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Abstract 

A 1H anisotropic-isotropic chemical shift correlation experiment which employs symmetry-based recoupling 

sequences to reintroduce the chemical shift anisotropy in ν1 and ultrafast MAS to resolve 1H sites in ν2 is 

described. This experiment is used to measure 1H shift parameters for L-ascorbic acid, a compound with a 

relatively complex hydrogen-bonding network in the solid. The 1H CSAs of hydrogen-bonded sites with 

resolved isotropic shifts can be extracted directly from the recoupled lineshapes. In combination with DFT 

calculations, hydrogen positions in crystal structures obtained from X-ray and neutron diffraction are 

refined by comparison with simulations of the full two-dimensional NMR spectrum. The improved 

resolution afforded by the second dimension allows even unresolved hydrogen-bonded sites 1H to be 

assigned and their shift parameters to be obtained. 

Introduction 

Measurements of chemical shift parameters in solids for 1H are challenging, because of the effects of strong 

homonuclear dipolar couplings and the relatively small chemical shift anisotropy (CSA). Nevertheless, 

several methods for measuring these parameters in solids have been demonstrated recently, based on two-

dimensional magic angle spinning (MAS) experiments that correlate the anisotropic and isotropic parts of 

the shift interaction. These distinguish the different 1H sites in the detection dimension and reintroduce or 

“recouple” the MAS-averaged 1H CSA during the evolution time. For example, Brouwer and Ripmeester [1] 

resolved 1H isotropic shifts in ν2 by a combination of moderate MAS (ωr/2π = 16 kHz) and multi-pulse 

homonuclear decoupling and used a recoupling sequence designed using symmetry principles [2,3] during 
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t1. Subsequently, Hou et al. [4] optimized the resolution of 1H sites by magnetization transfer to a 

neighbouring 15N nucleus after recoupling the 1H CSA in a similar fashion and measured the 1H shift 

parameters for the amide sites in 15N-enriched proteins. Miah et al. [5] employed modified recoupling 

sequences suitable for use with “ultrafast” MAS (ωr/2π > 50 kHz), an approach that allows hydrogen-

bonded sites in simple crystalline solids to be resolved in ν2 without the need for multi-pulse homonuclear 

decoupling. Pandey et al. [6] improved this ultrafast MAS experiment by using composite pulses as the basis 

for similar CSA recoupling sequences, while Zhang et al. [7] used CSA recoupling as part of a three-

dimensional DQ/CSA/SQ experiment which can be particularly useful when the resolution in the direct 

dimension is low. 

It has been recognized for 30 years that solid-state 1H NMR spectroscopy provides a way to study hydrogen 

bonding. For example, an early study [8] revealed a simple relationship between the 1H isotropic chemical 

shift δiso(1H) and the O…O distance in crystalline solids with moderate to strong hydrogen bonds. Ab initio 

calculations [9] suggested that the origin of this effect is the deshielding of the principal component of the 1H 

shift tensor perpendicular to the hydrogen bond as the bond length decreases. Subsequently, a linear 

correlation between the isotropic 1H shift δiso(1H) and d(H…O) was established by comparison with neutron 

diffraction data [10]. Many similar relationships have been found for phosphates [11], hydrosilicates [12], 

selenites [13] and amino acids [14], and these are commonly used to extract hydrogen bond lengths from 

solid-state NMR measurements. However, later studies suggest that the situation is more complicated than 

first thought. The correlations are usually derived from a small set of samples with similar structure motifs 

and moderately strong hydrogen bonds, and scatter can be assigned to the sensitivity of the shift parameters 

to other aspects of the chemical environment of the 1H nucleus, such as the nature of the donor and acceptor 

groups [15]. Furthermore, theoretical treatments in terms of bond polarization [16] or valence bond order 

[17] predict highly non-linear relationships between δiso(1H) and d(H…O). More recently, Wu et al. [18] 

studied crystalline hydrates with relatively weak hydrogen bonds and found a clear correlation between 

both parallel and perpendicular components of the 1H shift tensor and d(H…O). The parallel component 

becomes more shielded as the hydrogen bond length decreases, and as a result the span of the 1H shift tensor 

provides a more sensitive indicator of hydrogen bond length than the isotropic average alone. 

