
 1 

Probing the origins of vibrational mode specificity in intramolecular dynamics through 

picosecond time-resolved photoelectron imaging studies 

 

Julia A. Davies, Laura E. Whalley and Katharine L. Reid 

School of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom 

 

Abstract 

We have studied the intramolecular dynamics induced by selective photoexcitation of two 

near-isoenergetic vibrational states in S1 p-fluorotoluene using picosecond time-resolved 

photoelectron imaging.  We find that similar dynamics ensue following the preparation of 

the 13111 and 7a111 states that lie at 1990 cm-1 and 2026 cm-1, and that these dynamics are 

mediated by a single strongly coupled doorway state in each case.  However, the lifetimes 

differ by a factor of three, suggesting an influence of the vibrational character of the modes 

involved.  Our results clearly show the contribution of torsion-vibration coupling to the 

dynamics; this is further corroborated by comparison with the 7a111 state in S1 p-

difluorobenzene, which lies at 2068 cm-1.  We invoke a model in which van der Waals 

interactions between methyl hydrogen atoms and nearby ring carbon and hydrogen atoms 

leads to mixing of the vibrational and torsional states.  This model predicts that enhanced 

torsion-vibration coupling occurs when mode 7a is excited, consistent with our observations.

  

 

1. Introduction 

Photochemical processes, so important in Nature and in technology,1 are highly dependent 

on the routes through which energy can be funnelled.  Although these routes are dictated by 

molecular structure, they cannot easily be predicted from theoretical studies.  Experimental 

probes of energy redistribution mechanisms are therefore essential in any quest for the 

rules of thumb needed to design photochemical systems with desired properties.  With this 

in mind we have pioneered and refined a picosecond time-resolved photoelectron imaging 

technique that has the capability to provide unique insight into mechanisms of 

intramolecular energy redistribution.2-6  

 

Time-domain experiments typically track the population of an initially prepared “bright 

state” which can leak out through couplings to one or more dark states.a  The bright state 

population may oscillate, decay exponentially, or show oscillations superimposed on an 

exponential decay, depending on the number of dark states involved and the strength of the 

coupling driving the dynamics.  Oscillations in population are a signature of strong coupling 

between the bright state and specific dark states that mediate the energy redistribution, and 

the measured oscillation periods are related to energy separations between the eigenstates 

resulting from the coupling.  In cases where the loss of bright state population appears 

irreversible, radiationless transition theories7 invoke Fermi’s Golden Rule expression, 

  <V>2.  This expression correlates the exponential decay rate, , with the density of 

                                                        
a A bright state is a state that can be accessed by a transition with significant oscillator strength from 
the ground state.  A dark state cannot be accessed by a transition from the ground state.   
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available dark states, , and the square of the average coupling strength, <V>, to those dark 

states.  However, although this rule holds in some cases8 exceptions have been well-

documented for many years,6, 9-14  and factors such as mode-dependence,15 existence of 

critical “doorway” states,4, 6, 16 molecular flexibility,17, 18 molecular symmetry5 and the nature 

of substituents8 have all been claimed to play a critical role in determining the course of the 

dynamics. 

 

In order to establish the key factors that influence the rate and mechanism of energy flow it 

is necessary to conduct comparative studies.6, 12, 18-21  In the present work we consider 

intramolecular vibrational energy redistribution (IVR) in p-fluorotoluene (pFT) and 

p-difluorobenzene (pDFB); a comparison made famous by Parmenter and coworkers who 

used their pioneering chemical timing technique to determine thermally averaged lifetimes 

of bright states at varying excitation energies.18, 22  The advantage of studying IVR is that the 

energy redistributes among levels within the same adiabatic electronic state; it thus 

provides the simplest prototype for intramolecular dynamics.  With our technique we are 

able to track the population of the bright state, and of specific dark states involved in the 

redistribution process, by obtaining photoelectron images in 1 ps snapshots after the initial 

photoexcitation.2-6  This in turn enables the determination of mechanistic details concerning 

the redistribution dynamics.  For example, we have previously observed and analyzed 

quantum beating patterns in photoelectron intensity following the excitation of the 6a1 

vibrational level that lies at 460 cm-1 internal energy in S1 toluene.2  This analysis led to the 

identification of the relevant dark states, the mechanisms by which they are coupled to the 

bright state, and the determination of eigenvalue energies and matrix coefficients.  

Furthermore, we have shown that this technique is highly sensitive to changes in IVR 

dynamics associated with different torsional levels of the methyl group.2  

 

In the present work, we investigate the redistribution dynamics following the preparation of 

vibrational levels lying at close to 2000 cm-1 in the S1 excited state.  We prepare the 7a111 

bright state in pFT, which lies at 2026 cm-1, and compare the results with those from earlier 

work on the same level in pDFB,5 which lies at 2068 cm-1.  The 7a111 vibrational level involves 

excitation of two vibrational modes, 1 and 7a, which are labelled using Varsányi’s 

notation.23,b  Mode 1 has ring breathing character and mode 7a has C-F stretching character; 

the relevant mode diagrams are shown in Fig. 1.  The comparison between the two 

molecular systems enables us to observe the effect of the attached methyl rotor on the 

ensuing dynamics.  We also prepare the 13111 bright state in pFT which lies close by in 

energy (1990 cm-1 in S1) and involves excitation of mode 13 which has C-CH3 stretching 

character (see Fig. 1).  Study of this level therefore enables us to observe the effect of mode 

character on the intramolecular dynamics.   

