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Since the seminal work of Anderson, localisation has been recognised as a standard mechanism al-
lowing quantum many-body systems to escape ergodicity. This idea acquired even more prominence
in the last decade as it has been argued that localisation — dubbed many-body localisation (MBL)
in this context — can sometimes survive local interactions in the presence of sufficiently strong
disorder. A conventional signature of localisation is in the statistical properties of the spectrum —
spectral statistics — which differ qualitatively from those in the ergodic phase. Although features
of the spectral statistics are routinely used as numerical diagnostics for localisation, they have never
been derived from first principles in the presence of non-trivial interactions. Here we fill this gap
and provide the example of a simple class of quantum many-body systems — which we dub strongly
localised quantum circuits — that are interacting, localised, and where the spectral statistics can be
characterised exactly. Furthermore, we show that these systems exhibit a cascade of three different
regimes for spectral correlations depending on the energy scale: at small, intermediate, and large
scales they behave as disconnected patches of three decreasing sizes. We argue that these features
appear in generic MBL systems, with the difference that only at the smallest scale they become
Poissonian.

I. INTRODUCTION

Analysing the statistical properties of the spectrum of
the time-evolution operator is one of the most univer-
sal and versatile routes to quantify ergodicity and quan-
tum chaos in interacting quantum systems [1]. This ap-
proach can be applied to both autonomous and period-
ically driven systems and is based upon two fundamen-
tal conjectures: the quantum chaos (aka Bohigas) con-
jecture [2–4] and the Berry-Tabor conjecture [5]. The
former asserts that the spectral statistics of few-particle
quantum systems with chaotic classical limits is equiva-
lent to that of an ensemble of random matrices with the
same anti unitary symmetries [6]. The latter states that
the spectrum of few-particle integrable systems is equiv-
alent to a collection of uncorrelated Poissonian events on
the energy line (at least over small enough intervals).

Both these classic conjectures have been extended to
the many-body realm: The emergence of random matrix
theory (RMT) spectral statistics is considered the hall-
mark of quantum ergodicity. In contrast, the emergence
of Poissonian level statistics signals localisation, which
may emerge either due to Bethe-ansatz integrability or
quenched disorder. Despite an abundance of numeri-
cal evidence, the first rigorous results establishing RMT
spectral statistics for some classes of periodically driven
quantum lattice systems, the so-called dual-unitary cir-
cuits [7], appeared only recently [8, 9]. On the other
hand, Poissonian level statistics has been rigorously con-
nected to Anderson localisation in non-interacting dis-
ordered systems [10, 11], and its emergence in disor-
dered systems with local interactions has been consid-
ered a hallmark for the putative many-body localisation

(MBL), which has been inferred to emerge in both au-
tonomous and Floquet systems [12, 13]. Despite this be-
ing a highly investigated subject there is currently no
known example of interacting many-body quantum sys-
tems, for which Poissonian, or more generally, non-RMT
spectral statistics can be established exactly. The pur-
pose of this paper is to fill this gap: we formulate a class
of locally-interacting and localised Floquet systems that
closely resemble the standard systems exhibiting Floquet
MBL [14–18] but for which the local integrals of motion
(LIOM) can be constructed explicitly, and the spectral
statistics can be characterised exactly. In particular, we
show that in strongly localised circuits the computation
of all moments of the spectral form factor (SFF), i.e. the
Fourier transform of spectral density’s two-point func-
tion, can be reduced to a study of a finite-dimensional
spatial (dual) transfer matrix. We then obtain closed-
form results for the disorder-averaged SFF, which agree
with the Poissonian statistics, as well as asymptotic re-
sults for the higher moments of the SFF, which deviate
from Poisson. We argue that such deviations of higher-
point statistics from the Poissonian result are ubiquitous
for systems in the MBL regime if one looks at correla-
tions among energy levels that are distant enough, i.e.
at large “energy scales”. In contrast with our solvable
example, however, generic MBL systems appear to show
Poissonian higher moments if one looks at correlations
between energy levels that are sufficiently close.

The rest of the paper is organised as follows. In Sec. II
we describe the setting considered and introduce strongly
localised circuits. In Sec. III we analyse the spectral
statistics of these circuits. In Sec. IV we compare our
exact results with those obtained in generic finite-size
MBL systems. Finally, Sec. V reports our conclusions.
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Some of the more technical aspects of our analysis are
reported in the appendices.

II. SETTING

We formulate our minimal models in the framework of
brickwork quantum circuits, which are known to provide
useful idealisations of quantum many-body systems with
local interactions [19–22] and, in particular, are now the
standard framework to study spectral statistics in the
many-body realm [8, 9, 14–17, 23–28]. We consider a set
of 2L qubits that are positioned along a periodic lattice
of half-integers Z2L/2 and are evolved in time by discrete
applications of a unitary operator over H = (C2)⊗2L :

UL =
∏
x∈ZL

ηx(Wx)
∏

x∈ZL+ 1
2

ηx(Ux) . (1)

Here we introduced the “local gates” Ux,Wx, i.e. a set of
2L four dimensional unitary matrices specifying the in-
teractions among two neighbouring qubits, and the “po-
sitioning operator” ηx(·). This is a linear map that places
a generic local operator O on the 2L-qubit chain in such
a way that its right edge is at position x.

In the following we consider a family of brickwork
quantum circuits with local gates of the form

Ux = (ux− 1
2
⊗ 1)U, Wx = (1⊗ wx)W, (2)

where ux, wx are position-dependent unitary matrices
(without loss of generality we take them in SU(2)) rep-
resenting the static disorder, while

U = eiJuZ⊗Z , W = eiJwZ⊗Z , Ju, Jw ∈ [0, π/4], (3)

model non-trivial interactions. Here {X,Y, Z} indicate
the triple of Pauli matrices.

