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Abstract: Chirality, the ability of some molecules to exist as 

two non-superimposable mirror images, profoundly 

influences both chemistry and biology. Advances in deep 

learning enable the automatic recognition of chemical 

structure diagrams, however, studies on discovering the 

molecule chirality are scarce and the machine-readable 

molecular representations are not always sufficient to fully 

support the encoding of this important property. Here, we 

pretrained networks on a ChEMBL+ dataset (79641 

molecules) and fine-tuned them for the binary classification of 

chirality (achiral/chiral) or multilabel chirality type 

classifications (none/centre/axial/planar). To address the 

label combination imbalanced problem in the multilabel task, 

the study proposed a Formulated Imbalanced Dataset 

Sampler (FIDS) to sample a formulated amount of minority 

label combinations on top of the training set. On a 10-fold 

cross validation experiment using our CHIRAL dataset (1142 

manually curated molecules), our models achieved up to an 

accuracy of 90% in the binary task. In the multilabel task 

incorporated with FIDS, the overall performance increases 

from 87% to 89% and the accuracy per label combination can 

attained up to a 50% increase. Through the study of 

heatmaps, our work also exemplified the potential of deep 

neural network to make predictions based on the actual 

location of chirality elements. 
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1 Introduction 

Molecules are chiral when their 3D structures exist as two 

non-superimposable mirror images forms of each other. If the 

two structures can be superimposed on each other (through 

any combination of translations, rotations and internal 

conformational (bond rotation) changes), then the molecule is 

not chiral. At its simplest level, the two mirror image chiral 

molecules are referred to as the "right-handed (R)" and "left-

handed (S)" forms (which are also called their two 

enantiomers). Understanding molecular chirality is 

fundamentally important because different enantiomers of 

chiral molecules can have very different biological effects i.e. 

one may have a desired therapeutic effect, whilst the other 

one may produce detrimental side effects without any benefit. 

For example, left-handed (S)-Ibuprofen is a more effective 

pain killer, and causes less side-effects than its (R) mirror 

image form (enantiomer)[1] (see Figure 1). Since the 

Thalidomide disaster (one toxic enantiomer caused severe 

birth defects), it has become a legal requirement in drug 

development, that knowledge of the absolute 

stereochemistry(ies) present within any molecule must be 

accounted for.   

Four common structural motifs are known to engender 

molecular chirality: (a) central/point, (b) axial, (c) planar and 

(d) helical chirality, as illustrated in Figure 2. The most 

common motif, central chirality occurs when an atom is 

connected to four different substituents (R1-4). Axes of chirality 

can be found in molecules where a set of substituents is held 

in a non-planar arrangement that results in a non-

superimposable mirror image forms[2] (it is common in 

conformationally restricted biaryls and allenes). Molecules 

with planar chirality exhibit a chiral plane containing different 

substituents that are arranged in a way such that the internal 

reflection symmetry is removed[2]. Finally, helical chirality[3] is 

a special case where  the chirality element has a screw-liked 

shape, as seen in DNA. A complication in the study of chiral 

molecules is that the presence of more than one separate 

chiral motif can (but not always) lead to the total molecule 

becoming non-chiral (achiral) overall. For example, it is 

possible for a molecule containing two centres of chirality to 

become achiral due to the presence of a generated internal 

plane of symmetry or a Sn axis within the overall structure. 

These effects complicate the detection of chirality in 

molecules for both humans and expert systems.  

  

 

Figure 1. (S) and (R) forms of Ibuprofen. 
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Chemists have used two-dimentional line drawings (such 

as those in Figures 1, 2 to represent three-dimentional chiral 

organic molecules for more than 150 years. Due to the 

increase of the diversity of chemical data and the presence of 

significant historical data backlogs in published scientific 

journals, there exists a need to systematically extract valuable 

information (including the presence of chiral elements) from 

classically drawn 2D representations ‘line drawings’ of organic 

molecules. Automation of such workflow would allow 

researchers access to larger amounts of data and identify 

potential correlations of structure to molecular effects. A 

particularly interesting aspect of 2D-to-3D structure analysis is 

to recover from 2D representations of organic molecules the 

presence (or absence) of 'chirality' in a given molecule. Chiral 

molecules are frequent high value components in modern 

pharmaceuticals and advanced materials, but chiral elements 

can be challenging to identify from 2D chemical line drawings 

using current image recognition approaches.  