 

2. Experimental 

                                                        
b We note that the vibrational modes in pDFB that are denoted 7a and 1 in Varsányi’s notation are often referred 
to as modes 3 and 5, respectively, in Mulliken’s notation.   
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The picosecond laser system (Coherent) and velocity-map imaging photoelectron 

spectrometer have been described in detail elsewhere.2  The two UV outputs from the laser 

system have pulse durations of 1 ps and bandwidths of ~13 cm-1. The co-propagating laser 

beams are focused into the photoelectron spectrometer chamber using a 1.0 m focal length 

lens, resulting in typical pump and probe pulse intensities of 5 x 109 W/cm2 and 

1 x 1011 W/cm2, respectively. The sample of interest, pFT, is seeded in 3 bar He and 

expanded through a pulsed nozzle (General Valve) operating at a repetition rate of 40 Hz. 

The molecular beam is skimmed and a rotational temperature of ~10 K is achieved. Both 

laser beams are spatially and temporally overlapped with the pulsed molecular beam inside 

the spectrometer chamber, which has a typical operating pressure of 4 x 10-8 mbar. The 

pump laser pulse excites the cold molecules to a chosen vibronic state, and a time-delayed 

probe pulse ionizes the excited molecules. A three-element electrostatic lens focuses the 

electrons onto a vacuum imaging detector (Photek) to create a two-dimensional image, 

which is captured using a CCD camera and recorded using IFS32 software (Photek). The 

pBasex method24 is used to reconstruct 3D velocity distributions of the photoelectrons from 

the measured 2D images and to obtain plots of photoelectron intensity as a function of 

image radius. Photoelectron spectra can then be realized using the known adiabatic 

ionization potential of 70946 cm-1 for pFT.25   

 

Three different types of experiment were carried out on pFT, all of which have been 

discussed in detail elsewhere.2, 4   

(a) Resonant-enhanced multi-photon spectroscopy (REMPI) was employed in order to 

identify the wavelengths needed to select chosen bright states as well as to establish 

the shape and width of the absorption profile associated with each bright state.  This 

technique entailed measurement of the total photoelectron signal whilst scanning 

the pump wavelength from 273.0 to 250.1 nm over the S0 S1 absorption profile.  

The probe wavelength remained fixed at 284.3 nm and a pump-probe time delay of 

10 ps was used.   

(b) Slow electron velocity-map imaging (SEVI) was used to obtain plots of photoelectron 

intensity versus ion internal energy with a mean resolution of ~50 cm-1.  This 

technique provides the best possible energy resolution in the obtained 

photoelectron spectra but is time-consuming and cannot be used to cover large sets 

of time delays.  In this technique pump wavelengths of 257.40 and 257.15 nm, 

resonant with the 13111 and 7a111 levels in S1, were used along with selected pump-

probe time delays of 0, 1, 2.5, 5, 10 and 100 ps.  At each chosen time delay, spectra 

were measured using six probe wavelengths, which varied from 280.3 to 298.3 nm, 

and the highest resolution portions of these six spectra were spliced together to 

produce a single SEVI spectrum.   

(c) Two-color photoelectron velocity-map imaging (VMI) was used to obtain 

photoelectron spectra via the 13111 and 7a111 levels in S1 using fixed probe 

wavelengths of 284.3 and 283.3 nm, respectively.  The use of a single probe 

wavelength results in varying resolution across each spectrum from ~130 to 

~50 cm-1, but allows much faster data acquisition times than can be obtained using 
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SEVI. This enabled spectra to be measured at ~30 different time delays between 0 

and 500 ps.  

 

3. Results  

A. p-fluorotoluene (pFT) 

Figure 2 shows a REMPI spectrum measured across the S0 S1 absorption profile of pFT.  

The peaks corresponding to the 13111 and 7a111 vibrational states are identified, as well as 

those peaks assigned to fundamentals of the contributing modes 1, 13 and 7a.  In Figs. 3a 

and 3b we present SEVI spectra measured at selected time delays following excitation of the 

S1 13111 and 7a111 levels. In each case, the 0 ps SEVI spectrum provides a signature of the 

initially prepared vibrational wavepacket in S1, which in turn resembles the zero-order bright 

state X111, where X1 = 131 or 7a1.  Using the D0 vibrational frequencies25 and spectroscopic 

patterns26 that have previously been determined for this molecule, it has been possible to 

assign various peaks in each 0 ps spectrum to vibrational states of the cation. A similar series 

of peaks is observed in both cases, with the four most intense assigned to X1, X16a1, X111 and 

X112.  The SEVI spectra observed at later time delays provide signatures of the coupled zero-

order states that are populated as the wavepacket evolves.  Each SEVI spectrum therefore 

provides a snapshot in time of the IVR dynamics that occur in the S1 state. 

