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We explore the dynamics of Rydberg excitations in an optical tweezer array under anti-blockade
(or facilitation) conditions. Due to the finite temperature the atomic positions are randomly spread,
an effect that leads to quenched correlated disorder in the interatomic interaction strengths. This
drastically affects the facilitation dynamics as we demonstrate experimentally on the elementary
example of two atoms. To shed light on the role of disorder in a many-body setting we show that
here the dynamics is governed by an Anderson-Fock model, i.e. an Anderson model formulated on
a lattice with sites corresponding to many-body Fock states. We first consider a one-dimensional
atom chain in a limit which is described by a one-dimensional Anderson-Fock model with disorder
on every other site, featuring both localized and delocalized states. We then illustrate the effect of
disorder experimentally in a situation in which the system maps on a two-dimensional Anderson-
Fock model on a trimmed square lattice. We observe a clear suppression of excitation propagation
which we ascribe to the localization of the many-body wavefunctions in Hilbert space.

Introduction. Rydberg gases provide a versatile plat-
form for studies of quantum few-body and many-body
phenomena with applications ranging from quantum in-
formation processing [1] to simulations of complex con-
densed matter systems. The experimental degree of con-
trol has reached a stage which enables efficient entangle-
ment creation [2] and implementation of quantum Ising
models [3, 4]. This opens pathways towards probing mag-
netic structures [5–8] as well as the exploration of open
many-body quantum systems [9–15].

Of particular interest is the so-called facilitation mech-
anism (or anti-blockade), where the excitation of an atom
to a Rydberg state is strongly enhanced in the vicinity of
an already excited atom [16, 17]. This effect is of broad
relevance and exploited in the design of quantum gates
[18, 19] as well as in protocols for dissipative quantum
state preparation [6]. In the many-body context it effec-
tuates an aggregation mechanism, where an initial Ryd-
berg excitation seed triggers a dynamical growth of exci-
tation clusters [18, 20–23] and it enables the implementa-
tion of kinetic constraints [12, 24, 25] thereby connecting
to the physics of glass-forming substances [26–28].

Here we perform a theoretical and experimental study
of the facilitated dynamics of Rydberg excitations in a
one-dimensional array of optical tweezers. In a first ex-
periment conducted with only two of them we establish
that the uncertainty of the atomic positions introduces
disorder which strongly affects excitation transfer be-
tween the atoms. To gain insight on how disorder affects
the many-body context we theoretically consider firstly
a regime of small disorder and strong interaction, which
lends itself to a description through a one-dimensional
Anderson model [29–31] defined on a reduced Hilbert

space. Here, the disorder occurs on every other “site”
and the corresponding amplitudes are correlated due to
their dependence on the interatomic distances. Finally,
we conduct an experiment where we probe the excitation
dynamics in a linear array of eight tweezers and provide
first evidence of a strong suppression of excitation prop-
agation. We show that in the accessed parameter regime
the physics is governed by an effective two-dimensional
Anderson model on a trimmed square lattice and we in-
terpret the absence of propagation in terms of localiza-
tion of the wavefunction in the Hilbert space.
Rydberg lattice gas with disorder. We consider a chain

of tight optical traps (tweezers), each loaded with a sin-
gle atom [4, 32–34]. Figure 1(a) displays an example for
two atoms. We label the Cartesian coordinates with an
index i = 1, 2, 3, with the chain lying along direction
3. The average separation between contiguous traps is
r0 = (0, 0, r0). We describe the Rydberg atoms as ef-
fective two-level systems [35] with the electronic ground
state |↓〉 and a Rydberg excited state (or “excitation”)
|↑〉. In the following, we refer to the tensor products
of |↑〉 and |↓〉 states as “Fock basis”. The atoms are
driven by laser light with Rabi frequency Ω, and detun-
ing ∆. Excited ones interact via a van-der-Waals poten-
tial V (|r|) = C6/ |r|6 [35, 36]. The Hamiltonian of the
system reads

H =
∑
k

[
Ω

2
σx
k + ∆nk +

∑
l>k

V (|rk − rl|)nknl

]
(1)

where k, l are lattice indices, σx
k = |↑k〉 〈↓k| + |↓k〉 〈↑k|

and nk = |↑k〉 〈↑k|. We express the k-th atom position
as rk = (k− 1)r0 + δrk. The displacements δrk originate
from the finite temperature T of the atoms and constitute
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FIG. 1. Two-atom setting. (a) The harmonic traps are dis-
posed in a line along i = 3 with average separation r0 and
widths σi. (b,c) Level structure for the two-atom case for
the resonant (∆ = 0) and facilitated (∆ = −VNN) condi-
tions respectively. The experimental data for the time evo-
lution of the excitation probabilities P↑↓, P↓↑ are shown as
full circles in panels (d,e). The data are averaged over at
least 100 realizations of the disorder. The solid lines show
numerical solutions of the dynamics obtained averaging over
30 realizations of the disorder. The experimental data here
and in the following were obtained using 87Rb atoms held
at a temperature T = 50 µK in the traps with frequen-
cies ω1 = 2π × 11 kHz, ω2,3 = 2π × 91.5 kHz resulting
in the position uncertainties σ1 = 1 µm and σ2,3 = 120
nm. The internal levels are |↓〉 =

∣∣5S1/2, F = 2,M = 2
〉

and

|↑〉 =
∣∣100 D3/2, F = 3,M = 3

〉
with r0 = 14.2 µm, Ω =

2π×1.25 MHz, C6 = −2π×7.3×107 MHzµm6. Consequently,
VNN = C6/r

6
0 = −2π × 8.9 MHz and |δV | ∼ 2π × 0.64 MHz

(all energies are in units of ~).

an intrinsic source of randomness. For sufficiently low T ,
the atoms, which are frozen during the experiment, oc-
cupy the harmonic part of the traps (with frequencies
ωi along i = 1, 2, 3). Hence, their distribution is ap-
proximately a Gaussian with widths σi =

√
kBT/(mω2

i ),
with m the atomic mass [37]. Randomness enters Eq. (1)
via the interaction term, which depends on the dis-
tances dk,l = |rk+l − rk| = |lr0 + δrk+l − δrk|. Corre-
spondingly, we introduce the energy displacements δVk ≡
V (dk,1) − V (r0). Note that these distances are not in-
dependently distributed: for instance, dk+1,1 and dk,1
both depend on rk+1, which generates correlation be-
tween them [37].

