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Abstract: A nonlinear integral-uncertainty observer is p-
resented, which can estimate the integral of measurement
output signal and the uncertainty in system, synchronously. In
order to be satisfied with the existing hardware computational
environments and to select the parameters more easily, a
simplified linear version of the nonlinear integral-uncertainty
observer is also developed. The effectiveness of the proposed
observers are verified through the numerical simulations and
experiments: i) through the integral-uncertainty observers, the
attitude angle and the uncertainties in attitude dynamics are
estimated synchronously from the measurements of angular
velocity, and the estimate results by the two observers are
compared; ii) a control law is designed based on the observers
to drive the jet aircraft to track a reference trajectory.
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I. INTRODUCTION

Unmanned jet aircraft control has been an active area of
investigation for several years, and some inertial sensors were
used and supplemented by GPS [1, 2, 3]. This interest was
motivated by the enormous military and civil applications of
such aircraft. It is one of the most interesting architecture
because its dynamical system is characterized by the powerful
thrust provision, high-speed flight, the payload augmentation
and a high maneuverability.

Usually, controlling an unmanned jet aircraft needs the
information of the attitude and position. For the system of
an unmanned jet aircraft, we consider that no measurement of
flying velocity and attitude angle is provided. Moreover, jet
aircrafts are underactuated mechanical systems, which exhibit
high nonlinear, time-varying and time-delay behaviors, mean-
while, the influences of aerodynamic disturbance, unmodelled
dynamics and parametric uncertainties are not avoidable in
modeling. These nonlinearities and uncertainties render great
challenges in the design of flight control system.

On the one hand, an inertial measurement unit (IMU) can
provides the attitude information. It contains three orthogonal
rate-gyroscopes and three orthogonal accelerometers, measur-
ing angular velocity and linear acceleration, respectively. The
information at high sampling frequency is provided by this
sensor. To calculate the attitude angles of the device, the
angular velocity signals from the rate-gyroscopes are onefold
integrated. The drift phenomenon of IMU is mainly brought
out by the usual integral methods [4, 5, 6, 7]: Romberg
integration, Gaussian quadrature, extended Simpson’s rule,
low-frequency integrator. They cannot restrain the effect of

stochastic noise (especially non-white noise). Such noise leads
to the accumulation of additional drift in the integrated signal.
In [8], a fractional-order integrator is proposed to approximate
the irrational fractional-order integrator 1/sm. However, the
condition of 0 < m < 1 limits the application of the
fractional-order integrator. Obviously, the usual observers or
differentiators [9, 10, 11, 12] only can estimate the derivatives
of the signal. Recent years, Kalman filter is used to handle
the separation of probabilistic noise and to estimate signal
integral [13, 14]. However, for Kalman filter, the process noise
covariance and measurement noise covariance are assumed
to be zero-mean Gaussian distributed, and the process noise
covariance is uncorrelated to the estimation error. These as-
sumptions are different from the real noise in signal. The
inaccurate noise information in sensed angular velocity may
lead to the estimate drifts of attitude angle. In [15], a nonlinear
double-integral observer with the abilities of noise rejection
and drift correction was presented to estimate synchronously
the onefold and double integrals of a signal. In [16], a general-
ized multiple integrator was designed to estimate the multiple
integrals for a signal. In [17], a nonlinear integral-derivative
observer was proposed to estimate synchronously the integral
and derivative of a signal. However, these observer cannot be
use to estimate the uncertainties in the flight dynamics directly.

On the other hand, some sensors provide usually the
position-related information. Representative designs are: GPS
positioning systems [18, 19]; GPS/INS systems [20, 21, 22];
ultrasonic rangers [23]; GPS module when outdoors and
infrared rangers when indoors [24]; carrier phase differential
GPS [25]; laser rangefinder [26]; vision system [27, 28, 29];
indoor motion capture system [30, 31]; laser rangefinder and
vision system [32]. However, these strategies are dependent
on the accurate model, and all the states are required to be
known.

For the aircrafts with uncertainties, sliding-mode controls
with intelligent estimate algorithms were proposed [33, 34].
The uncertainties in aircraft are approximated by some intelli-
gent algorithms, such as radial-based-function (RBF) networks
or fuzzy systems. It was concluded that RBF networks are
capable of universal approximation [35], and fuzzy system can
also provide universal approximation for a continuous function
[36]. However, the uncertainty estimation of aircraft by neural
network or fuzzy system requires that all the states are
known. The main difficulties with estimating uncertainties by
these algorithms are: 1) the parameters or the neural network
weights are difficult to be regulated; 2) membership function
and Gaussian function are selected by experiences; 3) all of
the system states must be required for estimation; 4) high-
frequency noise cannot be restrained. These disadvantages
affect control performances of aircraft adversely.

Considering the problems above, the objective of this paper
is to design an observer to estimate the unknown integral
state of measurement output signal and the uncertainty in
system, synchronously, in spite of the existence of mea-
surement disturbance. Inspired by the theory of finite-time
stability [37,38], singular perturbation technique [39,40] and
our previous works [15, 16], a nonlinear integral-uncertainty
observer is developed. Based on the theories in [15, 16],
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an extended system is implemented after the uncertainty in
system is taken as a new state.

Thus, a nonlinear integral-uncertainty observer is developed,
which can estimate the unknown integral state of measurement
output signal and the uncertainty in system, synchronous-
ly. The parameters selection is satisfied with Routh-Hurwitz
Stability Criterion and the iterative equation relations. Fur-
thermore, considering of the adverse effects on the nonlinear
system by the existing hardware computational environments
in aircraft system, it is necessary to simplify the relatively
complex nonlinear integral-uncertainty observer into a simple
linear form, and the parameters selection needs to be more
easier for some industrial applications. Fortunately, when some
parameters in the nonlinear integral-uncertainty observer are
given a particular value, the linear observer can be obtained,
and it can still work. Although the nonlinear stability analysis
no longer holds for the linear observer, the theory of linear
system can be used to analyze it. The selection of parameters
become relaxed, and it is only required to be satisfied with
Routh-Hurwitz Stability Criterion. The parameters selection
rules and robustness analysis for the two types of observers
are presented based on frequency-domain analysis.

For industrial applications, the proposed observers are ap-
plied to an unmanned jet aircraft, and an experiment is
presented to observe the performances of the proposed ob-
servers. In the jet aircraft system, the proposed observation
algorithms are adopted to estimate the attitude angle and
uncertainties in the attitude dynamics from the measurement
of angular velocity, and the estimate results of the two integral-
uncertainty observers are compared in the hardware compu-
tational environment. For the position dynamics, our previous
designed augmented observer [41] is adopted to estimate the
flying velocity and uncertainties from the GPS receiver signals.
Finally, two controllers based on the observers are designed
to stabilize the flight dynamics.

II. DESIGN OF INTEGRAL-UNCERTAINTY OBSERVERS

The following underactuated system has a minimum number
of states and inputs but retains many of the features that
must be considered when designing control laws for many
mechanical systems:

ẇ1 = w2

ẇ2 = Π(t) + σ(t)

yop = w2 + d(t) (1)

where, (w1, w2) is the state vector; yop = w2 + d(t) is the
measurement output; d (t) is the bounded sensor error or
stochastic noise, and supt∈[0,∞) |d (t)| ≤ Ld < ∞; w1 is the
unknown state; Π(t) ∈ R is the known function; uncertainty
σ(t) ∈ R includes the unknown parameters and nonlinearities,
and it is relatively bounded.

In order to calculate the unknown state w1, the measurement
signal yop is integrated, i.e.,

I (t) =

∫ t

0

yop (σ) dσ =

∫ t

0

w2 (σ) dσ +

∫ t

0

d (σ) dσ (2)

Owing to the integration of Eq. (2), a small noise d (t)
(especially non-zero mean noise) in the measurement will
grow rapidly in the computed final integration, i.e., the noise
will be accumulated and accuracy in the computed final
integration deteriorate with time. The error in the measurement
signal is propagated to the integration. This results in integral
drift. Moreover, the uncertainty σ(t) renders great challenges
in the design of control systems.

Assumption 1: Suppose the frequency of the uncertainty
σ(t) are far smaller than the system sampling frequency, and
it has the following dynamics:

σ̇(t) = cσ(t) (3)

In fact, this assumption is satisfied with almost all engineering
applications, for instance, the dynamics of crosswind or the
uncertainties in the aircraft systems.

Let w3 = σ(t), and ẇ3 = σ̇(t) = cσ(t), Eq. (1) can be
augmented to

ẇ1 = w2

ẇ2 = w3 +Π(t)

ẇ3 = cσ(t)

yop = w2 + d(t) (4)

2.1 Design of nonlinear integral-uncertainty observer
In the following, considering sensor error and noise, finite-

time stability and robustness [37,38] (The related concepts are
introduced in Appendix A) and singular perturbation technique
[39,40] will be used to present an integral-uncertainty observ-
er with drift correction and strong robustness. The onefold
integral of measurement output signal and the uncertainty in
system can be estimated, and the effect of propagating the
noise to the integral is rejected sufficiently.