Recent work in this area involves the emerging field of “NMR crystallography” which combines 

measurements of solid-state NMR parameters with their calculation. For example, progress has been made 
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using high-resolution NMR correlation experiments to assign isotropic 1H shifts [19] coupled with 

calculations using the gauge-including projector augmented-wave (GIPAW) approach [20]. X-ray diffraction 

is sensitive to electron density rather than to atomic positions, and so X-ray structures can be significantly 

improved using NMR crystallography. An early example [21] used DFT calculations of isotropic 1H chemical 

shifts to refine the hydrogen positions for the hydrogen-bonded sites in polymorphs of 

methylnitroacetanilide, and the resulting hydrogen bond lengths were in close agreement with those 

measured by neutron diffraction. The ultimate goal of NMR crystallography is to develop “spectrum to 

structure” procedures [19] that involve identifying the actual crystal structure from an ensemble generated 

by structure prediction software without the need for diffraction methods. Recently the de novo structure 

determination of a pharmaceutical compound [22] has been demonstrated using a combination of solid-state 

1H NMR, crystal structure prediction methods [23] and DFT calculations. 

In this contribution we show how the ultrafast MAS 1H anisotropic-isotropic shift correlation experiment can 

be used to measure 1H shift parameters for relatively complex hydrogen-bonded structures. As an example 

we present data for L-ascorbic acid which has eight distinct intermolecular hydrogen bonds, consisting of 

two helical series of OH…O bonds with the donor-acceptor sequence in each helix reversed for the two 

inequivalent molecules in the asymmetric unit. The 1H CSAs of hydrogen-bonded 1H sites with isotropic 

shifts which are resolved in ν2 can be extracted directly from the recoupled lineshapes observed in ν1. In 

addition, we demonstrate that hydrogen positions in crystal structures obtained from X-ray or neutron 

diffraction can be refined by a combination of DFT calculations and simulations of the full two-dimensional 

NMR spectrum. The improved resolution afforded by the second dimension allows even unresolved 

hydrogen-bonded sites 1H to be assigned and their shift parameters to be obtained. 

Pulse Sequence Design 

Levitt and co-workers [2,3] applied symmetry principles to the design of recoupling sequences that 

reintroduce specific nuclear spin interactions averaged by MAS. This work makes use of the most flexible 

class of symmetry-based recoupling sequences, designated  RNn
ν , which consist of N composite inversion 

pulses R, timed to occupy n rotor periods τr. Each R element of the overall sequence has duration nτr/N and 

alternate elements have phases ±πν/N. It has been shown [3] that the symmetry numbers N, n and ν 
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determine which interactions are retained in the first-order effective Hamiltonian for the sequence according 

to: 

 
    
Hlmλµ

1( ) t0( )=κlmλµ
′Alm exp im αRL

0 −ωrt0( ){ }Tλµ if nm−νµ( )=
N
2

kλ  

where A’ is a rank-l irreducible spherical tensor operator describing the spatial part of the interaction 

Hamiltonian in the rotor frame, and T is a rank-λ irreducible spherical tensor operator describing the spin 

part in the laboratory frame. The rotational components of the spatial and spin tensors m and µ take values 

m = l, l - 1, … -l and µ = λ, λ - 1, … -λ, respectively, and kλ is any integer with the same parity as λ. The 

scaling factor κlmλµ describes the reduction in magnitude of the symmetry-allowed interaction that is an 

inevitable consequence of recoupling, and the Euler angle   αRL
0  describes the orientation of the rotor with 

respect to the laboratory frame at time t0. Recoupling sequences suitable for measuring shift parameters 

result in a transverse single-quantum Hamiltonian that takes the form 

 
    