The circuits (1,2,3) are similar to several Floquet MBL
quantum circuits studied in the recent literature [14–18],
their only special feature is that the disorder is applied
every two sites rather than at each site. This seemingly
minor difference, however, turns out to lead to exact
solvability. To see how this happens we note that these
circuits preserve the projectors on eigenstates |±〉 of Z,
Z |±〉 = ± |±〉, that are placed at half-odd integer sites

U†L ·
n∏
j=1

ηxj+ 1
2
(|±〉〈±|) · UL =

n∏
j=1

ηxj+ 1
2
(|±〉〈±|) , (4)

where xj ∈ ZL. This property implies that any one-qubit
operator O surrounded by |±〉〈±| cannot spread in time.
In particular

U†Lηx+ 1
2
(|µ〉〈µ|⊗O⊗|ν〉〈ν|)UL

= ηx+ 1
2
(|µ〉〈µ|⊗v†µν,xOvµν,x⊗|ν〉〈ν|), (5)

where µ, ν = ± and we defined

vµν,x = wxe
iµJwZuxe

iνJuZ . (6)

Therefore one can easily find conserved quantities.
Specifically, introducing the local operators

I(µνι)
x = ηx+ 1

2
(|µ〉〈µ|⊗|ιφµν,x〉〈ιφµν,x|⊗|ν〉〈ν|), (7)

where |±φµν,x〉 are the two eigenstates of vµν,x, we see
that they form an extensive set of local integrals of mo-
tion, i.e.,

I(µνι)
x = U†LI

(µνι)
x UL, x ∈ ZL, µ, ν, ι = ± . (8)

It is easy to see that, in addition, the operators in (7)
commute [29], and their eigenvalues can be used to spec-
ify a basis of the Hilbert space. Indeed, taking products
of these operators we can construct projectors on all the
states of a basis of H. Explicitly we have

L−1∏
x=1

I(µxνxµx+1)
x I

(µLνLµ1)
L = |Ψ{µx},{νx}〉〈Ψ{µx},{νx}|, (9)

where we introduced

|Ψ{µx},{νx}〉 =

L⊗
x=1

|µx〉 ⊗ |νxφµxµx+1,x〉 ⊗ |µx+1〉 , (10)

and set µL+1 = µ1. From this expression it is immediate
to see that

{|Ψ{µx},{νx}〉: µx = ±, νx = ±, x = 1, . . . L}, (11)

is indeed a basis of the Hilbert space.
The above properties imply that (7) is a complete set

of LIOM for the circuits (1,2,3) and, therefore, the latter
are many-body localised [12, 13] for any choice of Ju,
Jw, {ux} and {wx}. In fact, they form a special class of
many-body localised systems, which we term “strongly
localised”, where the LIOM have strictly finite support.
In these circuits one can explicitly determine the many-
body spectrum of the Floquet operator (1) by applying
it to the elements of (11). Indeed, (9) and (8) guarantee
that (11) is an eigenbasis of UL. In particular, direct
application reveals

UL |Ψ{µx},{νx}〉 =

L∏
x=1

eiνxφµxµx+1,x |Ψ{µx},{νx}〉 , (12)

where e±iφµν,x are the two eigenvalues of vµν,x (cf. (6)).
We stress that this discussion applies for any distribution
of ux and wx.

III. SPECTRAL STATISTICS

To characterise the spectral statistics of strongly lo-
calised circuits we consider the SFF and its higher mo-
ments, in our setting expressed as [9, 14]

Kn(t, L) = E
[
|tr[UtL]|2n

]
, n = 1, 2, . . . , (13)
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where E[·] is an average required to make these quantities
well defined (they are generically not self-averaging [30]).
In the following we take E[·] to be the average over ran-
dom, identically and independently distributed ux and
wx. Note that t in Eq. (13) sets the inverse energy differ-
ence (scale) at which the spectral correlations are probed.

Using the explicit, locally correlated form of the eigen-
values in Eq. (12), the moments of SFF (13) can be writ-
ten as a partition sum of a 2n×L statistical model. Since
ux, wx are identically and independently distributed we
can directly rewrite the moments

Kn(t, L) = tr[BLn ], (14)

in terms of 4n × 4n transfer matrix Bn with elements

[Bn]a,b = E

 n∏
j=1

M[a]j [b]j
M∗[a]n+j [b]n+j

. (15)

Here a, b = 0, . . . , 4n−1, [x]j is the j-th digit of x in base
2, and we introduced

Mab =
∑
µ,ν=±

µaνbcos(φµνt) . (16)

For completeness, in the appendices we derive the
Eq. (14) using the “space-time duality approach” of
Refs. [8, 9].

Using the expression (16) one can evaluate and di-
agonalise the matrix Bn very efficiently, and in simple
cases even analytically. For instance, for n = 1 and Haar
distributed u,w (uniformly on SU(2)) one has Sp[B1] =
{λ̄1(t), λ1(t), 0} where the eigenvalue 0 is twofold degen-
erate and we have explicit expression of λ̄1(t) and λ1(t)
(see the appendices). In particular, for large times we
have

λ̄1(t) ' 4 + 4
sin(2Jut) sin(2Jwt)

tan(2Ju) tan(2Jw)t2
, (17)

while λ1(t) ' O(1/t2). This yields the SFF:

K1(t, L)=tr[BL1 ] ' 22L

[
1 +

sin(2Jut) sin(2Jwt)L

tan(2Ju) tan(2Jw)t2

]
. (18)

The fact that the infinite time limit of K1(t, L) gives
22L is very general and does not depend on the specific
distribution of u,w. This is because the matrix elements
of Bn are written, because of the averages E[·], in terms of
integrals of oscillating phases (cf. (16)). Under very mild
regularity conditions on the integrand their infinite-time
limit vanishes unless the phases exactly cancel. Therefore
we can assume

lim
t→∞

E[
∏

µ,ν=±
cos(φµνt)

pµν ]=
1

22n

∏
µ,ν=±

B(pµν), pµν ∈N0,

(19)
where B(k) = 0 for k odd and B(k) = k!/((k/2)!)2 for
k even. To derive (19) we expanded cosines in terms of