Theorem 1: For system (4), if the following observer is
designed,

ẋ1 = x2

ẋ2 = x3 +Π(t)

ε4ẋ3 = −k1 |εx1|α1 sign (x1)

−k2 |x2 − yop|α2 sign (x2 − yop)

−k3
∣∣ε3x3∣∣α3

sign (x3) (5)

where ε ∈ (0, 1) is the perturbation parameter, α1, α2 and α3

satisfy:

α3 ∈ (0, 1), α2 =
α3

2− α3
, α1 =

α3

3− 2α3
(6)

and k1, k2, k3 > 0 are selected such that

k1 > 0, k3 > 0, k2 > ε2α2k1/k3 (7)

then there exist γ > 1, L > 0, δdi ∈ (0, 1) and Γ > 0, such
that, for t ≥ εΓ (Ξ(ε)e (0)),

|xi − wi (t)| ≤ L(δdi)
γ , i = 1, 2, 3 (8)
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Ideally, if no sensor error and noise exist, i.e., d(t) = 0 and
Ld = 0, then, for t ≥ εΓ (Ξ(ε)e (0)),

|xi − wi (t)| ≤ Lεα1γ−i, i = 1, 2, 3 (9)

where ei = xi − wi (t), i = 1, 2, 3; e = [ e1 e2 e3 ]T ;
Ξ(ε) = diag{ε, ε2, ε3}.

The proof of Theorem 1 is presented in Appendix B.
In integral-uncertainty observer (5), x2 tracks the state w2;

x1 and x3 estimate w1 and the uncertainty w3 (i.e., σ(t)
in system (1)), respectively. The usual integral algorithms
inevitably suffer from unbounded errors in the calculations of
integral when noise exists in measurement output signal yop.
However, from (8), the up-boundness of the estimate errors
are bounded, and they are unrelated to integration time.

In fact, in the up-boundness of estimate error L(δdi)
γ

(i = 1, 2, 3), γ > 1 holds, and from the proof of Theorem
1 in Appendix B, L = µδγ0 , where µ is a constant defined
in Theorem 5.2 in [37]. For the low-level noise, from (88),
δdi ∈ (0, 1) holds. By selecting a suitable perturbation
parameter ε ∈ (0, 1), the up-boundness of estimate errors
are sufficiently small. Therefore, the ultimate bound (8) on
the estimation error is of higher order than the perturbation.
Consequently, the presented double-integral observer (5) leads
to perform rejection of low-level noise, i.e., almost no drift
phenomenon happen in spit of the existence of the sensor error
and non-white noise.

2.2 Design of linear integral-uncertainty observer
As we know, a linear system is easy to perform the analysis

with respect to nonlinear one. In the following, based on the
nonlinear integral-uncertainty observer (5), a simplified linear
integral-uncertainty observer will be designed, and Theorem 2
is presented as follow.

Corollary 1: For system (4), if the following observer is
designed,

ẋ1 = x2

ẋ2 = x3 +Π(t)

ε4ẋ3 = −k1εx1 − k2 (x2 − w2)− k3ε
3x3 (10)

where ε ∈ (0, 1) is the perturbation parameter, and

k1 > 0, k3 > 0, k2 > ε2k1/k3 (11)

then the following estimate relations hold:

lim
ε→0

xi = wi (12)

where i = 1, 2, 3. The relevant analysis of Corollary 1 is
presented in Appendix B.

In integral-uncertainty observer (10), x2 tracks the state w2;
x1 and x3 estimate w1 and the uncertainty w3 (i.e., σ(t) in
system (1)), respectively. The proposed two observers (5) and
(10) all can perform rejection of high-frequency noise. In the
next section, the frequency-domain analysis will be presented
for the nonlinear and linear observers, and the parameters
selection rules will be given.

III. ROBUSTNESS ANALYSIS AND PARAMETERS
SELECTION

In practice, high-frequency noises exist in measurement
output yop. In this paper, describing function method [40,
42] is used to approximately analyze and predict the non-
linear behaviors of the observer. Even though it is only an
approximation method, the desirable properties it inherits from
the frequency response method, and the shortage of other,
systematic tools for nonlinear observer analysis, make it an
indispensable component of the bag of tools of practicing
control engineers. The describing function method succeeded
in applications to analyze the frequency-domain characteristics
for nonlinear differentiators and augmented observers [41].
By describing function method, it will be found that the pre-
sented integral-uncertainty observer leads to perform rejection
of high-frequency noise. Alternatively, the frequency-sweep
method [43, 44] can be used to approximately analyze and
predict the nonlinear behaviors of these observers.

In addition, there exist seven parameters in nonlinear ob-
server (5): α1, α2, α3, k1, k3, k1, ε; and four parameters in
linear observer (10): k1, k3, k1, ε. How to select these param-
eters is critical for the estimate performances and robustness
abilities.

For system (4), let ξ1 = w1, ξ2 = w2, ξ3 = w3 + Π(t)
and Π̇(t) = η(t), then ẇ3 + Π̇(t) = cσ(t) + η(t). Therefore,
system (4) can be rewritten as

ξ̇1 = ξ2

ξ̇2 = ξ3

ξ̇3 = cσ(t) + η(t) (13)
yop = ξ2

Accordingly, for system (13), the observer (5) can be
transferred to

ẋ1 = x2

ẋ2 = x3

ε4ẋ3 = −k1 |εx1|α1 sign (x1)

−k2 |x2 − yop|α2 sign (x2 − yop)

−k3
∣∣ε3x3∣∣α3

sign (x3) (14)

where x2 tracks the output signal ξ2; x1 and x3 estimate ξ1
and ξ3, respectively.

The frequency characteristic of (14) is analyzed as follow.
Let x2 − yop = A sin(ωt). For the nonlinear function

|A sin(ωt)|αi sign(sin(ωt)), its describing functions can be
obtained as follow:

Ni(A) =
2

Aπ

∫ π

0

|A sin(ωτ)|αi sign(A sin(ωτ)) sin(ωτ)dωτ

=
Ω(αi)

A1−αi

where Ω(αi) = 2
π

∫ π
0
|sin(ωτ)|αi+1

dωτ . Therefore, the lin-
earization of observer (14) is
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ẋ1 = x2

ẋ2 = x3

ε4ẋ3 = −k1
Ω(α1)

A1−α1
εx1 − k2

Ω(α2)

A1−α2
(x2 − yop)

−k3
Ω(α3)

A1−α3
ε3x3 (15)

and the Laplace transformations of the linear system (15) can
be written as

sX1(s) = X2(s)

sX2(s) = X3(s)

ε4sX3(s) = −k1
Ω(α1)

A1−α1
εX1(s)

−k2
Ω(α2)

A1−α2
(X2(s)− Yop(s))

−k3
Ω(α3)

A1−α3
ε3X3(s) (16)

where Xi(s) and Yop(s) denote the Laplace transformations
of xi and yop, respectively, and s denotes Laplace operator.

From Eq. (16), the following transfer functions are obtained:

Xj(s)

Yop (s)
=

k2
Ω(α2)
A1−α2

sj−1

ε4s3 + ε3k3
Ω(α3)
A1−α3

s2 + k2
Ω(α2)
A1−α2

s+ εk1
Ω(α1)
A1−α1

j ∈ {1, 2, 3} (17)

The transfer functions for linear observer (10) can be
directly obtained as

Xj (s)

Yop (s)
=

k2s
j−1

ε4s3 + ε3k3s2 + k2s+ εk1
, j ∈ {1, 2, 3} (18)

The effects of the observer parameters on the robustness are
analyzed as follows.

3.1 Frequency characteristic with different ε and α3

Selecting α3 with different values, we obtain the following
table of Ω(α3), Ω(α2) and Ω3(α1):

α3 Ω(α3) Ω(α2) Ω(α1)
0.8 1.0410 1.0712 1.0944
0.5 1.1128 1.1596 1.1852
0.3 1.1697 1.2093 1.2270

Table 1 Values of Ω(α3), Ω(α2) and Ω(α1) with respect to
α3

For the transfer functions (17) and (18), the parameters are
selected as follows: k1 = 0.1, k2 = 2, k3 = 1; A = 1;
α3 = 0.3, 0.5, 1, respectively; R = 1/ε = 3, 4, 5, respectively.
The Bode plots of the frequency-domain characteristics with
different ε and α3 are described in Figs.1(a), 1(b) and 1(c),
respectively: Fig.1(a) presents the frequency characteristics of
the transfer functions of signal tracking; Figs.1(b) and 1(c)
present the frequency characteristics of the transfer functions
of integral and derivative estimations, respectively.

Particularly, in comparing with ideal integral operators 1/s
and s, not only the observers can obtain their estimations pre-
cisely, but also the high-frequency noise is rejected sufficiently.
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Fig. 1. Frequency characteristics with the change of ε and α for integral-
uncertainty observers. (a) Transfer function X2(s)/Yop (s). (b) Transfer
function X1(s)/Yop (s). (c) Transfer function X3(s)/Yop (s).
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Parameter ε affects the low-pass frequency bandwidth: De-
creasing the perturbation parameter ε, the low-pass frequency
bandwidth is larger, the estimation precision becomes better,
and relatively higher frequency noise can be reduced; on the
other hand, increasing perturbation parameter ε, the low-pass
frequency bandwidth is smaller, much noise can be reduced
sufficiently (See the cases of R = 1/ε = 3, 4, 5 in Fig.1,
respectively). Parameter α3 ∈ (0, 1] affects the decay speed
of frequency characteristic curves near the cut-off frequency
(See the cases of α3 = 0.3, 0.5, 1 in Fig.1, respectively):
Smaller α3 ∈ (0, 1] can obtain more precise estimations;
Larger α3 ∈ (0, 1] can reduce much noise, however, a bit
estimation delay happens.