Two-atom dynamics and facilitation mechanism. We
begin by illustrating the effect of the disorder in a two-
atom setting. Considering first ∆ = 0 (see Fig. 1(b)),
the two atomic states |↑↓〉 , |↓↑〉 are resonant with |↓↓〉,
while the interaction brings the state |↑↑〉 off resonance
and thus decouples it from the dynamics. Since the dis-
order only acts on |↑↑〉, a dynamics starting from |↓↓〉,
|↑↓〉, |↓↑〉, or combinations thereof, is not affected by it.
In the experiment, after preparing the system in the |↑↓〉
state, the evolution thus resembles a coherent oscillation
of the initial excitation between the atoms. This is shown
in Fig. 1(d), where we display the excitation probabili-
ties P↑↓ = 〈n1(1− n2)〉, P↓↑ = 〈(1− n1)n2〉 as functions

FIG. 2. Fock space structure for three atoms prior and after
applying the facilitation condition. States with similar en-
ergy occupy the same row. (a) Internal structure of the Fock
space. Linked states are connected by one spin flip. (b) Fock
states spanning the reduced Hilbert space under facilitation
conditions are shown in red (see text for details).

of time. The presence of the disorder becomes apparent
instead when driving the system through the |↑↑〉 reso-
nance. This is achieved by setting ∆ = −VNN (Fig. 1(c)),
the so-called “facilitation condition” [24, 38–41], where
VNN = V (r0) is the nearest-neighbor interaction energy
in the absence of disorder. Here, the amplitude of the os-
cillations of P↓↑ and P↑↓ is suppressed, see Fig. 1(e). This
means that the displacements δr1, δr2 can be sufficiently
large to bring the |↑↑〉 state off-resonance, hindering in
turn the propagation of the initial excitation. Note that
the initial state |↑↓〉 is obtained with non-unit probabil-
ity due to experimental imperfections (see Supplemental
Material [37] for details). We also refer to [4, 33] for
further details on the experimental setting.
Generalization to many atoms. We investigate now

the facilitated propagation of an excitation through a
one-dimensional chain of atoms and first consider a sim-
plified situation before addressing the parameter regime
accessed by our experiment. The Hilbert space of our sys-
tem can be depicted as a complex network of Fock states.
Only states which differ by a single spin flip are connected
by Hamiltonian (1) via the “flipping” (∝ Ω) term. This is
sketched in Fig. 2(a) for three atoms, where we label the
states with their diagonal energies (i.e., their energies for
Ω = 0), dub VNNN = V (2r0) the next-nearest-neighbor
interactions and assume we can neglect all terms V (nr0)
for n > 2. In the following we fix the facilitation con-
dition ∆ = −VNN and we make a number of simpli-
fying assumptions: (i) large detuning (∆ � Ω). This
strongly suppresses unfacilitated transitions. (ii) strong
next-nearest neighbor blockade (V (2r0) � Ω, δVk). In-
teractions at distance 2r0 are supposed to be sufficiently
strong to suppress transitions. In particular, we require
this suppression to be much stronger than the one pro-
duced by the disorder. We also consider a tight confine-
ment of the atoms, σj � r0, such that, as in Fig. 1(e),
the disorder can hinder, but not prevent transport en-
tirely (i.e., δVk . Ω).

Under these conditions the states organize in layers
with large energy gaps approximately of the order of
VNNN or ∆. Within each layer, however, states are now
separated by considerably smaller differences δVk. We
thereby neglect connections between different layers and
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retain only the intra-layer ones [see Fig. 2(a,b)].
We focus now on the highlighted (red) layer at en-

ergy ∆ [Fig. 2(b)]. We recall first that (i) implies that
spins cannot be flipped if they do not have a single ex-
cited neighbor. As a consequence, clusters of consecu-
tive excitations can shrink or grow, but not merge or
(dis)appear, i.e., the number Ncl of these clusters is con-
served (see also the discussion in [37]). Condition (ii)
implies instead that a spin next to two consecutive exci-
tations cannot flip (e.g., |↑↑↓〉 ↔ |↑↑↑〉 is forbidden); it
then follows that the number NNNN of excitation triples
(↑↑↑) is conserved. The red layer in Fig. 2(b) corresponds
to Ncl = 1, NNNN = 0 as it exclusively includes states
with a single excitation or a single pair of neighboring
ones; in the following, the former kind will be denoted
by odd integers, |2j − 1〉 ≡ |↓1 . . . ↓j−1↑j↓j+1 . . . ↓L〉
(j = 1 . . . L) whereas the latter by even integers, |2j〉 ≡
|↓1 . . . ↓j−1↑j↑j+1↓j+2 . . . ↓L〉 (j = 1 . . . L − 1). The dy-
namics restricted to this layer can be described by a one-
dimensional Anderson model [29]. In fact, the Hamil-
tonian connects these states sequentially (. . . |2j − 1〉 ↔
|2j〉 ↔ |2j + 1〉 . . .), taking the form of a tight-binding
model with sites labeled by b = 1 . . . 2L − 1 and a ran-
dom potential hb = (1 + (−1)b)δVb/2/Ω acting only on
even ones. In this restricted space H can be recast as
[37]

HA =
Ω

2

2L−2∑
b=1

[
|b〉 〈b+ 1|+ |b+ 1〉 〈b|+ hb |b〉 〈b|

]
. (2)

The two main differences to the “canonical” Anderson
model lie in the absence of disorder on odd sites and
the fact that the hb are identically distributed, but not
independent random variables. In order to distinguish it
from a standard Anderson model defined in real space,
i.e., on a physical lattice, in the following we shall call it
Anderson-Fock model.

