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Abstract 

2D ray-tracing has been used to investigate the influence of inclined cutting front and the 

cutting edge on the exiting, surplus, laser beam while cutting 6 mm  mild steel with a fibre 

laser, wavelength = 1070 nm. The ray-tracing model, which assumed a Gaussian beam, has 

investigated the distribution of this surplus beam as a function of kerf wall inclination angle. 

Multiple reflections are shown to broaden the spatial distribution of the surplus beam. Dross 

and kerf wall roughness also broaden the spatial distribution of the surplus beam. Comparison 

of an experimentally obtained beam print from the surplus beam for 1.07 µm fibre laser 

cutting of 6 mm stainless steel with modelled results allows inclination of the cut front to be 

estimated. The experimentally obtained beam print has features consistent with 

roughness/dross induced beam broadening.  
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1 INTRODUCTION 

Fibre lasers are widely used in many industrial sectors, from dental to automotive fabrication, 

for materials processing and in particular for non-contact cutting applications. Fibre laser 

cutting is preferred over other laser systems due to good wall plug efficiency and high 

brightness as well as superior cut quality for thin sheet cutting [1].  

There is a body of work on the efficiency of the actual laser cutting process, this 

focusses on using a power balance approach to determine the proportion of incident energy 

that is directly utilised in laser cutting [2-4].  As has been previously reported [5, 6], the 

efficiency varies with cutting speed. At low and moderate cutting speeds a portion of the laser 

beam passes through the cut without interacting with the material. It is also known that a 

portion of the laser beam reflects off the material and exits the bottom of the cut zone. The 

slope of the cut front also varies with cutting speed, being near vertical at low speeds and 

more inclined at higher cutting speeds [5].  

With a better understanding of the interaction between the incident laser beam and the 

cutting surface, and the surplus energy (the proportion of the laser beam that is not directly 

involved in the cutting process), more energy efficient cutting strategies can be designed. 

This paper uses ray tracing to investigate the surplus energy in fibre laser cutting of stainless 

steel.  

2 EXPERIMENTAL SET UP 

A multimode Nd:YAG 2kW,1070 nm wavelength IPG YLR-2000 fibre laser was used in the 

continuous wave (cw) mode. 1850W power was used to cut 6mm thick stainless steel 304L at 

729 mm/min, 95% of the maximum cutting speed. The laser beam was delivered by a 200 µm 

diameter delivery beam into a cutting head, then focussed with a 120 mm focal length lens 

into a 192 µm spot on the top surface of the stainless steel. The full angle divergence of this 

focussed beam was 0.153 rad.  A 1mm diameter nozzle 1mm above the sample surface was 
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used to deliver the assist gas coaxially to the laser beam. Nitrogen was used as an assist gas 

with pressure 13 bar.  

To investigate the 2D surplus energy distribution a black-PMMA collection sheet was 

positioned 17.5 mm below the bottom of the workpiece. Any laser radiation exiting the 

bottom of the cut would therefore be absorbed by black-PMMA block. Since absorption of 

the laser radiation by the black-PMMA results in material removal, the surplus energy 

distribution can be determined by examining the shape of the cavity on the surface of the 

black-PMMA.  

It is important to note that during cutting the laser and black-PMMA block remained 

stationary while the stainless steel sheet was translated between them. This ensured that the 

cutting front position was stationary with respect to the black-PMMA block, allowing the 2D 

surplus energy distribution corresponding to steady state cutting to be studied. In order to 

ensure that only surplus energy from steady state cutting at the selected speed was collected, 

an additional piece of stainless steel was fixed below the main cutting sheet block the path to 

the black-PMMA during the time that the translation table was accelerating. 

3 SIMULATION METHODOLOGY 

A 2D ray tracing code was developed using MATLAB. In order to use this 2D model the 3D 

cut kerf geometry has been simplified: the cut front and kerf walls have been considered as 

straight inclined lines (Figure 1). The cut front curvature is not included in this work.  

The real, experimental, laser beam had a full angle divergence of 0.153 rad and was 

focussed to a 200µm diameter spot at the sample surface. This was simulated by firing 

500,000 photons of unit energy from a point 1.3 mm above the surface so that the beam had 

diverged to a 200µm spot at the surface (Figure 2). The direction of each photon was 

determined by using random numbers, generated using the randn MATLAB function, that are 

normally distributed across the 0.153 rad range. This is equivalent to assuming the beam had 
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a Gaussian beam profile. This is an approximation as the real beam has an M2 value of 23.3 

and is therefore not a perfect Gaussian. 

In this model, specular reflection has been assumed. Fresnel reflection and absorption 

equations were used to determine the extent of absorption at each reflection as function of the 

angle of incidence. The refractive index of melted iron was obtained from [7,8] and 

substituted into the Fresnel equation. Each photon was ray traced until it either reached the 

collection sheet or its energy dropped below 1% of its initial energy or it was reflected back 

towards the source. The collection sheet represents the black-PMMA and is located in a plane 

17.5 mm beneath the workpiece, as shown in figure 2. The location and energy of each 

photon reaching the collection sheet was recorded and presented as an intensity profile. 

