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Abstract

We consider an active search problem in intensionally speci-
fied structured spaces. The ultimate goal in this setting is to
discover structures from structurally different partitions of a
fixed but unknown target class. An example of such a process
is that of computer-aided de novo drug design. In the past 20
years several Monte Carlo search heuristics have been devel-
oped for this process. Motivated by these hand-crafted search
heuristics, we devise a Metropolis–Hastings sampling scheme
where the acceptance probability is given by a probabilistic
surrogate of the target property, modeled with a max entropy
conditional model. The surrogate model is updated in each iter-
ation upon the evaluation of a selected structure. The proposed
approach is consistent and the empirical evidence indicates
that it achieves a large structural variety of discovered targets.

1 Introduction
We consider an active classification problem in structured
spaces, where the goal is not to learn a hypothesis but to
discover a diverse set of structures exhibiting a target property.
A variant of this problem where the only goal is to discover
targets is known as active search (Garnett et al. 2012).

In the applications we consider, the search space is speci-
fied only intensionally and its cardinality is at least exponen-
tial in the size of its combinatorial objects (e.g., number of
edges in a graph). Thus, the extension of the search space
can neither be completely stored on a disk nor enumerated in
feasible time. The structures we aim to discover are charac-
terized by a target property that is a priori not known for any
structure and is expensive to evaluate on each structure. The
evaluation process can be noisy and it is simulated with an
oracle. The structures exhibiting the target property are typi-
cally rare and we can not assume that they are concentrated
in a small region of the search space. We are thus interested
in finding a diverse set of candidates that spans the whole
space and is likely to exhibit the target property.

Taking drug discovery as our main motivating example,
several problems have been identified as the cause for the
huge cost associated with attrition (Scannell et al. 2012;
Schneider and Schneider 2016), i.e., drug candidates failing
later stages of the development process, and increased use of
algorithmic support has been proposed as a remedy (Woltosz
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2012). In particular, (i) the chemspace, i.e., the space of po-
tentially synthesizable compounds, is huge—estimates are
often larger than 1060; (ii) there are many activity cliffs, i.e.,
small changes in structure can have large effects on pharma-
ceutical activity, and (iii) existing compound libraries focus
on a very restricted area of the chemspace. De novo design
approaches (Schneider and Fechner 2005) aim to overcome
these problems by constructing desired molecular structures
from scratch. In the past 20 years, several Monte Carlo search
heuristics have been developed for de novo design of drug-
like molecules (Schneider and Fechner 2005). A common
property of these search heuristics is the generation of molec-
ular structures using Markov chains. Several search heuristics
incorporate an additional scoring step in which the generated
structures are accepted/rejected with a probability based on
a hand-crafted energy-based scoring function. The whole
process can be seen as Metropolis sampling from an expert-
designed distribution. Throughout the constructive process
this designed distribution is either kept static or manually
updated as the process evolves.

Motivated by these hand-crafted search heuristics, we pro-
pose a data-driven approach that learns the target class of
desired structures as it observes the results of new experi-
ments. To deal with the intensionally specified search space,
we assume that a proposal generator can be constructed
which is specific to the application domain and has support
on all parts of the space that contain the targets. Similar to
the described Monte Carlo search heuristics, we model this
proposal generator with a Markov chain given by its transi-
tion kernel. The transition kernel can be either conditional or
independent and in the latter case the proposal generator is
an uninformed sampler. As the target structures are typically
rare and expensive to evaluate, the cost per discovered struc-
ture would be prohibitively high for plain Monte Carlo search
performed by evaluating each proposed structure. To over-
come this, our approach relies on a max-entropy conditional
model that acts as a probabilistic surrogate for the oracle eval-
uations. This conditional model is updated in each iteration
upon the evaluation of a selected structure. As this changes
the distribution of the Metropolis sampler in the following
discovery step, we can not assume that the sampled structures
are drawn independently from identical distributions.

We analyze the theoretical properties of this process in Sec-
tion 3 where we show its consistency and bound the mixing



Algorithm 1 DE-NOVO-DESIGN

Input: target property y∗ ∈ Y , conditional exponential family
model p (y | x, θ) with a regularization parameter λ > 0, pro-
posal generator G, evaluation oracle O, and budget B ∈ N

Output: list of structures x1, x2, . . . , xB ∈ XB
1: θ1 ← 0
2: for t = 1, 2, . . . , B do
3: xt ∼ G
4: repeat
5: x ∼ G and u ∼ U [0, 1]
6: if u < p(y∗ | x, θt)/p(y∗ | xt, θt) then xt ← x end if
7: until CHAIN MIXED
8: yt ← O(xt) and wt ← 1/p(y∗|xt,θt)

9: θt+1 ← arg minθ − 1
t

∑t
i=1 wi ln p (yi | xi, θ) + λ ‖θ‖2H

10: end for

time of the Metropolis–Hastings chain with an independent
proposal generator. To study the empirical performance in
silico, i.e., without conducting lab experiments, we design
synthetic testbeds that share many characteristics with drug
design (Section 4). In particular, instead of the chemspace,
we consider the space of all graphs of a given size and aim
at constructing graphs with rare and structurally non-smooth
properties such as having a Hamiltonian cycle or being con-
nected and planar. We conclude with a discussion where we
contrast our approach to other related approaches (Section 5).

2 Algorithm
Algorithm 1 gives a pseudo-code description of our approach.
To model the evaluation of the target property, our algorithm
takes as input an oracle which outputs a label for a given
structure. To reflect the expensiveness of these evaluations,
the oracle can be accessed a number of times that is limited
by a budget. Other parameters of the algorithm are the pro-
posal generator, target property, and parameters specifying
a set of models from the conditional exponential family. In
the next section, we demonstrate that for this choice of a
conditional model the probabilistic surrogate for the oracle
evaluations is a max-entropy model subject to constraints on
the first moments of the sample. Denote the space of candi-
date structures X , the space of properties Y, and a Hilbert
space H with inner product 〈·, ·〉. The parameter set Θ ⊆ H
is usually a compact subset of the Hilbert space and together
with the sufficient statistics φ : X × Y → H of y | x specifies
the set of conditional exponential models as

p (y | x, θ) = exp
(
〈φ (x, y), θ〉 −A (θ | x)

)
, (1)

where A (θ | x) = ln
∫
Y exp (〈φ (x, y), θ〉) and θ ∈ Θ. In prac-

tice, we do not directly specify the parameter set Θ but in-
stead simply regularize the importance weighted negative
log-likelihood of the sample by adding the term ‖θ‖2H. To ac-
count for this, the algorithm takes as input a hyperparameter
which controls the regularization.

The constructive process is initialized by setting the pa-
rameter vector of the conditional exponential family to zero
(line 1). This implies that the first sample is unbiased and
uninformed. Then, the algorithm starts iterating until we
deplete the oracle budget B (line 2). In the initial steps of
each iteration (lines 3–7), the Metropolis–Hastings algorithm
(Metropolis et al. 1953) is used to sample from the posterior

p(x | y∗, θt) = p(y∗|x,θt)p0(x)
p0(y∗) , where p0 (y∗) is the marginal

probability of y∗ ∈ Y and p0 (x) is the stationary distribu-
tion of the proposal generator G defined with a transition
kernel g for which the detailed balance condition holds (An-
drieu et al. 2003). Thus, to obtain samples from the posterior
p (x | y∗, θt), the Metropolis–Hastings acceptance criterion is

p(y∗ | x′, θt)
p(y∗ | xt, θt)

· p0(x′) · g(x′ → xt)

p0(xt) · g(xt → x′)
=
p(y∗ | x′, θt)
p(y∗ | xt, θt)

, (2)

where x′ is the proposed candidate, xt is the last accepted
state, θt is the parameter vector of the conditional exponen-
tial family model, and g (xt → x′) denotes the probability of
the transition from state xt to state x′. After the Metropolis–
Hastings chain has mixed (line 7), the algorithm outputs its
last accepted state xt as a candidate structure and presents it
to an evaluation oracle (line 8). The oracle evaluates it provid-
ing feedback yt to the algorithm. The labeled pair (xt, yt) is
then added to the training sample and an importance weight
is assigned to it (line 8). The importance weighting is needed
for the consistency of the algorithm because the samples are
neither independent nor identically distributed. Finally, the
conditional exponential family model is updated by optimiz-
ing the weighted negative-log likelihood of the sample (line
9). This model is then used by the algorithm to sample a
candidate structure in the next iteration. The optimization
problem in line 9 is convex in θ and the representer theorem
(Wahba 1990) guarantees that it is possible to express the
solution θt+1 as a linear combination of sufficient statistics,
i.e., θt+1 =

∑t
i=1

∑
c∈Y αicφ (xi, c) for some αic ∈ R. Hence,

a globally optimal solution can be found and a set of condi-
tional exponential family models can be specified using only
a joint input–output kernel and a regularization parameter.