 

In the SEVI spectra measured at 0 ps the peak assigned to X111, which arises from the v = 0 

transition S1 X111  D0 X111, lies at an ion internal energy of ~2055 cm-1 for 13111 and 

~2155 cm-1 for 7a111.  In both cases, the intensity of the v = 0 peak increases from 0 to 

2.5 ps, but decreases at 5 ps. The peak also shifts to ~10 cm-1 higher energy at 2.5 ps.  From 

these observations, we deduce that the v = 0 transition at 2.5 ps originates not from S1 

X111, but from ionization of a dark state in S1 that is strongly coupled to X111. The 

manifestation of coupling between the bright and dark states is also observed in the relative 

intensities at 0, 2.5 and 5 ps of the SEVI peak assigned to X1 (see Fig. 3a and Fig. 3b).  This 

behavior is characteristic of the bright state population leaking away and then recurring.  By 

contrast, the SEVI spectra at 100 ps are dominated by unstructured signal, comprising 

unresolved ion states.  This is consistent with the ionization of a large number of weakly-

coupled dark vibrational states (bath states) that have become populated in S1, and is 

expected for a statistical IVR process.  The observation of time-dependent behavior 

exhibiting both quantum beating and exponential loss of population has previously been 

observed by our group4 and by others,16 and occurs when strongly coupled S1 dark states 

operate as “doorway states” in the IVR dynamics, mediating the flow of energy away from 

the bright state and into a bath of dark states.  It is the strong coupling between the bright 

state and the doorway states that gives rise to the quantum beats. 

 

When considering IVR dynamics involving doorway states it is instructive to organize the 

dark states that could potentially couple to the bright state according to their likely coupling 

strength, based on the required change in vibrational quanta, the expected energetic 

proximity and the coupling selection rules.27  This arrangement, which gives rise to a tier 

structure,9 enables the identification of likely candidates for the doorway states.  The search 

can be further refined by including the constraint that ionization of a given candidate must 
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give rise to a doorway signature peak at the relevant ion energy observed in the SEVI 

spectra.4  We have conducted a search along these lines, using the methodology discussed in 

detail in Refs. 4 and 6. In the present case we have restricted our search to zero-order states 

whose energies are predicted to lie within 25 cm-1 of the required S1 energy and 50 cm-1 

of the required D0 energy. Surprisingly, given the relatively high density of states at this level 

of excitation, only two states appear in the lowest tier, one of which shows much closer 

agreement with the required D0 energy.  This is the X19b2 vibrational state, whose 

population requires a change of only three vibrational quanta and which is predicted to lie 

~4 cm-1 from the X111 bright state in S1.  Further support for this assignment is provided by 

the observation of strong anharmonic coupling between 11 and 9b2 in a previous study.3  

Accordingly, we assign the doorway state to X19b2 and have added corresponding ion state 

assignments to the 2.5 ps spectra in Figure 3.   The vibrational motion associated with mode 

9b is shown in Fig. 1. 

 

B. Comparison with p-difluorobenzene (pDFB) 

Figures 4 and 5 show two-color photoelectron spectra that were measured for pFT following 

excitation of the 13111 (Figs. 4a, 5a) and 7a111 (Figs. 4b, 5b) vibrational states in S1 at a 

selection of time delays, together with equivalent photoelectron spectra measured 

previously for pDFB via the S1 7a111 state (Figs. 4c, 5c).  In each of the three cases the five 

most intense peaks have been labeled from A to E in the 0 ps spectra. The energy of each 

peak is given in Table I along with the assignment of the ion state that dominates each peak.  

It is interesting to note that a small amount of unstructured signal is observed below the 

peaks in the 0 ps spectra for pFT, which is not present for pDFB; this signal is particularly 

pronounced for the S1 7a111 level in pFT (Figs. 4b, 5b).  The presence of unstructured signal 

at 0 ps suggests that some of the eigenstates associated with weakly coupled bath states lie 

outside of the laser spectral profile (see Section 4A).   

 

In all three cases (see Fig. 4), oscillations in the peak intensities are seen to occur during the 

first 6 ps. In the two pFT cases (Figs. 4a, 4b), the intensities of peaks A, B and E decrease 

between 0 and 2 ps whilst peaks C and D increase.  At 5 ps the spectral profiles resemble 

those seen at 0 ps, albeit with lower peak intensities and increased congestion; this is 

consistent with an oscillation period of ~5 ps, as discussed in the previous section. The pFT 

photoelectron spectra measured at longer times (Figs. 5a and 5b) have lost most of their 

resolved structure by 30 ps.  Spectral congestion at long time delays was also observed in 

the higher resolution SEVI spectra shown in Fig. 3.  The fact that the congestion is more 

pronounced at 30 ps for the 7a111 level is consistent with a shorter IVR lifetime for this level 

compared with 13111; this is discussed further in Section 4B.  In the case of pDFB (Fig. 4c) the 

intensities of peaks A and E decrease between 0 and 4 ps, whilst that of peak B increases; 

the intensities of the other peaks show more subtle changes. This behavior has been 

discussed in Ref. 5 and is found to be the early time signature of a wavepacket undergoing 

extended quantum beating that includes an oscillation period of ~8 ps. Importantly, the 

photoelectron spectra have well-resolved structure for many hundreds of picoseconds (see 

Fig. 5c), and therefore the IVR mechanism involves energy redistribution among a restricted 

set of coupled vibrational states.5   
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C. IVR timescales 

(i) p-fluorotoluene 

In order to gain accurate values for the oscillation periods and exponential decay times for 

the two pFT levels, the areas of peaks A to E that lie above the unstructured signal in the 

photoelectron spectra have been determined using the standard trapezoidal rule, at all 

measured time delays.  The areas of peaks A and C predominantly reflect the populations of 

the bright and doorway states in S1, and their time profiles are shown by the data points in 

the top and middle panels of Figs. 6a and 6b.  The areas of three unstructured spectral 

regions that lie in between the peaks have also been deduced; these areas represent the 

time-dependent growth of the bath state population and examples are shown in the bottom 

panels of Figs. 6a and 6b.   