FIG. 1. Magnitude of the largest eigenvalue of T1 versus t
for Ju = 0.3, Jw = 0.4, and different disorder distributions.
We took u = v = eih where h is taken from GUE(2) with
the distribution P (h) ∝ exp

(
−tr(h− h0)2/(2σ2)

)
and h0 =

0.2X + 1.6Y + 2.2Z. The inset shows |λ̄1 − 4| and the grey
line is 1/t2.

n 1 2 3 4 5 6 7

λ̄n 4 24 181.193 1616.01 16318.6 180094.0 2114717.4

dn 1 1 1 1 1 1 1

TABLE I. Maximal eigenvalue of Bn and its degeneracy in
the infinite-time limit.

exponentials and picked the constant term. In the case
of B1 the above formula gives

lim
t→∞

B1 =

2 0 0 2
0 0 0 0
0 0 0 0
2 0 0 2

 ⇒ lim
t→∞

K1(t, L)= 22L. (20)

Another general property following from the oscillating-
phase-integral form of the matrix elements of Bn is that
the infinite-time limit is approached in a power-law fash-
ion. In the case of K1(t, L), our exact result (18) implies
that this power is bounded from below by 2 for all non-
singular distributions [31]. Our numerical experiments
confirm this; see Fig. 1 for a representative example.

Equation (19) can also be used to find explicit predic-
tions for higher moments of the spectral form factor at
infinite times. Indeed, plugging (19) into (A16) we find
that limt→∞ Bn is unitarily equivalent to (cf. App. C)

[B̄n]a,b :=
∏

µ,ν=±
B(Nµν(a, b)) , (21)

where Nµν(a, b) =
∑2n
j=1 δµ,[a]jδν,[b]j . Diagonalising (21)

numerically we then can access the infinite-time limit of
generic moments (13). Indeed

lim
t→∞

Kn(t, L) = tr[B̄Ln ] ' dnλ̄Ln , (22)

where we denoted by λ̄n the largest magnitude eigenvalue
of B̄n with multiplicity dn (' here represents the leading
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order in L). Explicit results for λ̄n and dn for the first
few values of n are reported in Table I. The predictions
of (22) are, once again, in agreement with our numerical
experiments, see Fig. 2 for an example.

FIG. 2. Moments of the SFF versus time. With the dashed
grey lines we indicate the predictions from Eq. (22), whereas
black short lines indicate the average over time. We took
2L = 10, Ju = Jw = 0.5, and averaged over 70000 disorder
realisations.

IV. COMPARISON WITH GENERIC MBL
SYSTEMS AT FINITE SIZE

Interestingly, and in contrast with what is expected
for generic localised systems, the result (21) is not com-
patible with a Poissonian spectral statistics. Indeed, the
moments of a Poisson random unitary matrix of size 22L

read as KP
n (L) ' 22Lnn! [1], which coincides with (22)

only for n = 1. In particular, while KP
n (L)/KP

1 (L)n is
independent of L, (λ̄n/λ̄

n
1 )L is exponentially large in L

signalling drastically enhanced fluctuations. This is the
standard fingerprint of macroscopic collections of discon-
nected “Poissonian patches”, namely of disconnected sys-
tems where each separate component is Poissonian [32].
For instance, taking a time evolution operator of the form

Uξ,L =

2L/ξ⊗
x=1

u(ξ)
x , (23)

where {u(ξ)
x } are independent random diagonal unitary

(i.e. Poisson random) matrices of size 2ξ, we find

Kn,ξ(L) = E
[
|tr[Utξ,L]|2n

]
= rn(ξ)2L , (24)

for any t 6= 0, where rn(1) = B(2n), r1(ξ) = 2, rn(ξ) >
2n, and rn(ξ) < rn(ξ − 1) for n = 2, . . . , 6 (see App.
D). We then see that for large enough times (probing
correlations among energy levels that are close) strongly
localised circuits behave like collections of disconnected
patches of size ξ > 1.

At larger energy separations (smaller times), how-
ever, the system looks like a collection of patches of
smaller size as demonstrated by the interesting cascade
behaviour in Fig 3a. In particular, we identify three
different regimes: for times t � τ1 fluctuations match
those of patches of size ξ = 1 [33]; for intermediate times
τ1 � t� τ2 they look like patches os size 2; and for
t � τ2 they approach the result (22). For Ju = Jw = J
the crossover timescales are τ1 ∝ J−1 and τ2 ∝ J−2 (see
App. E).

It is natural to ask whether this is just a particular fea-
ture of strongly localised circuits or it characterises — at
least qualitatively — all systems in the MBL regime. We
studied this question numerically considering a “generic”
brickwork quantum circuit (cf. (1)) with local gates of the
form

Wx = Ux = (ux− 1
2
⊗ ux)U, (25)

where U is given in Eq. (3) and ux are Haar-random
single-site unitary matrices. For fixed L and small J
(i.e. strong disorder) this circuit exhibits MBL as sig-
nalled, e.g., by its Poissonian level spacing distribution
(cf. App. E) (analogous MBL brickwork circuits have
been studied in [14–17]). The higher moments of the
SFF, however, are not immediately Poissonian but show
a cascade behaviour similar to that of strongly localised
circuits, see e.g. Fig 3b. Interestingly, as demonstrated
by the scaling collapse in the figure, the first two plateaux
are again compatible with (24). In particular, the first
one corresponds to patches of size ξ = 1, while the sec-
ond corresponds to an effective patch size ξ ≈ 3.45. The
crossover times scale with J as in the strongly localised
case.

We observed the emergence of a similar cascade be-
haviour (with the same collapse) also in other types of
MBL systems at fixed L. In particular, in the Appendix
E we present data for the disordered kicked Ising model
(similar to the one studied in Ref. [18]), a disordered spin
chain with nearest-neighbour and next-nearest-neighbour
Ising interaction, and a disordered XY Z spin chain,
which breaks Z2 symmetry.