Localization in the 1D Anderson-Fock model. Our
analysis — analogously to the “canonical” case — fo-
cuses on the eigenvectors |ψn〉 of HA. In the Fock ba-
sis, we distinguish between localized states whose ampli-
tude |〈b|ψn〉| is concentrated within a region of width
l and decays exponentially ∼ e−r/l with the distance
r from it, and delocalized states which are instead ex-
tended and do not show exponentially-suppressed tails.
Equivalently, one can introduce the Lyapunov exponent
γ = l−1 [42, 43]. Wavefunctions with γ > 0 are local-
ized, whereas γ = 0 denotes delocalization. We empha-
size that the Lyapunov exponent, as a function of the
energy E, only depends on the distribution of the dis-
order, and not on the specific realizations thereof [44].
In Fig. 3 we report a numerical determination of γ for
a chain of length L = 25000 sites. We provide details
of these computations in [37]. We find that γ is positive
∀E 6= 0, while γ(E = 0) = 0, signaling the presence of a
delocalized state. The asymmetric shape originates from

FIG. 3. Lyapunov exponent for the one-dimensional
Anderson-Fock model. All data shown in this figure are ob-
tained with the same parameters given in Fig. 1. In the main
figure we report the Lyapunov exponent as a function of the
energy E (measured in units of Ω/2). The inset shows a com-
parison between the shapes of the wave functions obtained
from a numerical reconstruction (left panel) and from the cor-
responding prediction associated to the Lyapunov exponent
(right panel) for a chain of L = 20 sites and a specific re-
alization of the disorder. In the right panel the envelopes
∝ exp [−4γ(E) |k − kmax(E)|] are centered at the position
kmax(E) at which the corresponding set of excitation prob-
abilities in the left panel reaches its maximum. The factor 4
in the exponent stems from considering probabilities instead
of amplitudes and the fact that the length of the atomic chain
is about half the one in Fock space.

an asymmetry of the distribution of energy displacements
between positive and negative values [37]. In the inset we
compare our Lyapunov exponent results with a numeri-
cal simulation of a system of size L = 20 (for a randomly
chosen realization of the disorder). This shows that the
Lyapunov exponent provides a reasonably reliable pre-
diction already for relatively small system sizes.

Note, that E = 0 is always — independently of
the realization of disorder — an eigenvalue of HA and
corresponds to the (delocalized) wavefunction |ψ0〉 =
(1/
√
L)

∑
b sin(πb/2) |b〉, which has nonvanishing compo-

nents only on states not affected by the disorder. This is
in contrast with the standard Anderson model [29], which
features full localization, and is instead reminiscent of
related works on one dimensional models: the random
dimer model [42, 45–48] and the Anderson model in the
presence of correlated disorder [43], both exhibiting de-
localized states in the spectrum.

Localization in the 2D Anderson-Fock model. Mov-
ing away from this simplified discussion we now analyze
an experiment conducted in a chain of 8 atoms. We
monitor the local densities 〈nk(t)〉 starting from a sin-
gle excitation |ψin〉 = |↑↓↓↓↓↓↓↓〉. The result is displayed
in Fig. 4(a) and no appreciable propagation beyond the
second site is observed, signaling a strong suppression of
transport. As shown in the following, this can again be
ascribed to the fact that the eigenstates are localized,
although via a slightly modified theoretical description.

Solving Hamiltonian (1) in the presence of disorder,
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FIG. 4. Eight-atom experiment and two-dimensional Anderson-Fock model. (a) Experimental data for the dynamics of the
site-resolved excitation probability averaged over more than 100 realizations. Here, |↑〉 =

∣∣56D3/2, F = 3,M = 3
〉
, r0 = 4.1 µm,

Ω = 2π×2.1 MHz, ∆ = −VNN = −2π×8.4 MHz and |δV | ∼ 2π×2.1 MHz (in units of ~). The data are compared with numerical
data from exact diagonalization of the Hamiltonian (b,c), and the 2D Anderson-Fock model (d,e), with and without disorder.
Disorder averages are made over 100 realizations. In the absence and for low disorder (|δV | . 2π × 0.4 MHz), excitations still
propagate ballistically. (f) Lattice structure of the effective model for L = 4 atoms and Ncl = 1. (g) Inverse participation ratio
I as a function of the energy E (measured in units of Ω/2) for a chain of L = 20 atoms. The amplitude of the wave function
(projecting |E〉 on the Fock basis |c〉) is reported for four representative states on a lattice whose structure follows the one
shown in panel (f). From left to right they display: a state localized in both Fock space and real space, the special state |ψ0〉
and a similar state found for small E > 0 (see text for details).

Fig. 4(b), we find localization, in good agreement with
the experimental data. The case without randomness,
studied only numerically (Fig. 4(c)), features instead
propagation. In our experiment condition (ii) (i.e.,
VNNN � δVk) is not satisfied. It is thereby possible
to grow clusters beyond the two-excitation limit. This
breaks the chain-like structure obtained from the sim-
plified description [Fig. 2(b)]. Instead it gives rise —
when considering a single cluster (Ncl = 1) — to a
two-dimensional square lattice with N = L(L + 1)/2
sites. This structure, previously discussed in Ref. [49],
is sketched in Fig. 4(f) for four atoms. We remark that
the two bottommost rows correspond precisely to the
previous one-dimensional chain. The dynamics on this
“triangle” of states is described by a 2D tight-binding
Anderson-Fock model similar to Eq. (2) (see [37] for the
derivation). As shown in Fig. 4(d)-(e) the solutions of
this effective model agree well with that of the full Hamil-
tonian.

The observed inhibition of excitation propagation
stems from the localization of the many-body eigenstates
|E〉 on the restricted Fock basis |c〉. We quantify the de-
gree of localization by means of the inverse participation
ratio (IPR) I = (N

∑
c |〈E|c〉|

4
)−1 [50]. As a measure

of localization, the IPR can be easily tested on the two
limiting cases: for a state |E〉 uniformly distributed on
the basis (|〈E|c〉| = 1/

√
N) one finds the maximal value

I = 1, whereas for a completely localized state, namely
|E〉 ≡ |c̄〉 corresponding to a single Fock state |c̄〉, one has
I = 1/N . A numerical study of I for L = 20 atoms and
the parameter set employed in the experiment is reported
in Fig. 4(g), where for every realization of the disorder
the spectrum is calculated via exact diagonalization. The
IPR is then computed for each energy eigenvector and a

first average is calculated among levels which end up in
the same bin of the histogram. A second average is then
applied over all the considered realizations. In general,
we observe that the IPR remains rather low on the en-
tire spectrum (I < 0.1), signaling that the parameters
are in the localized phase. The form of the IPR indicates
the presence of strongly localized states at large energies
(both positive and negative), while eigenstates at smaller
energies are slightly more spread-out. The central peak
links to the presence of the state |ψ0〉 = |E = 0〉 encoun-
tered above, which is still an exact eigenstate, but only
occupies the bottommost row [see example in Fig. 4(g)],
its IPR being I = L/N = 2/(L+ 1).