 

The time-dependent intensity, I(t), for each peak A-E is fitted to the empirical equation;  

 

 
2

 exp exp cos
       

       
       b c osc

t t t
I t a b c     (1) 

 

Examples of the fit results are shown by the solid lines in the upper and middle panels in 

Figs. 6a and 6b.  The values determined for b and c give a measure of the irreversible IVR 

lifetime, IVR, whilst osc reflects the oscillation periods associated with the reversible transfer 

of vibrational state population between the bright and doorway states in S1.  The values 

determined for a, b and c reflect the total photoelectron intensity and will be different for 

each peak, but because the values of b, c, and osc reflect the IVR dynamics they should be 

the same for each set of peaks A-E.  Therefore, the time constants can be accurately 

determined even though the photoelectron peaks encompass unresolved ion vibrational 

states.  The empirical equation used to provide fits to the unstructured spectral regions is 

similar to Eq. 1, but it omits the last term and therefore provides values for b but not for c 

or osc.  Examples of these fit results are shown by the solid lines in the lower panels of Fig. 

6a and 6b.   

 

For each of the two levels studied in S1 pFT, we take IVR to be the average of the ten values 

of b and c determined for the photoelectron peaks A-E plus the three values of b 

determined for the three chosen unstructured spectral regions.  The standard deviation of 

these 13 values is taken to be the error bar on IVR.  An average value of osc is determined 

for the five photoelectron peaks A-E and is related to the energy separation, E12, between 

the two eigenstates containing the largest contributions from the bright state and the 

doorway state, according to the equation
  
DE

12
= h t

osc
.  In Table II, the deduced values for 

IVR, 
 
t

osc
and E12 are presented for the two S1 pFT levels 13111 and 7a111.  Comparison with 

the IVR value determined for the 7a111 level by Parmenter and coworkers12, 22 for a room 

temperature sample has also been included.  

 

(ii) p-difluorobenzene 
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In the case of pDFB, the time behavior of the IVR dynamics for the S1 7a111 bright state has 

already been analyzed in Ref. 5; the previously deduced
 
t

osc
 values are given in Table II.  The 

value of IVR is taken to be infinity because this level does not appear to undergo statistical 

IVR to a bath of dark vibrational states, although on a much longer timescale it will lose 

population through fluorescence. We also note that rotational dephasing28 causes the 

oscillation amplitudes to decrease on a timescale of ~400 ps.  The IVR value of 97 ps 

determined by Parmenter and coworkers for a room temperature sample has also been 

included for comparison.12, 22   

 

In Fig. 6c we show time profiles of three photoelectron peak areas for pDFB, for comparison 

with the pFT data shown in Figs. 6a and 6b.  The top and middle panels of this figure show 

the time profiles for peaks A and B. Even though the oscillation amplitude decreases 

between 0 and 40 ps we know from our previous work that it increases again at later time 

delays,5 as a consequence of the dynamics of a complex beating pattern which persists for 

> 1 ns.  This is in contrast to the oscillation amplitude seen for the pFT levels, which 

continues to decrease as the time delay gets longer. In the lowest panel of Fig. 6c, we 

present the time profile for a pDFB photoelectron peak at 2550 cm-1, illustrating the 

presence of an oscillatory component with a relatively long period of 103 ps.  The shape of 

this profile is distinctly different from the exponential increase in signal observed for pFT in 

the lower panels of Figs. 6a and 6b.  The solid lines in Fig. 6c represent fits of the data to a 

series of cosine terms with oscillation periods corresponding to the 
osc

 values given in 

Table II.     

 

4. Discussion 

A. Mode-dependence:  13111 and 7a111 in S1 p-fluorotoluene 

Comparison of the results for the 13111 and 7a111 levels in S1 pFT reveals a number of 

similarities.  Firstly, the IVR process is mediated by a doorway state in both cases, as 

discussed in Section 3A.  Secondly, assignment of the ion states observed in the SEVI spectra 

leads to the conclusion that the doorway state can be assigned to X19b2 in both cases.  

Thirdly, the oscillation period observed for both levels is ~5 ps, corresponding to an 

eigenstate separation of ~6.7 cm-1.  However, a notable difference is that the IVR lifetimes 

differ by a factor of approximately three; from ~18 ps for S1 13111 to ~7 ps for S1 7a111.  

Because the two S1 levels have very similar internal energies (~30 cm-1 apart at an internal 

energy of ~2000 cm-1), and therefore lie in a region of similar state density, any differences 

in the IVR mechanism or lifetime is most likely caused by a dependence on the vibrational 

character of mode X.  Thus, we infer that mode 7a promotes IVR more effectively than mode 

13.   