3.2 The proposed rules of parameters selection
For nonlinear integral-uncertainty observer (5), there are

some rules suggested on the parameters selection:
1) The parameters α1, α2, α3, k1, k2 and k3 are satisfied

with the conditions (6) and (7).
2) When the up-boundness of the integral, the uncertainty

σ(t) or the derivative cσ(t) of signal σ(t) increase, i.e., h1,
h3 or La increase, δ0 in (80) will increase, and L = µδγ0
also increases, where µ is a constant defined in Theorem 5.2
in [37]. Perturbation parameter ε ∈ (0, 1) should decrease to
improve the estimation precisions.

3) When the magnitude of the noise increases, i.e., Ld
increases, in order to decrease Lα2

d in (80), α2 ∈ (0, 1)
should increase to improve the estimate precisions. In fact,
for Ld ∈ (0, 1) and α21, α22 ∈ (0, 1), if α22 > α21, then
Lα22

d < Lα21

d holds.
The parameters selection of linear observer (10) is easier

than that of nonlinear observer (5): Parameters k1, k2 and k3
decide the observer stability, and they should be satisfied with
the conditions (11). The selection of ε decides the estimate
precision and robustness: when the up-boundness of the in-
tegral, the uncertainty σ(t) or the derivative cσ(t) of signal
σ(t) increase, i.e., h1, h3 or La increase, ε ∈ (0, 1) should
decrease to improve the estimation precisions; if much noise
exists, ε should increase, the low-pass frequency bandwidth is
smaller, much noise can be reduced sufficiently.

To evaluate the theory of the proposed integral-uncertainty
observers, they will be applied to an unmanned jet aircraft.

IV. APPLICATION TO AN UNMANNED JET AIRCRAFT

4.1 Modeling of jet aircraft
The proposed observers are applied to control an unmanned

jet aircraft, which is shown in Fig.2, and the forces and torques
of the aircraft are denoted in Fig.3.

1) Coordinates and frames
Let Ξg = (Ex, Ey, Ez) denote the right handed inertial

frame and Ξb =
(
Ebx, E

b
y, E

b
z

)
denote the frame attached to

the aircraft’s fuselage whose origin is located at its center
of gravity. Θ = (ψ, θ, ϕ) describes the aircraft orientation
expressed in the classical yaw, pitch and roll angles. We use
cθ for cos θ and sθ for sin θ. R is the transformation matrix
representing the orientation of the aircraft from frame Ξb to
Ξg , i.e.,

  

Fig. 2. An unmanned jet aircraft.
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Fig. 3. Forces and torques illustration of the unmanned jet aircraft.

R =

 cθcψ cψsθsϕ − sψcϕ cψsθcϕ + sψsϕ
cθsψ sψsθsϕ + cψcϕ sψsθcϕ − cψsϕ
−sθ sϕcθ cϕcθ

 (19)

Let α and β be the angle of attack of the fixed wing and
the sideslip angle, respectively, thus

α = θ − arctan−1(żs/ẋs), β = arcsin−1(ẏs/vs) (20)

where, and the relative wind speed (ẋs, ẏs, żs) is measured by
the airspeed tube, and vs =

√
ẋ2s + ẏ2s + ż2s .

Define (x, y, z) and (ẋ, ẏ, ż) as the position of center of
gravity and the velocity to frame Ξg , body force F ∈ ℜ3 and
torque τ ∈ ℜ3.

The total external force F consists of the thrust Fc generated
by the jet engine, aerodynamic forces on the fixed wing Fw,
aerodynamic forces on the fuselage Ff , the forces created by
the verticals Fv, the forces created by the elevators Fe, and
uncertainties and external disturbances Fd. These forces are
expressed in body frame Ξb, and they are transformed by R
to be expressed in the inertial frame Ξg as follows:

F = R(Fc + Fw + Ff + Fv + Fe + Fd) (21)

The total moment τ consists of the moments created by the
fixed wings τw, the moments created by the verticals τv, the
moments created by the elevators τe, and moments due to the
uncertainties and external disturbances τd:

τ = τw + τv + τe + τd (22)
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Fig. 4. Mesh of jet aircraft.

Fluent software is used to simulate the flying environment
to obtain the parameters, and the results are compared to those
from the wind tunnel tests. Fluent is one of the applications of
computing fluid dynamics [45]. It uses finite-element method
to calculate the motion of fluid field, and three steps are ar-
ranged to get the aerodynamic parameters [46]. The parameters
of fixed wings, fuselage, elevator and vertical are obtained by
using the 3-D simulation shown in Fig.4.

2) The aerodynamic parameters of fixed wings
The lift force and drag forces generated by the fixed wings

are, respectively

Li = 0.5CLiSρ(ẋ
2
s + ż2s), CLi = CL0 + CLαα+ CLδiδi

Di = 0.5CDiSρ(ẋ
2
s + ż2s), CDi = CD0 + C2

Li/(πAwew),

ew = 1.78(1− 0.045A0.68
w )− 0.46 (23)

where i = 1, 2; S is the area of the half wing, CL0 is the
lift coefficient when the angle of attack α is equal to zero,
CLα is the lift coefficient due to the angle of attack α, δi is
the normal flap bias angle, and CLδi is the lift coefficient due
to the flap bias angle δi. Aw is the aspect ratio of the fixed
wing. ew is the value of the Oswald’s efficiency factor. The
expression of lift and drag coefficients is considered as valid
for low angles of attack.

Then the aerodynamic forces on the fixed wings Fw in body
frame can be written as

Fw =

 (L1 + L2) sinα− (D1 +D2) cosα
0

−(L1 + L2) cosα− (D1 +D2) sinα

 (24)

and the moments created by the aerodynamic forces produced
by the wings τw are

τw =

 lw[(L1 − L2) cosα+ (D1 −D2) sinα]
lc[(L2 + L1) cosα+ (D2 +D1) sinα]
lw[(L1 − L2) sinα+ (D2 −D1) cosα]

 (25)

3) The aerodynamic parameters of fuselage

The parameters of fuselage lift and drag are presented as
follows:

Lf = 0.5ρClfSf (ẋ
2
s + ż2s), Df = 0.5ρCdfSf (ẋ

2
s + ż2s),

Clf = Clfαα,Cdf = Cdf0 + Cdfαα (26)

where Lf and Df are the lift and drag forces generated by
the fuselage, respectively; Clf is the lift coefficient; Cdf is the
drag coefficient; Cdf0 is the constant in the coefficient of drag
force. Then the forces on the fuselage Ff in body frame are
written as

Ff =

 Lf sinα−Df cosα
0

−Lf cosα−Df sinα

 (27)

4) The aerodynamic parameters of level stabilizer
The parameters of elevator lift and drag are presented as

follows:

Le = 0.5CleSeρ(ẋ
2
s + ż2s), Cle = Cleα(α+ δe)

De = 0.5CdeSeρ(ẋ
2
s + ż2s), Cde = Cde0 + C2

le/(πAeee),

ee = 1.78(1− 0.045A0.68
e )− 0.46 (28)

where Se is the area of the level stabilizer, δe is the bias angle
of elevator, and Cleδe is the lift coefficient due to the bias angle
δe, Cleα is the lift coefficient due to the angle of attack α and
the normal bias angle δe. Ae is the aspect ratio of the level
stabilizer. ee is the value of the Oswald’s efficiency factor.
Then the force Fe on the level stabilizer in body frame are
written as

Fe =

 Le sin(α+ δe)−De cos(α+ δe)
0

−Le cos(α+ δe)−De sin(α+ δe)

 (29)

and the moment τe created by the aerodynamic forces pro-
duced by the level stabilizer is

τe =

 0
−le[Le cos(α+ δe) +De sin(α+ δe)]

0

 (30)

5) The aerodynamic parameters of vertical stabilizer
The lift force and drag forces generated by the vertical

stabilizer, respectively

Lv = 0.5ClvSvρ(ẋ
2
s + ż2s), Clv = Clvββ + Clvδvδv

Dv = 0.5CdvSvρ(ẋ
2
s + ż2s), Cdv = Cdv0 + C2

lv/(πAvev),

ev = 1.78(1− 0.045A0.68
v )− 0.46 (31)

where Sv is the area of the half wing, Clvα is the lift coefficient
due to the angle of attack α, δv is the bias angle of rudder,
and Clvδv is the lift coefficient due to the bias angle δv. Ae
is the aspect ratio of the fixed wing. ev is the value of the
Oswald’s efficiency factor.

Then the aerodynamic force Fv on the vertical stabilizer in
body frame can be written as
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Fv =

 Lv sinβ −Dv cosβ
Lv cosβ +Dv sinβ

0

 (32)

and the moment τv created by the aerodynamic forces pro-
duced by the vertical stabilizer is

τv =

 lv1[Lv cosα+Dv sinα]
0

lv2[Lv cosα+Dv sinα]

 (33)

6) Motion equation of the jet aircraft
The equations of motion written in terms of the centre of

mass C in the fixed axes of coordinate (x, y, z) are then

mẍ = cθcψFc + Fwx + Ffx + Fvx + Fex +∆x

mÿ = cθsψFc + Fwy + Ffy + Fvy + Fey +∆y

mz̈ = −sθFc −mg + Fwz + Ffz + Fvz + Fez

+∆z (34)

Jzψ̈ = θ̇ϕ̇(Jx − Jy)− kψψ̇ + τψ +∆ψ

Jy θ̈ = ψ̇ϕ̇(Jz − Jx)− kθ θ̇ + τθ +∆θ

Jxϕ̈ = ψ̇θ̇(Jy − Jz)− kϕϕ̇+ τϕ +∆ϕ (35)

where Jx, Jy and Jz are the three-axis moment of inertias;
kψ , kθ and kϕ are the drag coefficients; m is the mass of
the aircraft; g is the gravity acceleration; ∆x, ∆y and ∆z

are the bounded disturbances or uncertainties in the position
dynamics; ∆ψ , ∆θ and ∆ϕ are the bounded disturbances or
uncertainties in the attitude dynamics; τψ , τθ and τϕ are the
control torques for yaw, pitch and roll dynamics, respectively,
and they are selected as

τψ = 0.5lv2(ẋ
2
s + ż2s)ρSvClvδvδv

τθ = −0.5le(ẋ
2
s + ż2s)ρSeCleαδe

τϕ = lwCLδiSρ(ẋ
2
s + ż2s)δ1,2, (36)

where δ1 = −δ2 = δ1,2, and

 Fwx + Ffx + Fvx + Fex
Fwy + Ffy + Fvy + Fey
Fwz + Ffz + Fvz + Fez

 = R(Fw+Ff+Fv+Fe) (37)

The tracking control problem for the jet aircraft can be stat-
ed mathematically as: For the reference trajectory (xd, yd, zd)
in the inertial frame, find the control laws such that the
following statements hold:

i) x → xd, ẋ → ẋd, y → yd, ẏ → ẏd, z → zd, ż → żd as
t→ ∞; ii) The whole closed-loop system is stable.