It is important to remark that despite the mapping
onto a single particle Anderson problem in Fock space,
the system is in fact interacting in real space and does
not reduce in general to a non-interacting Anderson prob-
lem. In particular, rephrasing the dynamics in terms of
domain wall degrees of freedom [51, 52] does not yield
free particles [37].

Outlook. The Rydberg excitation dynamics in de-
tuned optical tweezer arrays is governed by certain classes
of tight binding Anderson models featuring inhibited ex-
citation transport, the simplest one being a 1D Anderson-
Fock model with disorder on every other site. Currently
accessed experimental parameter regimes feature a 2D
manifestation of an Anderson-Fock model with correlated
disorder, whose behavior is largely unexplored. The pre-
sented system opens possibilities for studies of multidi-
mensional Anderson models, where the dimensionality is
twice the number of excitation clusters. This connection
may shed light on how Fock space localization influences
real space localization, which is a subtle and interesting
open problem in the context of many-body localization
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[53, 54], which started to be addressed experimentally
only very recently [55, 56].
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T. Macr̀ı, T. Lahaye, and A. Browaeys, Nature 534,
667 (2016).

[5] T. E. Lee, H. Häffner, and M. C. Cross, Phys. Rev. A
84, 031402 (2011).

[6] A. W. Carr and M. Saffman, Phys. Rev. Lett. 111,
033607 (2013).

[7] M. Hoening, W. Abdussalam, M. Fleischhauer, and
T. Pohl, Phys. Rev. A 90, 021603 (2014).

[8] R. M. W. van Bijnen and T. Pohl, Phys. Rev. Lett. 114,
243002 (2015).

[9] H. Weimer, Phys. Rev. A 91, 063401 (2015).
[10] M. Marcuzzi, M. Buchhold, S. Diehl, and I. Lesanovsky,

Phys. Rev. Lett. 116, 245701 (2016).
[11] D. C. Rose, K. Macieszczak, I. Lesanovsky, and J. P.

Garrahan, arXiv preprint arXiv:1607.06780 (2016).
[12] B. Everest, M. Marcuzzi, J. Garrahan, and

I. Lesanovsky, arXiv:1602.05839 (2016).
[13] V. R. Overbeck, M. F. Maghrebi, A. V. Gorshkov, and

H. Weimer, arXiv preprint arXiv:1606.08863 (2016).
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M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller,

Phys. Rev. Lett. 112, 013002 (2014).
[22] A. Urvoy, F. Ripka, I. Lesanovsky, D. Booth, J. P. Shaf-
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I. APPROXIMATE GAUSSIAN DISTRIBUTION OF THE ATOMIC POSITIONS

Here we recall how the Gaussian distribution of the atomic positions arises. As a first approximation, we assume
the motional degrees of freedom to be classical, so that we can describe the position of the atom by the Boltzmann
distribution f(r,p) = exp (−βHmotion(r,p)). For low enough temperatures, the atoms have only access to the
harmonic part of the potential and Hmotion(r,p) ≈

∑
i p

2
i /(2m) + (m/2)

∑
i ω

2
i r

2
i . The distribution of the positions

ppos = (
∫

d3p f)/(
∫

d3p d3r f) can be read off directly and is a Gaussian with zero mean and variances σ2
i = 1/(mω2

i β).
The complete three-dimensional distribution is then simply a product of ppos(xi) along the three directions. For an
atom in a trap centered at position kr0 = (0, 0, kr0) with k an integer, it is straightforwardly generalized to

p(k)
pos(r) =

1

(2π)
3/2

σ1σ2σ3

e
− r21

2σ21
− r22

2σ22
− (r3−kr0)2

2σ23 . (S1)

We remark that the indices in the expression above distinguish between Cartesian components only, e.g r1 and r2 are
the components along x and y of the same atomic position. In the following, whenever necessary to display both, the
trap index will always appear before the component one, e.g., rk,i is the i-th component of the k-th atom’s position.

II. CORRELATION OF THE DISTANCES AND TYPICAL INTERACTION DISPLACEMENTS

In this section we explain how the independent atomic positions lead to correlated inter-atomic distances and, in
turn, to correlated energy fluctuations. We comment on the respective probability distributions.

In our numerical simulations, each atomic position rk is independently generated according to the distribution (S1)
relative to its own trap. As explained in the main text, the nearest-neighbour differences, dddk ≡ dk,1 = rk+1 − rk =
(d1
k,d

2
k,d

3
k) are not independent - for example, both ddd1 and ddd2 depend on the position of the second atom. The joint

distribution of dddks can be obtained from the atomic positions distribution as

pdiff(ddd1, . . . ,dddL−1) =

∫ [ L∏
k=1

d3rk p
(k)
pos(rk)

][
L−1∏
k′=1

δ(3) (dddk′ − (rk′+1 − rk′))

]
=

=

[
1

√
L
(√

2π
)L−1

]3

(σ1σ2σ3)
1−L

e
− 1

2

∑
k,q

[
1

σ21
d

1
kAkqd

1
q+ 1

σ22
d

2
kAkqd

2
q+ 1

σ23
(d3
k−r0)Akq(d

3
q−r0)

]
,

(S2)

where Akq = L−max(k, q)− (L− k)(L− q)/L = (L−max(k, q)) min(k, q)/L is a symmetric real matrix. From here,
one can determine the correlation properties of the distances: the correlation matrix C = A−1 is a tridiagonal matrix
[42]

C =


2 −1 0 0
−1 2 −1 0
0 −1 2 −1 · · ·
0 0 −1 2

...
. . .