3 Theoretical analysis
In this section, we first show that in Algorithm 1 a max-
entropy conditional model is used as a probabilistic surrogate
for the oracle. We then prove that Algorithm 1 is consistent
and analyze the mixing time of an independent Metropolis–
Hastings chain for sampling from the posterior p (x | y∗, θ).

3.1 Max-entropy probabilistic surrogate
In previous work it was shown that exponential family mod-
els are max-entropy models subject to constraints on the first
moments of the sample (Jaynes 1957). The following proposi-
tion is an adaptation of this max-entropy result to conditional
exponential family models. For the sake of completeness, a
proof is provided in Appendix A.
Proposition 1. Let P denote the set of all conditional distri-
butions that have square integrable densities with respect to
a base measure defined on the domain of a sufficient statistic
φ (x, y) and support on the entire domain of φ (x, y). A max-
entropy conditional distribution from P that satisfies a set
of constraints on the first moments of the sample can be rep-
resented as a conditional exponential model. To specify this
distribution it is sufficient to find the maximum a posteriori
estimator from the conditional exponential family of models.

This proposition guarantees that conditional exponential
family models are objectively encoding the information from



the sample into the model. In fact, any other choice of the
conditional model makes additional assumptions about the
samples that reduce the entropy and introduces a potentially
undesirable bias into the process.

3.2 Consistency
In this section, we show that Algorithm 1 converges in proba-
bility to the best model from a parameter set Θ. For this, we
assume that Θ is a compact subset of a Euclidean space
and that there exist constants R, r > 0 such that ‖θ‖ ≤ R
for all θ ∈ Θ and ‖φ (x, y)‖ =

√
k
(
(x, y) , (x, y)

)
≤ r for all

(x, y) ∈ X × Y . In finite dimensional Euclidean spaces closed
spheres are compact sets and, in line with our previous as-
sumption, we can take Θ to be the sphere of radius R centered
at the origin. In infinite dimensional spaces closed spheres
are not compact sets and in this case it is possible to find an
approximate finite dimensional basis of the kernel feature
space using the Cholesky decomposition of the kernel matrix
(Fine and Scheinberg 2002) and define Θ as in the finite di-
mensional case. We note that this is a standard step for many
kernel based approaches in machine learning (Bach 2007).

Given the stationary distribution p0 (x) of the proposal
generator and the conditional label distribution of the evalu-
ation oracle p0 (y | x), the latent data-generating distribu-
tion is p0 (x, y) = p0 (y | x) p0 (x). We measure the differ-
ence between this data-generating distribution and our condi-
tional exponential family model, parameterized with a vec-
tor θ, using the Kullback–Leibler divergence (Akaike 1973;
White 1982). Eliminating the parameter-free terms from this
divergence measure, we obtain the loss function of θ,

L (θ) = −
∫
X×Y

p0 (x, y) ln p (y | x, θ) .

We assume that there exists a unique minimizer of the loss
function L (θ) in the interior of the parameter set Θ and denote
this minimizer with θ∗. If the optimal parameter vector θ∗ ∈ Θ
satisfies Ep0(y|x) [φ (x, y)] = Ep(y|x,θ∗) [φ (x, y)] for all x ∈ X ,
it is said that the model is well-specified.

In our case, sample points are obtained from a
query distribution that depends on previous samples, i.e.,
xi ∼ q (x | x1, . . . , xi−1), but labels are still obtained from the
conditional label distribution yi ∼ p0 (y | xi) independent of
xj (j < i). The main difficulty in proving the consistency of
the approach in the general case where the queried structures
are neither independent nor identically distributed comes
from the fact that standard concentration bounds do not hold
for this setting. A workaround frequently encountered in the
literature is to assume that the model is well-specified as in
this case the sampling process is consistent irrespective of the
query distribution. Before proving convergence in the gen-
eral case, we first briefly consider the cases of independent
samples and well-specified models.

For the common case in which the training sample is drawn
independently from a distribution q (x), let

θ̂n = arg max
θ∈Θ

1

n

n∑
i=1

p0 (xi)

q (xi)
ln p (yi | xi, θ) . (3)

The sequence of optimizers {θ̂n}n∈N converges to the op-
timal parameter vector θ∗ (White 1982; Shimodaira 2000).

For q (x) = p0 (x), θ̂n is the maximum likelihood estimate
of θ∗ over an i.i.d. sample {(xi, yi)}ni=1. Moreover, for
Θ = {θ | ‖θ‖ ≤ R} the latter optimization problem is equiv-
alent to finding the maximum a posteriori estimator with a
Gaussian prior on θ (Altun, Smola, and Hofmann 2004).

In the case of a well-specified model, for all x ∈ X , it holds
Ep0(y|x) [φ (x, y)] = Ep(y|x,θ∗) [φ (x, y)]. Thus, for all marginal
distributions p0 (x), the gradient of the loss is zero at θ∗, i.e.,
∇L(θ∗) =

∫
X p0 (x)

∫
Y φ (x, y) (p (y | x, θ∗)− p0 (y | x)) = 0.

In other words, if the model is well-specified, the maximum
likelihood estimator is consistent for all query distributions.

We now proceed to the general case for which we do
not make the assumption that the model is well-specified
and again show that the optimizer θt converges to the opti-
mal parameter vector θ∗. At iteration t of Algorithm 1 an
instance is selected by sampling from the query distribu-
tion q (x | Dt−1) = p (x | y∗, θt), where θt denotes a param-
eter vector from Θ which is completely determined by the
previously seen data Dt−1. Thus, a candidate sampled at
iteration t depends on previous samples through the parame-
ter vector and the independence between input–output pairs
within the sample is lost. As a result of this, the convergence
of the sequence {θt}t∈N to θ∗ for the general case of mis-
specified model cannot be guaranteed by the previous results
relying on the independence assumption (Shimodaira 2000).

To show the consistency in this general case, we first
rewrite the objective which is optimized at iteration t of
Algorithm 1. For a fixed target property y∗, the parameter
vector θt+1 is obtained by solving the following problem:

min
θ

1

t

t∑
i=1

A (θ | xi)− 〈φ (xi, yi), θ〉
p (y∗ | xi, θi)

+ λ ‖θ‖2 . (4)

Assuming the parameter set is well behaved (Theorem 2), the
objective in Eq. (4) is convex and can be optimized using
standard optimization techniques. Before we show that the
sequence of optimizers θt converges to the optimal param-
eter vector θ∗, let us formally define the empirical loss of a
parameter vector θ given the data Dt available at iteration t,

L (θ | Dt) =
1

t

t∑
i=1

p0 (y∗)
(
A (θ | xi)− 〈φ (xi, yi), θ〉

)
p (y∗ | xi, θi)

.

The following theorem and corollary show that Algorithm 1
is consistent in the general case for misspecified models and a
sample of structures which are neither independent nor iden-
tically distributed. The proofs are provided in Appendix A.
Theorem 2. Let p (y | x, θ) denote the conditional exponen-
tial family distribution parameterized with a vector θ ∈ Θ,
where Θ is a compact subset of a d dimensional Euclidean
space Rd. Let p0 (x, y) denote a latent data generating distri-
bution such that, for all x ∈ X , the support of the likelihood
function p0 (y | x) is contained in the support of p (y | x, θ) for
all θ ∈ Θ. Let

∣∣ln p (y | x, θ)
∣∣ ≤ h (x, y) for all θ ∈ Θ and some

function h (x, y) : X × Y → R which is Lebesque integrable
in the measure p0 (x, y). Then for all 0 < ε, δ < 1 there exists
N (ε, δ) ∈ Ω

(
1
ε2

(
d ln 1

ε
+ ln 1

δ

))
such that for all t ≥ N (ε, δ)

we have P
(
supθ∈Θ |L (θ)− L (θ | Dt)| ≤ ε

)
≥ 1− δ.

Corollary 3. The sequence of estimators {θt}t≥1 converges
in probability to θ∗ ∈ Θ.