Here, we are interested in adopting the presented observers
to estimate the attitude angle (ψ, θ, ϕ) and the uncertainties in
the attitude dynamics from the measurement of the angular rate
(ψ̇, θ̇, ϕ̇) of IMU . Moreover, our previous augmented observer
[41] will be used to estimate the velocity (ẋ, ẏ, ż) and the
uncertainties in the position dynamics from the measurement

of the position (x, y, z). Finally, the controller will be designed
to implement the tracking control for the jet aircraft.

4.2 Design of integral-uncertainty observers for the jet
aircraft

For Eqs. (34) and (35), it is considered that (ẋ, ẏ, ż) and
(ψ, θ, ϕ) are not measured directly, (kx, ky, kz , kψ , kθ, kϕ)
and (∆x, ∆y , ∆z , ∆ψ , ∆θ, ∆ϕ) are bounded and unknown.
Let w1,1 = x, w1,2 = ẋ, w2,1 = y, w2,2 = ẏ, w3,1 = z,
w3,2 = ż, w4,1 = ψ, w4,2 = ψ̇, w5,1 = θ, w5,2 = θ̇, w6,1 = ϕ,
w6,2 = ϕ̇, and

Π1(t) =
cθcψFc + Fwx + Ffx + Fvx + Fex

m
,

Π2(t) =
cθsψFc + Fwy + Ffy + Fvy + Fey

m
,

Π3(t) =
−sθFc −mg + Fwz + Ffz + Fvz + Fez

m
,

σ1(t) =
∆x

m
,σ2(t) =

∆y

m
,σ3(t) =

∆z

m
(38)

Π4(t) =
θ̇ϕ̇(Jx − Jy) + τψ

Jz
,Π5(t) =

ψ̇ϕ̇(Jz − Jx) + τθ
Jy

,

Π6(t) =
ψ̇θ̇(Jy − Jz) + τϕ

Jx
, σ4(t) =

−kψψ̇ +∆ψ

Jz
,

σ5(t) =
−kθ θ̇ +∆θ

Jy
, σ6(t) =

−kϕϕ̇+∆ϕ

Jx
(39)

Then, Eqs. (34) and (35) can be rewritten as

ẇi,1 = wi,2

ẇi,2 = Πi(t) + σi(t) (40)

where i = 1, · · · , 6. Based on Assumption 1, uncertainties
σi(t), i = 1, ..., 6, have the following dynamics:

σ̇i(t) = cσi(t) (41)

In fact, this assumption is satisfied with aircraft dynamic
systems.

Let wi,3 = σi(t), and ẇi,3 = σ̇i(t) = cσi(t), Eq. (40) can
be augmented to

ẇi,1 = wi,2

ẇi,2 = wi,3 +Πi(t)

ẇi,3 = cσi(t) (42)

1) Integral-uncertainty observers for attitude estimation
Based on Theorem 1 or Corollary 1, the following corollary

gives the design of integral-uncertainty observers for the jet
aircraft.

Corollary 2: The integral-uncertainty observers are designed
for aircraft attitude Eq. (35) as follows:
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ẋ1,i,1 = x1,i,2

ẋ1,i,2 = x1,i,3 +Πi(t)

ε4i ẋ1,i,3 = −ki,1 |εix1,i,1|α1 sign (xi,1)

−ki,2 |x1,i,2 − wi,2|α2 sign (x1,i,2 − wi,2)

−ki,3
∣∣ε3ix1,i,3∣∣α3

sign (x1,i,3) (43)

or

ẋ2,i,1 = x2,i,2

ẋ2,i,2 = x2,i,3 +Πi(t)

ε4i ẋ2,i,3 = −ki,1εix2,i,1 − ki,2 (x2,i,2 − wi,2)

−ki,3ε3ix2,i,3 (44)

where i = 4, 5, 6. We can estimate Θ = (ψ, θ, ϕ) and the
uncertainties, i.e., for t ≥ ts,

|x1,4,1 − ψ| ≤ Lεα1γ−1,
∣∣∣x1,4,2 − ψ̇

∣∣∣ ≤ Lεα1γ−2,

|x1,4,3 − σ4(t)| ≤ Lεα1γ−3, |x1,5,1 − θ| ≤ Lεα1γ−1,∣∣∣x1,5,2 − θ̇
∣∣∣ ≤ Lεα1γ−2, |x1,5,3 − σ5(t)| ≤ Lεα1γ−3,

|x1,6,1 − ϕ| ≤ Lεα1γ−1,
∣∣∣x1,6,2 − ϕ̇

∣∣∣ ≤ Lεα1γ−2,

|x1,6,3 − σ6(t)| ≤ Lεα1γ−3 (45)

2) Augmented observers in [41] for velocity estimate in
position dynamics

Based on [41], the following corollary gives the observers
to estimate (ẋ, ẏ, ż) and uncertainties in the position dynamics
in the jet aircraft.

Corollary 3: The augmented observers in [41] are designed
for aircraft position Eq. (34) as follows:

ẋi,1 = xi,2 −
ki,3
εi

|xi,1 − wi,1|α3 sign(xi,1 − wi,1)

ẋi,2 = xi,3 −
ki,2
ε2i

|xi,1 − wi,1|α2 sign(xi,1 − wi,1) + Πi(t)

ẋi,3 = −ki,1
ε3i

|xi,1 − wi,1|α1 sign(xi,1 − wi,1) (46)

where i = 1, 2, 3. From X = (x, y, z), we can estimate
Ẋ = (ẋ, ẏ, ż) and σi(t) (i = 1, 2, 3) by the above augmented
observers, i.e., for t ≥ ts,

|x1,1 − x| ≤ Lε3γ , |x1,2 − ẋ| ≤ Lε3γ−1,

|x1,3 − σ1(t)| ≤ Lε3γ−2, |x2,1 − y| ≤ Lε3γ ,

|x2,2 − ẏ| ≤ Lε3γ−1, |x2,3 − σ2(t)| ≤ Lε3γ−2,

|x3,1 − z| ≤ Lε3γ , |x3,2 − ż| ≤ Lε3γ−1,

|x3,3 − σ3(t)| ≤ Lε3γ−2 (47)

If the attitude angle measurement is made by three encoders,
the augmented observers in [41] can be selected to estimate
the angular rates and the uncertainties in the attitude dynamics.

4.3 Controller design

In this section, a control law is derived for the purpose of
attitude stabilization and trajectory tracking of the jet aircraft.
The unknown states and uncertainties are reconstructed by the
presented observers.

Suppose the reference trajectory and its finite order deriva-
tives are bounded, and can be directly generated.

For the reference trajectory Xd = (xd, yd, zd), let e1 =
x− xd, e2 = ẋ− ẋd, e3 = y − yd, e4 = ẏ − ẏd, e5 = z − zd,
and e6 = ż − żd, then the system error for position dynamics
(34) is

ëp = m−1(up + Ξp +Ωp +∆p) (48)

where

up =

 upx
upy
upz

 =

 cθcψ
cθsψ
−sθ

Fc, ep =
 e1
e3
e5

 ,
∆p =

 ∆x

∆y

∆z

 , ,Ξp =
 −mẍd

−mÿd
−mz̈d −mg

 ,
Ωp =

 Fwx + Ffx + Fvx + Fex
Fwy + Ffy + Fvy + Fey
Fwz + Ffz + Fvz + Fez

 (49)

For the desired attitude angle Θd = (ψd, θd, ϕd), let e7 =
ψ−ψd, e8 = ψ̇− ψ̇d, e9 = θ−θd, e10 = θ̇− θ̇d, e11 = ϕ−ϕd,
e12 = ϕ̇− ϕ̇d, then the system error for attitude dynamics (35)
is

ëa = J−1(ua + Ξa +Ωa +∆a) (50)

where

ea =

 e7
e9
e11

 ,Ωa =

 θ̇ϕ̇(Jx − Jy)

ψ̇ϕ̇(Jz − Jx)

ψ̇θ̇(Jy − Jz)

 ,
Ξa =

 −Jzψ̈d
−Jy θ̈d
−Jxϕ̈d

 ,∆a =

 ∆ψ − kψψ̇

∆θ − kθ θ̇

∆ϕ − kϕϕ̇

 ,
ua =

 τψ
τθ
τϕ

 , J =

 Jz 0 0
0 Jy 0
0 0 Jx

 (51)

1) Controller design for position dynamics
Theorem 2: For position dynamics (34), to track the refer-

ence trajectory Xd = (xd, yd, zd), if the controller is designed
as

up = −Ξp − Ωp − ∆̂p −m(kp1êp + kp2̂̇ep) (52)

where ê1 = x̂− xd, ê2 = ̂̇x− ẋd, ê3 = ŷ − yd, ê4 = ̂̇y − ẏd,
ê5 = ẑ − zd, ê6 = ̂̇z − żd; kp1, kp2 > 0, and

êp =

 ê1
ê3
ê5

 , ̂̇ep =
 ê2
ê4
ê6

 (53)
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Fig. 5. Control of position and attitude dynamics.

the control system is described in Fig.5, then the position
error dynamic system (48) rendering by controller (52) will
converge asymptotically to the origin, i.e., the tracking errors
ep → 0 and ėp → 0 as t→ ∞.