To interrogate the stereochemical information within a 2D 

molecule image, researchers usually follow a general pipeline 

of handcrafted rules or employ deep learning based 

algorithms to reconstruct the image into a machine-readable 

chemical structure or directly represent them in their molecular 

string representation[4–8], e.g. SMILES, InChI. However, these 

approaches are not always sufficient to represent the chirality 

in chemical compounds due to the loss of stereochemical 

information in the translation process. Additionally, the 

translated string molecular representations (SMILES, InChI) 

are not presently able to fully define molecular chirality in 

some cases. Presently, these nomenclatures can struggle to 

represent effectively axial, planar and helical chirality, thus 

limiting accurate chiral recognition/representation in many 

cases. As far as we are aware, there is only previous directly 

related study[9] where the automated detection and 

classification of chiral molecules is attempted, but the focus 

there is on supramolecular assemblies imaged under a 

scanning probe microscopy and the classification is only 

limited to a gross overall "left" or "right-handed" configuration.  

In this work, we demonstrate a deep learning framework 

that can predict the overall molecule chirality and the chirality 

elements present in 2D line drawings typical in the chemical 

literature. Through the study of activation heatmaps, we show 

the potential of deep learning networks to make predictions 

that align with human understanding of chirality, thereby 

providing significant insights for both chemists and non-

experts to quickly localise chirality element(s) in molecule 

images. Finally, our study proposes a new Formulated 

Imbalanced Dataset Sampler (FIDS) to deal with the label 

combination imbalance problem that is common in the 

classification of the molecules containing multiple types of 

chirality motif. 

2 Methodology 

We defined two separate classification tasks: 1) to identify if a 

given 2D line drawing is chiral, or not (binary classification), 

and 2) to identify the type of chirality elements (motifs) present 

in the molecules line drawing (multilabel classification).  

2.1 Dataset 

To the best of our knowledge, there is no readily publicly 

available dataset with unambigous chirality annotated to the 

associated molecule diagrams (line structures) from chemical 

literature across all chiral motifs. Hence, the dataset used in  

    

    

 

Figure 2. Different types of molecular chirality. 

this study, called by us “CHIRAL”, was manually curated from 

various chemical literature sources, chemical databases or 

those drawn using ChemDraw (the most common molecular 

line drawing software package used in the chemical sciences). 

CHIRAL consists of 1142 molecule diagrams labelled with 

their overall chirality and the type(s) of chirality elements 

present. Figure 3 shows the distribution of the dataset. To 

attain a better balanced dataset, we included 42 hypothetical 

molecules bearing underrepresented data types 

(Axial+Planar: 20, Centre+Axial+Planar: 22) which are 

presently unsynthesised. Such instances are very rare in 

native datasets which would not be sufficient for us to test out 

our methodology. Finally, molecules with helical chirality were 

excluded from this study as they account for less than 0.1% of 

the total chiral exemplars in the known chemical space. Even 

so, due to the imbalanced nature of the chirality elements 

present in these molecules, the CHIRAL dataset remained 

highly skewed, especially when label combinations are taken 

into account. 

Given that Convolutional Neural Network (CNN) is a data-

driven network, this limited amount of data present in the set 

of Figure 3 is simply not enough for us to properly train a 

neural network to examine the overall molecule chirality and 

chirality elements. Because of this we turned to ChEMBL, a 

database of bioactive molecules labelled with a chirality flag. 

The chirality flag indicates whether a molecule is a racemic 

mixture (a 1:1 mixture of "right" and "left" handed forms), 

single stereoisomer (enantiomer) or an achiral molecule. We 

reclassified all racemic mixtures and single stereoisomer 

under the chiral class. To maximise the generalisability of the 

network at the end of training, we referred ChEMBL as a 

source of input molecular string representations and used a 

range of structure diagram generators including RDKit[10], 

Indigo[11] and OpenEye[12] to generate a wider variety of 

molecular image representations that mimic the various styles 

portrayed in chemical literature. We also made use of 

UniChem, a chemical structure cross-referencing system to 

query for more molecular images from different databases. 