3.3 Mixing time analysis
Having shown the consistency of Algorithm 1, we proceed
to bound the mixing time of the Metropolis–Hastings chain.
For that, we consider an independent proposal generator G
and provide a simple coupling analysis to bound the worst
case mixing time of an independent Metropolis–Hastings
chain for sampling from the posterior p(x | y∗, θt) (Vembu,
Gärtner, and Boley 2009). This allows us to utilize perfect
sampling algorithms such as coupling from the past (Propp
and Wilson 1996) to draw samples from the posterior. We
assume |X | parallel and identical chains are started from all
possible states x ∈ X and an identical random bit sequence
is used to simulate all the chains. Thus, whenever two chains
move to a common state, all the future transitions of the two
chains are the same. From that point on it is sufficient to track
only one of the chains. This is called a coalescence (Huber
1998). Propp and Wilson (1996) have shown that if all the
chains were started at time −T and have coalesced to a single
chain at step−T with T > T > 0, then samples drawn at time
0 are exact samples from the stationary distribution.

For conditional exponential family models p (y | x, θ) > 0,
the lower bound can be controlled with the regularization
parameter. Thus, there will always be a path with non-zero
probability between any two target structures. As it is the
case with other Metropolis algorithms, for difficult problems
where clusters of targets are far apart in the search space,
the mixing will be slower as the model becomes more con-
fident. The following proposition (a proof is provided in
Appendix A) gives a worst case bound on the mixing time
of an independent Metropolis–Hastings chain for sampling
from the posterior distribution p(x | y∗, θt).
Proposition 4. For all 0 < ε < 1, with probability 1− ε, the
mixing time τ(ε) of an independent Metropolis–Hastings
chain for sampling from the posterior distribution p(x | y∗, θt)
is bounded from above by

⌈
ln ε/ ln

(
1− exp(−4r ‖θt‖

)⌉
.

4 Experiments
Having provided theoretical justification for our approach in
the previous section, here we evaluate its effectiveness with
a series of synthetic experiments that are designed to mimic
the construction of cocktail recipes and graphs with desired
properties. The main reason for not evaluating the approach
on a real-world problem is not the lack of a proposal generator
for that domain but the lack of a suitable experimental set up
(the usual retrospective analysis on labeled data is not suitable
for active search in intensionally specified structured spaces).
For instance, to apply the approach to the design of molecules
– our main motivating example – an independent proposal
generator can be used (Goldberg and Jerrum 1997), as well as
numerous samplers outlined in Schneider & Fechner (2005).

In the first set of experiments, we design cocktails of dif-
ferent flavors – dry, creamy, and juicy. The recipes are repre-
sented as sparse real-valued vectors such that the non-zero
values in these vectors indicate the proportions of the re-
spective ingredients (i.e., the vectors are normalized). In the
second set of experiments, the goal is to design Hamilto-
nian and connected planar graphs, as well as the respective
complements of these classes. As we can not expect to be

able to perfectly distinguish each of these classes from its
complement due to the hardness of complete graph kernels
(Gärtner, Flach, and Wrobel 2003), we can not expect to
learn to perfectly generate these concepts. The main objec-
tive of these experiments is to demonstrate that our approach
can discover a diverse set of target-structures in non-smooth
problems which act as in silico proxies for the drug design
task. In particular, in the construction of Hamiltonian graphs
and complements of these, there are numerous Hamiltonian
graphs which become non-Hamiltonian with a removal of
a single edge. Such graphs are structurally very similar and
close in the design space. Thus, these testbeds can mimic
well the activity cliffs specific to drug design where very
similar structures have different protein binding affinities.

In our empirical evaluation, we compare Algorithm 1 to
k-NN active search with 1- and 2-step look-ahead (Garnett et
al. 2012) and a greedy method which discovers structures by
repeatedly performing argmax search over samples from a
proposal generator using the learned conditional label distri-
bution (selected structures are labeled by an oracle and the
model is updated in each iteration). In the first step of this
evaluation, we measure the improvement of each of the con-
sidered approaches over plain Monte Carlo search performed
with a proposal generator. We assess the performance of the
approaches with correct-construction curves which show the
cumulative number of distinct target structures discovered as
a function of the budget expended. To quantify the improve-
ment of the approaches over plain Monte Carlo search, we
measure the lift of the correct-construction curves. In par-
ticular, for sampling from the minority class of a proposal
generator the lift is computed as the ratio between the number
of distinct structures from this class generated by an algo-
rithm and the number of such structures observed in a sample
(of the same size) from the distribution of the proposal gen-
erator. In the second step of our empirical evaluation, we
assess the structural diversity between the targets discovered
by an algorithm. We do this by incorporating diversity into
the correct-construction curves. Namely, we take a sample of
50 000 structures from the proposal generator and filter out
targets. We consider these as undiscovered targets and com-
pute the average distance between an undiscovered structure
and a subsample of budget size from this set of structures.
With this average distance as radius we circumscribe a sphere
around each of the undiscovered targets. Then, instead of
construction-curves defined with the number of discovered
targets, we use the construction-curves defined with the num-
ber of the spheres having a target structure within them. To
quantify the effectiveness of the considered algorithms in
discovering structurally diverse targets, we normalize these
sphere based construction-curves with one such curve corre-
sponding to an ideal algorithm that only generates targets –
the output of this algorithm can be represented with a subsam-
ple of budget size from the undiscovered target structures.

Implementation details for all algorithms are provided in
Appendix C. We have simulated Algorithm 1 with the uni-
form proposal generator over the space of graphs with 7 and
10 nodes (Wormald 1987). For the space of cocktails, we
have developed a frequency based sampler from a small set
of cocktails collected from www.webtender.com. This



Figure 1: The figure shows the lift of correct-construction curves for considered graph and cocktail concepts. The lift indicates
how much more likely it is to see a target compared to the Monte Carlo search with a proposal generator.

Figure 2: The figure shows the dispersion of discovered targets relative to an algorithm with the identical proposal generator that
outputs only targets. The reported curves can be seen as the percentage of discovered target class partitions given a budget.

sampler generates cocktail recipes by first sampling the num-
ber of ingredients from the Poisson distribution and then it
selects the recipe ingredients based on their co-occurrence
frequency in the collected data set. The parameters of this
proposal generator are moment-matched with respect to the
collected cocktail data set. As this proposal generator almost
always samples recipes with 2-10 ingredients, for n possible
ingredients the number of different ingredient combinations
is
∑10
k=2

(
n
k

)
(approximately n10). As the sampler is devel-

oped based on a set of cocktails with 335 ingredients there
are approximately 1024 different combinations of ingredients
in this search space. Thus, this is a huge search space that
can provide an insight into the properties of the discovery
process on large scale problems. To label the cocktails gener-
ated by this proposal generator we have trained decision trees
for each of the considered flavor profiles using a labeling of
these cocktails according to flavor. All the reported results
were obtained by averaging over 5 runs of the algorithm. The
Metropolis–Hastings sampling was performed with a burn-in
sample of 50 000 proposals and sampling was done for 50
rounds/batches. In each round we take 10 i.i.d. samples by
running 10 Metropolis–Hastings chains in parallel (note that
samples from different rounds are dependent). To allow for
models of varying complexity, we have estimated the con-
ditional exponential family regularization parameter in each
round using 5-fold stratified cross-validation. As the compet-
ing approaches – argmax and k-NN active search (Garnett et
al. 2012) – are not designed to search for targets without an
a priori provided labeled structures, we have made a minor
modification to our problem setting and warm-started each
method with a random sample of 5 target and the same num-

ber of non-target structures. For graphs these were chosen
uniformly from the search space and for cocktails uniformly
from the available sample of cocktails. Note that without this
warm-start the argmax search estimates the distribution of
target structures with a single peak around the first discovered
target. Moreover, k-NN probabilistic model cannot learn a
property until it sees more than k labeled structures and it is
unlikely to observe a target in k successive samples from a
proposal generator.

In Figure 3.3, we show the lift of the correct-construction
curves for all the considered approaches. We have defined
these correct-construction curves by considering isomorphic
graphs and cocktails with equal sets of ingredients (ignoring
portions of each ingredient) as identical structures. The plots
indicate that our approach and k-NN active search are able to
emphasize the target class in all the domains for all the con-
sidered properties. Moreover, for our approach the magnitude
of this emphasis is increasing over time and it is more likely
to generate a target as the process evolves. In all domains
and for all properties, k-NN active search discovers more
target structures than our approach. For graph properties,
we see that argmax search also discovers more targets than
our approach. For cocktails, argmax search discovers many
cocktails with identical sets of ingredients and different por-
tions of these (such cocktails are considered identical in the
correct-construction curves). Thus, if we are only interested
in discovering target structures without considering structural
diversity between them, our empirical evaluation indicates
that it is better to use k-NN active search than Algorithm 1.

