supernovae.
The models used are (A) unidirectional LSTM, [16, 16] with 0.5 dropout, (B) unidirectional LSTM, [4] with 0.5 dropout, (C) Karpenka et al. (2013), (D) Newling
et al. (2011), (E) Lochner et al. (2016)SALT2 fits averaged over machine-learning architecture (F) bidirectional LSTM, [16, 16] with 0.5 dropout, and (G)
bidirectional LSTM, [4] with 0.5 dropout. Errors on results are the mean and standard deviation values from five randomized runs.
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epoch light curve through a network trained on the full
sequence. This is due to the later parts of the light curve
influencing the weights of the network while training. Training
on only the initial part of the light curve optimizes the network
weights such that early sequence features have more effect,
resulting in better accuracy, AUC, and F1 values than expected.

Finally, the bottom section of Table 2 has the results of the
three-class categorization when using the early-epoch data. The
results are similar to the difference between the full light curve
and early-epoch data SN1a categorization when comparing
with the full light curve 123 categorization. It should be noted
that the bidirectional network used for the 123 categorization
using the full light curve revealed sizable overfitting when
using the early-epoch data, and so a unidirectional network was
used instead.

5. Conclusions

We have presented a new method for performing photo-
metric classification of supernovae. Machine-learning metho-
dology has previously been applied to SPCC classification
(Newling et al. 2011; Karpenka et al. 2013; Lochner et al.
2016). Instead of performing feature extraction before
classification, our approach uses the light curves directly as
inputs to a recurrent neural network, which is able to learn
information from the sequence of observations.

Although we have trained the network on the cross-entropy
loss and not the F1 score, for the same sized data set of ∼103

(104) supernovae (including host galaxy photo-z), Karpenka
et al. (2013) obtained F1 values of 0.33 (0.58), and Newling
et al. (2011) values of 0.42 (0.57), compared to our 0.31 (0.64).
Recurrent neural networks therefore compare well with other
methods when a larger training set is available. The
performance is not quite as good with a smaller training set,
possibly due to the network having to learn from no prior
information about (noisy) light curves. The current state of the
art for a small training set (∼103 supernovae) comes from a
combination of Spectral Adaptive Light curve Template 2
(SALT2) template fits and boosted decision trees (Lochner
et al. 2016). It would be interesting to check how how deep
learning compares to this with a larger training set.

As well as finding competitive results for the final metrics,
we have shown that it is possible to give fast, early evaluation
of supernovae type using pre-trained models. This is possible
since the light curve can be fed to the model directly without
needing any feature extraction.

Most interestingly, we have found that training a network
only on the early-epoch light curve data results in a better early-

time predictor than using a network trained on entire light curve
data. Our results using only the early-epoch data are close to
those using the entire light curve data for both SN1a and 123
categorization with both large and small training fractions.
There are several possibilities for future work. One of the

advantages of recurrent neural networks is that inputs are
agnostic, so the impact of any additional inputs could be
explored. It would be possible, for example, to even pass the
raw images in each filter though a convolutional network and
use those as inputs. We have considered a representative
training sample, but spectroscopic follow-up surveys may be
biased. The performance of the network could be measured
against selection bias, and the results used to inform the best
follow-up strategy. Further work could also be performed to
optimize the early detection probability of the network. Finally,
to improve performance in the small data regime, one can use
transfer learning. Here, a more complex network is pre-trained
on simulations or existing data from other surveys, then the
weights of the network are fine-tuned on the new, smaller data
set. The simulated SPCC data used in this work are based on
the DES instrument, and we are applying transfer learning to
real DES data for publication in future work.
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