The resulting dataset is named ChEMBL+ whose inclusion 

flowchart is shown in Figure 4. The principal approach 

reported here is to attain a deep learning network using the 

large amount of dataset from ChEMBL+ to learn the weights 

leading to accurate binary classification of molecular chirality 

and then to further finesse the transfer learning in both the 
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binary and multilabel classification problem using our dataset, 

CHIRAL. To avoid overweighting large, inherently chiral, 

biomolecules of low symmetry, only molecules with less than 

or equal to 100 SMILES characters were included in the 

ChEMBL+ dataset. This is justified given that the majority of 

the molecules in the CHIRAL dataset are also small (<150 

atoms, <100 SMILES characters) and this range 

encompasses the typical size of chiral building blocks used by 

chemists and thus these constitute the major portion (91%) of 

the ChEMBL+ database. 

Figure 3. Data distribution of CHIRAL by chirality and the label 

combination of chirality type. 

2.2 Preprocessing 

Considering that both the ChEMBL+ and CHIRAL 

datasets were made up from a combination of primary 

data sources, some might contain an image background 

that is not desirable, for example a transparent 

background. To ensure consistency across the dataset, 

an automated inspection is performed to check for 

background transparency and, if necessary, a white 

background is added automatically. All images were then 

converted to grayscale since the colour highlights on 

atoms and bonds can vary across the different sources of 

primary dataset and they provide no useful information for 

chirality classification. Finally, all images were resized 

into a shape of 320x320 to match the model input size. All 

image data were then normalised based on the mean and 

standard deviation calculated on the ChEMBL+ dataset. 

2.3 Network 

Our final solution is a CNN pretrained on ChEMBL+ for a 

binary task of classifying chirality and then fine-tuned on 

the CHIRAL dataset for binary and multilabel 

classification. We compared both the EfficientNetV2-M[13] 

and ResNet50[14] models for our binary and multilabel 

classification problem. EfficientNetV2 was selected as it 

usually provides comparable accuracy to the state-of-the-

art models. That is, it is built upon a mix of training-aware 

neural architecture search and supports scaling for the 

optimisation of training speed and parameter efficiency. 

Whereas ResNet is a deep residual network that uses skip 

connections to avoid the vanishing gradient problem and 

is considered as one of the most powerful backbone 

models for many computer vision tasks.  

In the binary problem of classifying if a 2D structural 

representation is chiral or not, we simply replace the final 

classification layer and added a softmax layer at the end 

of the network to return the confidence score of the 

predictions. 

In the case of the multilabel problem of classifying the 

chirality type, the classification layer is replaced by a 

combination of 2 blocks of Linear + ReLu + Batch 

Normalisation + Dropout(0.5) and a final Linear layer. We 

note that while using the deep architecture, 

EfficientNetV2, the batch normalisation layers do not 

improve the performance but lead to increased 

consumption of memory and time, thus they are excluded 

from the classification layer of EfficientNetV2. An 

additional sigmoid layer is then attached at the end of the 

network to return independent probabilities for each label 

 

Figure 4. ChEMBL+ inclusion flowchart.  
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(2) 

(1) 

because the outputs are non-exclusive. The molecule 

image is classified into labels in which the prediction 

probabilities are more than 50%.  

Additionally, to visualise our network values when 

making predictions, we applied Grad-CAM++[15] to 

produce a heatmap that can provide highlights in the 

important area(s) that drive the network outputs. 

2.4 Formulated Imbalanced Dataset Sampler (FIDS) 

The Formulated Imbalanced Dataset Sampler (FIDS) is 

designed to address the extreme imbalance between the 

label combinations in the multilabel classification task. We 

introduce the FIDS approach starting from the Imbalanced 

Dataset Sampler[16]. The general idea of the Imbalanced 

Dataset Sampler is to rebalance the class distributions 

when sampling from the imbalanced dataset and this is 

often used in conjunction with data augmentation 

techniques to mitigate overfitting. While the method 

allows more minority class instances to be drawn to 

rebalance the class distribution, the instances of the 

majority class are less likely to be sampled and this can 

lead to the loss of information. 