Therefore, our analysis suggests that, in analogy with
strongly localised circuits, generic MBL systems behave
as collections of disconnected patches at intermediate en-
ergy scales. Considering correlations among sufficiently
close energy levels, however, they show integrable-like
(Poisson) spectral statistics. Note the value the size of
the patches in the intermediate regime is model depen-
dent. For instance, they are larger for next-nearest neigh-
bour interactions (cf. App. E).

V. CONCLUSIONS

In summary, in this paper we presented a class of in-
teracting localised many-body systems, dubbed “strongly
localised circuits”, which are localised for any distribu-
tion of the disorder and whose spectral statistics can
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(a) (b)

FIG. 3. Second moment of the SFF for strongly localised circuits (left) the circuit (25) (right) versus time. Here we took
Ju = Jw = J = 10−4, different coloured lines correspond to different system sizes. Dashed black, solid grey and dot-dashed
grey lines indicate respectively the result (22), (24) for ξ = 1 and (24) for ξ = 2. The dotted grey line shows log[B(2n)4n] [33].
See [34] for details about the averaging.

be characterised exactly. This parallels analogous ex-
act results recently obtained for a special class of ergodic
systems [8, 9, 24]. We showed that, even though the
SFF of strongly localised circuits agrees with the Poisso-
nian statistics, the higher moments are not Poissonian.
We argued that this happens because these systems be-
have as macroscopic collections of disconnected Poisso-
nian patches rather than a connected (Bethe-Ansatz) in-
tegrable system. Finally, we suggested that the same
qualitative behaviour is observed in generic MBL systems
at intermediate energy scales, while on shorter scales they
display Poissonian spectral statistics.

The discovery of a class of solvable systems which are
both interacting and localised paves the way for an ex-
act analysis of localisation in the presence of interac-
tions: Rigorous results in this controlled setting could
fruitfully complement the numerous (mostly numerical)
studies carried out over the last decade [12, 13].

A particularly interesting aspect is that the dynam-
ics of strongly localised circuits are accessible via the

time-channel description of Ref. [35]. This opens the
door to exact studies on the dynamics of local observ-
ables and quantum information, in analogy with recent
results for special classes of integrable [36–41] and chaotic
systems [42–47].
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Appendix A: Duality derivation of Eq. (14)

To evaluate (13) we adopt the diagrammatic representation introduced in [9] and depict the SFF moments as

Kn(t, L) = E

[ ]
, (A1)
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where we introduced 2n-folded gates

= U⊗n⊗(U∗)⊗n, = W⊗n⊗(W ∗)⊗n, (A2a)

= (ux)⊗n⊗(u∗x)⊗n, (wx)⊗n⊗(w∗x)⊗n . (A2b)

Here and in the following (·)∗ denotes complex conjugation in the canonical basis. Using that ux, wx are independently
distributed in space we have that Kn(t, L) can be written in terms of a spatial transfer matrix, i.e.

Kn(t, L)=trE
[ ]

E
[ ]

E
[ ]

E
[ ]

= trTLn . (A3)

In formulas, the transfer matrix can be expressed as

Tn = [Ũ⊗n⊗ Ũ∗⊗n][W̃⊗n⊗ W̃∗⊗n]On, (A4)

where we introduced the non-expanding operator

On = E

 ∏
τ∈Zt+ 1

2

ητ,t(u⊗ w)⊗n ⊗ ητ,t(u∗ ⊗ w∗)⊗n
 (A5)

and the unitary operators

Ũ :=
∏

τ∈Zt+ 1
2

ητ,t(Ũ), W̃ :=
∏
τ∈Zt

ητ,t(W̃ ), (A6)

constructed in terms of the “dual” local gates Ũ , W̃ . The latter are obtained applying the reshuffling transformation

(̃·), such that

[Õ]ij,kl = Oki,lj , i, j, k, l = 1, 2 , (A7)

to the local gates U,W . Note that in the above equations we used the positioning operator on a chain of length 2t

ηx,t(O) = Π
2x−|O|+1
2t (O ⊗ 12t−|O|)Π

−2x+|O|−1
2t (A8)

where |O| is the support size of O, while 1` and Π` are respectively the identity and the operator implementing a
periodic one-site shift to the right in a chain of ` qubits.

The explicit form (3) yields

Ũ =
∑

s∈{0,1}

Cus |Zs〉 〈Zs| , W̃ =
∑

s∈{0,1}

Cws |Zs〉 〈Zs| , (A9)

where Cιs= is cos(Jι + sπ2 ), ι = u,w, and the two-site states are vectorized matrices

〈A| = A , A = I,X, Y, Z . (A10)

This means that the many-body operators Ũ, W̃ can be written as

Ũ =
∑

sj∈{0,1}

Cus1 · · ·Cust
t⊗

j=1

|Zsj 〉〈Zsj | , W̃ =
∑

sj∈{0,1}

Cws1 · · ·CwstΠ2t

 t⊗
j=1

|Zsj 〉〈Zsj |

Π†2t . (A11)



7

Now, noting that

〈Zs1 , Zs2 , · · ·Zst |Π2t |Zr1 , Zr2 , · · ·Zrt〉 = tr[Zs1Zr1 · · ·ZstZrt ]=1 + (−1)
∑t
j=1(rj+sj), (A12)

we find

ŨW̃ = |Φu0〉 〈Φw0|Π†2t + |Φu1〉 〈Φw1|Π†2t, (A13)

where we introduced the un-normalised orthogonal vectors

|Φua〉 :=
√

2
∑

s1,....,st∈{0,1}
s1+...+st=amod 2

Cus1 · · ·Cust |Zs1 · · ·Zst〉, (A14)

|Φwa〉 :=
√

2
∑

s1,....,st∈{0,1}
s1+...+st=amod 2

C∗ws1 · · ·C
∗
wst |Z

s1 · · ·Zst〉. (A15)