H 1( ) = ω jT1−1 +ω j

∗T11( )
j
∑  

to first order, where the index j runs over all chemical shift interactions. The coefficients ωj depend on the 

spatial part of the chemical shift interaction, as well as the scaling factor. For 1H suitable sequences must 

avoid inadvertently recoupling the homonuclear dipolar interaction and the isotropic shift, while first-order 

compensation for rf amplitude inhomogeneity can also be included [24]. Many symmetries fit these criteria, 

but several additional factors must be considered when selecting a recoupling sequence for use with 

ultrafast MAS. In particular the pulse sequence is synchronized with the spinning, so that many symmetries 

requiring a large ratio ω1/ωr become impractical at higher MAS rates. For example,  R182
5  and  R121

4  require 

rf amplitudes in excess of 180 kHz and 240 kHz, respectively, for MAS rates above 40 kHz. 

Experimental 

The pulse sequence used to record 1H anisotropic-isotropic shift correlation spectra has been described 

previously in Ref. [5] Experiments were recorded at a 1H Larmor frequency of 850.22 MHz, using a double-

resonance 1 mm MAS probe. A MAS rate of 78.0 kHz was selected, so that the π pulse duration in the  R163
2   

recoupling sequence was 2.4 µs corresponding to a 1H rf amplitude of 208.3 kHz. There were 64 t1 increments 

with data points sampled every 12 R elements, resulting in a dwell time in the indirect dimension of 28.8 µs. 
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Experiments used a pre-saturation pulse train of 200 π/2 pulses of duration 1.2 µs with successive pulses 

separated by a delay of 1 ms. For a more detailed description of the pulse sequence see Ref. [5]. 

The anisotropy and asymmetry parameters for the chemical shift are defined according to ζ = δzz – δiso and η 

= (δyy – δxx)/ζ, respectively, with the principal components ordered according to |δzz – δiso | ≥ | δxx –  δiso | ≥ 

| δyy – δiso |. Numerical simulations of the recoupled 1H CSA lineshapes were performed using SIMPSON 

[25]. Powder averaging was achieved using 615 (α,β) orientations chosen according to the scheme of 

Zaremba [26] and 5 uniformly distributed values of γ. B1 inhomogeneity was included by summing 13 

simulations carried out using rf amplitudes weighted according to the experimentally determined B1 

distribution, as determined using the experiment of Odedra and Wimperis [27]. The image of the B1 

distribution for the 1 mm probe obtained with this experiment is shown in the Supporting Information 

(Figure S1). To extract the 1H CSAs an array of simulated lineshapes was generated for a suitable range of ζ 

values and η between 0.0 to 1.0, and the 1H shift tensor parameters were extracted by comparing these with 

the experimental data, using a similar method to that described in Ref. [5]. For each simulated lineshape the 

optimal scaling was found by fitting to the experimental data, and the corresponding χ2 parameter was 

plotted as a function of ζ and η. The resulting error surface allows the best-fit values of ζ and η to be 

obtained, as well as their confidence limits, assuming χ2 is normalized [28] according to 

    
χ2 =

1
ν

Yi−Ei( )2

e2
i=1

n

∑   

where E is the experimental spectrum, Y is the simulated spectrum, n is the total number of data points, e is 

the standard deviation due to noise, and ν is the number of degrees of freedom n – p – 1 where p is the 

number of fit parameters. It should be noted that the effects of B1 inhomogeneity can be minimized more 

directly using modified recoupling sequences with composite R elements, [6] allowing more accurate 

measurements of smaller CSAs by removal of spurious intensity close to n1 = 0. However, for L-ascorbic acid 

significant ν2 spectral overlap between sites with large and small CSAs (see below) reduces the benefits of 

this approach. 