Thus, we proposed FIDS to sample a formulated 

amount of instances from the minority label combinations 

on top of the original dataset. This method intends to 

retain the information of the original dataset as well as 

dealing with the imbalanced problem through the addition 

of a formulated amount of samples from the minority label 

combinations. The method works by calculating a 

regulated number of images that can be sampled per 

instance (RNPI) (eq. 2) for the label combination that is 

considered as minority based on eq. 1. Using the RNPI 

calculation, we sampled the instances from the minority 

label combination accordingly and added them on top of 

the original dataset. 

 

      𝑀 = { 𝑥 ∈ 𝑙𝑎𝑏𝑒𝑙𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 ∣
                𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝐼𝑛𝐷𝑎𝑡𝑎𝑠𝑒𝑡(𝑥) < 𝑚𝑖𝑛𝑃𝑒𝑟𝑐𝑒𝑛𝑡 }        

 

                   𝑅𝑁𝑃𝐼 = min
𝑚∈𝑀

(𝑁𝑃𝐼(𝑚), 𝑚𝑎𝑥𝐼)                                       

𝑤ℎ𝑒𝑟𝑒 ∶ 

                           

𝑁𝑃𝐼(𝑚) =
𝑁⋅𝑎𝑑𝑑𝑃𝑒𝑟𝑐𝑒𝑛𝑡

𝑛𝑚
 ,                       

𝑚𝑎𝑥𝐼 − maximum images that can be added per instance , 

𝑎𝑑𝑑𝑃𝑒𝑟𝑐𝑒𝑛𝑡 − potential percentage of the minority label  

combination to be added 

The minPercent, maxI and addPercent are tuneable 

parameters that need to be optimised based on the 

dataset used. 

 

 

 

3 Experimental Design 

3.1 Performance Measure 

 The evaluation metrics used for the binary task are 

accuracy, precision, recall and F1 score (eq. 3-6) while 

the multilabel task employs a strict metric, Exact Match 

Ratio (EMR). EMR is an extension of the accuracy metric 

for the single-label classification problem to a multilabel 

classification problem. EMR in eq. 7 can be defined as the 

percentage of instances that have all their labels 

classified correctly. This strict metric is particularly 

suitable for our problem context because we only have 

very few labels, i.e. (none/centre/axial/planar), and it is 

important that the partially correct labels are not taken 

into account. 

                        𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

total number of instances
      

                                         𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                     

                                                𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                

                                       𝐹1 = 2 ⋅
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                           

where TP is true positives, FP is false positives and FN is 

false negatives. 

                                       𝐸𝑀𝑅 =
1

𝑛
∑ 𝐼(𝑔𝑖 == 𝑝𝑖)𝑛

𝑖=1                     

where I is the indicator function that returns 1 when 

condition is true and 0 if otherwise, gi is the ground truth 

labels for ith training example and pi is the predicted 

labels for ith training example. 

3.2 Model Training 

All the models are implemented using the Pytorch 

framework and the network backbones are originated 

from PyTorch Image Models[17]. 

Pretraining. We pretrained both the EfficientNetV2-M 

and ResNet50 models on the ChEMBL+ dataset with 

cross-entropy loss using Stochastic Gradient Descent 

optimizer at an initial learning rate of 0.5. The 

EfficientNetV2 and ResNet50 models were trained for 36 

and 83 epochs respectively using the cosine annealing 

scheduler with a batch size of 32. The epochs for the 

pretraining were selected based on the model's 

performance on the CHIRAL dataset. 

Fine-tuning. For both classification tasks, we fine-

tuned the top few layers of the pretrained network on the 

CHIRAL dataset. To examine if we can further boost the 

accuracy, we fine-tuned the entire architecture by 

initialising the weights with that from the pretrained 

network. 