 

As mentioned in Section 3B, the unstructured photoelectron intensity that appears at 0 ps is 

more pronounced for 7a111 than for 13111.  This could be explained if a larger proportion of 

the contributing eigenstates for 7a111 lie outside the laser spectral profile.  Such an 

explanation is consistent with the shorter lifetime determined for 7a111 in the present work 

and with the widths of peaks observed in an absorption spectrum measured by Parmenter’s 

group.29  Because the eigenstates responsible for the unstructured signal at 0 ps must be 
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widely separated in energy we consider what this tells us about the coupling interaction 

giving rise to them.  For simplicity, we consider the coupling of a pair of zero-order states 

with energies Ea and Eb. The resulting eigenstate energy separation, E12, is given by: 

 

		
DE

12
= DE

ab

2 + 4V
ab

2( )
1/2

,     (2)  

 

where Eab = Ea  Eb and Vab is the Hamiltonian coupling matrix element.  Therefore, 

eigenstates that are widely separated in energy are associated with large coupling matrix 

elements (Vab) and/or large zero-order energy separations (Eab).  Furthermore, when E12 is 

significantly greater than the laser bandwidth (E12 > 13 cm-1 in this case) such that only one 

of the eigenstates is excited, then the initially excited state will contain contributions from 

both the bright and dark zero-order states and there can be no time dependence associated 

with the coupling of the two zero-order states.  These ideas are discussed in detail by Felker 

and Zewail30 and are illustrated in Fig. 7.  The principles still remain when multiple zero-

order levels are involved, as in the specific cases considered here, and will be utilized in the 

interpretation of our results.   

 

In Figs. 6a and 6b the time profiles show only one resolved oscillation period.  This period is 

associated with the strong coupling between the bright state, X111, and the doorway state, 

X19b2; coupling to any other zero order states must therefore be weaker than this.  We can 

obtain a reasonable estimate of Vab ~ 3.0 cm-1 for the strong coupling limit by using results 

from our previous work on the 11/9b2 Fermi resonance in S1 pFT.2  Using this limit, together 

with the relationship shown in Eq. 2, we show in Fig. 8 that we require Eab > 11 cm-1 in 

order to achieve E12 > 13 cm-1. We can thus deduce that large energy separations between 

zero-order coupled states are responsible for the exponential decays in bright state 

population observed for both pFT levels. This in turn means that the faster IVR dynamics 

observed for 7a111 compared with 13111 result from larger values of Eab, i.e., from coupling 

to zero-order bath states that are farther away in energy from the bright state.     

 

In order to explore further the mode-dependence of the IVR dynamics, we invoke additional 

experimental work in which we have prepared S1 pFT in other vibrational levels that involve 

the contributing modes 1, 13 and 7a.3, 6  In Fig. 9 time profiles of the Δv = 0 photoelectron 

peaks are shown following excitation of the 11, 131 and 7a1 bright states; these states lie at 

S1 internal energies of ~800, 1194 and 1230 cm-1, respectively.  The observed time profiles 

contain some features in common with those observed for the X111 levels (Figs. 6a and 6b). 

For example, the 5 ps oscillations observed for both X111 bright states are also present for 

the 11 bright state (Fig. 9a).  Similarly, the overall exponential decay of population observed 

for both X111 bright states is also a feature of the time profiles observed for each X1 bright 

state (Figs. 9b and 9c). Furthermore, the exponential decay timescale for level X1 is shorter 

by a factor of approximately four when X = 7a compared with when X = 13 (see Table III).  

This provides further evidence that mode 7a enhances IVR in pFT.   

 

The key timescales extracted from all the pFT time profiles shown in Figs. 6 and 9 are 

summarized in Table III.  It is particularly interesting to compare the IVR values determined 
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for the 7a1 and 13111 levels in S1 pFT.  The 7a1 level lies at an internal energy of 1230 cm-1, in 

a region of density of states ~10 times lower than the corresponding region for the 13111 

level which lies at 1990 cm-1.  According to Fermi’s Golden Rule, the IVR lifetime of S1 7a1 

should be ~10 times longer than the IVR lifetime of S1 13111, assuming similar average 

coupling strengths in both cases.  However, the measured IVR lifetime for the 7a1 level 

(13 ps) is actually shorter than that of the 13111 level (18 ps); see Table III.  This observation 

is again consistent with mode 7a being significantly more effective than mode 13 at 

promoting IVR in pFT. We discuss the reasons for this in Section 4C. 

 

B. Influence of methyl rotor:  7a111 in S1 p-fluorotoluene and S1 p-difluorobenzene  

In order to understand the role of the methyl group in accelerating IVR, we compare the 

7a111 photoelectron spectra from pFT and pDFB (see Figs. 4b and 4c). In the case of pDFB, 

we have previously shown that restricted IVR dynamics occur that are controlled by strong 

anharmonic coupling between the bright state and three dark states.  These dark states have 

been assigned to 7a16a2 (3162), 11111 (51282) and 6a2112 (62282), where the Mulliken labels 

commonly used for pDFB are given in parentheses.5   Extended quantum beating of the 

bright state population occurs for at least 1 ns with no overall loss to bath states; an 

unpassable bottleneck is reached.  By contrast, we have seen in the present work that in the 

case of pFT population leaks away from the bright state with a deduced lifetime of only 7 ps.  