 (S3)
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FIG. S1. Asymmetry of the energy displacements. Here an excitation is present in the center of the leftmost trap (in
green). The dashed line indicates the facilitation shell, i.e., the sphere of points where V (r0) = −∆. For repulsive interactions,
the red portion of the second trap corresponds to the domain where the energy displacement is positive (δV > 0), whereas the
opposite (δV < 0) holds for the blue one. It is then apparent that the volume covered by the blue portion is larger than the
volume of the red one, yielding the mentioned bias towards negative values.

implying e.g.
〈
d

3
kd

3
q

〉
c
≡
〈
d

3
kd

3
q

〉
−
〈
d

3
k

〉 〈
d

3
q

〉
= σ2

3 (2δk,q − δk,q+1 − δk,q−1). It confirms the expected result, namely

that contiguous distances are (anti-)correlated. This comes from the simple fact that, considering three atoms, moving
the middle atom closer to the first one brings it further away from the last one.

As mentioned in the main text, the asymmetric profiles of both the Lyapunov exponent (for the 1D case) and
the inverse participation ratio (for the 2D case), stem from the asymmetry of the distribution pint(δV ) of energy
displacements. For anisotropic traps (σi 6= σj) there is no closed formula for pint. However, considering for instance
repulsive interactions (V (r) > 0), the bias towards negative values (δV < 0) can still be understood simply by
analyzing the geometry of the setup: in Fig. S1 we display two neighboring traps. The facilitation radius r0 corresponds
to the distance at which the detuning ∆ exactly cancels the interaction V (r0) and thus separates the regime δV > 0
(inside, d < r0, red area in the figure) from δV < 0 (outside, d > r0, blue area in the figure). It then becomes
apparent that the former includes a smaller portion of the second trap than the latter. In other words, setting as a
first approximation the first atom in the center of its trap, the placement of the second one will more likely yield a
distance d > r0 than the converse. For attractive interactions, the signs change and the bias will be towards positive
values.

The typical energy displacement can also be estimated by simple considerations: taking two neighboring atoms at

average separation r0 = (0, 0, r0) and standard deviation (of the distance between them) δr =

√
〈d2〉 − 〈d〉2 ≈

√
2σ3,

we define

δV =

∣∣∣∣∂V∂r
∣∣∣∣ δr = 6 |V (r0)| δr

r0
. (S4)

We emphasize that we only include here the contribution σ3, which is the only one acting to first order in σ1,2,3/d.

This yields a reasonable lower bound on δV .
For the set of parameters used in the two-atoms experiment (σ3 = 0.12µm, r0 = 14.2 µm, V (r0)/~ = 2π×8.9 MHz)

we find δV /~ ≈ 2π×0.64 MHz. For the eight-atoms experiment (σ3 = 0.12µm, r0 = 4.1 µm, V (r0)/~ = 2π×8.4 MHz)
we obtain δV /~ ≈ 2π × 2.1 MHz. This value is to be compared with the Rabi frequency Ω/~ ≈ 2π × 2.1 MHz and
confirms the relevance of the disorder for the propagation of excitations in this setup.

III. LOCALIZATION IN THE 1D ANDERSON-FOCK MODEL.

In this section, for simplicity we measure all energies and (inverse) times in units of (half) the Rabi frequency,
setting Ω = 2. We approach the problem with a transfer matrix formalism: expressing the quantum state in the
restricted Fock basis |b〉, |ψ〉 =

∑
b ab |b〉, the Schrödinger equation HA |ψ〉 = E |ψ〉 reduces to the recursion equation(
ab+1

ab

)
=

(
E − hb −1

1 0

)(
ab
ab−1

)
≡Mb

(
ab
ab−1

)
, (S5)

where Mb = Mb(E) is an energy-dependent transfer matrix which progressively reconstructs the wave function ampli-
tudes from left to right. The values of E belonging to the spectrum of the Hamiltonian are identified by the boundary
conditions a2L = a0 = 0.
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The localization length l can be expressed in terms of the Lyapunov exponent [38,39],

γ(E) ≡ lim
n→∞

1

n
log

∥∥∥∥∥
1∏

b=n

Mb(E)

∥∥∥∥∥
op

≡ l−1, (S6)

where ‖M‖op = sup~x ‖M~x‖ / ‖~x‖ is the operator norm, with ~x denoting a generic vector and ‖·‖ the Euclidean norm

(for the existence of the limit see [40]).

IV. HILBERT SPACE REDUCTIONS AND RESTRICTED HAMILTONIANS

A. Derivation of the effective Hamiltonians

Here we provide the detailed derivation of the effective 1D and 2D Hamiltonians. For the reader’s convenience, we
recall here from the main text the original Hamiltonian

H =
∑
k

[
Ω

2
σxk + ∆nk +

∑
l>k

V (|rk − rl|)nknl

]
(S7)

of the model. For simplicity, we are going to neglect all interactions beyond next-nearest neighbors (NNN) (for the
parameters above, e.g., |V (3r0)/Ω| ∼ 10−3), so that the second sum above can be restricted to l = k + 1, k + 2.
Second, the relative displacement between NNNs is suppressed by a factor 26 = 64 with respect to the noise between
nearest neighbors and can therefore also be discarded. After these basic approximations, H takes the form

H =
∑
k

[Ω

2
σxk + ∆nk + (VNN + δVk)nknk+1+ + VNNNnknk+2

]
=
∑
k

[Ω

2
σxk + ∆nk(1− nk+1) + δVknknk+1+ + VNNNnknk+2

] (S8)

where we used the facilitation constraint VNN = −∆. Note that the sum runs over k = 1 . . . L and, for later
convenience, we fix four auxiliary variables n−1 = n0 = nL+1 = nL+2 ≡ 0. We now enforce condition (i) ∆ � Ω.
This implies that spin flips are strongly suppressed if not in the presence of a single excited neighbor; we further
approximate our Hamiltonian by making this a hard constraint. In other words, the transitions |↓↓↓〉 ↔ |↓↑↓〉 and
|↑↓↑〉 ↔ |↑↑↑〉 are prohibited. If we now define a “cluster” as an uninterrupted sequence of ↑ spins (for instance, the

state |↓ ↑↑ ↓ ↑ ↓ ↑↑↑ 〉 has three highlighted clusters), we see that these structures cannot appear or disappear,

nor can they merge or split. Hence, as pointed out in [41] as well, the number Ncl of these clusters is conserved.
In particular, having fixed nL+1 = 0, the number of clusters corresponds to the number of right kinks |↑↓〉, i.e.,