Two types of simulation have been run a. cut front, b. kerf walls. The cut front 

simulations have a single piece of material (Figure 2a) and simulate energy redistribution 

along the direction of the cut. The kerf walls simulations include the two kerf walls (Figure 

2b) and simulate energy redistribution perpendicular to the cut direction. Intensity profiles 

have been determined for different cut front and kerf wall inclinations.  

All the intensity profiles presented show the sum of the intensity of all photons 

reaching the collecting plane through the 6 mm workpiece thickness and 0.31 mm bottom 

kerf width, unless otherwise specified. The width of each bin in the histograms is 0.1 mm and 

zero on the distance axis denotes the centre line of the beam 

A pseudo 2D intensity profile was obtained by combining results from cut front and 

kerf wall simulations. This was obtained by treating the intensity profile generated by the cut 

front as a row matrix and multiplying this by a column matrix representing the modelled kerf 

wall intensity distribution. 
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4 RESULTS AND DISCUSSION 

4.1 Cut front simulation 

The effect of cut front inclinations is shown in Figure 3. The laser beam was centred on the 

bottom edge of the workpiece. It can be seen that an inclined cut front splits the laser beam 

into two parts. Of these, the first part passes directly through the cut and reaches the 

collecting plane with no losses. The second part reflects off the cut front, the partial 

absorption during this interaction decreases the intensity of these reflected photons.  

The overall spread of the collected intensity distribution, L (Figure 2), the maximum 

distance from the origin at which photons are detected, can be determined via geometry: 

 (1) 

However, to determine L two other distances, h and x must first be determined. As 

can be seen from Figure 4: 

   (2)  and     (3) 

so, 

   (4) and      (5) 

which can be combined and solved for x: 

 (6) 

The expression for x (6) can then be substituted back into equation 2 and rearranged 

to give h. The overall expression for L, which gives the spread of the intensity distribution as 

a function of collection plate position, D, half angle divergence of the laser beam, θd/2, 

material thickness, t, and angle of cut front inclination, α, can now be utlised.  
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Table 1 shows both calculated and modelled values of L as a function of cut front 

inclination. It is clear that for the set up studied here, the cut front inclination angle has a 

measureable effect on L, the spread of the intensity distribution. There is good correlation 

between the calculated and modelled results, with the modelled results being consistently 

about 3% lower.  

4.2 Kerf walls simulation 

For these simulations, the laser beam was centred on the mid point of the bottom kerf. 

Figure 5 shows the intensity profiles for different cut edge inclinations and kerf widths. 

For kerf wall inclinations up to 45⁰, photons either pass straight through the kerf, and 

reach the collection plate with their original intensity, or are reflected upwards and exit the 

system through the top of the kerf and so never reach the collection plate. Hence the intensity 

profiles for kerf wall inclinations of 30⁰ and 45⁰ are essentially identical, they have the same 

L value and the slight differences in the shape of the central peak are attributed to the process 

of using randn to determine the direction of each specific photon.  

For kerf wall inclinations greater than 45⁰ distinct side lobes with lower intensities 

than the main peak are detected. The main peak again corresponds to the portion of the beam 

the passes directly through the kerf without interacting with the material. The other portions 

of the beam are of decreased intensity because they have undergone reflection and hence had 

their intensity reduced by partial absorption during reflection. As the inclination angle (α) 

increases, the separation between the side lobes and the main peak decreases.  

Narrowing the cutting kerf by half for 80o and 85o, as illustrated in figure 4, widens 

the energy distribution. As discussed by Petring et al. [9] the angle of incidence is 

progressively decreased by multiple reflections within the cutting channel. As well as 

increasing the extent of absorption at each reflection this results in an increased angular 
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spread of photons exiting the bottom of the cut, producing a larger spread in the detected 

energy distribution at the collection plate.  

4.3 Kerf wall roughness effect 

Real kerf geometries were extracted from metallographic cross-sections and imported into the 

model (figure 6). It must be noted that these cross-sections show the final surface of the kerf 

walls and that this is not necessarily the same as a snap shot view of the roughness that 

existed during the cutting process. Nevertheless, it is clear that the assumption of flat kerf 

walls, and cut front, is not correct.  

  Figure 6 shows the modelled intensity profile obtained from the real cross-section. 

The presence of roughness has resulted in a spread in the intensity distribution. As for the 

intensity distributions shown in Figure 5, this spread is attributed to multiple reflections 

within the kerf. The irregularity of the real surface has produced an irregular intensity 

distribution. The central, straight-through, peak is still clear however the distinct side lobes 

have now disappeared, being replaced with a less distinct, irregular intensity profile. 

To investigate the effect of the kerf wall roughness, a single bump was attached to one 

side of the wall. The effect of the position of this bump on the collected intensity distribution 

is seen Figure 7. The presence of the bump increases the spread of the intensity distribution, 

and decreases the size of the central peak. It is seen that nearer the bump is to the top of the 

kerf the greater the effect it has. This can be understood by considering the ray diagram in 

Figure 8, after the bump is hit the angle of incidence is first dramatically changed and then 

more progressively decreased by multiple reflections within the cutting channel as discussed 

by Petring et al. [9]. The higher up the cut this happens the more extensive the change in 

angle of incidence will be, and hence when the photons exit the cut they will be dispersed 

through a larger range of angles. 
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Figure 6 also shows some adherent dross at the bottom of the kerf, the effect of dross 

has also been modelled. Circular features representing dross were added to the bottom of the 

cut edge, with the centre point of the circular dross centred on the bottom corners of the kerf 

walls (Figure 9).  