The form (A13) is the key for our analytical derivation as it shows that ŨW̃ is a projector on a 2-dimensional subspace.
Indeed, this means that Tn is the tensor product of 2n such projectors and can have at most 4n non-trivial eigenvalues.
In particular, recalling the definition (A5) of On we have that the non-trivial 4n × 4n block Bn of Tn is written as

[Bn]a,b = E

 n∏
j=1

M[a]j [b]j
M∗[a]n+j [b]n+j

, (A16)

where a, b = 0, . . . , 4n − 1, [x]j is the j-th digit of x in base 2, and we introduced

Mab := 〈Φwa|Π†2t
∏

τ∈Zt+ 1
2

ητ,t(u⊗ w)|Φub〉 . (A17)

To conclude we evaluate this expression using the explicit form of the states |Φua〉, |Φwa〉. We start by expressing it
explicitly as follows

Mab = 2
∑

s1,....,st∈{0,1}
s1+...+st=amod 2

∑
r1,....,rt∈{0,1}

r1+...+rt=bmod 2

Cws1 · · ·CwstCur1 · · ·Curttr[Zs1uZr1wZs2uZr2 · · ·ZstuZrtw]. (A18)

The constraints can be treated by facilitating a simple identity

1

2

∑
µ=±

µK = δKmod 2,0 , (A19)

which gives

Mab =
1

2

∑
µj=±

∑
sj∈{0,1}

∑
rj∈{0,1}

µs1+...+st+a
1 µr1+...+rt+b

2 Cws1 · · ·CwstCur1 · · ·Curttr[Zs1uZr1wZs2uZr2 · · ·ZstuZrtw]

=
1

2

∑
µ,ν=±

µaνb tr[(weiµJwZueiνJuZ)t] =
∑
µ,ν=±

µaνbcos(φµνt) . (A20)

In the second step we denoted by exp[±iφµν ] the eigenvalues of (6).
This matrix can be considered as element of SU(2) since one may choose u, v ∈ SU(2) (a global phase multiplying

these matrices can be absorbed in (A16)). In particular, considering the Euler-angle representation of u and w

u = u(a1, b1, c1) ≡ eia1Z/2eib1Y/2eic1Z/2, w = u(a2, b2, c2), (A21)

with aj ∈ [0, 2π], bj ∈ [0, π], and cj ∈ [0, 4π] we have

φην = atan

√
1

∆2
− 1 + π(1− θ(∆)) (A22)

where θ(x) is the Heaviside function and we set

∆ = cos

(
b1
2

)
cos

(
b2
2

)
cos

(
a1 + a2 + c1 + c2 + 2ηJu + 2νJw

2

)
− sin

(
b1
2

)
sin

(
b2
2

)
cos

(
a1 − a2 − c1 + c2 − 2ηJu + 2νJw

2

)
. (A23)
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Appendix B: Explicit form of B1 for Haar random ux, wx

Let us assume that E[·] is the average over the Haar measure of SU(2). In this case, using the left and right
translation invariance of the measure we find

E[tr[(ueiµ1JuZweiν1JwZ)t](tr[(ueiµ2JuZweiν2JwZ)t])∗] = E[tr[(uw)t](tr[(uei(µ2−µ1)JuZwei(ν2−ν1)JwZ)t])∗]. (B1)

Considering the cases µ2 = ±µ1 and ν2 = ±ν1 separately we have

E[tr[(ueiµ1JuZweiν1JwZ)t](tr[(ueiµ1JuZweiν1JwZ)t])∗] =E[|tr[(uw)t]|2] = E[|tr[ut]|2] = min(t, 2), (B2)

E[tr[(ueiµ1JuZweiν1JwZ)t](tr[(ueiµ1JuZwe−iν1JwZ)t])∗] =E[tr[(uw)t](tr[(uwe−i2ν1JwZ)t])∗]

=E[tr[ut](tr[(ue−i2ν1JwZ)t])∗]

=E[tr[ut](tr[(ue−i2JwZ)t])∗], (B3)

E[tr[(ueiµ1JuZweiν1JwZ)t](tr[(ue−iµ1JuZweiν1JwZ)t])∗] =E[tr[(uw)t](tr[(ue−2iµ1JuZw)t])∗]

=E[tr[ut](tr[(ue−2iµ1JuZ)t])∗]

=E[tr[ut](tr[(ue−i2JuZ)t])∗], (B4)

E[tr[(ueiµ1JuZweiν1JwZ)t](tr[(ue−iµ1JuZwe−iν1JwZ)t])∗] =E[tr[ut](tr[(uw†e−2iµ1JuZwe−2iν1JwZ)t])∗]

=E[tr[ut](tr[(uw†e−2iJuZwe−2iJwZ)t])∗]

=E[tr[ut](tr[(ue−iαwZ)t])∗], (B5)

Here we used the well-known expression for the spectral form factor of the circular unitary ensemble [6], we exploited
the invariance of the measure under

u 7→ XuX (B6)

to remove µ1 and ν1, and we denoted by e±iαw the eigenvalues of w†e−2iJuZwe−2iJwZ . In particular, parametrising
w in terms of Euler angles (cf. (A21)) we have

αw(b)=atan

√
1

(cos(Ju) cos(Jw)− cos(b) sin(Ju) sin(Jw))2
− 1 ∈ [|Ju − Jw|, Ju + Jw] ⊂ (0, π/2) . (B7)

The remaining averages are evaluated by expressing explicitly the Haar measure for SU(2) as follows

E[f(u)] =
1

16π2

∫ 2π

0

da

∫ π

0

db

∫ 4π

0

dc sin(b)f(u(a, b, c)) , (B8)

where u(a, b, c) is the Euler angle parameterisation (A21). This leads to

E[tr[(ueiµ1JuZweiν1JwZ)t](tr[(ueiµ1JuZwe−iν1JwZ)t])∗] =f(t, 2Jw), (B9)