Proof: In the light of Corollary 3, for t ≥ ts = εΓ, the
observation signals

∥∥∥X̂ −X
∥∥∥ ≤ Lε3γ ,

∥∥∥ ̂̇X − Ẋ
∥∥∥ ≤ Lε3γ−1,∥∥∥∆̂p −∆p

∥∥∥ ≤ Lε3γ−2. Considering controller (52), the
closed-loop error system for the position dynamics is

ëp = −kp1ep−kp2ėp−kp1(X̂−X)−kp2( ̂̇X−Ẋ)−(∆̂p−∆p)
(54)

For t ≥ εΓ and sufficiently small ε, selecting the Lyapunov
function be V1 = kp1e

T
p ep+

1
2 ė
T
p ėp, we can obtain that ep → 0

and ėp → 0 as t→ ∞. This concludes the proof. �
From (49), we know that

Fc = ∥up∥2 =
√
u2px + u2py + u2pz (55)

The desired pitch and yaw angles are, respectively,

θd = − arcsin(
upz
Fc

), ψd =


arctan(

upy

upx
), upx ̸= 0

π/2, upx = 0 and ẋd > 0
3π/2, upx = 0 and ẋd < 0

(56)
and the desired roll angle ϕd can be set to a reference value.

2) Controller design for attitude dynamics
Theorem 3: For attitude dynamics (35), to track the desired

attitude Θd = (ψd, θd, ϕd), if the controller is designed as

ua = −Ξa−Ωa−∆̂a−J [ka1êa+ka2ėa+Lcsign(ėa)] (57)

where, ka1, ka2, Lc > 0; ê7 = ψ̂ − ψd, ê9 = θ̂ − θd, ê11 =

ϕ̂ − ϕd; êa =
[
ê7 ê9 ê11

]T
; ėa =

[
e8 e10 e12

]T
;

and the control system is described in Fig.5, then the attitude
error dynamic system (50) rendering by controller (57) will
converge asymptotically to the origin, i.e., the tracking errors
ea → 0 and ėa → 0 as t→ ∞.

Proof: In the light of Corollary 2, for t ≥ ts = εΓ, the
observation signals

∥∥∥Θ̂−Θ
∥∥∥ ≤ Lεα1γ−1 and

∥∥∥∆̂a −∆a

∥∥∥ ≤

Lεα1γ−3. Considering controller (57), the closed-loop error
system for the attitude dynamics is

ëa = −ka1ea−ka2ėa−Lcsign(ėa)−ka1(Θ̂−Θ)−(∆̂a−∆a)
(58)

For t ≥ εΓ and sufficiently small ε, selecting the Lyapunov
function be V2 = ka1e

T
a ea+

1
2 ė
T
a ėa, we can obtain that ea → 0

and ėa → 0 as t→ ∞. This concludes the proof. �

V. COMPUTATIONAL ANALYSIS AND SIMULATIONS

In this section, we use a simulation on the jet aircraft
to illustrate the effectiveness of the proposed estimate and
control methods. The goal is to force the aircraft to track a
reference trajectory. Here, the aircraft tracks a given trajectory
(xd, yd, zd) without the information of (ẋ, ẏ, ż, ψ, θ, ϕ, d1, d2,
d3, d4, d5, d6). The estimation performances of the presented
integral-uncertainty observers are compared with Kalman filter
[14].

In this simulation, without the information of velocity,
attitude angle and uncertainties, the aircraft is controlled to
track the reference trajectory. The position is obtained from
the GPS receiver, and the altitude information is from the
altimeter. The angular velocity (ψ̇, θ̇, ϕ̇) is measured by the
IMU. The integral-uncertainty observer (43) ( or (44)) is used
to estimate the attitude angle (ψ, θ, ϕ) and uncertainties (d4,
d5, d6) in the attitude dynamics from the angular velocity
(ψ̇, θ̇, ϕ̇). The augmented observer (46) is adopted to estimate
the velocity (ẋ, ẏ, ż) and uncertainties (d1, d2, d3) in the
position dynamics from the position (x, y, z). Controllers (52)
and (57) are presented to stabilize the flight dynamics. Ref-
erence trajectory: The given waypoints generate the reference
trajectory (xd, yd, zd) shown in Fig.6.

The initial states of aircraft are: (x(0), ẋ(0), y(0), ẏ(0),
z(0), ż(0), ψ(0), ψ̇(0), θ(0), θ̇(0), ϕ(0), ϕ̇(0)) = (0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0); the initial states of the observers are:
(x1,1(0), x1,2(0), x1,3(0), x2,1(0), x2,2(0), x2,3(0), x3,1(0),
x3,2(0), x3,3(0), x4,1(0), x4,2(0), x4,3(0), x5,1(0), x5,2(0),
x5,3(0), x6,1(0), x6,2(0), x6,3(0)) = (0 0, 0, 0, 0, 0, 0, 0, 0,
0.2, 0.3, 0, 0.3, −0.1, 0, 0.2, −0.2, 0). Let the uncertainties
be: ∆x = 0.5 sin(t), ∆y = 0.5 sin(t), ∆z = 0.5 sin(t), ∆ψ =
0.2 sin(0.8t), ∆θ = 0.2 sin(0.8t), ∆ϕ = 0.2 sin(0.8t).

The position measurement outputs are yopi = wi,1 + ni,
where i = 1, 2, 3, and w1,1 = x, w2,1 = y, w3,1 = z; the
attitude measurement outputs are yopi = wi,2 + ni, where
i = 4, 5, 6, and w4,2 = ψ̇, w5,2 = θ̇, w6,2 = ϕ̇; ni (where
i = 1, · · · , 6) are the disturbances.

The disturbances ni (where i = 1, · · · , 6) include two types
of noises: Random number with Mean=0, Variance=0.001,
Initial speed=0, and Sample time=0; Pulses with Ampli-
tude=0.001, Period=1s, Pulse width=1, and Phase delay=0.

The aerodynamic parameters of the unmanned jet aircraft
were obtained through the wind tunnel tests. The parameters
are given as follows:

Jet aircraft: m = 35.6kg, g = 9.8m/s2, wingspan=1.92m,
wing area=1.58m2, Fuselage length=2.35m, and CL10 =
CL20 = 0.3145, CL1α = CL2α = 0.5122, C1ϕ̇ = C2ϕ̇ =
0.1183, CLδ1 = CLδ2 = 0.1634, CD10 = CD20 = 0.0083,
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Fig. 6. Aircraft control based on nonlinear integral-uncertainty observer. (a)
Estimation in x coordinate. (b) Estimation in y coordinate. (c) Estimation in
z coordinate. (d) Estimation in yaw dynamics.
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Fig. 6. (continued): Aircraft control based on nonlinear integral-
uncertainty observer. (e) Estimation in pitch dynamics. (f) Estimation
in roll dynamics. (g) Thrust force. (h) Control angles of rudder.



0018-9251 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAES.2017.2668078, IEEE
Transactions on Aerospace and Electronic Systems

11

0 20 40 60 80 100 120
−5000

0

5000

time(s)

x

 

 

x (m)
estimate of x (m)
x

d
 (m)

0 20 40 60 80 100 120
−100

0

100

time(s)

dx
/d

t

 

 

dx/dt (m/s)
estimate of dx/dt (m/s)
dx

d
/dt (m/s)

0 20 40 60 80 100 120
−1

0

1

time(s)

d 1(t
)

 

 

estimate of d
1
(t) (N)

d
1
(t) (N)

(a)

0 20 40 60 80 100 120
−1000

0

1000

time(s)

y

 

 

y (m)
estimate of y (m)
y

d
 (m)

0 20 40 60 80 100 120
−100

0

100

time(s)

dy
/d

t

 

 

dy/dt (m/s)
estimate of dy/dt (m/s)
dy

d
/dt (m/s)

0 20 40 60 80 100 120
−2

0

2

time(s)

d 2(t
)

 

 

estimate of d
2
(t) (N)

d
2
(t) (N)

(b)

0 20 40 60 80 100 120
−500

0

500

time(s)

z

 

 

z (m)
estimate of z (m)
z

d
 (m)

0 20 40 60 80 100 120
−50

0

50

time(s)

dz
/d

t

 

 

dz/dt (m/s)
estimate of dz/dt (m/s)
dz

d
/dt (m/s)

0 20 40 60 80 100 120
−2

0

2

time(s)

d 3(t

 

 

estimate of d
3
(t) (N)

d
3
(t) (N)

(c)

0 20 40 60 80 100 120
−0.5

0

0.5

time(s)

d(
ps

i)/
dt

 