Model Accuracy Precision Recall F1-score 

ResNet50 (Partially Frozen) 0.897±0.024 0.933±0.019 0.914±0.032 0.923±0.019 

EfficientNetV2-M (Partially Frozen) 0.773±0.032 0.811±0.034 0.873±0.040 0.840±0.022 

ResNet50 (Fine-tune all) 0.865±0.020 0.902±0.020 0.900±0.022 0.901±0.015 

EfficientNetV2-M (Fine-tune all) 0.877±0.034 0.909±0.035 0.911±0.028 0.910±0.025 

Table 1. Binary classification on CHIRAL data set: 10-fold cross-validation results. 

(3) 

(4) 

(5) 

(6) 

(7) 
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Binary classification. In all settings, we performed a 

stratified 10-fold cross-validation and applied cross-

entropy loss using Adam optimizer at a learning rate of 

0.001 modulated by a cosine annealing scheduler. We 

trained both the EfficientNetV2-M and ResNet50 models 

for 16, 17, 18, 19 or 20 epochs with a batch size of 8, 16 

or 32 (we were unable to train EfficientNetV2 with batch 

size 32 due to resource limitation). In the “partially frozen 

pretrained network”, we fine-tuned the top few layers of 

both networks. Whereas in the “fine-tune all networks”, we 

retrain all layers of the pretrained networks. The best 

results of the models are reported in Table 1. 

  

  Multilabel classification. We performed a multilabel 

stratified 10-fold cross-validation and implemented binary 

cross-entropy with logits loss using Adam Optimizer at a 

learning rate of 0.001 with a cosine annealing scheduler 

for all experiments. Data augmentation techniques such 

as rotation and translation are applied on the training set, 

but rotation was found to be non-improving, thus is 

omitted from our experiments. To select the appropriate 

network architecture, we start with the performance 

comparison between EfficientNetV2-M and ResNet50. We 

fine-tuned the top few layers of both networks and also 

retrain all layers for 20 epochs with a batch size of 16. 

Based on the results in Table 2, we decided to proceed to 

optimise ResNet50 for 16, 17, 18, 19, 20 epochs with 

batch size of 16 and 32. Using the best combination of 

epoch 20 and batch size 32, we applied FIDS to sample 

the dataset for training. ResNet50 was optimised for 

minPercent of 10% and 15%, addPercent of 10%, 15%, 

20%, 25%, 30%, 35%, 40% and maxI of 16, 18, 20, 22. 

Note that when minPercent is 10%,  Planar, 

Centre+Planar, Axial+Planar, Centre+Axial+Planar are 

considered as minority label combinations and when 

minPercent is 15%, Centre+Axial label combination is 

added to the minority list. The maxI value is limited to 22 

because any value higher than that has the same result 

when used with the previous ranges of minPercent and 

addPercent. For comparison, the performances of the 

baseline models (ResNet50(Fine-tune all and Partially 

frozen) without the use of FIDS) were also evaluated.  

4 Results and Discussion 

4.1 Binary classification 

Table 1 shows that the partially frozen ResNet50 has the 

best overall results in the 10-fold cross-validation of our 

binary problem. Even though this is an extremely 

imbalanced dataset, the model can achieve high precision 

and high recall, making a good separation between chiral 

and achiral molecules, The performance of EfficientNetV2 

can be further improved when we retrain all the layers, but 

it is still not better than the partially frozen ResNet50, 

implying that increasing complexity in architecture does 

not necessarily yield better performance in chirality 

classification. On the other hand, fine-tuning all layers of 

ResNet50 led to a slight drop in performance. A possible 

explanation is that fine-tuning all network layers caused 

the network to be more susceptible to overfitting, 

especially if the dataset is small.  

We observed that our model, ResNet50 (Partially frozen) 

was able to detect potential chiral centres, but also, axial 

and planar chirality as regions of interests when 

predicting them as chiral (Figure 5.B.1-4). This is 

particularly interesting because the network was only 

trained with a simple chiral or achiral label without any  

Model Exact Match Ratio 

ResNet50 (Partially Frozen) 0.836±0.039 

EfficientNetV2-M (Partially Frozen) 0.466±0.047 

ResNet50 (Fine-tune all) 0.832±0.029 

EfficientNetV2-M (Fine-tune all) 0.658±0.036 

Table 2. Comparison between 10-fold cross-validation results of 
EfficientNetV2-M and ResNet50 for multilabel classification on 
CHIRAL data set. 