In Figure 3.3, we show the dispersion of target structures
discovered by each of the considered approaches. The plots



indicate that our approach achieves a large structural variety
of discovered targets. In all domains and for all properties, our
approach outperforms both k-NN active and greedy argmax
search. These experiments also indicate that k-NN active
search explores more than argmax search. In some of the
plots, a dip can be observed in the curves for k-NN active
and argmax search. This can be explained by the exploitative
nature of these algorithms and the fact that the search is fo-
cused to a small region of the space until all the targets from
it are discovered. In contrast to this, our approach discovers
targets from the whole space and can cover a large number
of spheres centered at undiscovered samples with a relatively
small number of targets. Thus, if we are interested in discov-
ering diverse target structures, our results indicate that it is
better to use Algorithm 1 than k-NN active or argmax search.

5 Discussion
Active search with k-NN probabilistic model (Garnett et al.
2012) is a related approach with the problem setting similar
to that of de novo design. The key distinction between the
investigated problem setting and k-NN active search is in the
requirement to discover structures from the whole domain.
Garnett et al. (2012) assume that an extensional description
in the form of a finite subset of the domain is explicitly
given as input to the algorithm. In this work we require only
an intensional description of the domain. For instance, for
the domain of graphs on n ∈ N vertices, the intensional de-
scription is just that of the number of vertices, while the
extensional one consists of a list of all graphs on n vertices.
In many cases, considering intensional descriptions is much
more promising because an algorithm with an extensional
description of an exponentially large or uncountable search
space can only consider small and often arbitrary subsets
of this space. The second key distinction between k-NN ac-
tive search and de novo design is in the assessment of their
outcomes. In particular, both approaches try to find, as soon
as possible, as many as possible target structures. However,
k-NN active search is designed to only discover members of
a target class and Algorithm 1 is designed to find members
of distinct structural partitions of a target class. This is very
useful in domains where there are numerous isofunctional
structures and in which k-NN active search outputs structures
from small number of structural partitions of a target class.

Recently, active search has been applied to a problem
related to our cocktail construction task – interactive ex-
ploration of patterns in a cocktail dataset (Paurat, Garnett,
and Gärtner 2014). The difference between our setting and
that of Paurat et al. (2014) is in the requirement to gener-
ate novel and previously unseen cocktails exhibiting a target
property rather than searching for patterns in an existing cock-
tail dataset. In addition to this, active search has been applied
to real-world problems where the search space is given by
a single combinatorial graph, and some subset of its nodes
is interesting (Wang, Garnett, and Schneider 2013). This is
different from applications we consider here and for which
the search space is the space of all graphs of a given size.

As the investigated problem setting can be seen as a search
in structured spaces, our approach is, with certain distinctions,
closely related to structured output prediction (Tsochantaridis

et al. 2004; Daumé III, Langford, and Marcu 2009). In struc-
tured output prediction the goal is to find a mapping from
an instance space to a ‘structured’ output space. A common
approach is to find a joint scoring function, from the space of
input–output pairs to the set of reals, and to predict the output
structure which maximizes the scoring function for each test
input. Finding a good scoring function can often be cast as a
convex optimization problem with exponentially many con-
straints. It can be solved efficiently if the so-called separation
and/or decoding sub-problems can be solved efficiently. One
difference between the investigated setting and structured out-
put prediction is in the assumption how input–output pairs are
created. In particular, structured output prediction assumes
that the provided outputs are optimal for the given inputs. In
many de novo design problems, it is infeasible to find the best
possible output for a given input. For de novo drug design
this assumption implies that we would need to know the best
molecule—from the space of all synthesizable molecules—
with respect to different properties, such as binding affinity
to specific protein sites. Moreover, as the decoding problem
is designed assuming that the input–output pairs are optimal
the greedy argmax approach to solving this problem does
not incorporate exploration. As a result of this, similar to
argmax search these methods generate structures from a very
small number of structural partitions of the target class. Other
differences are in the iterative nature of de novo design and
in the hardness of the separation or decoding sub-problems
that most structured output prediction approaches need to
solve. Another related sub-problem is that of finding preim-
ages (Weston, Schölkopf, and Bakir 2004) which is typically
also hard in the context of structured domains except for
some special cases such as strings (Giguère et al. 2015).

Related to the proposed approach are also methods for
interactive learning and optimization as well as Bayesian
optimization. Interactive learning and optimization meth-
ods implement a two-step iterative process in which an
agent interacts with a user until a satisfactory solution is ob-
tained. Some well-known interactive learning and optimiza-
tion methods tackle problems in information retrieval (Yue
and Joachims 2009; Shivaswamy and Joachims 2012) and
reinforcement learning (Wilson, Fern, and Tadepalli 2012;
Jain et al. 2013). However, these methods are only designed
to construct a single output from the domain of real-valued
vectors and can not be directly applied to structured domains.
Bayesian optimization (Brochu, Cora, and de Freitas 2010;
Shahriari et al. 2015), on the other hand, is an approach to se-
quential optimization of an expensive, black-box, real-valued
objective. Rather than seeking a set of high-quality items,
Bayesian optimization focuses on finding the single highest-
scoring point in the domain. We, in contrast, consider discrete
labels and wish to maximize the number of diverse targets
found in an intensionally specified structured space. In drug
design, this emphasis on exploring all parts of the search
space is known as scaffold-hopping (Schneider and Fechner
2005) and it is related to the problem of attrition (Schnei-
der and Schneider 2016). Namely, in order to address this
problem it is not sufficient to search for a molecule with the
highest activity level as it can be toxic or bind to an unde-
sired protein in addition to the target protein. If attrition is



to be reduced an algorithm needs to find a number of struc-
turally different molecules binding to a target protein. As our
approach achieves a large structural variety of discovered
targets, it has a potential to tackle this difficult problem.
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A Proofs
Proposition 1. Let P denote the set of all conditional distri-
butions that have square integrable densities with respect to
a base measure defined on the domain of a sufficient statistic
φ (x, y) and support on the entire domain of φ (x, y). A max-
entropy conditional distribution from P that satisfies a set
of constraints on the first moments of the sample can be rep-
resented as a conditional exponential model. To specify this
distribution it is sufficient to find the maximum a posteriori
estimator from the conditional exponential family of models.

Let f, g ∈ P and 〈f, g〉 =
∫
X×Y f (y | x) g (y | x) be the dot

product defined on this space. For a marginal distribution
of structures p̃ (x), the conditional entropy of a distribution
p ∈ P is defined as

H (p | p̃) = −
∫
X
p̃ (x)

∫
Y
p (y | x) ln p (y | x) .

Now, let φi denote the ith component of the feature map
φ. From the available sample it is possible to estimate
the empirical value of these component-statistics. In par-
ticular, we can denote with αi = 1

n

∑n
j=1 φi (xj , yj), where

(xj , yj) ∼ p0 (x, y). Then, a max-entropy distribution from P
satisfying a set of constraints on the first moments of the
sample would be a solution of the following optimization
problem

arg max
p∈P

H (p | p0)

s.t.
∫
X×Y

φi (x, y) p (y | x) p0 (x) ≤ αi, i ∈ I.

Proof. Gathering all the constraints and forming the La-
grangian we get

L (p, λ) = −H (p | p0) +

∫
X
λ (x)

(∫
Y
p (y | x)− 1

)
+∫

X×Y
λ (x, y) p (y | x) +

∑
i∈I

λi

(∫
X×Y

φi (x, y) p0 (x) p (y | x)− αi
)
,

where λi ≥ 0 for all i ∈ I, λ (x) ≥ 0 for all x ∈ X , and
λ (x, y) ≤ 0 for all x ∈ X and y ∈ Y.

For a functional F (p), the functional gradient ∇F at p
is the principal linear term in the change of F after it is
perturbed by ε in the direction of q (Gelfand and Fomin 1963,
Section 3)

F (p+ εq) = F (p) + ε 〈∇F , q〉+O
(
ε2) .

Applying this derivation rule to the entropy term, we de-
duce ∇pH = −p0 (x) (ln p (y | x) + 1). The functional gradi-
ent of the Lagrangian is then given by

∇pL = p0 (x)

(
1 + ln p (y | x) +

∑
i∈I

λiφi (x, y)

)
+

λ (x) + λ (x, y) .

Setting the functional gradient to zero, we obtain a max-
entropy distribution satisfying the constraints,

p∗ (y | x) =
exp (〈θ∗, φ (x, y)〉)

exp
(
λ∗(x)+λ∗(x,y)

p0(x)

) ,
where φ = vec

(
1, {φi}i∈I

)
and θ∗ = −vec

(
1, {λ∗i }i∈I

)
.