Computational 

Hydrogen atom positions in crystal structures obtained from the Cambridge Structural Database were 

optimized with the CASTEP DFT package [29]. Wavefunctions were expanded in terms of plane waves with 
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ultrasoft pseudo-potentials to represent the core electrons. The PBE approximation [30] to the exchange-

correlation interaction was used, and the Brillouin zone was sampled using a Monkhorst-Pack grid of k-

points. The optimized energy was converged to within ±0.01 eV, firstly by increasing the cut-off energy for 

the plane-wave expansion in steps from 100 to 1000 eV and subsequently by decreasing the spacing of the 

Monkhorst-Pack grid in steps from 0.1 to 0.05 Å-1. 1H NMR parameters were calculated for each structure 

from the database before and after geometry optimization, and this was achieved using the gauge-including 

projector augmented-wave [20] (GIPAW) approach, as implemented in CASTEP. The principal components 

of the resulting shielding tensor were obtained by diagonalizing its symmetric part. Chemical shifts are 

measured relative to a reference frequency with their direction opposite to the shielding, so the isotropic 

chemical shift was calculated from the isotropic average of the shielding tensor according to  

   
δiso =− σiso−σref( )  

The principal components of the chemical shift tensor were obtained from those of the shielding tensor in a 

similar fashion. Following standard practice [31] the 1H reference shielding was obtained for each optimized 

structure by fitting the calculated isotropic shifts to the experimental values with σref as a variable parameter. 

The reference shieldings obtained for the different crystal structures were 30.51 ± 0.05 ppm in good 

agreement with values in the literature [31-33]. To compare with experimental data two-dimensional 

anisotropic-isotropic correlation spectra were simulated using SIMPSON from the calculated principal 

components of all 16 1H sites using the measured B1 distribution and the experimental ν2 linewidths 

obtained from the 1H ultrafast MAS spectrum. 

Results and Discussion 

Ascorbic Acid Crystal Structures 

Several crystal structures for L-ascorbic acid have been published previously and have been extracted from 

the Cambridge Structural Database (CSD). [34] These include X-ray structures obtained at both ambient 

temperature (lascac10) [35] and at low temperatures: 120 K (lascac12) [36], 100 K (lascac14) and 90 K 

(lascac15) as well as a neutron diffraction refinement (lascac01) [37] of the hydrogen atom positions in the 

ambient temperature structure. In all cases the space group is P21, and there are four L-ascorbic acid 

molecules in the unit cell and two in the asymmetric unit, related to one another by a pseudo symmetry 

operation. The five-membered ring of the L-ascorbic acid molecule is almost planar and the side chain has an 
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extended conformation, as shown in Figure S2. There are eight distinct intermolecular hydrogen bonds, 

consisting of two helical series of three OH…O bonds and two isolated OH…O bonds. Within the two 

helices the donor-acceptor sequence is reversed in the two inequivalent molecules. In the neutron structure 

the H…O bond lengths range from 1.629 to 2.048 Å, while in the 100 K X-ray structure these are slightly 

longer ranging from 1.645 to 2.103 Å. Although there are some differences in axis system and atom labelling, 

the conformations of the molecules are very similar in all structures, with the same hydrogen-bond network 

and no significant differences for bond angles and bond distances between the non-hydrogen atoms. The 

unit cell volume is 2.2 % smaller in the 120 K structure. 

1H Shift Parameters 

Figure 1 shows 1H ultrafast MAS spectra of L-ascorbic acid recorded at (a) a magnetic field of 14.095 T and a 

MAS rate of 62.5 kHz and (b) a magnetic field of 19.969 T and a MAS rate of 78.0 kHz. A modest resolution 

gain results from the simultaneous increase of both magnetic field and MAS rate with a previously 

unresolved hydrogen-bonded 1H resonance appearing as a shoulder at 6.1 ppm. Nevertheless, only one of 

the eight inequivalent hydrogen-bonded sites (at 9.1 ppm) in L-ascorbic acid is fully resolved in the one-

dimensional spectrum even at the higher magnetic field and MAS rate. The two-dimensional anisotropic-

isotropic correlation spectrum recorded as described in the Experimental Section is shown in Figure 2(a). In 

contrast to the one-dimensional 1H ultrafast spectrum this allows three hydrogen-bonded 1H sites at δ2 = 9.1, 

7.2 and 6.1 ppm to be clearly identified, since they result in well-resolved recoupled CSA lineshapes in ν1. 