Figure 5. Binary classification using ResNet50 (Partially frozen): 
Heatmap visualisation when looking at predicted target. The 
percentage shown under each heatmap is the confidence score of 
the network prediction; The actual chiral centres are circled in red; 
The yellow rectangle shows the region of the actual axial chirality; 
The white line is drawn around the actual planar chirality. 

Figure 6. Multilabel classification on CHIRAL data set: 10-fold cross-
validation results while changing minPercent, addPercent and maxI 
on FIDS. The red dashed line is the exact match ratio of the baseline 
i.e. without the use of FIDS. 



Identifying Chirality in Line Drawings of Molecules Using Imbalanced Dataset Sampler for a Multilabel Classification Task 

 6 

additional annotation that shows the location of the 

chirality elements.  

Our model encountered challenges with certain types 

of 2D image inputs. For example, when human chemists 

have indicated an ambiguous stereochemistry (one 

chemical might be 'up' on 'down' from the plane of the 2D 

line drawing) by a wavy line (〰). There were too few 

examples within our present dataset for accurate learning 

of this meaning. The present algorithm, although excellent  

at recognising individual chiral centres, is presently 

insufficiently trained to recognise that the presence of two 

chiral elements can still result in the overall molecule 

being achiral (e.g. meso compounds). These effects can 

be seen in heatmaps Figure 5.A.3,4 (correct prediction 

but the algorithm failed to recognise the potential for 

chirality in these molecules) and in heatmaps Figure 

5.A.5-7 (where it was unable to realise that such 

molecules possess such internal reflection planes making 

the overall structure achiral). 

4.2 Multilabel classification 

Consistent with the binary classification results, the 

ResNet50 architecture performed significantly better than 

EfficientNetV2-M for both configurations in Table 2. This 

further confirms the observation made in CheXtransfer [18] 

and HistoTransfer[19] i.e. performance gain of network 

generated through neural architecture search optimised 

for ImageNet may not be transferable to dataset in other 

domains. That being so, we continued to optimise 

ResNet50 for FIDS. In contrast to our binary classification 

results, ResNet50 (Fine-tune all) has better overall results 

compared to ResNet50 (Partially frozen) based on Figure 

6. We assume that this is due to the greater need to tune 

a pretrained network for a more complex problem. 

However, we also note that these results were heavily 

dependent on the amount of data and can vary. In this 

problem context, the best EMR (FIDS(1st)) was obtained 

when minPercent is 15, addPercent is 30 and maxI is 16, 

18, 20, or 22 (see Figure 6: all has the same best result, 

maxI greater than 16 no longer has any effect). The next 

best EMR (FIDS(2nd)) was obtained when the minPercent 

is 10, addPercent is 40 and maxI is 18. Although FIDS(1st) 

had a slightly better EMR as a whole, but FIDS(2nd) had a 

more balanced performance increase across the label 

combinations (Table 3).  

  Our proposed method was able to significantly 

increase the EMR for most of the minority label 

combinations (Table 3). This implies that with a properly 

formulated amount of sampling from the minority label 

combinations, the performances of the minority label 

combinations can be improved without affecting the 

accuracies of the majority label combinations. In fact, our 

network was capable to view the actual chirality elements 

as regions of interest when predicting the corresponding 

chirality type (Figure 7). Again, no extra annotation about 

the chirality location was given when the model was 

trained. 