The IVR dynamics that result from excitation of 7a111 are therefore dramatically different in 

the two molecules.   

 

The advantage of the sensitivity of our technique to quantum beating effects can be seen in 

Figs. 6b and 6c in which beating appears as a prominent feature of the time profiles shown.  

Because the bright state is strongly coupled through anharmonicity to a doorway state in 

both molecules, it must be the coupling to the bath of available dark states that differs so 

dramatically in the two cases.  On first inspection, it seems likely that the difference arises 

primarily from the restriction in the number of states that are available for coupling in pDFB 

as a consequence of the higher molecular symmetry and lack of torsional mode.  However, 

in pDFB the density of available states with the correct symmetry is ~8 per cm-1, and states 

separated by many cm-1 can in principle be coupled through anharmonicity.31 It would be 

reasonable to expect, therefore, that >100 states are available to couple to the bright state.  

The fact that only three of these make a significant contribution suggests that weak 

anharmonic coupling does not occur in pDFB, which in turn suggests that it is unlikely to 

occur in pFT.   

 

As we remarked in Section 3B, any unstructured signal in the photoelectron spectrum at 0 ps 

is negligible for the 7a111 level in pDFB by comparison with that observed for either of the 

pFT levels; therefore we deduce that anharmonic coupling alone does not lead to spectral 

congestion.  This in turn suggests that the influence of torsion-vibration coupling must 

account for the spectral congestion observed in the pFT photoelectron spectrum at 0 ps.  If 

so, we can deduce that mode 7a facilitates torsion-vibration coupling to zero-order states 

that are far from the bright state.  We therefore conclude that strong anharmonic coupling 

to just a few dark states is a feature for both pDFB and pFT, weak anharmonic coupling is not 
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a feature for either, but weak torsion-vibration coupling to a large number of dark states 

occurs for pFT.  The absence of a methyl rotor therefore severely restricts the IVR dynamics.   

 

C. Role of torsion-vibration coupling in mode-dependence  

We have demonstrated that torsion-vibration coupling is the mechanism responsible for the 

irreversible IVR observed for the 7a111 level in pFT and we have deduced that this 

mechanism enables coupling to dark states lying outside the laser spectral profile.  We can 

therefore infer that torsion-vibration coupling is also the mechanism responsible for 

coupling to a bath of states for the 13111 level in pFT.  Further evidence for the role played 

by the methyl rotor for levels containing mode 13 can be obtained from the time profile 

shown in Fig. 8b following excitation of the 131 level at ~1194 cm-1.  This plot shows that the 

bright state population only reduces by 50% over the whole IVR timescale.  This is consistent 

with only one torsional component undergoing IVR, which in turn is consistent with the IVR 

being driven by a torsion-vibration coupling mechanism.  This phenomenon has been 

discussed in more detail in a previous publication.6    

 

In order to understand why vibrational states involving mode 7a should have a higher 

propensity for torsion-vibration coupling than vibrational states involving mode 13 we refer 

back to the atomic displacements illustrated in Fig. 1.  In order for torsion-vibration coupling 

to occur there needs to be an interaction between the methyl group and other atoms in the 

molecule.  It is pertinent to ask therefore what mechanisms are responsible for this 

interaction.  Experimental work from Borst and Pratt32 and computational work from Nakai 

and Kawai33 supports the idea that a hyperconjugative effect is responsible, but such an 

effect does not provide a clear reason for the mode-dependence that we have observed.  In 

earlier work Moss et al. developed a simple model of the interaction between the methyl 

group and the aromatic ring and used it to correctly predict the size of the torsional barrier 

and, moreover, to account for spectral congestion observed at low energies in S1 pFT. 34  In 

this model the interaction results from net van der Waals repulsion between the methyl 

hydrogen atoms and nearby carbon and hydrogen atoms attached to the aromatic ring.  

Accordingly, the vibrational motion leads to modulation of the height and shape of the six-

fold torsional potential, enabling mixing of the ring vibrational states and the methyl rotor 

states.  Here we extend this model to consider the relative interaction energies that would 

be expected when different vibrational modes are excited.   

 

In order to characterize the geometry and vibrational modes of pFT in its S1 electronic state, 

we have conducted calculations at the CIS/6-311G** level of theory, consistent with those 

discussed in our earlier work,3 with the methyl group in the lowest energy configuration, i.e., 

staggered with respect to the plane of the aromatic ring.  These calculations have enabled 

us to determine the Hm-Hr and Hm-Cr separations between each methyl hydrogen atom (Hm) 

and nearby atoms on the aromatic ring (Hr and Cr) at the two extremes of vibrational motion 

associated with each of the modes 1, 13 and 7a.  This in turn has enabled us to calculate the 

net van der Waals interaction energy, EvdW, between the methyl rotor and the ring, which is 

dominated by interactions between those Hm and Hr/Cr atoms that are closest to each other 

at each extreme of motion.  The pertinent results of these calculations, which use the van 

der Waals parameters and equations provided by Moss et al,34 are summarised in Table IV.  
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The maximum EvdW value calculated for mode 1 (215 cm-1) is little different from the value 

calculated at equilibrium (137 cm-1).  By contrast, the maximum EvdW value for mode 7a 