 

estimate of d(psi)/dt (rad/s)
d(psi)/dt (rad/s)
d(psi

d
)/dt (rad/s)

0 20 40 60 80 100 120
−5

0

5

time(s)

ps
i

 

 

estimate of psi (rad)
psi (rad)
psi

d
 (rad)

psi estimate by Kalman filter (rad)

0 20 40 60 80 100 120
−0.2

0

0.2

time(s)

d 4(t
)

 

 

estimate of d
4
(t) (Nm)

d
4
(t) (Nm)

(d)

Fig. 7. Aircraft control based on linear integral-uncertainty observer. (a)
Estimation in x coordinate. (b) Estimation in y coordinate. (c) Estimation in
z coordinate. (d) Estimation in yaw dynamics.
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Fig.7. (continued): Aircraft control based on linear integral-
uncertainty observer. (e) Estimation in pitch dynamics. (f) Estimation
in roll dynamics. (g) Thrust force. (h) Control angles of rudder.
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C1ψ̇ = C2ψ̇ = 0.0057, CL30 = CL40 = 0.3029, CL3α =
CL4α = 0.4753, C4ϕ̇ = C4ϕ̇ = 0.1067, CLδ3 = CLδ4 =
0.1446, CD30 = CD40 = 0.0062, C3ψ̇ = C4ψ̇ = 0.0034;
Cl5α = 0.0812, Cd50 = 0.0063, Cd5α = 0.0094, Jx =
18Nm, Jy = 18Nm, Jz = 34Nm, kψ = kθ = kϕ =
0.52Ns/rad;

Augmented observer: ki,1 = 6, ki,2 = 11, ki,3 = 6, ε1 =
0.2, αi,1 = 0.8, i = 1, 2, 3;

Nonlinear integral-uncertainty observer: k1,i,1 = 0.1,
k1,i,2 = 2, k1,i,3 = 1, ε1,2 = 1/3, αi,3 = 0.3, i = 4, 5, 6;

Linear integral-uncertainty observer: k2,i,1 = 0.1, k2,i,2 =
2, k2,i,3 = 1, ε2,2 = 1/3, i = 4, 5, 6;

Controllers: kp1 = 3.2, kp2 = 1.6, ka1 = 1.5, ka2 = 1.0,
Lc = 0.15.

The sampling time is 1ms. The data of flying test were pre-
sented in Figs.6 and 7. Fig.6 shows the aircraft control based
on nonlinear integral-uncertainty observer. Fig. 6(a) describes
the estimate of x, dx/dt and d1(t); Fig. 6(b) describes the
estimate of y, dy/dt and d2(t); Fig. 6(c) presents the estimate
of z, dz/dt and d3(t); Fig. 6(d) presents the estimate of the
yaw angle ψ, yaw rate dψ/dt and d4(t); Fig. 6(e) presents the
estimate of the pitch angle θ, pitch rate dψ/dt and d5(t); Fig.
6(f) presents the estimate of the roll angle ϕ, roll rate dϕ/dt
and d1(t); Figs. 6(g) and 6(h) present the controller curves
of Fc, δv , δe and δ1,2, respectively. Fig.7 presents the aircraft
control based on linear integral-uncertainty observer. In the
simulation figures, the green lines denote measured values, the
blue lines are the estimated values, and the red dot lines are the
desired lines. In the Figs. 6 and 7, high-frequency noise and the
bounded uncertainties exist. Position tracking, the estimations
of velocity, attitude angle and the uncertainties are described,
respectively. Black lines are the real values, blue lines are the
estimated values, and the red dot lines are the desired values.
In the simulation above, although high-frequency stochastic
noises exist in the measurement signals, the uncertainties
exist in the aircraft dynamics, and only the angular velocities
are considered in the IMU outputs, the attitude estimations
by the presented integral-uncertainty observer, the velocity-
uncertainty estimations by the augmented observer and the
control results by the designed controller have satisfying
qualities. The stochastic noises are rejected sufficiently by the
observers.

Figs. 6 and 7 also describe the estimation comparisons of
attitude estimations by the integral-uncertainty observers and
Kalman filter. From Figs. Figs. 6 (d), (e), (f) and Figs. 7 (d),
(e), (f), the obvious estimation drifts of attitude angles exist
by Kalman filter. Furthermore, from Figs.6 and 7, no drift
phenomena happen for the integral-uncertainty observers. In
the tracking outputs, not only the dynamical performances are
fast, but also the tracking precisions are accurate.

We found that, for the simulation computational environ-
ment, the nonlinear and linear integral-uncertainty observers
can obtain almost the same estimate performances.

VI. EXPERIMENTAL VERIFICATION OF THE PROPOSED
OBSERVERS ON THE UNMANNED JET AIRCRAFT

In this section, in order to verify the effectiveness of the
proposed observation algorithms and controller proposed in
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Fig. 8. Flight control system implementation on the hardware.

the previous sections, we present a real-time experiment on the
flight of an unmanned jet aircraft. The jet aircraft prototype
has been designed and shown in Fig.2. In the aircraft, a jet
engine (JetCat P200-SX) is adopted to provide the thrust, and
its starter includes: Jet-tronic ECU (fuel control electronics);
electronic valve; electronic starting gas valve; electronic fuel
valve; fuel tubing, tubing connector set, filters, and cable set;
2 cell, 3300mA LiPoly battery pack; starting gas tank. The
thrust is 220 N (52 lbs) @ 112000 RPM, and RPM range:
33000 ∼ 112000 RPM. An IMU (XsensMTI AHRS) is used
to measure the angular velocity, whose sampling frequency is
10 kHz. Arduino Mega 2560 (sampling frequency: 16MHz) →
(CPU clock rate (or speed)): 16MHz. Gumstix microcomputer
and an Arduino Mega 2560 are taken as the driven boards,
which have multiple PWM output channels (See Fig.8). The
input voltage is 7 ∼ 12V. The control update time is 5ms.
The rudders (FUTABA S3001) are adopted to control the bias
angles of elevators, verticals and ailerons, respectively. GPS
MT3329 (10Hz update rate) is selected as the GPS receiver. A
VTI Technologies SCP1000 altimeter with 10 cm resolution is
utilized for above the sea level altitude measurements at higher
altitudes, and its sampling frequency is 9 Hz. A SF02-F laser
altimeter is used for altitude measurements at lower altitudes
with 40 m range (sampling frequency: 12 Hz), and it is fine
for landings. A kpilot 32 digital air speed sensor is utilized
to obtain the relative wind speed (sampling frequency: 192
kHz). A 4239-01 AOA sensor is used to measure the angle
of attack (sampling frequency: 100 kHz). The flight control
system implementation on the hardware is shown in Fig.8.

The aerodynamic parameters of the unmanned jet aircraft
were obtained through the wind tunnel tests. The parameters
have been given in the section of simulation. Here, the discrete
forms of the observers use the 4th-order Runge–Kutta Method.
The presented method is suitable to the several sampling times
(i.e., 0.001 in the simulation and 0.005 in the experiment, re-
spectively). The discrete-form analysis of a similar continuous
differentiator has been described in [12].

In this experiment, without the information of velocity,
attitude angle and uncertainties, the unmanned jet aircraft is
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Fig. 9. Flight test for jet aircraft.

controlled to track the reference trajectory. The position is
obtained from the GPS receiver, and the altitude information is
from the altimeter. The angular velocity (ψ̇, θ̇, ϕ̇) is measured
by the IMU.

Integral-uncertainty observer (43) ( or (44)) is used to
estimate the attitude angle (ψ, θ, ϕ) and uncertainties in the
attitude dynamics from the angular velocity (ψ̇, θ̇, ϕ̇). The
augmented observer (46) is adopted to estimate the velocity
(ẋ, ẏ, ż) and uncertainties in the position dynamics from the
position (x, y, z). Controllers (52) and (57) are designed to
control the jet aircraft to track the reference trajectory.

The flying test scenario for the jet aircraft is shown in
Fig.9, and the data of flying test are presented in Figs.10,
11, 12 and 13. In Fig.10, Fig.10(a) shows the trajectory
tracking for the unmanned jet aircraft. Fig.10(b) describes
the position estimate in x-direction; Fig.10(c) describes the
position estimate in y-direction; Fig.10(d) describes the po-
sition estimate in z-direction. In Fig.11, Fig.11(a) describes
the velocity estimate in x-direction; Fig.11(b) describes the
velocity estimate in y-direction; Fig.11(c) describes the ve-
locity estimate in z-direction. The attitude angles estimate by
the integral-uncertainty observers are shown in Fig.12, where
Fig.12(a) shows the yaw angle estimate; Fig.12(b) shows the
pitch angle estimate; Fig.12(c) shows the roll angle estimate.
Fig. 13 presents the controller curves of the thrust force Fc and
the duty ratios of rudders control δv, δe and δ1,2, respectively.
The pulse control of the rudder is shown in Table 2 (The time
period is 20ms).

Duty ratio Pulse width output angle
0.025 0.5(ms) −90◦

0.05 1(ms) −45◦

0.075 1.5(ms) 0◦

0.1 2(ms) 45◦

0.125 2.5(ms) 90◦

Table 2 Pulse control of rudder

In the experiment above, although the stochastic noise
exists in the GPS signal, the uncertainties exist in the aircraft
dynamics, and only the angular velocity is considered in the
IMU output, the attitude estimations by the presented integral-
uncertainty observer, the velocity-uncertainty estimations by
our previous augmented observer [41] and the control result-
s by the designed controller have satisfying qualities. The
estimation results of attitude angles are satisfying and are
better than those of IMU (XsensMTI AHRS) (See Fig.12).
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Fig. 10. Position navigation. (a) Position trajectory. (b) Position in x-
direction. (c) Position in y-direction. (d) Position in z-direction.
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Fig. 11. Velocity estimate by augmented observer (46). (a) Velocity in x-
direction. (b) Velocity in y-direction. (c) Velocity in z-direction.