Ncl =
∑L
k=1 nk(1− nk+1). The Hamiltonian now reads

H = ∆Ncl +
∑
k

[Ω

2
σxkP

(i)
k + δVknknk+1 + VNNNnknk+2

]
(S9)

with the projector P
(i)
k = nk−1 + nk+1 − 2nk−1nk+1. If we consider now the special case Ncl = 1, we notice that the

states with a single cluster can be labeled by two indices: the starting position of the cluster (µ = 1 . . . L) and the
ending one ν = µ . . . L. In order to enforce the condition ν ≥ µ and avoid spurious boundary terms, we formally use
the projector Θ |µ, ν〉 = θ(ν − µ)θ(µ)θ(ν)θ(L− µ)θ(L− ν) |µ, ν〉 on the valid states, where θ(x) is the Heaviside step
function (θ(x ≥ 0) = 1 and θ(x < 0) = 0). Since clusters only grow/shrink at the edges, the Hamiltonian can be
recast in the form

HB = Ω ΘH ′BΘ with (S10a)

H ′B =

L∑
µ,ν=1

[1

2
(|µ, ν〉 〈µ+ 1, ν|+ |µ, ν〉 〈µ, ν + 1|+ h.c.) +(

δvµν + (ν − µ− 2)θ(ν − µ− 2)
VNNN

Ω

)
|µ, ν〉 〈µ, ν|

]
, (S10b)



4

where δvµν =
∑ν−1
k=µ δVk/Ω and for simplicity we subtracted the additive constant ∆. In this notation, one can regard

HB as a hopping Hamiltonian on half a square lattice (since we take ν ≥ µ), as reported in the main text. Each
site feels a random potential δvµν and a deterministic one originating from the NNN interactions (provided of course,
that there are more than two ↑ spins in the cluster). It is therefore reminiscent of a 2D Anderson problem, the main
difference being in the peculiar form of the noise, which appears as the sum of at most L − 1 random variables and
makes it non-trivially correlated between different sites.

The 1D Anderson-Fock model we introduce in our main text is obtained when condition (ii) VNNN � Ω also holds.
By approximating this as a hard constraint (i.e., assuming the limit VNNN/Ω → ∞) the number of next-nearest-
neighboring excitations NNNN becomes a conserved quantity. The Hamiltonian then reads

H = ∆Ncl +NNNNVNNN +
∑
k

[Ω

2
σxkP

(i)
k P

(ii)
k + δVknknk+1

]
, (S11)

with the additional projector P
(ii)
k = (1−nk−2)(1−nk+2). Note that under these conditions spins neighboring a pair

of excitations cannot flip (e.g., |↑↑↓〉 ↔ |↑↑↑〉 is suppressed). Similarly, different clusters cannot grow to a distance
smaller than two now (i.e., transitions such as |↑↓↓↑〉 ↔ |↑↑↓↑〉 are prohibited as well). This means that any longer-
than-two cluster is a stable local configuration (i.e., invariant under the dynamics generated by (S11)) which cuts the
chain of atoms in two dynamically-disconnected parts. Each of these parts can be read as a subsystem subject to the
same Hamiltonian (S11) but with lower NNNN. Therefore, the analysis can be restricted, without conceptual loss, to
the case NNNN = 0. The description becomes particularly simple for Ncl = 1, since the states can be labeled simply
by b = 2p− 1, with p the position of the “center of mass” of the clusters:

|↑↓↓↓ . . .〉 ≡ |1〉 (S12)

|↑↑↓↓ . . .〉 ≡ |23

2
− 1〉 = |2〉 (S13)

|↓↑↓↓ . . .〉 ≡ |3〉 (S14)

. . . (S15)

The advantage of this labeling is that the states are now sequentially connected by the Hamiltonian, i.e., 〈b|H |b′〉 6=
0 ⇔ (b − b′) = 0,±1 and thus naturally define a chain. Subtracting the additive constant ∆, one then finds again
equation (2) of the main text, i.e.,

HA =
Ω

2

2L−2∑
b=1

[
|b〉 〈b+ 1|+ |b+ 1〉 〈b|+ hb |b〉 〈b|

]
, (S16)

where

hb =

{
0 (if b odd)

2δVb/2/Ω (if b even).
(S17)