Two further hydrogen-bonded 1H sites at δ2 = 4.9 and 4.0 ppm can be resolved in the correlation spectrum, 

since their recoupled CSA lineshapes extend well beyond the narrow response from the remaining 1H sites 

in ν1. The intense response at δ2 = 11.1 ppm comprises the remaining three of the expected eight hydrogen-

bonded 1H sites which are not resolved. Cross-sections (black lines) parallel to ν1 taken at the δ2 shifts 

corresponding to the three well-resolved hydrogen-bonded 1H sites are shown in Figure 2(b), together with 

SIMPSON simulations (grey lines) produced according to the method described in the experimental section 

for the best-fit chemical shift parameters (see Table 1). The corresponding error surfaces are given in the 

Supplementary Information (Figure S3). The poor fit in the centre of some lineshapes is due to a zero-

frequency peak which has been discussed extensively in Refs. [1,5,6]. 
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Figure 1. 1H MAS NMR spectra of L-ascorbic acid recorded at (a) a B0 field strength of 600 MHz and a MAS 

rate of 62.5 kHz and (b) a B0 field strength of 850 MHz and a MAS rate of 78 kHz. 

 

 

Figure 2(a) Experimental anisotropic-isotropic correlation spectrum for ascorbic acid recorded at a Larmor 

frequency of 850.22 MHz and a MAS rate of 78.0 kHz. (b) Cross-sections (black lines) parallel to ν1 showing 

recoupled 1H lineshapes and simulations (grey lines) based on the best-fit chemical shift parameters. 

Table 1. Experimental values of 1H chemical shift parameters in L-ascorbic acid (with 95% confidence limits) 

measured in this work from fitting as described in the text. 

Site1 δiso ζ / ppm2 η 
H10 9.11 21.4 (20.5-22.5) 0.1 (0.0 – 0.6) 
H14 7.21 20.2 (19.0-21.3) 0.1 (0.0 – 0.6) 
H16 6.06 18.7 (17.7-20.6) 0.2 (0.0 – 0.6) 

1. Hydrogen sites numbered according to Ref. [35]. For assignment see Table 3 below. 

2. The sign of ζ cannot be determined by the experiment used here. 
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Structure Refinement 

In this contribution we demonstrate that the hydrogen positions in crystals with complex hydrogen-bonding 

networks can be refined by combining the ultrafast MAS anisotropic-isotropic shift correlation experiment 

and DFT calculations. The approach is based on the simulation of a full two-dimensional spectrum, so that 

the quality of the refinement is assessed against the mismatch between experimental and simulated values of 

both δiso and ζ. As a consequence any 1H resonance with either a resolved δiso or a distinct value of ζ can be 

assigned to a 1H site in the refined crystal structure. Figure 3(a) shows an anisotropic-isotropic correlation 

spectrum (grey contours) simulated for the published ambient temperature X-ray structure (lascac10) as 

described in the Computational Section superimposed on the experimental data from Figure 2(a) (black 

contours). Note that no optimization of the hydrogen atom positions was carried out before simulating this 

spectrum and that there is a substantial mismatch between the simulated and experimental spectra, 

demonstrating that the hydrogen bonds in this structure are inconsistent with the NMR parameters. In 

particular, for the ambient temperature X-ray structure four of the eight intermolecular H…O hydrogen 

bonds are greater than 2 Å in length and these result in the four peaks between δ2 = -4.5 and -9.0 ppm. The 

normalized χ2 parameter defined above was used to assess the overall fit to the experimental spectrum and 

was found to be 19.87 for this simulation. Figure 3(b) shows a similar anisotropic-isotropic correlation 

spectrum (grey contours) simulated for the published neutron refinement of the X-ray structure (lascac01), 

superimposed on the same experimental data (black contours).  In this case, although the fit is still poor, it is 

significantly improved over the previous simulation with a normalized χ2 parameter of 8.52. 