Furthermore, no drift phenomena happen, and trajectory taking
are accurate. From Fig.12, we also found that, the linear
integral-uncertainty observer (α3 = 1) can obtain the better
estimate results than those of nonlinear one (α3 = 0.5, 0.8). It
is more easier to regulate the parameters of the linear integral-
uncertainty observer. The linear observer is more suitable
to the existing hardware computational environment in the
aircraft system, and it exhibited more satisfying estimate
performances.
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Fig. 12. Attitude angles estimate by integral-uncertainty observers (43) and
(44). (a) Yaw angle estimate. (b) Pitch angle estimate. (c) Roll angle estimate.

VII. CONCLUSIONS

In this paper, two types of integral-uncertainty observers
have been developed, which all can estimate the integral
state of measurement output signal and the uncertainty in
system, synchronously. The effectiveness of the proposed
integral-uncertainty observers was shown by the simulations
and experiments on an unmanned jet aircraft: i) they succeeded
in estimating the attitude angle and uncertainties in attitude
dynamics from the angular velocity measurement; ii) The
flying test also verified the validity of our previous augmented
observer, which estimated the velocity and uncertainties in
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Fig. 13. Controllers. (a) Thrust force. (b) Duty ratios of rudders control.

position from the GPS receiver signals. iii) The satisfying
estimate precision and the strong robustness of the integral-
uncertainty observers make the selected control law very sim-
ple. The merits of the presented integral-uncertainty observers
include the synchronous estimation of attitude angles and
uncertainties, ease of parameters selection, sufficient stochastic
noise rejection and almost no drift phenomenon. Although
high-frequency stochastic noises and measurement errors exist,
the attitude angle and uncertainty estimations by the presented
observers and the tracking results by the designed controller
have satisfying qualities. Moreover, due to the limitation of
hardware computational environment and the requirement of
ease of parameters regulation, the proposed linear integral-
uncertainty observer can obtain the better estimate results than
those of the nonlinear one. Our future work is to optimize the
parameters of the presented methods.
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APPENDIX A

The related concepts of finite-time stability of autonomous
systems are presented here.

Definition 1 in [37]: Let us consider a time-invariant system
in the form of

�
x = f (x) , f (0) = 0, x ∈ Rn, (59)

where f : D → Rn is continuous on open neighborhood
D ⊆ Rn of the origin. The origin is said to be a finite-
time-stable equilibrium of the above system if there exists an
open neighborhood N ⊆ D of the origin and a function Tf :
N\ {0} → (0,∞), called the settling-time function, such that
the following statements hold: (i) Finite-time-convergence: For
every x ∈ N\ {0}, ψx is the flow starting from x and defined
on [0, Tf (x)), ψx (t) ∈ N\ {0} for all t ∈ [0, Tf (x)), and
limt→Tf (x) ψ

x (t) = 0.
(ii) Lyapunov stability: For every open neighborhood Uε of

0 there exists an open subset Uδ of N containing 0 such that,
for every x ∈ Uδ\ {0}, ψx (t) ∈ Uε for all t ∈ [0, Tf (x)).

The origin is said to be a globally finite-time-stable equi-
librium if it is a finite-time-stable equilibrium with D = N =
Rn. Then the system is said to be finite-time-convergent with
respect to the origin.

Assumption in [11]: For a system depicted by Eq. (59), there
exists ρi ∈ (0, 1] , i = 1, · · · , n, and a nonnegative constant a
such that

∣∣fj (z̃1, · · · , z̃n)−f j (z1, · · · , zn)∣∣ ≤ a
n∑
i=1

|z̃i−zi|ρi (60)

where z̃i, zi ∈ R, i = 1, · · · , n, j = 1, · · · , n.
There are many nonlinear functions capable of satisfying

this assumption. For example, one such function is xρi since
|xρi − xρi | ≤ 21−ρi |x− x|ρi , ρi ∈ (0, 1].

Theorem 4.2 in [37]: Suppose there exists a continuous
function V : Rn−R such that the following conditions holds:

(i) V is positive definite;
(ii) There exist real numbers c > 0 and βc ∈ (0, 1) such

that

V̇ (x) + c(V (x))βc ≤ 0 (61)

Then (59) is globally finite-time stable. Moreover, if N is as
in Definition 1 and Tf is the setting time function, then

Tf (x) ≤
1

c(1− βc)
V (x)

1−βc (62)

Proposition 8.1 in [38]: Let k1, · · · , kn > 0 be such that
sn + kns

n−1 + · · · + k2s + k1 is Hurwitz, and consider the
system

ẋi = xi+1; i = 1, · · · , n− 1,

ẋn = −
n∑
i=1

ki |xi|αi sign(xi) (63)

there exists ξc ∈ (0, 1) such that, for every α ∈ (1 − ξc, 1),
the origin is globally finite-time-stable equilibrium for Eq. (63)
where α1, · · · , αn satisfy

αi−1 =
αiαi+1

2αi+1 − αi
, i = 2, · · · , n (64)

with αn+1 = 1 and αn = α.
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Theorem 5.2 in [37]: Consider the perturbed system of (59)
following:

�
x = f (x) + g (t, x (t)) , x (0) = x0 (65)

suppose there exists a function V : D → R such that V is
positive definite and Lipschitz continuous on D, and satisfies
(61), where ν ⊆ D is an open neighborhood of the origin,
c > 0 and βc ∈ (0, 12 ). Then there exist δ0 > 0, µ > 0, Γ > 0,
and an open neighborhood U of origin such that, for every
continuous function g : R+ ×D → Rn with

δ = sup
R+×D

∥g (t, x (t))∥ ≤ δ0 (66)

every right maximally defined solution x of (65) with x(0) ∈
U is defined on R+ and satisfies x(t) ∈ U for all t ∈ R+ and

∥x (t)∥ ≤ µδγ , t ≥ Γ (67)

where γ = (1− βc)/βc > 1.

APPENDIX B

Proof of Theorem 1: The system error between Eqs. (5)
and (4) is given by:

ė1 = e2; ė2 = e3;

ε43ė3 = −k1 |εe1 + εw1 (t)|α1 sign (e1 + w1 (t))

− k2
ε2α2

∣∣ε2e2 − ε2d (t)
∣∣α2

sign (e2 − d (t))

−k3
∣∣ε3e3 + ε3w3 (t)

∣∣α3
sign (e3 + w3 (t))

−ε4cσ(t) (68)

Eq. (68) can be rewritten as:

dεe1
dt/ε

= ε2e2;
dε2e2
dt/ε

= ε3e3;

dε3e3
dt/ε

= −k1 |εx1 + εw1 (t)|α1 sign (e1 + w1 (t))

− k2
ε2α2

∣∣ε2e2 − ε2d (t)
∣∣α2

sign (e2 − d (t))

−k3
∣∣ε3x3 + ε3w3 (t)

∣∣α3
sign (e3 + w3 (t))

−ε4cσ(t) (69)

Let

τ = t/ε; zi (τ) = εiei (t) , w̄i (τ) = εiwi (t) ,

i = 1, 2, 3; z = [ z1 z2 z3 ]T ;

w̄4 (τ) = ε4cσ(t), d̄ (τ) = ε2d (t) (70)

we obtain z = Ξ(ε)e. Eq. (69) can be written as

dz1
dτ

= z2;
dz2
dτ

= z3;

dz3
dτ

= −k1 |z1 + w̄1 (τ)|α1 sign (z1 + w̄1 (τ))

− k2
ε2α2

∣∣z2 − d̄ (τ)
∣∣α2

sign
(
z2 − d̄ (τ)

)
−k3 |z3 + w̄3 (τ)|α3 sign (z3 + w̄3 (τ))

−w̄4 (τ) (71)

Furthermore, Eq. (71) can be rewritten as

dz1
dτ

= z2;
dz2
dτ

= z3;

dz3
dτ

= −k1 |z1|α1 sign (z1)−
k2
ε2α2

|z2|α2 sign (z2)

−k3 |z3|α3 sign (z3)

−k1{|z1 + w̄1 (τ)|α1 sign (z1 + w̄1 (τ))

− |z1|α1 sign (z1)}

− k2
ε2α2

{
∣∣z2 − d̄ (τ)

∣∣α2
sign

(
z2 − d̄ (τ)

)
− |z2|α2 sign (z2)}
−k3{|z3 + w̄3 (τ)|α3 sign (z3 + w̄3 (τ))

− |z3|α3 sign (z3)} − w̄4 (τ) (72)

Let

g2 (τ, z (τ)) = −k1{|z1 + w̄1 (τ)|α1 sign (z1 + w̄1 (τ))

− |z1|α1 sign (z1)}

− k2
ε2α2

{
∣∣z2 − d̄ (τ)

∣∣α2
sign

(
z2 − d̄ (τ)

)
− |z2|α2 sign (z2)}
−k3{|z3 + w̄3 (τ)|α3 sign (z3 + w̄3 (τ))

− |z3|α3 sign (z3)} − w̄4 (τ) (73)