E[tr[(ueiµ1JuZweiν1JwZ)t](tr[(ue−iµ1JuZweiν1JwZ)t])∗] =f(t, 2Ju), (B10)

E[tr[(ueiµ1JuZweiν1JwZ)t](tr[(ue−iµ1JuZwe−iν1JwZ)t])∗] =g(t, Ju, Jw), (B11)

where we introduced the functions

f(x, a)=f−(x, a) + f+(x, a), g(x,A,B) =
1

sin(A) sin(B)

∫ A+B

|A−B|
da sin(a)f(x, a),

f±(x, a)=
4

π

∫ 1

0

dy

∫ π

0

dϕy cos

[
x

(
arctan

√
1

y2 cos2(ϕ)
− 1± arctan

√
1

y2 cos2(ϕ− a)
− 1

)]
sign

[
cos(ϕ− a)x

cos(ϕ)x

]
, (B12)



9

with first variable x being an integer. Plugging (B2, B9, B10, B11) back into (A16) we find

B1 =


min(t, 2) + f(t, 2Ju) + f(t, 2Jw) + g(t, Ju, Jw) 0 0 min(t, 2) + f(t, 2Ju)− f(t, 2Jw)− g(t, Ju, Jw)

0 0 0 0

0 0 0 0

min(t, 2)− f(t, 2Ju) + f(t, 2Jw)− g(t, Ju, Jw) 0 0 min(t, 2)− f(t, 2Ju)− f(t, 2Jw) + g(t, Ju, Jw)

. (B13)

This matrix has two non-zero eigenvalues reading as

λ̄1(t) = min(t, 2) + g(t, Ju, Jw) +
√

min(t, 2)2 + 4f(t, 2Ju)f(t, 2Jw)− 2g(t, Ju, Jw)min(t, 2) + g(t, Ju, Jw)2) , (B14)

λ1(t) = min(t, 2) + g(t, Ju, Jw)−
√

min(t, 2)2 + 4f(t, 2Ju)f(t, 2Jw)− 2g(t, Ju, Jw)min(t, 2) + g(t, Ju, Jw)2) . (B15)

The asymptotic expansion of these eigenvalues for large times can be determined expanding the functions f±(x, a),
and g(x, J, J ′). This is done in Sec B 1 and leads to

f(x, a) ' 2 cot(a)
sin(xa)

x
+O

(
1

x3/2

)
, (B16)

g(x,A,B) ' − 2 cos(a) cos(xa)]

x2π sin(A) sin(B)

∣∣∣A+B

|A−B|
+O

(
1

x5/2

)
. (B17)

Note that in the limit a→ 0 we have

lim
a→0

f(x, a) = 2 , (B18)

which recovers the large-time limit of (B2) providing a useful consistency check.
Plugging the asymptotic expansions into (B15) we find the expressions for λ±(t) and K1(t, L) given in the main

text [Eq. (18)].

1. Asymptotic expansion of f±(x, a) and g(x,A,B)

In this appendix we determine the leading term in the asymptotic expansion of f±(x, a) for a ∈ (0, π/2) and
g(x,A,B) with A,B ∈ [0, π/4].

Let us begin considering f±(x, a). To ease the manipulations we rewrite it in the following compact form

f±(x, a) = Re

∫∫
D

dy dϕχ(x, y, ϕ)eixΦ±(y,ϕ)

 (B19)

where we introduced the domain D ≡ [0, 1]× [0, π] and the functions

χ(x, y, ϕ) =
4

π
y sign

[
cos(ϕ− a)x

cos(ϕ)x

]
, (B20)

and

Φ±(y, ϕ) := arctan

√
1

y2 cos2(ϕ)
− 1± arctan

√
1

y2 cos2(ϕ− a)
− 1. (B21)

Note that we included dependence on integer x in χ(x, y, ϕ) to treat three different domains ([0, 1]× [0, π/2], [0, 1]×
[π/2, π/2 + a], and [0, 1]× [π/2 + a, π]) at the same time.

Following the standard procedure [48] we compute the gradient of Φ± to determine the critical points. A simple
calculation yields

∂yΦ±(y, ϕ) = − 1√
sec2(ϕ)− y2

∓ 1√
sec2(ϕ− a)− y2

, (B22)

∂ϕΦ±(y, ϕ) =
y tan(ϕ)√

sec2(ϕ)− y2
± y tan(ϕ− a)√

sec2(ϕ− a)− y2
. (B23)



10

From these expressions we see that the gradient of Φ± does not vanish. To see it assume that (B22) vanishes for some
y = y0 ∈ [0, 1] and ϕ = ϕ0 ∈ [0, π]. Then, plugging into (B23) we have

∂ϕΦ±(y0, ϕ0) = ± y cos(ϕ0)√
1− y2

0 cos2(ϕ0)
(tan(ϕ0)− tan(ϕ0 − a)), (B24)

which never vanishes for (y0, ϕ0) ∈ D and a ∈ (0, π/2).

Since ∇Φ± 6= 0 we can integrate “by parts” using the divergence theorem [48]. Namely, we use

χ(x, y, ϕ)eixΦ±(y,ϕ) =
1

ix
∇
(
∇Φ±
‖∇Φ±‖2

χ(x, y, ϕ)eixΦ±(y,ϕ)

)
− 1

ix
∇
(
∇Φ±
‖∇Φ±‖2

χ(x, y, ϕ)

)
eixΦ±(y,ϕ) . (B25)

Integrating over D we see that the first term becomes a boundary integral while the the second produces an integral
of the same form as (B19) but is suppressed by x−1. Therefore we have

I± =

∫∫
D

dy dϕχ(x, y, ϕ)eixΦ±(y,ϕ) =
1

ix

∫
∂D

ds
n∇Φ±
‖∇Φ±‖2

χ(x, y, ϕ)eixΦ±(y,ϕ) +O(I±/x) (B26)

where ∂D is the boundary of D and n is its outward normal unit vector. Writing explicitly the boundary integral we
have ∫