As p (y | x) > 0 for all x ∈ X and all y ∈ Y , it follows from
the complementary slackness that λ∗ (x, y) = 0. Now, taking
λ∗ (x) = p0 (x) ln

∫
Y exp (〈θ∗, φ (x, y)〉), we see that the max-

entropy conditional distribution is defined as

p∗ (y | x) =
exp (〈θ∗, φ (x, y)〉)∫
Y exp (〈θ∗, φ (x, y)〉)

.

Let us verify that this is indeed the desired distribution.
For any other feasible conditional distribution r ∈ P we have

H (r | p0) = −
∫
X×Y

p0 (x) r (y | x) ln r (y | x)
p∗ (y | x)

p∗ (y | x)
≤

− KL (p∗, r)−
∫
X×Y

p0 (x) r (y | x) ln p∗ (y | x) ≤

−
∫
X×Y

p0 (x) r (y | x)

(
−1− λ∗ (x)

p0 (x)
−
∑
i∈I

λ∗i φi (x, y)

)
≤

1 +

∫
X
λ∗ (x) +

∑
i∈I

λ∗iαi =

−
∫
X×Y

p0 (x) p∗ (y | x)

(
−1− λ∗ (x)

p0 (x)
−
∑
i∈I

λ∗i φi (x, y)

)
=

−
∫
X×Y

p0 (x) p∗ (y | x) ln p∗ (y | x) = H (p∗ | p0) ,

where we have used the complementary slackness to trans-
form the equation from line 4 to the one in line 5. In the
second line, KL denotes the Kullback–Leibler divergence.

As already pointed out, the coefficients {θ∗i }i∈I are cho-
sen to satisfy the moment constraints. Assuming these
coefficients have been computed for the moment con-
straints defined with equalities, the negative entropy of
p∗ (y | x) with respect to the empirical version of p0 (x),
pemp0 (x) = 1

n

∑n
i=1 1x=xi , is given by

−H (p∗ | pemp0 ) =
1

n

n∑
i=1

∫
Y
p∗ (y | xi) ln p∗ (y | xi) =

1

n

n∑
i=1

∫
Y
p∗ (y | xi)

(
〈φ (xi, y), θ∗〉 −A (θ∗ | xi)

)
=

〈α, θ∗〉 − 1

n

n∑
i=1

A (θ∗ | xi) =

1

n

n∑
i=1

〈φ (xi, yi), θ
∗〉 −A (θ∗ | xi) ,

where A (θ∗ | x) = ln
∫
Y exp

(
〈φ (x, y), θ∗〉

)
. Thus, to find a

max entropy distribution it is sufficient to solve the following
non-constrained convex optimization problem

θ∗ = arg max
θ

n∑
i=1

〈φ (xi, yi), θ〉 −A (θ | xi) .



Setting the gradient of this objective function to zero, we
verify that θ∗ satisfies the set of first moment constraints
on the sample. Hence, the conditional exponential family
model specified with the maximum a posteriori estimate of
the parameter vector is a max entropy conditional model
subject to constraints on the first moments of the sample.

Remark 1. We note here that Proposition 1 is just a minor
adjustment of the classical result for exponential family mod-
els (Jaynes 1957) and as such it should not be judged as a
contribution of this paper.

Lemma A.1. For all 0 < ε < 1 and θ1, θ2 ∈ Θ such that
‖θ1 − θ2‖ < 2pminε

r+
√
r2+2Λpminε

, it holds |L (θ1)− L (θ2)| < ε

and |L (θ1 | Dt)− L (θ2 | Dt)| < ε.

Proof. Performing the Taylor expansion of the log-likelihood
around θ1 we get

ln p (y | x, θ2) ≤ ln p (y | x, θ1) +

Ey∼p(y|x,θ1)

[
φ (x, y)> (θ2 − θ1)

]
+

Λ

2
‖θ2 − θ1‖2 .

Now, applying the Cauchy-Schwartz inequality
to the right hand-side and using the condition
‖θ1 − θ2‖ < 2pminεΛ/r+

√
r2+2Λpminε the claim follows,

i.e.,

|L (θ1)− L (θ2)| ≤ ‖θ1 − θ2‖
(
r +

Λ

2
‖θ1 − θ2‖

)
< ε,

|L (θ1 | Dt)− L (θ2 | Dt)| ≤
‖θ1 − θ2‖

(
r + Λ

2
‖θ1 − θ2‖

)
pmin

< ε.

Lemma A.2. Let ν = pminε/
(
2r+
√

4r2+2Λpminε
)

and let
B1, . . . , BN (Θ,ν) be an ν-cover of the set Θ. Then

P

(
sup
θ∈Θ
|L (θ)− L (θ | Dt)| ≤ ε

)
>

1−N (Θ, ν) sup
s=1,...,N (Θ,ν)

P
(
|L (θs)− L (θs | Dt)| >

ε

2

)
,

where θs denotes the center of the ball Bs.

Proof. From the assumptions of the lemma it follows that
supθ∈Θ |L (θ)− L (θ | Dt)| > ε if and only if there exists
1 ≤ s ≤ N (Θ, ν) such that supθ∈Bs

|L (θ)− L (θ | Dt)| > ε.
Applying the union bound we get

P

(
sup
θ∈Θ
|L (θ)− L (θ | Dt)| > ε

)
≤

N (Θ,ν)∑
s=1

P

(
sup
θ∈Bs

|L (θ)− L (θ | Dt)| > ε

)
.

(5)

On the other hand, we have

|L (θi)− L (θi | Dt)− L (θ) + L (θ | Dt)| <
|L (θi)− L (θ)|+ |L (θi | Dt)− L (θ | Dt)| .

From the last equation and Lemma A.1 for θi center of Bi
and all θ ∈ Bi we get

|L (θ)− L (θ | Dt)| − |L (θi)− L (θi | Dt)| <
ε

2
.

As this holds for all 0 < ε < 1 and θ ∈ Bi we
get that supθ∈Bi

|L (θ)− L (θ | Dt)| > ε implies
|L (θi)− L (θi | Dt)| > ε

2
. From here it follows that

P

(
sup
θ∈Bs

|L (θ)− L (θ | Dt)| > ε

)
<

P
(
|L (θs)− L (θs | Dt)| >

ε

2

)
.

(6)

Combining the results from Eq. (5) and (6) the claim follows.

Proposition A.3. (Carl and Stephani 1990) Let B be a finite
dimensional Banach space and let BR be the ball of radius
R centered at the origin. Then, for d = dim(B), it holds

N (BR, ε, ‖·‖) ≤
(

4R

ε

)d
.

Theorem 2. Let p (y | x, θ) denote the conditional exponen-
tial family distribution parameterized with a vector θ ∈ Θ,
where Θ is a compact subset of a d dimensional Euclidean
space Rd. Let p0 (x, y) denote a latent data generating distri-
bution such that, for all x ∈ X , the support of the likelihood
function p0 (y | x) is contained in the support of p (y | x, θ) for
all θ ∈ Θ. Let

∣∣ln p (y | x, θ)
∣∣ ≤ h (x, y) for all θ ∈ Θ and some

function h (x, y) : X × Y → R which is Lebesque integrable
in the measure p0 (x, y). Then for all 0 < ε, δ < 1 there exists
N (ε, δ) ∈ Ω

(
1
ε2

(
d ln 1

ε
+ ln 1

δ

))
such that for all t ≥ N (ε, δ)

we have P
(
supθ∈Θ |L (θ)− L (θ | Dt)| ≤ ε

)
≥ 1− δ.

According to our assumptions, the parameter set Θ is a
compact subset of a finite dimensional Euclidean space and
p (y | x, θ) is bounded away from zero for all x ∈ X , for all
y ∈ Y, and for all θ ∈ Θ. Thus, we can assume that there
exists a constant pmin > 0 such that p (y | x, θ) ≥ pmin. Let
Λ = maxθ∈Θ λ1 (θ), where λ1 denotes the largest eigenvalue
of the Hessian matrix of the importance-weighted negative
log-likelihood objective function. As the set Θ is compact
and the likelihood is a continuous function for all x ∈ X , the
eigenvalues of the Hessian matrix are bounded. Therefore,
there exists a finite maximizer Λ. From the compactness of
the set Θ, it also follows there exists a finite ε-cover of this set
for all ε > 0. Before we proceed with the proofs, for the pur-
pose of clarity, we review the notation introduced in Section 3.
We denote with R > 0 the radius of a ball containing the set Θ
in its interior, i.e., ∀θ ∈ Θ it holds ‖θ‖ < R. Similarly, r > 0
denotes the radius of a ball containing the mapped features
in its interior, i.e., ∀x ∈ X , y ∈ Y it holds ‖φ (x, y)‖ < r.