 

Figure 3(a) Anisotropic-isotropic correlation spectrum (grey contours) simulated for the published ambient 

temperature X-ray structure (lascac10) superimposed on the experimental data from Figure 2(a) (black 
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contours). The normalized χ2 parameter was 19.87. (b) As (a) but for the neutron refinement of the X-ray 

structure (lascac01). The normalized χ2 parameter was 8.52. 

Figure 4(a) shows an overlay of experimental (black contours) and simulated (grey contours) anisotropic-

isotropic correlation spectra of L-ascorbic acid. In this case the simulated spectrum was obtained by 

geometry optimization of the hydrogen positions only, starting from the neutron refinement (lascac01) [37]. 

The excellent agreement obtained is clearly evident, with the normalized χ2 parameter reduced to 2.72. As 

shown in Figure 4(b) excellent agreement was also obtained between pairs of cross-sections through the 

experimental (black lines) and simulated (grey lines) spectra taken parallel to ν1 at the isotropic 1H shifts δ2 

indicated. An almost identical simulation was obtained after geometry optimization of the hydrogen 

positions using the ambient temperature X-ray structure (lascac10) [35] as a starting point, which is expected 

since the neutron refinement does not alter the heavy atom positions. The normalized χ2 parameter was 

monitored as a function of both the cut-off energy for the plane-wave expansion and the spacing of the 

Monkhorst-Pack grid, and improvements in the overall fit between experiment and simulation closely match 

decreases in the optimized energy. 

 

Figure 4(a) Anisotropic-isotropic correlation spectrum (grey contours) simulated for the structure obtained 

by optimizing the hydrogen positions in the neutron structure (lascac01) superimposed on the experimental 

data from Figure 2(a) (black contours). The normalized χ2 parameter was 2.72. (b) Cross-sections parallel to 

ν1 through the simulated (grey lines) and experimental anisotropic-isotropic correlation spectra from (a) at 

the isotropic 1H shifts δ2 indicated. 

The results suggest that (as expected) the neutron refinement is more consistent with the NMR data, since 

the hydrogen atom displacements during geometry optimization are significantly smaller compared with 
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those for the X-ray structure, as shown in Figure 5. Similar agreement between simulation and experiment 

was obtained by hydrogen-only geometry optimization starting from the other lower temperature X-ray 

structures in the CSD. As an example the result for the structure acquired at 120 K (lascac12) due to 

Milanesio et al. [36] is shown in the Supplementary Information (Figure S4). The normalized χ2 parameter 

was slightly higher in this case at 4.35, with the difference arising from small variations in heavy atom 

positions which remain fixed during geometry optimization. 

 

Figure 5. Difference in 1H positions after geometry optimization compared to (circles) neutron refinement 

(lascac01) and (squares) X-ray structure (lascac10). 

Table 2 shows the changes which occur in the hydrogen-bond acceptor (O…H) and donor (H-O) distances 

during geometry optimization. Note that the initial ambient temperature X-ray structure (lascac10) shows H-

O bond lengths which are mostly considerably shorter than the sum of the covalent radii. Neutron 

refinement (lascac01) and geometry optimization result in successive extensions of the H-O covalent bond, 

with a concomitant contraction of the O…H hydrogen-bond distance. Apparent changes in the donor-

acceptor O…O separation given by the sum of the two distances in the Table result in fact from adjustments 

to the OH…O angle. It is well known that X-ray and neutron diffraction result in different crystal structures, 

since X-rays measure maxima in the electron density in the vicinity of the atoms, while neutron diffraction 

locates the atomic nuclei directly. In bonds with electronegative atoms the hydrogen nucleus and the centre 

of its electron density do not coincide, so that the positions of hydrogen atoms often differ by more than 0.1 

Å in structures determined by the two methods. Nevertheless, neutron diffraction is considered more 
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reliable, and allows the hydrogen atom positions to be located as accurately as those of heavy nuclei. These 

results suggest that this NMR crystallography approach can be used to improve X-ray structures without the 

need for neutron refinement. In addition, the improved resolution in the two-dimensional spectrum allows a 

complete assignment of the 1H sites to be made, as shown in Table 3. 