B. Non-reducibility to a free problem in dual space

We comment here on the fact that it is crucial to adopt the Fock-space description in order to reduce the problem
to an Anderson one. In principle, accounting for the cluster-preserving property discussed above and in the main text,
one could imagine to recast the problem in terms of diffusing domain walls (i.e., local configurations like ↑↓ and ↓↑) on
the chain. In the case of open boundary conditions we are interested in, this could be intuitively pictured as follows:
for later convenience, let us add two factitious (up) spins at the edges of the chain; for example, an L = 3 configuration
like |↓↓↑〉 reads now |(↑) ↓↓↑ (↑)〉, where the new additions are denoted within brackets. Now, let us define a model
on the bonds between sites, instead of on the sites themselves; we now define domain walls as particles |↑↓〉 → |1〉,
|↓↑〉 → |1〉 and intra-cluster bonds as holes |↑↑〉 → |0〉, |↓↓〉 → |0〉, such that the configuration in the example above
becomes |(↑) ↓↓↑ (↑)〉 → |1010〉. Although it may look like a two-to-one mapping, having fixed the boundaries to be
up spins actually makes the mapping bijective between the space of all possible (L+ 2)-spin configurations with fixed
boundaries (space dimension 2L) and all the possible configurations of L+ 1 bonds with an even number of particles,
since domain walls always come in pairs (space dimension 2L). If this were a system of diffusing free particles, then
hopping from one site to the next or previous one would always yield the same change in energy regardless of the
configuration of the remaining particles. However, it is easy to find a counterexample: the process |1010〉 → |1100〉
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corresponds to |↓↓↑〉 → |↓↑↑〉 and yields an energy shift +δV2. On the other hand, |0011〉 → |0101〉 corresponds to
|↑↑↓〉 → |↑↓↑〉 and yields instead −δV2. The sign of the energy difference between a given configuration and the new
configuration, where a particle has been moved to an adjacent site depends on the parity of the number of particles
preceding the discplaced particle: in the spin language, it corresponds to determining whether the domain wall that
is being moved is a left domain wall ↓↑ — in which case, moving it left increases the number of actual interacting
excitations, while moving it right decreases it — or a right one ↑↓ — in which case the situation is reversed. Hence,
these “particles” must interact via a non-trivial and non-local term. Even if we distinguish between left and right
domain walls, i.e., by mapping |↓↑〉 → |L〉 and |↑↓〉 → |R〉 we do not obtain a free diffusive problem: in fact, in this
case the parity is not a problem any more, but particles of type L and R experience a mutual hard-core repulsion,
which is necessary to avoid excluded processes such as annihilation of excitation clusters. Another way of seeing this
is that the only physical configurations in this space are the ones where the first particle must be R and the last one L
and each R can only be followed (and preceded) by an L and vice versa. Therefore, to avoid a physical configuration
evolving into a non-physical one, it must be impossible for L and R particles to overcome each other. In spite of the
interaction taking a much simpler form, the problem still does not reduce to free diffusion.

V. DETAILS OF THE NUMERICAL SIMULATIONS AND COMPARISON WITH THE
EXPERIMENTAL DATA

A. Two-atom case

In order to account for possible incoherent evolution of the excitations, we model the two-atom system using a
master equation of the form

ρ̇ = i[ρ,H] + Lloss(ρ) + Ldeph(ρ), (S18)

where H is the Hamiltonian (1) and

Lloss(ρ) =
γloss

2

(∑
i

2σ−↑a,iρσ
+
↑a,i −

{
σ+
↑a,iσ

−
↑a,i, ρ

})
(S19a)

Ldeph(ρ) =
γdeph

2

(∑
i

σz↑↓,iρσ
z
↑↓,i − ρ

)
(S19b)

are the phenomenological Lindblad superoperators accounting for atom loss if the atom is excited in the Rydberg
state and pure dephasing of the |↓〉 − |↑〉 transition with rates γloss and γdeph respectively. Here we model the loss
by introducing an auxiliary level |a〉 and σαβ,i are the usual Pauli matrices in the basis of |α〉 , |β〉 states acting on
i-th atom. When we consider atom loss, the population in the auxiliary state is interpreted as the population in the
Rydberg state, namely

P eff
↑↑ = P↑↑ + P↑a + Pa↑ + Paa (S20a)

P eff
↑↓ = P↑↓ + Pa↓ (S20b)

P eff
↓↑ = P↓↑ + P↓a. (S20c)

In order to account for the imperfect state preparation we consider the initial two-atom state in the {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉}
basis to be of the form

ρ(0) =


P↑↑ 0 η1

√
P↓↑
√
P↑↑ 0

0 P↑↓ 0 η1

√
P↓↓
√
P↑↓

η1

√
P↓↑
√
P↑↑ 0 P↓↑ 0

0 η1

√
P↓↓
√
P↑↓ 0 P↓↓

 . (S21)

This particular form of the initial density matrix is motivated by the fact that only its diagonal parts - the probabilities
P↑↑, P↑↓, P↓↑, P↓↓ - were measured in the experiment. In (S21) η1 parametrizes the initial coherence of the first atom
and we take the coherence between the states of the second atom to be zero.
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We solve the master equation (S18) numerically for η1 ∈ {0, 0.25, 0.5, 0.75, 1} and a range of values of γloss and
γdeph. We then seek the parameters which minimize the squares of the difference between experimental and simulated
data χ2 =

∑
α,β∈{↑,↓} σ

2
αβ , where

σ2
αβ =

∑
i

(
Pαβ(ti)− P sim

αβ (ti)
)2

N
, (S22)

where N is the number of data points (times ti when the measurements were taken) and P sim are the probabilities
obtained by solving the Eq. (S18). Using the experimental initial values (P↑↑, P↑↓, P↓↑, P↓↓) = (0.2, 0.63, 0.04, 0.13) for
∆ = 0 and (0.13, 0.64, 0.04, 0.19) for ∆ = −VNN, we find the best results for η1 = 0.75 and (γloss, γdeph) = (0, 0.5) µs−1

which are used in Fig. 1.

Furthermore, we have verified that including the motion of the atoms in the traps has a negligible effect on the
simulated dynamics which is consistent with γloss = 0 µs−1. This was done by considering the atoms to have velocities

drawn from the normal distributions p(vik) ∝ exp(− vik
2
/2σ2

v), where σv =
√
kBT/m, i = 1, 2, 3 denotes the Cartesian

coordinate and k labels the position of the atom. This leads to the time dependent interaction term in the Hamiltonian
by replacing

δrk+l − δrk → δrk+l − δrk + (vk+l − vk)t. (S23)

The errors for the data plotted in Fig. 1 are taken to be the statistical mean errors εαβ =
√
Pαβ(1− Pαβ)/Nmeas,

where α, β ∈ {↑, ↓} and Nmeas is the total number of measurements (i.e. Pαβ = Nαβ/Nmeas for each time and Nαβ is
the number of times when the first atom was measured to be in state α and the second in state β). In all cases the
displayed finite size of the data points is equal or larger than the statistical errors.

In Fig. S2 we display the effects of changing the parameters driving the main sources of decoherence in our simu-
lations. In all panels the first column shows oscillations driven via the ground state |↓↓〉 (∆ = 0 in (S7)), while the
second displays the case of driving them through the doubly-excited state |↑↑〉 (∆ = −VNN in (S7)).

In panel (a) we increase the dephasing rate from the optimized value γfit
deph = 0.5 µs−1 while keeping all the other

parameters fixed. We notice that this – consistently with the naive expectation – dampens the oscillations in both
columns.