  Our network was more likely to fail to predict 

molecules with axial or planar chirality due to the lack of 

variation in these types of labels. Most molecules with 

planar chirality simply contain ferrocene (two pentagon 

rings) in an upright position as in Figures 7.D.1, F.1, F.2, 

G.1, G.2. As a result, the network was more susceptible 

to failure when a molecule with the rare shape of planar 

chirality showed up (Figure 7.D.2, H.2). On the other hand, 

molecules with axial chirality often appears containing 

1,1'-binaphthyl units (4 closely connected hexagons, see 

Figure 2.b, 7.C.1, C.2, E.1). Hence, the network can find 

it difficult to recognise the allene arrangements of axial 

chirality as in Figure 7.G.2, H.1. To deal with these rare 

chirality appearances, a possible solution is that more 

molecules with such appearances can be purposely 

created to be included in the training set for further 

performance improvement.  

5 Conclusion and Future work 

In this paper, we conclude that the smaller model, 

ResNet50 tends to perform better and its performance is 

more transferable to the molecule dataset, unlike the 

EfficientNetV2 architecture. We studied the performances 

of retraining the top few layers and all layers of pretrained 

network for both binary and multilabel classification of the 

CHIRAL dataset, concluding that fine-tuning the top few 

layers of ResNet50 is decent enough for the binary 

problem whereas the more complex multilabel problem 

would require tuning for all layers to achieve the optimal 

result. Using our proposed sampling method--FIDS in the 

multilabel classification problem, we demonstrated a 

significant performance increase for most of the minority 

Chirality Baseline FIDS(1st), mean± SD (%increasea) FIDS(2nd), mean± SD (%increasea) 

Whole 0.868±0.023 0.885±0.031 (+2.01) 0.882±0.023 (+1.33) 

None 0.909±0.062 0.912±0.052 (+0.34) 0.921±0.039 (+2.94) 

Centre 0.883±0.061 0.899±0.063 (+1.73) 0.909±0.040 (+2.94) 

Axial 0.858±0.102 0.846±0.090 (-1.46) 0.863±0.111 (+0.52) 

Planar 0.609±0.293 0.913±0.127 (+49.84) 0.817±0.230 (+34.04) 

Centre+Axial 0.852±0.133 0.898±0.071 (+5.43) 0.790±0.076 (-7.29) 

Centre+Planar 0.867±0.176 0.817±0.200 (-5.77) 0.867±0.176 (0) 

Axial+Planar 0.708±0.306 0.817±0.320 (+15.30) 0.892±0.175 (+25.89) 

Center+Axial+Planar 0.674±0.336 0.696±0.301 (+3.29) 0.835±0.194 (+23.90) 

Table 3. Multilabel classification on CHIRAL data set: 10-fold cross-validation results of the baseline (ResNet50 (Fine-tune all)), FIDS(1st) and 
FIDS(2nd). Second row shows the performance of the algorithm as a whole. Third row onwards show the performance per label combination. 

a Percentage increase with respect to baseline model 
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label combinations and achieved slight overall 

performance improvement from 87% to 89%. Despite that,  

future work can focus on improving the FIDS algorithm as 

it is currently very dependent on the amount of data. 

Furthermore, our models were also able to make 

predictions that were in line with the actual chiral regions 

i.e. locating the chirality elements within the 2D line 

drawing when predicting the corresponding chirality type. 

Now that we have evidence on the ability of the deep 

learning network to identify the correct location of chirality 

elements, future work can focus on using dataset 

annotated with the location of chirality in order for the 

network to predict the precise chirality element location. 

That said, we will continue collecting more molecule 

images with their chirality information through our demo 

website (https://chiral.cs.nott.ac.uk) and the Zooniverse 

platform 

(https://www.zooniverse.org/projects/shuxiang/chiral-

molecules) to enrich the existing data. Our demo website 

also allows users to upload their molecule image reporting 

the recognised overall chirality and chiral elements in that 

molecule including a heatmap visualisation of the 

potential locations for those chiral elements.  

Lastly, we acknowledge that our study has several 

limitations. We selected the pretrained models based only 

on their binary task performance on the CHIRAL dataset. 

An additional complication is that a few molecules in the 

CHIRAL dataset are also in the ChEMBL+ dataset, but we 

must stress that no identical molecule representations are 

used. These factors might lead to potential learning 

biases, however, we are confident that the resulting 

performances are still valid since the proposed network is 

shown to be able to make predictions based on the 

detected actual chiral regions rather than memorising the 

image for classification. 
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