∂D

ds
n∇Φ±
‖∇Φ±‖2

χ(x, y, ϕ)eixΦ±(y,ϕ) =

∫ π

0

dϕ
∂yΦ±(1, ϕ)

‖∇Φ±(1, ϕ)‖2
χ(x, 1, ϕ)eixΦ±(1,ϕ)

+

∫ 1

0

dy
∂ϕΦ±(y, π)

‖∇Φ±(y, π)‖2
χ(x, y, π)eixΦ±(y,π)

−
∫ 1

0

dy
∂ϕΦ±(y, 0)

‖∇Φ±(y, 0)‖2
χ(x, y, 0)eixΦ±(y,0)

=− 4

π

∫ π/2

0

dϕ
(cot(ϕ)± | cot(ϕ− a)|)eix(ϕ±|ϕ−a|)

(cot(ϕ)± | cot(ϕ− a)|)2 + (1± sgn(ϕ− a))2

+
4

π

∫ π/2+a

π/2

dϕ
(cot(ϕ)∓ cot(ϕ− a))eix(−ϕ±(ϕ−a))

(cot(ϕ)∓ cot(ϕ− a))2 + (1∓ 1)2

+
4

π

∫ π

π/2+a

dϕ
(cot(ϕ)± cot(ϕ− a))e−ix(ϕ±(ϕ−a))

(cot(ϕ)± cot(ϕ− a))2 + (1± 1)2
+O

(
1√
x

)
. (B27)

Here in the second step we used that Φ±(y, 0) and Φ±(y, π) are non-trivial functions of y. Therefore, the integrals on
the second and third line decay at least as x−1/2.

Evaluating the elementary integrals and putting all together we finally obtain

f−(x, a) ' 2 cot(a)(π − 2a)
sin(xa)

πx
+O

(
1

x3/2

)
, (B28)

f+(x, a) ' 4a cot(a)
sin(xa)

πx
+O

(
1

x3/2

)
. (B29)

Let us now briefly consider g(x,A,B). Using the short-hand notation introduced above we have

g(x,A,B) =
1

sin(A) sin(B)

∑
µ=±

Re

∫∫∫
F

da dy dϕ sin(a)χ(x, y, ϕ)eixΦµ(y,ϕ,a)

 (B30)

where we introduced the explicit dependence on a and denoted by F the integration domain [|A−B|, A+B]×D.

Since ∇Φµ(y, ϕ, a) 6= 0 in F we can again integrate by parts and consider only the boundary integrals. This leads



11

to

g(x,A,B) ' 1

x sin(A) sin(B)

∑
µ=±

Im

∫∫
D

dydϕχ(x, y, ϕ)
sin(a)∂aΦµ
‖∇Φµ‖2

eixΦµ(y,ϕ,a)
∣∣∣A+

a=A−

+

∫∫
D1

dady χ(x, y, ϕ)
sin(a)∂ϕΦµ
‖∇Φµ‖2

eixΦµ(y,ϕ,a)
∣∣∣π/2
ϕ=0

+

∫∫
D2

dadϕχ(x, 1, ϕ)
sin(a)∂yΦµ
‖∇Φµ‖2

eixΦµ(1,ϕ,a)

 , (B31)

where we set A± = |A±B|, D1 = [A−, A+]× [0, 1], D2 = [A−, A+]× [0, π] and

∂aΦ±(y, ϕ, a) = ∓ y tan(ϕ− a)√
sec2(ϕ− a)− y2

. (B32)

Integrating the first two terms again by parts we find the following leading contributions coming from first and last
term

g(x,A,B) ' 4 sin a cos(ax)

πx2 sin(A) sin(B)

∫ π

0

dϕ
1

(cot(ϕ)− cot(ϕ− a)

∣∣∣A+

a=A−
= − 2 cos(ax) cos(a)

x2 sin(A) sin(B)

∣∣∣A+

a=A−
. (B33)

Appendix C: Infinite-time limit of Bn

Plugging (19) into (A16) we find

lim
t→∞

[Bn]a,b =
∑
x

gx

2n∏
j=1

[ ∑
µ,ν=±

µ[a]jν[b]je−ixµν

]
, (C1)

where

x = (x++, x+−, x−+, x−−),
∑
x

=
∑
x++

∑
x−+

∑
x+−

∑
x−−

(C2)

xµν = 2πnµν/(2n+ 1) with nµν = 0, . . . , 2n,

gx =
∏

µ,ν=±
gxµν , gx =

1

(2n+ 1)

n∑
k=0

ei2kx

4k

(
2k

k

)
. (C3)

Using the expression (C1) we find

lim
t→∞

tr[Bkn] = 22nk
∑
x1

· · ·
∑
xk

tr[M(x1) · · ·M(xk)]2ngx1
· · · gxk (C4)

where we set

M(x) =

[
e−ix++ e−ix+−

e−ix−+ e−ix−−

]
. (C5)

Eq. (C4) implies that limt→∞ Bn has the same spectrum as

B̄n = 22n
∑
x

M(x)⊗2ngx (C6)

Defining

Nµν(a, b) =

2n∑
j=1

δµ,ajδν,bj , B(k) =


0 mod(k, 2) = 1

(
k

k/2

)
mod(k, 2) = 0

, (C7)
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and using ∑
x

e−ikxgx =
1

22k
B(k) (C8)

we find that B̄n has the following matrix elements

[B̄n]a,b = B(N++(a, b))B(N−+(a, b))B(N+−(a, b))B(N−−(a, b)) , (C9)

which are those given in Eq. (21) of the main text.