Figure 10 shows that the presence of dross modifies the modelled collected intensity 

profile. The lateral spread of the profile increases and the width of the straight-through peak 

decreases as part of it becomes blocked by the dross. Asymmetrical dross results in 

asymmetry in the collected intensity profile.  

5 COMPARISON OF MODELLED AND EXPERIMENTAL RESULTS 

Figure 11 shows experimentally obtained and modelled 2D surplus energy distributions. The 

relationship between lateral extent of the intensity profile generated by the cut front and cut 

front inclination angle was shown earlier, eqn. (1). The 2D surplus energy distribution shown 

below was generated using a cut front inclination of 66⁰. The good match in lateral extent of 

the two distributions could be taken to indicate that this is the actual cut front inclination. 

However, this inclination is not as large as would be expected from the published literature 

on fibre laser cutting [5].  

It must be noted that the modelled 2D energy distribution did not include any effects 

of dross or roughness of the cut front, effects which results presented above show would 

increase the spread of the energy distribution, hence it is not appropriate to attempt to match 

the extent of spread of the energy distribution here and a different approach is required.   

Examination of the experimental profile clearly shows a main, central, region starting 

with the straight through beam, then broadening to a maximum after approximately 10 mm. 

This is will be the location of the beam reflected from the cut front. The modelled 2D surplus 

energy distribution has been regenerated to take this into account. It was found that a cut 

front inclination of 77.5 ° placed the main reflected beam in the same region as the broadest 
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point of the central part of the experimental surplus energy distribution. This is in line with 

previously published reports of cut front geometry [5]. The remaining area of the 

experimental 2D surplus energy distribution, i.e. the area that extends approximately 10 mm 

from the main central region, is attributed to the effect of roughness producing a large spread 

in the directions of photons exiting the cut. This is consistent with the geometry of this 

reigon: symmetrical about the cut line, due to the two sides of the kerf but extending only 

rearwards, away from the cut front along the cut line since in this direction there is only the 

cut front with no rearwall to generate multiple reflections. 

6 CONCLUSIONS 

In this study, a 2D ray-tracing model has been written in MATLAB and applied to fibre laser 

cutting of steel. The model has been validated via comparison with geometrical analysis. This 

work has demonstrated: 

 how cut front inclination affects the main reflected beam. 

 that kerf wall inclination can generate multiple reflections which broaden the spatial 

spread of surplus energy. 

 the importance of dross and roughness in broadening the spatial spread of surplus 

energy, with the effect of roughness being more significant the nearer the top of the 

cut it occurs. 

 the significant differences between modelled and experimentally obtained 2D surplus 

energy distributions are attributed to the roughness of the cut front and kerf walls. 



10 
 

NOMENCLATURE 

 

bd/2 beam radius at sample surface (m) 

D distance between base of sample and collecting sheet (m) 

h height above base of sample where edge of beams meets cut front (m) 

L spread of intensity distribution (m) 

x horizontal offset between beam edge at sample surface and where it meets cut front 

(m) 

t sample thickness (m) 

α cut front inclination (degrees) 

θd/2 half angle divergence (degrees) 
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TABLE 1 

Comparison of calculated and modelled values for the extent of the energy distribution.  

Cut front 

inclination, α (⁰) 
Lcalc (mm) Lmodel (mm) 

75 12.7 12.0 

80 8.5 8.0 

85 5.1 4.8 
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Straight cut front Curved cut front

 
 

FIGURE 1 

 Assumed straight cut front and real curved cut front schematic. 
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FIGURE 2 

Schematics of the two 2D ray tracing simulations run: a. simulation of the cut front, b. 

simulation of the kerf walls.  
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FIGURE 3 

Intensity profiles for different cut front inclinations.  
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 FIGURE 4 

Cut front geometry details used to calculate L.  
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FIGURE 5 

Intensity profiles for different kerf wall inclinations, note the discontinuity in the x axis for 

the two profiles in the bottom row.   
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FIGURE 6 

Cross-section of real cut and corresponding modelled collected intensity distribution. 
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FIGURE 7 

Intensity profiles for kerf walls with different bumps. All bumps radius = 0.1 mm 
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FIGURE 8 

Ray tracing diagram showing effect of bump on path of photon through cut kerf. 
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FIGURE 9 

Ray tracing diagram showing effect of dross on path of photons through cut kerf. 
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FIGURE 10 

Intensity profile as a function of dross. 
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Experimental 

        

Modelled,  

inclination = 66° 

 

Modelled,  

inclination = 77.5° 

         
 

FIGURE 11 

Experimental (top) and modelled (middle and bottom) 2D surplus energy distributions, 

presented at the same magnifications. 

 