Proof. We define all random variables with respect to a prob-
ability space (Ω,D,P), where Ω is a state space, D is a σ-
algebra of Ω, and P a probability measure of D. The sampling
process is performed using an external source of randomness
which we model with an i.i.d. sequence of random variables
{Ut}t∈N. We fix the filtration {Dt}t∈N where Dt ⊂ D is the
σ-algebra generated by {(U1, θ1, x1, y1) , . . . , (Ut, θt, xt, yt)}.



The input-output pair (xt+1, yt+1) is measurable with respect
to the σ-algebra generated by (Dt, Ut+1). In other words,
given the history of observations the pair is random only with
respect to Ut+1.

Having defined our random variables, we proceed with
the proof. In a part of the proof we use some of the standard
techniques from the theory of martingales and follow the
same principle as the proof of the importance weighted active
learning (Beygelzimer, Dasgupta, and Langford 2009). In the
first step, we show that EDt [L (θ | Dt)] = L (θ). In particular,
it holds

E [L (θ | Dt)] =
1

t

t∑
i=1

∫
p0 (y∗)

p (y∗ | xi, θi)
l (xi, yi, θ)P (Dt) =

1

t

t∑
i=1

∫
p0 (y∗)

p (y∗ | xi, θi)
p (xi | y∗, θi) p0 (yi | xi) l (xi, yi, θ) ·

∫
P (Dt−1 | xi, yi, θi)︸ ︷︷ ︸

=1

=
1

t

t∑
i=1

∫
l (xi, yi, θ) p0 (xi, yi) =

L (θ) ,

where ` (x, y, θ) = A (θ | x)− 〈φ (x, y), θ〉.
In the second step of the proof, we bound the discrepancy

between the empirical and the expected loss. As there is a
dependence within the sample, we cannot rely on the con-
centration bounds requiring the independence assumption.
Therefore, we introduce a sequence for which we prove it is
a martingale and then proceed with bounding the discrepancy
using a martingale concentration inequality.

Let Wj , j = 1, . . . , t, be a sequence of random variables
such that

Wj = −wj ln p (yj | xj , θ)− L (θ) , (7)

where wj =
p0(y∗)

p(y∗|xj ,θj)
. According to the assumptions,

p (y | x, θ) is bounded away from zero for all x ∈ X ,
for all y ∈ Y, and for all θ ∈ Θ. Thus, it holds
supθ∈Θ,x∈X ,y∈Y |ln p (y | x, θ)| < − ln pmin. From here it im-
plies that |Wj | ≤ − ln pmin

pmin
<∞ and E [|Wj |] <∞.

We now show that the sequence Zt =
∑t
j=0 Wj , with

W0 = 0, is a martingale. In particular,

E [Zt | Zt−1, . . . , Z0] =

Zt−1 + Ext,yt|Dt−1
[wtl (xt, yt, θ)]− L (θ) = Zt−1.

On the other hand, it holds |Zt − Zt−1| = |Wt| ≤ − ln pmin
pmin

.
From here using the inequality for martingales by
Azuma (1967) we deduce

P
(
|L (θ | Dt)− L (θ)| > ε

2

)
=

P

(
|Zt| >

tε

2

)
< 2 exp

(
− tε2p2

min

8 (ln pmin)2

)
.

(8)

As this holds for all θ ∈ Θ, applying Lemma A.2 for

ν = pminε

2r+
√

4r2+2Λpminε
we get

P

(
sup
θ∈Θ
|L (θ)− L (θ | Dt)| > ε

)
<

2N

(
Θ,

pminε

2r +
√

4r2 + 2Λpminε

)
exp

(
− tε2p2

min

8 (ln pmin)2

)
.

From the last equation and Proposition A.3 we get

ln
δ

2
≥ d ln

4R
(

2r +
√

4r2 + 2Λpminε
)

pminε
− tε2p2

min

8 (ln pmin)2 =⇒

t

(
pmin

ln pmin

)2

ε2 ∈ Ω

(
d ln

1

ε
+ ln

1

δ

)
=⇒

t ∈ Ω

((
ln pmin

pmin

)2
1

ε2

(
d ln

1

ε
+ ln

1

δ

))

Hence, we have shown that there exists a positive integer
N ∈ Ω

(
1
ε2

(
d ln 1

ε
+ ln 1

δ

))
such that for all 0 < ε, δ < 1, and

all t > N the claim holds.

Corollary 3. The sequence of estimators {θt}t≥1 converges
in probability to θ∗ ∈ Θ.

Proof. First note that from the compactness of Θ, it follows
that the Hessian of the negative log-likelihood is strictly posi-
tive definite and, therefore, there exist unique minimizers of
the loss functions L (θ) and L (θ | Dt). From Theorem 2, we
have that for sufficiently large twith probability 1− δ it holds
that L (θ∗ | Dt) ≤ L (θ∗) + ε and L (θt) ≤ L (θt | Dt) + ε.
From the strict convexity of the optimization objective
L (· | Dt) it follows that L (θt | Dt) ≤ L (θ∗ | Dt). Hence, with
probability 1− δ

L (θt)− L (θ∗) ≤ |L (θt)− L (θt | Dt)|+
L (θt | Dt)− L (θ∗ | Dt) + |L (θ∗ | Dt)− L (θ∗)| ≤ 2ε.

From here it follows that the sequence of estimators {θt}t≥0

converges in probability to the optimal parameter θ∗.

Definition A.1. Let M be a finite, ergodic Markov chain
defined on a state space Ω with transition probabilities
p(x→ x′). A coupling is a joint process (A,B) = (At, Bt)
on Ω× Ω such that each of processes A, B, considered
marginally, is a faithful copy ofM.

Lemma A.4. (Aldous 1983) Let M be a finite, ergodic
Markov chain, and let (At, Bt) be a coupling for M. Sup-
pose that P (At(ε) 6= Bt(ε)) ≤ ε, uniformly over the choice of
initial state (A0, B0). Then the mixing time τ(ε) ofM (start-
ing at any state) is bounded from above by t(ε).

Proposition 4. For all 0 < ε < 1, with probability 1− ε, the
mixing time τ(ε) of an independent Metropolis–Hastings
chain for sampling from the posterior distribution p(x | y∗, θt)
is bounded from above by

⌈
ln ε/ ln

(
1− exp(−4r ‖θt‖

)⌉
.



Proof. As minx∈X p (y∗ | x, θt) ≤ maxx∈X p (y∗ | x, θt), the
lower bound on the Metropolis–Hastings acceptance criterion
is never greater than 1. Then, from Eq. (2) and (1) it follows
that, for a finite space Y, the transition probability from a
state x to a state x′ satisfies

p(x→ x′) ≥
exp
(〈
φ(x′, y∗), θt

〉
−A(θt | x′)

)
exp
(〈
φ(x, y∗), θt

〉
−A(θt | x)

) =

∑
y∈Y exp

(
〈φ (x′, y∗) + φ (x, y) , θt〉

)∑
y∈Y exp

(
〈φ (x, y∗) + φ (x′, y) , θt〉

) .
Now, we can lower bound the transition probability by

p(x→ x′) ≥
|Y| exp

(
2 · 〈φ (x↓, y↓) , θt〉

)
|Y| exp

(
2 · 〈φ (x↑, y↑) , θt〉

) ≥
exp
(
−2 ·

∣∣〈φ(x↓, y↓)− φ(x↑, y↑), θt
〉∣∣),

where 〈φ (x↓, y↓) , θt〉 and 〈φ (x↑, y↑) , θt〉 are the minimum
and maximum values of the dot products appearing in the
numerator and denominator of p(x→ x′), respectively.

Then, using the Cauchy–Schwarz inequality, we derive

p(x→ x′) ≥ exp
(
−2
∥∥φ(x↓, y↓)− φ(x↑, y↑)

∥∥‖θt‖).
From our assumptions we have that ‖θ‖ ≤ R and
‖φ(x, y)‖ ≤ r. Thus, it holds that

p(x→ x′) ≥ exp(−4r‖θt‖) ≥ exp(−4Rr). (9)

From Eq. (9) it follows that the probability of not coalescing
for T steps is upper bounded by

(
1− exp(−4r‖θt‖)

)T . Then
for t(ε) =

⌈
ln ε/ ln

(
1− exp(−4r‖θt‖)

)⌉
, we have

P (At(ε) 6= Bt(ε)) ≤
(
1− exp(−4r‖θt‖)

)t(ε)
= ε,

and from the coupling lemma (Aldous 1983; Guruswami
2000, or see Lemma A.4/Definition A.1) we conclude that a
chain has mixed after t ≥ t(ε) steps with probability 1− ε.



Figure 3: The figure shows the lift of correct-construction curves for the considered concepts and their complements. The lift
indicates that our approach is capable of emphasizing a target property, irrespective of its type – rare or dominant class.