Appendix D: Explicit form of rn(ξ)

Computing the moments of the spectral form factor for the time evolution operator (23) (ξ is assumed to divide
2L) we find

Kn,ξ(L) = E
[
|tr[Utξ,L]|2n

]
= rn(ξ)2L, (D1)

where E [·] is the average over flat distribution of eigenphases of u(ξ), and is hence clearly independent of t 6= 0, and
we defined

rn(ξ) :=
(
E
[
|tr[u(ξ)]|2n

])1/ξ

. (D2)

Therefore, rn(ξ) can be expressed in terms of the n-th moment of the SFF of a 2ξ dimensional unitary Poisson random
matrix. The latter can be expressed in terms of the generating function [1]

G(x) = J0(x)2ξ , (D3)

where Jn(x) is the Bessel function of the first kind, as follows

E
[
|tr[u(ξ)]|2n

]
=

(
− 1

x
∂xx∂x

)n
G(x)

∣∣
x=0

. (D4)

This gives

r1(ξ) = 2, (D5)

r2(ξ) = ((2!) · 22ξ − 2ξ)1/ξ, (D6)

r3(ξ) = ((3!) · 23ξ − 9 · 22ξ + 5 · 2ξ)1/ξ, (D7)

r4(ξ) = ((4!) · 24ξ − 72 · 23ξ + 82 · 22ξ − 33 · 2ξ)1/ξ, (D8)

r5(ξ) = ((5!) · 25ξ − 600 · 24ξ + 1250 · 23ξ − 1225 · 22ξ + 456 · 2ξ)1/ξ, (D9)

r6(ξ) = ((6!) · 26ξ − 5400 · 25ξ + 17700 · 24ξ − 30600 · 23ξ + 27041 · 22ξ − 9460 · 2ξ)1/ξ. (D10)

In the particular case ξ = 1 the generic moment is expressed as

rn(1) = B(2n) =

(
2n

n

)
. (D11)

Appendix E: Further numerical data

Here we provide some additional numerical data. Firstly, in Fig. 4 we show cumulative level spacing distributions
of generic local Floquet circuits in MBL regime (25), strongly localised systems (2), and systems formed from dis-
connected patches (23). As we have seen from the moments of SFF in Eqs. (22) and (24), the spectral statistics
for the latter two models are not Poissonian, which influences the level spacing distributions only at extremely short
distances (of a tiny fraction of mean level spacing). It is important to note that the discrepancies are much more
apparent when looking at the higher moments of SFF.
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0.001 0.01 0.1 1.

FIG. 4. Cumulative nearest-neighbour level spacing distributions, W (s) is the probability of a random spacing being smaller
than s, for the MBL regime at J = 0.01 (blue), strongly localisated at J = 0.5 (yellow), and independent random spins
(magenta). We take 2L = 12 and average over 1000 disorder realizations. Black dotted and dashed lines show predictions for
Poisson and CUE ensembles, respectively.

FIG. 5. Second moment of the SFF for the strongly localised circuits (2), versus tJ and tJ2, respectively. We see a nice
collapse of the data indicating scalings of crossover times τ1 ∝ J−1 and τ2 ∝ J−2. Here we took 2L = 10, different coloured lines
correspond to the three values of J , and we averaged over 200000 realisations (10000 independently drawn disorder samples
and windows of 20 nearby time steps).

Secondly, we demonstrate the scaling of the crossover times claimed in the main text, i.e.

τ1 ∝ J−1, τ2 ∝ J−2, (E1)

for both circuits, Eq. (2) with Ju = Jw = J , and more generic ones, Eq. (25). This is evident from the data collapses
shown in Figs. 5 and 6.

Thirdly, we compare data for four different generic MBL models. The first model is given by Eq. (25). The second
is the disordered kicked Ising (KI) model given in terms of the Floquet operator:

U = e
i
∑
j∈ 1

2
Z2L

gXj
e
i
∑
j∈ 1

2
Z2L

JZjZj+1/2+hjZj
, (E2)

where hj are random variables and we used the short hand notation Oj = ηj,L(O). The third model couples also the
next-nearest neighbours (NNN):

U = Ud1e
iJ

∑
j=0,3/2,6/2,...QjUd2e

iJ
∑
j=1/2,4/2,7/2,...QjUd3e

iJ
∑
j=2/2,5/2,8/2,...Qj , (E3)

Qj = ZjZj+1 + (ZjZj+1/2 + Zj+1/2Zj+1)/2 , (E4)
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FIG. 6. Second moment of the SFF for the circuits (25), versus tJ and tJ2, respectively. We see a nice collapse of the data
indicating scalings of crossover times τ1 ∝ J−1 and τ2 ∝ J−2. Here we took 2L = 10, different coloured lines correspond to the
three values of J , and we averaged over 200000 realisations (10000 independently drawn disorder samples and windows of 20
nearby time steps).

where

Udk =
⊗

x∈ 1
2Z2L

ux,k (E5)

are disorder layers made out of tensor products of random independent SU(2) matrices ux,k. The fourth, Floquet
XY Z model is given by:

U = Ud1e
i
∑
j=0,1,...Q

′
jUd2e

i
∑
j=1/2,3/2,...Q

′
j , (E6)

Q′j = JxXjXj+1/2 + JyYjYj+1/2 + JzZjZj+1/2 . (E7)

Notice that it breaks Z2 symmetry.
We compare these four examples in Fig. 7, where we see similar qualitative behaviour of the fluctuations of SFF. In

particular, we clearly see the cascade of the three (four in the case of XY Z model) regimes discussed in the main text.
The value of the middle plateau is different for the NNN model, which illustrates that the value is model-dependent.
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(not shown). Data is for 2L = 12, and for the second model shown in green we took g = 0.5. For the fourth model (XYZ) we
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and J. I. Cirac, Localization with random time-periodic
quantum circuits, Phys. Rev. B 98, 134204 (2018).

[16] S. J. Garratt and J. T. Chalker, Many-body delocaliza-
tion as symmetry breaking, Phys. Rev. Lett. 127, 026802
(2021).

[17] S. J. Garratt, S. Roy, and J. T. Chalker, Local resonances
and parametric level dynamics in the many-body local-
ized phase, Phys. Rev. B 104, 184203 (2021).

[18] M. Sonner, M. Serbyn, Z. Papić, and D. A. Abanin,
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