Table 2. Hydrogen-bond acceptor (A…H) and donor (H-D) distances in Å obtained from geometry 

optimization (this work), neutron refinement (lascac1) and X-ray diffraction at ambient temperature 

(lascac10). 

Hydrogen-Bond1 Geometry Optimized lascac1 lascac10 

A…H H-D A…H H-D A…H H-D A…H H-D 

O12…H2 H2-O2 1.603 1.023 1.748 0.876 1.748 0.885 
O1…H4 H4-O3 1.678 1.011 1.730 0.948 1.869 0.829 
O2…H6 H6-O5 1.824 0.989 1.764 1.082 2.001 0.820 
O8…H8 H8-O6 2.069 0.966 2.084 0.945 2.230 0.817 

O11…H10 H10-O8 1.638 1.011 1.629 1.045 1.773 0.871 
O7…H12 H12-O9 1.692 1.010 1.718 0.978 1.833 0.929 
O6…H14 H14-O11 1.723 0.999 1.787 0.935 2.044 0.738 
O5…H16 H16-O12 1.805 0.994 1.847 0.956 2.024 0.774 

1. Sites numbered according to Ref. [35] 

Table 3. Assignment of the 1H spectrum and values of calculated 1H chemical shift parameters in L-ascorbic 

acid obtained as described in the text. 

Site1 
Calculated Experimental2 

δiso ζ η δiso 

H1 3.82 2.97 0.97 3.8 
H2 11.08 -21.01 0.15 11.1 
H3 4.75 -4.14 0.78 4.8 
H4 11.04 -14.99 0.21 11.1 
H5 5.02 -3.62 0.62 4.8 
H6 4.95 -17.55 0.21 4.8 
H7 4.45 -3.37 0.70 3.8 
H8 3.43 -14.50 0.42 3.8 
H9 4.13 -3.38 0.64 3.8 

H10 9.12 -20.73 0.10 9.1 
H11 4.54 -4.29 0.60 4.8 
H12* 11.07 -15.47 0.29 11.1 
H13 5.12 -3.63 0.80 4.8 
H14 7.44 -20.31 0.15 7.2 
H15 4.38 -3.34 0.78 3.8 
H16 6.05 -18.63 0.20 6.1 
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1. Hydrogen sites numbered according to Ref. [35] 

2. Experimental 1H spectrum deconvoluted into 6 lines. 

Experimental measurements of δiso(1H) and CSA(1H) at ambient temperatures are affected by molecular 

motions which are not included in calculations based on a single static structure, but it has been shown [38] 

that these can be taken into account by averaging over vibrational configurations. In the light of this, the 

apparently excellent agreement obtained here between experimental and simulated anisotropic-isotropic 

correlation spectra requires further investigation, and this is currently underway. Note that the observed 

improvement results in large part from a correction for the substantial underestimate of the H-D covalent 

bond length in the X-ray structure (lascac10). The agreement obtained in this case suggest that this 

contribution is more significant in this case than temperature effects. Furthermore, relatively weak hydrogen 

bonds as here are associated with asymmetric potential energy curves with the hydrogen atom located in a 

relatively deep minima close to the donor oxygen, such that the variation with temperature is expected to be 

less than for stronger hydrogen bonds. 

Conclusion 

A 1H anisotropic-isotropic shift correlation experiment which employs symmetry-based recoupling 

sequences to reintroduce the chemical shift anisotropy in ν1 and ultrafast MAS to resolve 1H sites in ν2 has 

been described. This experiment has been used to measure 1H shift parameters for L-ascorbic acid, and the 

1H CSAs of hydrogen-bonded sites with resolved isotropic shifts have been extracted directly from the 

recoupled lineshapes. In combination with DFT calculations, hydrogen positions in crystal structures 

obtained from X-ray and neutron diffraction have been refined by comparison with simulations of the full 

two-dimensional spectrum. 
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