Table 1: We report the fraction of target structures observed within 50 000 samples from the proposal generators. The sampling
was performed 5 times and the reported values are mean and standard deviation of the fractions computed over these runs.

GRAPHS, v = 7 GRAPHS, v = 10 COCKTAILS

HAMILTONIAN CONNECTED PLANAR HAMILTONIAN CONNECTED PLANAR DRY CREAMY JUICY

36.68% (±0.24) 65.01% (±0.20) 77.45% (±0.28) 8.68% (±0.15) 11.27% (±0.14) 16.83% (±0.14) 34.54% (±0.13)

B Additional plots

In this appendix, we present additional findings from our
synthetic experiments.

Emphasis of a target class. In Table 1, we give the distri-
bution of the considered target classes and their complements.
The table indicates that in our experiments we consider cases
in which a target class is both rare and dominant. For graph
concepts, we consider the spaces of unlabelled graphs with 7
and 10 vertices. The search space of graphs with 7 vertices
contains only 1044 non-isomorphic graphs and it was used
for sanity checks and tuning of our algorithm. The search
space of graphs with 10 vertices, on the other hand, contains
12 005 168 graphs and on this space for minority class proper-
ties we have compared our approach to competing methods.
The results of this comparison are presented in Section 4.
Here, we present additional results indicating that our ap-
proach is able to emphasize a target class property even in
cases when the property is dominant.

Similar to Section 4, to quantify the improvement of
our approach over the plain Monte Carlo search performed
with a proposal generator we measure the lift of its correct-
construction curve. However, for sampling from the majority
class the lift is defined as the ratio of the number of non-
targets in a sample from the proposal generator and the num-
ber of such structures generated by our approach. In other
words, for dominant properties the lift quantifies how much
less likely it is to observe a non-target property when perform-
ing the discovery using Algorithm 1 compared to the Monte
Carlo search. In Figure 3, we show that Algorithm 1 is able
to emphasize the target classes in all domains, irrespective of
their types – dominant or rare. Moreover, the magnitude of
this emphasis is increasing over time and it is more likely to
discover a target as the process evolves.

Designed cocktails. In Table 2, for each of the three cock-
tail property classes, we give five example cocktails con-
structed by our algorithm at the termination of the experiment.
The color of each ingredient indicates relative proportion in
the cocktail; more blue indicates a stronger presence. The
evaluation oracles used in these experiments are described in
Appendix C.4. It is possible to compare the constructed cock-
tail recipes to the real cocktails by looking up the displayed
sets of ingredients at http://bartenderapp.com.

Table 2: Designed cocktails
DRY CREAMY JUICY

midori melon liqueur creme de cacao vodka
jagermeister cream orange juice
tequila bailey’s irish cream orange soda

gin bailey’s irish cream pineapple juice
powdered sugar green creme de menthe tequila
nutmeg coffee blue curacao
lemon heavy cream vodka

nutmeg

vodka gin sour mix
triple sec green creme de menthe lemon juice
grenadine creme de cacao tequila

scotch bailey’s irish cream gin
jack daniels kahlua sweet and sour
kahlua brandy orange juice

jagermeister milk cranberry juice
malibu rum kahlua peach schnapps

sugar



C Implementation details
In this appendix, we describe in details our experimental set
up including the used proposal generators, kernel functions,
and evaluation oracles. We first briefly review the competing
approaches and specifics of their implementations.

C.1 Competing methods
k-NN active search. One limitation of k-NN active
search (Garnett et al. 2012) is the requirement that a finite
set of structures needs to be provided to the algorithm before-
hand. In our experiments, we have simulated this approach
with 50 000 structures sampled from the proposal genera-
tor and k-NN probabilistic model with k = 50 (ties are not
possible due to the choice of the hyperparameters).

In order to apply this approach to large sets of structures
with a different probabilistic model an efficient pruning strat-
egy needs to be devised. In the original paper, the authors
give the pruning rules only for k-NN probabilistic models.
As it is non-trivial to come up with pruning rules for condi-
tional exponential family models, a search with these models
would be inefficient. For instance, for the investigated case
of Hamiltonian graphs with 10 vertices and an extensional
description in the form of a sample with less than 1% of
all structures from this space the active search with 2-step
look-ahead (Garnett et al. 2012) and a budget of 500 oracle
evaluations requires more than 50 million parameter fittings
for the search modeled with a conditional exponential family.

Argmax search. The argmax search works by taking a sam-
ple of structures from a proposal generator and then choosing
a structure from this sample with the highest conditional
probability of it being a target. The selected structure is then
evaluated by the oracle and the conditional model is updated
to account for this new observation. This method is designed
to compensate for the fact that k-NN active search with 1-step
look-ahead (Garnett et al. 2012) requires a finite sample of
structures. For graphs, we use the uniform proposal gener-
ator in combination with this strategy and this is the most
exploratory proposal generator for this greedy search strategy.
The approach is simulated with the conditional exponential
family model, kernels and proposal generators identical to
the ones used by our approach.

C.2 Proposal generators
A proposal generator is used to propose structures from an
intensionally given domain. To be able to discover structures
with desired properties, the support of the proposal generator
must contain them. The uniform proposal generator is gener-
ally a safe choice, as it guarantees that the entire space will
eventually be discovered. In the absence of any other infor-
mation about the desired structures, we advocate the uniform
proposal generators from a maximum-entropy standpoint.
However, when domain-specific knowledge is available, the
proposal generator can be modified appropriately. This can
be especially useful when the class of structures with desired
properties is relatively small compared to the entire search
space, in which case the uniform proposal generator might
need many samples to see a positive candidate.

We note here that while our theoretical results hold for
proposal generators modeled with conditional Markov chains,
we only demonstrate the potential of our approach in the
setting with uninformed samplers as proposal generators.
The experiments with domain-specific conditional chains are
deferred to a journal version of the paper.

Sampling sparse vectors. Here, we describe a method for
sampling sparse vectors based on a small set of examples.
The small set of examples is there to serve as side knowledge
facilitating the design of a proposal generator. We use this
method in Section 4 to propose cocktail recipes which are
represented as sparse real-valued vectors.

In the first step, we ensure that the sampled construction is
a sparse vector by setting the number of non-zero entries in
it. This is achieved by sampling the number of non-zero com-
ponents from a Poisson distribution whose mean parameter
was obtained by moment-matching from data. This sampling
process is repeated until we sample a number of non-zero
components greater than one.

In the second step, we sample components of the construc-
tion and their values. In case we are interested in sampling
only binary vectors, than the value sampling part can be
skipped. To choose the components of a construction we
need to make sure that components with high frequency
of appearance in data and combinations of frequently co-
occurring components are selected more often. We achieve
this by first building a component graph or an ingredient net-
work in the case of cocktails with edges between the nodes
weighted in accordance with the co-occurrence frequency.
In addition to this, we keep a vector with the frequencies of
appearance of each component in the data. Then, the first
non-zero component of a construction is chosen by sampling
proportional to their appearance frequencies. Once the first
component is sampled, we take its neighbors in the com-
ponent graph and choose the next component by sampling
proportional to the edge weights. Having sampled more than
one component, we create a candidate frequency vector by
merging the neighbor lists of the sampled components and
accumulating the edge weights of components with multiple
occurrences. In the last step of the process we sample the
component values. We perform this step by taking samples
from a triangular distribution. The mode and the value range
parameters of these distributions are moment-matched from
data (each component has a distribution).

We conclude the section with a formal descrip-
tion of the sampling process. A construction repre-
sented as a sparse vector is proposed with the fol-
lowing sequence of steps: (i) m ∼ Poisson(η), (ii)
c1 ∼ π (iii) ck ∼ τk =

∑k−1
s=1 π

(cs) (2 ≤ k ≤ m), (iv)
vk ∼ Triangular (uck , vck , µck ) (1 ≤ k ≤ m), where ck
denotes a non-zero component of the vector being sampled,
τk the frequency vector such that the probability of sampling
a component j is proportional to τkj , and vk is a value
assigned to the component ck. The parameters η, π, π(cs),
uck , vck , and µck are moment-matched from data. In other
words, given a data set with n sparse d-dimensional vectors
we do the following: (i) η = 1

n

∑n
i=1 ni, where ni denotes

the number of non-zero components in the instance xi; (ii)



πj = 1
n′
∑n
i=1 1xij 6=0, where xij denotes the component j

in the vector xi, πj its frequency of appearance in data,
and n′ =

∑n
i=1 ni; (iii) π(cs)

j = 1
n′cs

∑
i:xics 6=0 1xij 6=0, where

n′cs =
∑
i:xics 6=0 (ni − 1), j 6= cs, 1 ≤ j, cs ≤ d, π

(cs)
cs = 0;

(iv) uj = max (0, µj − 2 ∗ σj), vj = min (1, µj + 2 ∗ σj), and
µj and σj are the mean and the standard deviation of the
component j computed over the instances with non-zero
values at this component. To enable the sampling of sparse
vectors with combinations of non-zero components which are
not appearing together in data we do the Laplace smoothing
of vectors π(cs) by adding 1/d to each of its components.