(1417 cm-1) is more than 10 times higher than the equilibrium value and 19% higher than the 

equivalent value of EvdW for mode 13 (1187 cm-1).  Even more significantly, as the nuclei 

move when mode 7a is excited the van der Waals interaction energy changes by 1463 cm-1, 

which is 32% higher than the value of 1111 cm-1 for mode 13.  Thus, a particularly significant 

modulation of the torsional potential occurs during the vibrational motion associated with 

mode 7a, leading to enhanced mixing of the ring vibrational states and the methyl rotor 

states. 

 

A simple van der Waals model therefore predicts that vibrational states involving mode 7a 

are particularly susceptible to torsion-vibration coupling.  Such a prediction is consistent 

with our observation that the IVR lifetime associated with 7a111 is shorter by a factor of ~3 

than the IVR lifetime of the nearly isoenergetic level 13111, with which the 7a111 level shares 

many characteristics.  It is also consistent with the relative IVR lifetimes associated with 7a1 

and 131.  (See Table III). 

 

5. Conclusion 

Similar dynamics in S1 pFT ensue following the photoexcitation of the 13111 state at 

1990 cm-1 and the 7a111 state at 2026 cm-1, with the IVR dynamics mediated by a single 

strongly coupled doorway state in each case.  The doorway states have been assigned to 

1319b2 and 7a19b2, and IVR lifetimes of 18 and 7 ps, respectively, have been determined.  

This difference in lifetime cannot be explained by differences in the total densities of states, 

and evidence of mode-dependent dynamics has been provided, where the promoting role 

played by mode 7a is related to its enhanced capability to couple via a torsion-vibration 

mechanism to zero-order dark states that have energies far from the bright state.  This 

behavior is consistent with the promotion of torsion-vibration mixing by a van der Waals 

interaction between the methyl group and the aromatic ring.  In contrast to the short IVR 

lifetime measured via the 7a111 level in pFT, restricted IVR is observed following the 

preparation of the same level in pDFB.  This difference is consistent with the loss of the 

torsion-vibration coupling route to energy redistribution in pDFB.  
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Table I: Ion internal energies (cm-1) for the photoelectron peaks labelled A-E in Fig. 4, given 
to the nearest 10 cm-1, and assignments for the ion states that make the largest contribution 
to each peak at 0 ps. 
 

S1 

state 
A B C D E 

pFT 

13111 
1230 131 1670 1316a1 2060 13111 2490 131116a1 2870 13112 

pFT 

7a111 
1330 7a1 1770 7a16a1 2160 7a111 2610 

7a1116a1 

+ 7a2 
2970 7a112 

pDFB 

7a111 
1380 7a1 1810 7a16a1 2210 7a111 2670 7a1116a1 3030 7a112 

 

 

 

Table II: IVR lifetimes (τ IVR), oscillation periods ( osc ) and eigenstate energy separations (ΔE) 

determined for selected S1 vibrational levels in pFT and pDFB.   

 

Molecule Level 
S1 energy / 

cm-1 

τ IVR / ps 
osc / ps a ΔE / cm-1  

a b 

pFT 13111 1990 18.1 ± 3.4 - 4.94 ± 0.01 6.75 ± 0.02 

pFT 7a111 2026 7.0 ± 1.5 3.4 ± 0.5 5.07 ± 0.08 6.58 ± 0.10 

pDFB 7a111 2068 ∞ 97 
205, 103, 9.2, 

8.8, 8.5, 8.1 

0.16, 0.32, 3.6, 

3.8, 3.9, 4.1 

 
a Values for pFT are from this work; those for pDFB are from Ref. 5.  Because a “restricted” 

IVR mechanism is observed in pDFB, the IVR lifetime can be considered to be infinite. 
b Values from chemical timing experiments by Parmenter’s group. The value for pFT is the 

reciprocal of the IVR rate given in Ref. 12 whilst the τ IVR value for pDFB is taken directly 

from Ref. 22.   
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Table III: IVR lifetimes (τ IVR), oscillation periods ( osc ) and eigenstate energy separations (ΔE) 

determined using picosecond photoelectron imaging spectroscopy following the excitation 

of five bright vibrational states in S1 pFT; see text.  

 

Level 
S1 energy / 

cm-1 
τ IVR / ps osc / ps ΔE / cm-1  

11 ~800 ∞ 5.0, 5.4a 6.7, 6.2 a 

131 1194 50b - - 

7a1 1230 13 - - 

13111 1990 18 4.9 6.8 

7a111 2026 7 5.1 6.6 

 
a Values taken from Ref. 3. 
b Value taken from Ref. 6. 
 
 
 
 
Table IV: Atomic separations corresponding to a methyl hydrogen atom (Hm) and the closest 
ring hydrogen (Hr) and carbon (Cr) atom, and the net van der Waals interaction energies 
resulting from the sum of pairwise interactions between the methyl and nearby ring atoms 
in pFT.  These parameters are calculated at equilibrium and at two extremes of vibrational 
motion, (i) and (ii), for each of modes 1, 13 and 7a.   
 