In panel (b) we multiply the experimental trap widths σα by a factor f , so that the new widths are isotropically
rescaled,

σα → σ̃α = fσα, (α = 1, 2, 3). (S24)

We see that, as the positional disorder is consequently increased, the first column remains largely unaffected, while
the second one shows higher and higher dampening of the oscillations. This confirms the relevance of this kind of
disorder when relying on the facilitation mechanism. We note the better agreement between the simulations and the
data for f = 1.5, f = 2. This potentially indicates an underestimation in the spread of the atomic positions. The σα’s
are inferred from the tweezers’ waists and from the atomic temperatures (assuming thermal equilibrium of the atoms
in the trapping potential). We believe that the observed discrepancy may originate from slight (trap-dependent)
deviations of the light intensity distribution of the tweezers from perfect Gaussians with all the same waists and
longitudinal positions. Although the conclusions of the present paper are not strongly affected by this mismatch,
further investigation of this point will be the subject of future experimental work.

In panel (c) we focus instead on the temperature within the scheme described above. Here, we model the effect
of the non-zero temperature by making the interatomic distance time dependent according to (S23). We display the
values both below and above the experimental estimate T exp ≈ 50 µK.

Another source of decoherence is the effect of the interaction on the atomic motion. In order to provide a rough
estimate of its influence we consider the classical equations of motion of a system of two atoms which interact via a
van-der-Waals potential V (r). Setting t = 2 µs to be the duration of an experimental run, we find for the relative
atomic displacement due to the interaction ≈ 0.035 µm for the two-atom case parameters and ≈ 0.11 µm for the
eight-atom case ones. Recalling the width of the traps σ ≤ 0.12 µm, we see that even if the atoms were not trapped
they would not have enough time to move away beyond the width of the traps. Furthermore, the same order of
displacements is obtained on average in the lowermost row of Fig. S2(c) and does not yield any improvement in the
agreement between numerics and experimental data, possibly signaling that this effect is in reality much smaller and
therefore negligible compared to other sources of decoherence on the timescales of the experiment.
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FIG. S2. Impact of different decoherence sources. All panels show the time evolution of the probabilities P↑↓ (blue) and P↓↑
(red). The left (right) column corresponds to driving through the |↓↓〉 state, ∆ = 0 (|↑↑〉 state, ∆ = −VNN). The circles
represent the experimental data reported in Fig. 1 of the main text. The solid lines are the numerical simulations of (S18)
using the optimal values γloss = 0 and η1 = 0.75. Panel (a) shows a sequence for increasing dephasing rate γdeph. Panel
(b) corresponds to varying the amplitude of the positional noise of the atoms and in panel (c) we account for the thermal
motion of the atoms (see text for details). Here γfit

deph = 0.5 µs−1, σ1 = 1 µm, σ2 = σ3 = 120 nm and T exp = 50 µK. All the
simulations shown were obtained by averaging over 200 realizations of the disorder. The red boxes in (a),(b),(c) highlight the
cases corresponding to the experimental parameters.
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B. Eight-atom case

Importantly, in the two-atom case, we have observed that the inclusion of the loss or dephasing mechanisms has
relatively small quantitative effect (for the relevant values of the parameters γloss and γdeph) on the simulated excitation
dynamics, so that neglecting those effects still yields a good agreement with the data.

Based on this observation and seeking a qualitative understanding of the dynamics in the eight-atom chain, we
simulate the results presented in Fig. 4(b-e) by exactly evolving the initial density matrix with the time-evolution
operator U(t) = exp(−iHt), where H is given by the Eq. (S7), (S11) for the full and effective model respectively. We
assume the initial state to be a pure state constructed from the experimental data (excitation probabilities) in the
same way as in (S21).

In Fig. S3 we provide an additional comparison between the spreading of the excitations along the chain in the
experimental and numerical data. To this end, we define an effective spatial distribution of the excitations as

(a) (b)

(c)

FIG. S3. (a,b) Mean µ (solid lines) and variance σµ (dashed lines) as functions of time for the same dataset used for Fig. 4.
Panel (a) here corresponds to the ideal (no disorder) case, (i.e. panels (c,e) in Fig. 4). Panel (b) corresponds instead to the case
accounting for positional disorder (panels (a,b,d) in Fig. 4). Here, panel (b) shows that the global properties of the position
distribution are well reproduced for both the effective and full numerical models. As expected, the comparison with panel (a)
highlights the difference in behavior due to the presence of disorder. (c) Effect of different disorder strengths on the mean µ.
The disorder is varied by rescaling the trap widths by f according to Eq. (S24). As one would intuitively expect, the curves
interpolate between the two limiting cases f = 0 and f = 1.5. For the chosen initial condition, the system becomes localized
around f . 0.5.

pk =
〈nk〉∑
j 〈nj〉

(S25)

and we focus on its mean µ =
∑
k kpk and variance σ2

µ =
∑
k(k − µ)2pk. The results reported in Fig. S3 show good

agreement for the low-order moments of the distribution between numerical and experimental data. In panel (c) we
display the evolution of the mean µ under different disorder strengths, highlighting a qualitative change in behavior
between f = 0.2 and f = 0.5, where f is the rescaling factor introduced in Eq. (S24).
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FIG. S4. Time evolution of site-resolved excitation probability obtained from numerical simulations of the full (topmost row)
and effective (bottommost row) Anderson-Fock models for different disorder strengths. The initial conditions are the same as
used in the main text and the disorder is averaged over 20 realizations for f = 0.2, 0.5, 50 for f = 1.5 and 100 for f = 1. The
first column (f = 0) corresponds to panels (c) and (e) in Fig. 4 in the main text, the fourth one (f = 1) to (b) and (d). It is
apparent that the localizing effects become more pronounced with increasing disorder strength.

Figure S4 qualitatively depicts the extent of the localization for different values of the disorder as a function of the
trap rescaling factor f (Eq. (S24)). A quantitative characterization of the transport properties of this model is left for
future investigation, but one can readily see that for the used initial conditions, the excitation propagation through
the whole system is inhibited for disorder strengths above f . 0.5.