Sampling unlabelled graphs with n vertices. As the set
of graphs is a complicated, combinatorial object, it can be
difficult to design an efficient uninformed sampler. In general,
to sample a random unlabelled graph it is common to use the
Erdős–Rényi model with p = 1/2. This approach, however,
samples some graphs too often and does not provide sufficient
diversity to the constructive process (e.g., the probability
of sampling an unlabelled path with n vertices is n!

2
times

higher than the probability of sampling the complete graph
with the same number of vertices). Instead, one could try to
first sample the parameter p uniformly at random and then to
sample a graph with edge probability p. The last method does
not generate unlabelled graphs u.a.r., but it can be used to
efficiently sample some graph concepts (e.g., acyclic graphs).
In this paper we take the safest route and choose to propose
graphs with n vertices using the uniform sampler. We now do
a review of this sampler for unlabelled graphs with n vertices.

Let Gn denote the set of all canonically labelled graphs
with n vertices. A left action of a group S on a set
X is a function µ : S ×X → X with the following two
properties: (i) (∀x ∈ X)(∀s, t ∈ S) : µ(t, µ(s, x)) = µ(ts, x);
(ii) (∀x ∈ X) : µ(e, x) = x (where e is the identity element
of the group S). If no confusion arises we write µ(s, x) = sx.
A group action defines the equivalence relation ∼ on a set X,
i.e., a ∼ b⇔ sa = b for some s ∈ S and a, b ∈ X. The equiv-
alence classes determined by this relation are called orbits
of S in X. The number of orbits can be computed using the
Frobenius–Burnside theorem (Cameron 1998).

Theorem C.1 (Frobenius–Burnside). Let X be a finite non-
empty set and S be a finite group. If X is an S-set, then the
number of orbits of S in X is equal to 1

|S|
∑
s∈S |Fix(s)| ,

where Fix(s) = {x ∈ X | sx = x}.

To sample unlabelled graphs uniformly at random,
Wormald (1987) proposed a rejection sampling method based
on Theorem C.1. The idea is to consider the action of a sym-
metric group Sn over the set Gn. Then, the orbits of Sn in the
set Gn are non-isomorphic unlabelled graphs and to sample
unlabelled graphs uniformly it suffices to uniformly sample
the orbits (Dixon and Wilf 1983). Moreover, it is possible to
show (Dixon and Wilf 1983; Wormald 1987) that uniform or-
bit sampling is equivalent to uniform sampling of an element
from the set Γ =

{
(π, g) | πg = g;π ∈ Sn, g ∈ Gn

}
.

According to Theorem C.1, an element (π, g) ∈ Γ can be
sampled u.a.r. by choosing a permutation π with probabil-
ity proportional to |Fix(π)| and then choosing g ∈ Fix(π)
u.a.r. Dixon & Wilf (1983) propose a more efficient

sampling algorithm by partitioning the symmetric group
into conjugacy classes [πi] (1 ≤ i ≤ l) and sampling: (i)
[πi] ∼ |[πi]||Fix(πi)|/on|Sn|, (ii) g ∈ Fix(πi) u.a.r.; where on de-
notes the number of non-isomorphic unlabelled graphs and
πi is a class representative for the class [πi]. As it holds
|Fix(π)| = |Fix(π′)| and |Fix(π) ∩ [g]| = |Fix(π′) ∩ [g]| for
π, π′ ∈ [πi] then (Wormald 1987)

P
(
[g]
)

=

l∑
i=1

P
(
[g], [πi]

)
=

l∑
i=1

P
(
[πi]
)
P
(
[g] | [πi]

)
=

l∑
i=1

∣∣[πi]∣∣∣∣Fix(πi)
∣∣

on|Sn|

∣∣Fix(πi) ∩ [g]
∣∣∣∣Fix(πi)

∣∣ =
1

on
.

The problem with the approach is the fact that we need
to know the exact number of non-isomorphic graphs with
n vertices on to apply the algorithm and this number is
not computable in polynomial time. To overcome this,
Wormald (1987) partitions the elements of the group Sn into
classes [ck] = {π ∈ Sn | support(π) = k}, 0 ≤ k ≤ n, and up-
per bounds

∣∣[ci]∣∣∣∣Fix(πi)
∣∣ ≤ Bi. The algorithm then samples

an unlabelled graph u.a.r. as follows: (i) [ci] ∼ Bi/∑j Bj , (ii)
πi ∈ [ci] u.a.r., (iii) g ∈ Fix(πi) u.a.r., and (iv) accept the sam-
pled graph g with probability B−1

i

∣∣[ci]∣∣∣∣Fix(πi)
∣∣; otherwise,

restart. On average, the method generates an unlabelled graph
in time polynomial in the number of vertices.

C.3 Kernel functions
In this section, we describe application-specific kernel func-
tions used in Section 4. For these kernel functions, we
follow the standard procedure for tuple kernels and take
kernels which factor into the product of domain kernels,
k ((x, y) , (x′, y′)) = kX (x, x′)kY(y, y′), where kX and kY are
kernel functions over spaces X and Y.

First we describe the property space kernel function kY .
In all the cases considered in Section 4 the property space
Y is binary and we use the identity kernel. This is the space
requiring the simplest feedback and the least effort from
an evaluation oracle. In more complex experiments such as
drug design, the evaluation oracle could output a structured
label such as binary vector reflecting different aspects of the
construction – price, binding properties, stability etc. In these
cases, one could take the property space Y to be the power
set of elementary properties and use the intersection kernel
kY(yi, yj) = |yi ∩ yj |.

In the remainder of the section we describe the instance
space kernels for the investigated domains. To apply our
algorithm to the space of graphs we use the random walk
kernel (Gärtner, Flach, and Wrobel 2003). The kernel per-
forms random walks on both graphs and counts the number
of matching walks. It can be computed as

kX (G1, G2) =

|V×|∑
i,j=1

∞∑
n=0

[λnE
n
×]ij , (10)

where E× denotes the adjacency matrix of the product graph
G1 ×G2 and {λn} is a sequence of hyperparameters that
needs to be set such that the sum in (10) converges for any pair
of graphs G1 and G2. We apply the kernel with λn = λn to



unlabelled graphs, and for this particular case E× = E1 ⊗ E2.
The kernel can be computed efficiently using the fixed-point
method (Borgwardt 2007).

To apply our algorithm to the space of sparse
real-valued vectors, we use the Gaussian kernel
with diagonal relevance length scale matrix M , i.e.,
kX (x, x′) = exp

(
−1/2(x− x′)>M(x− x′)

)
. For each

coordinate we set the relevance scale as

mjj =
2n√

nnz (maxni=1 xij −minni=1 xij)
,

where n denotes the number of instances, nnz the total num-
ber of non-zero entries in the data set, d dimension of the
instances, and 1 ≤ j ≤ d.

C.4 Evaluation oracles
DRY

[1 | jagermeister ≥ 0.225 ? DRY : go to 2]
[2 | gin ≥ 0.465639 ? DRY : go to 3]
[3 | jackdaniels ≥ 0.138889 ? DRY : go to 4]
[4 | 151 proof rum ≥ 0.291666 ? DRY : go to 5]
[5 | vodka ≥ 0.437037 ? DRY : NOT DRY]

CREAMY
[1 | bailey′s irish cream ≥ 0.03324 ? CREAMY : go to 2]
[2 | creme de cacao ≥ 0.0059365 ? CREAMY : go to 3]
[3 | milk ≥ 0.21495 ? CREAMY : go to 4]
[4 | irish cream ≥ 0.006375 ? CREAMY : go to 5]
[5 | cream ≥ 0.014754 ? CREAMY : NOT CREAMY]

JUICY
[1 | orange juice ≥ 0.040152 ? JUICY : go to 2]
[2 | cranberry juice ≥ 0.084 ? JUICY : go to 3]
[3 | pineapple juice ≥ 0.183334 ? JUICY : go to 4]
[4 | sour mix ≥ 0.0625 ? JUICY : go to 5]
[5 | sweet and sour ≥ 0.274614 ? JUICY : NOT JUICY]