 
Equilibrium 

Mode 1 Mode 13 Mode 7a 
 (i) (ii) (i) (ii) (i) (ii) 

R(Cr-Hm)min / Å 2.67 2.78 2.60 3.07 2.27 2.74 2.60 
R(Hr-Hm)min / Å 2.46 2.44 2.51 2.34 2.59 2.91 2.02 
EvdW

a / kJ mol-1 1.63 0.70 2.57 0.91 14.20 -0.55 16.95 
EvdW

a / cm-1 137 59 215 76 1187 -46 1417 

EvdW
b / cm-1 0 156 1111 1463 

 
a EvdW is the net van der Waals interaction energy that occurs at the listed configuration and 
is calculated using the van der Waals parameters given in Ref. 34. 
b EvdW is the maximum change in van der Waals energy that occurs during the vibrational 
motion 
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Figures 
 

 
 

Fig. 1: Schematic diagrams of calculated vibrational modes 7a and 1 in S1 pDFB and modes 

7a, 1, 13 and 9b in S1 pFT.  The calculations were performed at the CIS/6-311G** level of 

theory using Gaussian 03. The arrows provide vector representations of the atomic 

displacements and a lower threshold of 0.1 Å has been used.     

 

 

 

 

 

 

 

 

 
 

Fig. 2: A (1 + 1) Resonance-enhanced multiphoton ionization (REMPI) spectrum via the S1 
excited state in pFT obtained using 1 ps laser pulses with a pump-probe time delay of +10 ps 
and a fixed probe wavelength of 284.3 nm. Total photoelectron intensity is plotted versus S1 
internal energy. Labels are included for the 13111 and 7a111 S1 states that lie at ~2000 cm-1 
and are studied in this work, as well as those peaks assigned to fundamentals of the 
contributing modes 1, 13 and 7a. 
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Fig. 3: Slow electron velocity-map imaging (SEVI) spectra measured via (a) 13111 and (b) 

7a111 in S1 pFT at selected time delays.  
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Fig. 4: Photoelectron spectra at selected early time delays following the excitation of (a) the 

13111 vibrational state in S1 pFT, (b) the 7a111 vibrational state in S1 pFT and (c) the 7a111 

vibrational state in S1 pDFB.  The probe wavelengths were 284.30, 283.30 and 255.75 nm for 

the spectra in panels a, b, and c, respectively.  Assignments of the peaks labelled A to E are 

given in Table I. 
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Fig. 5: As for Fig. 4 but for later time delays up to 500 ps.  The photoelectron spectrum at 
zero time is included for comparison. 
 
  



 19 

 

 
 

Fig. 6:  Plots showing the time-dependent intensities of selected peaks and unstructured 
regions in the photoelectron spectra for the (a) 13111 vibrational state in S1 pFT, (b) 7a111 
state in S1 pFT and (c) 7a111 state in S1 pDFB. The filled circles represent experimental data 
points, and the solid lines represent fits.  All intensity ranges start at zero but a different 
intensity scale is used for each panel so that changes in photoelectron peak intensities with 
time are easily observed. 
 
 



 20 

 
 
Fig. 7: A cartoon to illustrate various scenarios that can occur (see Section 4A).  In all cases 
the bright zero order state is labelled |a> and a dark zero order state to which it is coupled is 
labelled |b>.  States |a> and |b> each have a characteristic photoelectron spectrum (cyan 
and magenta).  The resulting eigenstates are labelled |1> and |2>.  If the eigenstates both lie 
within the bandwidth of the pump pulse (panels (a), (b) and (c)) then they are coherently 
excited.  In principle this can lead to time-dependence in the observed photoelectron 

spectra which are illustrated at t = 0 and at t = h/2E12, where E12 is the energy 
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separation of |1> and |2>.  However, this will only be observed if there is significant 
coupling between |a> and |b>.  In panel (a) the coupling is zero (Vab = 0) and so eigenstate 
|2> has no bright state character.  In this case |b> cannot acquire any population.  In panel 
(c) (strong coupling) eigenstate |2> has 50% bright character and |b> will acquire significant 
population causing the photoelectron spectra to oscillate strongly with a period inversely 
proportional to the eigenstate energy separation.  In panels (d), (e) and (f) the eigenstate 
separation is larger than the bandwidth of the pump pulse.  In these cases there is no 
coherent excitation and so no time dependence can result, but if there is significant coupling 
the photoelectron spectra will show both bright and dark state character at all time delays. 
 
 
 
 
 

 
Fig. 8: The dependence of the eigenstate energy separation, ΔE12, on the zero-order state 
separation, ΔEab, for selected values of the Hamiltonian coupling matrix element, Vab.  For a 
strong coupling limit of Vab = 3 cm-1, a value of ΔEab > 11 cm-1 is required to obtain ΔE12 > 13 
cm-1.    
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Fig. 9: Plots showing the time-dependent intensities for the v = 0 transitions in 
photoelectron spectra measured via the (a) 11, (b) 131 and (c) 7a1 vibrational states in S1 pFT.  
All intensity ranges start at zero so that the relative change in peak height is seen with 
respect to time. 
 