Therefore, we obtain

δ = sup
(τ,z)∈R4

|g2 (τ, z (τ))| ≤ 21−α1k1h
α1
1 εα1

+21−α3k3h
α3
3 ε3α3 + ε4La + 21−α2k2L

α2

d

≤ ερδ0 + 21−α2k2L
α2

d (74)

where δ0 = 21−α1k1h
α1
1 + 21−α3k3h

α3
3 + La, and ρ =

min
i∈{1,3}

{min{4, iαi}} = α1. In fact, when n = 3, it is checked

that the recursive form of (64) may be rewritten in the non-
recursive form

αi =
α3

(4− i)− (3− i)α3
, i = 1, 2, 3 (75)

Defining the following function

g3(ζ) =
ζα3

(4− ζ)− (3− ζ)α3
, ζ ∈ (0, 4) (76)

and taking derivative of g3(ζ) with respect to ζ, we obtain
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dg3(ζ)

dζ
=

α3(4− 3α3)

[(4− ζ)− (3− ζ)α3]2
> 0 (77)

Because α3 ∈ (0, 1), function g3(ζ) is monotone increasing
for ζ ∈ (0, 4). Moreover, the sequence {1, 2, 3} is monotone
increasing in open interval (0, 4). Therefore,

min
i∈{1,3}

{iαi} = α1 (78)

Furthermore, because ε ∈ (0, 1) and αi ∈ (0, 1), i = 1, 2, 3,
we obtain

max
i∈{1,3}

{εiαi} = ερ = εα1 (79)

From Proposition 8.1 in [38], Theorem 5.2 in [37] and
Eq. (74), for Eq. (72), there exist positive constants µ and
Γ (z (0)), such that, for ∀τ ∈ [Γ (z (0)) ,∞),

∥z (τ)∥ ≤ µδγ ≤ µ(εα1δ0 + 21−α2k2L
α2

d )γ (80)

where µ is a constant defined in Theorem 5.2 in [37]. There-
fore, from coordinate transformation (70), we obtain

∥ εe1 ε2e2 ε3e3 ∥ ≤ µ(εα1δ0 + 21−α2k2L
α2

d )γ (81)

for ∀t ∈ [εΓ (Ξ(ε)e (0)) ,∞). Thus, the following inequality
holds:

|ei| ≤ L(δdi)
γ , i = 1, 2, 3,∀t ∈ [εΓ (Ξ(ε)e (0)) ,∞) (82)

where L = µδγ0 ; δdi = εα1− i
γ + 21−α2

δ0
k2L

α2

d ε−
i
γ , i = 1, 2, 3.

If ε ∈ (0, 1) and Ld <
(

1−εα1

21−α2k2
δ0

) 1
α2 , then

0 < εα1 +
21−α2

δ0
k2L

α2

d < 1 (83)

Furthermore, from Theorem 4.3 in [37], βc can be chosen
to be arbitrarily small. Hence, the requirement that βc lies on

βc ∈

0,min

 1
4 log ε

log(εα1+ 21−α2
δ0

k2L
α2
d )

+ 1
,
1

2


 (84)

is not restrictive. Accordingly, we can obtain

γ =
1− βc
βc

> max

{
4 log ε

log(εα1 + 21−α2

δ0
k2L

α2

d )
, 1

}
(85)

Therefore,

γ log(εα1 +
21−α2

δ0
k2L

α2

d ) < 4 log ε (86)

i.e.,

εα1 +
21−α2

δ0
k2L

α2

d < ε
4
γ (87)

From Eq. (85), γ > 4 holds. Therefore, from ε ∈ (0, 1), we
can obtain ε

4
γ < ε

i
γ , i = 1, 2, 3. Then

δdi = εα1− i
γ +

21−α2

δ0
k2L

α2

d ε−
i
γ < 1 (88)

where i = 1, 2, 3. The choice of βc leads to γ > 1 in (82)
which implies that for δdi ∈ (0, 1), the ultimate bound (82) on
the estimation error is of higher order than the perturbation.
Consequently, the presented double-integral observer leads to
perform rejection of low-level persistent disturbances.

Ideally, if no noise exist in the measurement signal, i.e,
yop = w2 (t) or Ld = 0, then (82) can be written as

|ei| ≤ Lεα1γ−i, i = 1, 2, 3, ∀t ∈ [εΓ (Ξ(ε)e (0)) ,∞) (89)

To make α1γ − i > 1, i = 1, 2, 3, from Theorem 5.2 in
[37], we let

βc ∈ (0,min {α1/(α1 + 4), 1/2}) = (0, α1/(α1 + 4)) (90)

In fact, from Theorem 4.3 in [37], βc can be chosen to be
arbitrarily small. Hence, the requirement that βc lies on βc ∈
(0, α1/(α1 + 4)) is not restrictive. Accordingly, we can obtain
α1[(1 − βc)/βc] > 4. Therefore, α1γ − i > 1 for i = 1, 2, 3.
The choice of βc leads to α1γ − i > 1 in (89) which implies
that for ε ∈ (0, 1), the ultimate bound (89) on the estimation
error is of higher order than the perturbation.

For arbitrary ε ∈ (0, 1), from the Routh-Hurwitz Stability
Criterion, polynomial s3 + k3s

2 + k2
ε2α2

s + k1 is Hurwitz if
k1 > 0, k3 > 0, k2 > ε2α2k1/k3. This concludes the proof. �

Proof of Corollary 1: The Laplace transformations of Eqs.
(10) and (4) can be obtained as follows:

sW1(s) = W2(s)

sW2(s) = W3(s) + Π(s)

sW3(s) = cσ(s) (91)

and

sX1(s) = X2(s)

sX2(s) = X3(s) + Π(s)

ε4sX3(s) = −k1εX1(s)− k2 (X2(s)−W2(s))

−k3ε3X3(s) (92)

where Xi(s), Wi(s) and Π(s) denote the Laplace transforma-
tions of xi, wi and Π(t), respectively, and s denotes Laplace
operator. From Eqs. (91) and (92), we obtain the estimations
as follows:

1) x2 estimates w2: From Eqs. (91) and (92), it follows that

X1(s) =
1

s
X2(s)

X3(s) = sX2(s)− sW2(s) +
1

s
cσ(s)

ε4sX3(s) = −k1εX1(s)− k2 (X2(s)−W2(s))

−k3ε3X3(s) (93)

Therefore, Eq. (93) can be written as
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ε4s{sX2(s)− sW2(s) +
1

s
cσ(s)}

= −k1ε
1

s
X2(s)− k2 (X2(s)−W2(s))

−k3ε3{sX2(s)− sW2(s) +
1

s
cσ(s)} (94)

Then, it follows that

X2(s) =
ε4s3 + k3ε

3s2 + k2s

ε4s3 + k3ε3s2 + k2s+ k1ε
W2(s)

− ε4s+ k3ε
3

ε4s3 + k3ε3s2 + k2s+ k1ε
cσ(s) (95)

Therefore,

lim
ε→0

X2(s)

W2(s)
= 1 (96)

2) x1 estimates w1: From Eqs. (91) and (92), we obtain

W2(s) = sW1(s)

W3(s) =
1

s
cσ(s)

Π(s) = s2W1(s)−
1

s
cσ(s) (97)

and

X2(s) = sX1(s)

X3(s) = s2X1(s)− s2W1(s) +
1

s
cσ(s)

ε4sX3(s) = −k1εX1(s)− k2 (X2(s)−W2(s))

−k3ε3X3(s) (98)

Therefore, Eqs. (97) and (98) can be written as

ε4s{s2X1(s)− s2W1(s) +
1

s
cσ(s)}

= −k1εX1(s)− k2 (sX1(s)− sW1(s))

−k3ε3{s2X1(s)− s2W1(s) +
1

s
cσ(s)} (99)

Then, it follows that

X1(s) =
ε4s3 + k3ε

3s2 + k2s

ε4s3 + k3ε3s2 + k2s+ k1ε
W1(s)

−
ε4 + k3ε

3 1
s

ε4s3 + k3ε3s2 + k2s+ k1ε
cσ(s) (100)

Therefore,

lim
ε→0

X1(s)

W1(s)
= 1 (101)

3) x3 estimates w3: From Eqs. (91) and (92), we obtain

W2(s) =
1

s
W3(s) +

1

s
Π(s)

X1(s) =
1

s
X2(s)

X2(s) =
1

s
X3(s) +

1

s
Π(s)

ε4sX3(s) = −k1εX1(s)− k2 (X2(s)−W2(s))

−k3ε3X3(s) (102)

Therefore, Eq. (102) can be written as

ε4s3X3(s) = −k1εX3(s)− k1εΠ(s)− k2sX3(s)

−k2sΠ(s) + k2sW3(s) + k2sΠ(s)

−k3ε3s2X3(s) (103)

Then, it follows that

X3(s) =
k2s

ε4s3 + k3ε3s2 + k2s+ k1ε
W3(s)

− k1ε

ε4s3 + k3ε3s2 + k2s+ k1ε
Π(s) (104)

Therefore,

lim
ε→0

X3(s)

W3(s)
= 1 (105)

It means that xi approximates wi for i = 1, 2, 3. Further-
more, the denominator of Eq. (95) (also in Eqs. (100) and
(104)) is required to be Hurwitz, i.e., s3+ k3

ε s
2+ k2/ε

2

ε2 s+ k1
ε3

is Hurwitz. It is equivalent that s3 + k3s
2 + k2

ε2 s+ k1 should
be Hurwitz. For arbitrary ε ∈ (0, 1), from the Routh-Hurwitz
Stability Criterion, this polynomial is Hurwitz if k1 > 0,
k3 > 0, k2 > ε2k1/k3. This concludes the proof. �
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