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More than 70 % of the primary energy consumed world-wide is wasted, mostly as heat below 

100 °C[1]. Thermoelectric generators may convert a substantial amount of this energy into electrical 

power but high production costs and scarcity of efficient thermoelectric materials operating in this 

temperature regime have limited large-scale applications so far. Recently, conducting polymers have 
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been proposed as potential candidates to meet these challenges showing appreciable low-temperature 

thermoelectric performance, but unfortunately suffering from low electrical conductivity due to 

inherent disorder[2–5]. Herein, crystalline low-dimensional molecular metals are demonstrated as an 

alternative class of thermoelectric materials combining the advantages of low weight, chemical 

variety, sustainability and high charge carrier mobility with reduced electronic dimensionality. For 

the first time determining all relevant thermoelectric quantities on individual organic crystals of both, 

p-type TTT2I3 and n-type DCNQI2Cu conductors, high power factors and promising figures of merit 

surpassing values of 𝑧𝑇 ≥ 0.15 below 40 K are disclosed in this study. The cost-defining power 

output per active area of a prototypical, all-organic TEG takes unprecedented values of ~mW/cm2 at 

RT. Violation of the Wiedemann-Franz law and phonon drag effects emerge from the materials’ low-

dimensionality and are expected to deliver further thermoelectric enhancement feasible in near future. 

 

The dimensionless figure of merit 𝑧𝑇 measures a material’s thermoelectric performance 

𝑧𝑇 =
𝑆2

𝜌 𝜅
𝑇 =

𝜎𝑆2

𝜅
𝑇 =

𝑃𝐹

𝜅
𝑇 (1) 

where electrical conductivity 𝜎  (resistivity 𝜌 ), Seebeck coefficient/thermopower 𝑆 , and thermal 

conductivity 𝜅 provide the power factor 𝑃𝐹 = 𝜎𝑆2. Materials with high electrical conductivity and 

thermopower but low thermal conductivity are desirable to maximize 𝑧𝑇  and hence, the 

thermoelectric conversion efficiency. Approximately, 𝑆 is inversely proportional to 𝜎 which in turn 

is related to the electronic thermal conductivity 𝜅el = 𝜎𝐿𝑇 via the Wiedemann-Franz (WF) law. 

Advances in 𝑧𝑇 have been achieved by tuning the doping of semiconductors to maximize the 𝑃𝐹[6] 

together with reducing the phononic contribution to thermal conduction by means of nanostructured 

superlattice architectures[7,8]. To overcome the inherent 𝑧𝑇  limitations of ordinary materials, a 

dimensionality reduction of the electronic system has been proposed[9]. This can lead to a violation 

of the WF law[10,11] and to phonon drag contributions to the thermopower[12]. Complex crystal 

structures, e.g. Zintl compounds[13] and skutterudites[14], have been evaluated as good thermoelectric 
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candidates due to reduced lattice thermal conductivity and electronic band structure tunability. These 

optimization strategies, together with the ability for low-cost production and low-temperature 

processibility, have recently raised interest in organic polymers[15], such as PEDOT:Tos, reaching 

𝑧𝑇 =  0.25 at room temperature (RT)[4]  and thus advancing the value of 𝑧𝑇 = 1.2 obtained for 

Bi2Te3 (the best RT thermoelectric material to date[7]). Herein, quasi-1D organic conductors based on 

small molecules constitute a new, sustainable approach towards organic thermoelectrics that provide 

many of the desired electrical and thermal properties described above. Additionally, they are 

lightweight and thermodynamically stable allowing for portable device manufacturing and long-term 

usage. In comparison to organic polymers the availability of electrically high-performing p- and n-

type organic conductors facilitates the construction of all-organic thermoelectric devices. 

As a starting point we chose two of the best p- and n-type conducting radical ion salts, TTT2I3 (TTT 

= Tetrathiotetracene) and (DMe-DCNQI)2Cu (DMe-DCNQI = Dimethyl-Dicyanoquinonediimine). 

They form macroscopic needle-like single crystals as depicted in Figure 1 together with their 

respective crystal structures. In TTT2I3 the molecules stack face-to-face along the needle axis 

providing large orbital overlap along the 𝑏⃗ -direction. These stacks are separated by triiodide 

counterions impeding a delocalization of charge carriers in the transverse directions resulting in 

anisotropic transfer integrals of 
𝑡||

𝑡⊥
≈ 56[16]. By charge-transfer of 1/2 𝑒 from each TTT molecule to 

the iodine atoms, the one-dimensional valence band formed by the HOMO of TTT becomes partially 

occupied by holes characterizing the material as a p-type organic metal with quasi-1D band 

structure[16]. The interference of two electron-phonon scattering mechanisms in TTT2I3 has been 

theoretically proposed to precipitate high charge carrier mobility states and large 𝑧𝑇  values[17]. 

Furthermore, our low-cost synthesis route for TTT highlights the possibility of sustainable, large-

scale production (see supplementary information). 

In DCNQI2Cu, the molecules align in separated stacks along the needle-axis (𝑐 -direction) with a 

partial charge transfer of 4 3⁄ 𝑒  from the central copper atom to two DCNQI molecules. With a 

conduction band emerging from the partially filled delocalized LUMO, this organic metal features n-
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type conductivity. In contrast to TTT2I3, the orbital overlap along the transverse directions is larger 

and the crystal is characterized as n-type organic metal with 
𝑡||

𝑡⊥
≈ 4 and anisotropic, but still quasi-

3D band structure[18]. In contrast to organic charge-transfer salts constituting of two molecular entities, 

e.g. TTF-TCNQ, between which charge transfer occurs leading to ambipolar conduction, the 

materials presented in this study belong to the class of radical ion salts and provide unipolar transport 

(n-type DCNQI2Cu; p-type TTT2I3) along the molecular chains in presence of a localized inorganic 

counterion. Thus, they are expected to show improved thermoelectric performance and define a 

prototypical platform to investigate the impact of dimensionality on the electrical and thermal 

material properties. 

A fundamental problem in the comprehensive thermoelectric characterization of organic conductors 

stems from the purity-dependence of material properties as well as their pressure-dependence when 

measured in different experimental setups and contact arrangements. Here, we present a newly 

developed apparatus to measure all thermoelectric quantities exclusively on the same specimen under 

minimum strain between 20 K  and 300 K . The sample holder is illustrated in Figure 2a. With 

graphite paint the crystals are attached to free-standing copper wires in a 4-probe geometry enabling 

accurate electrical conductivity measurements. Connecting the copper wires at opposite ends of the 

sample to two independent heating blocks allows a temperature gradient across the crystal to 

determine the Seebeck coefficient as described by Chaikin and Kwak[19]. Measurement of the thermal 

conductivity was attained by means of the 3ω-method at self-heating geometry for rodlike samples 

of high surface-to-volume ratio[20,21]. Feeding an AC-current, 𝐼0 sin(𝜔𝑡), into the sample via the outer 

contacts results in a temperature and resistance oscillation of doubled frequency for materials with a 

temperature-dependent resistivity of the form 𝜌 = 𝜌(𝑇0)[1 + 𝛼Δ𝑇].  From this temperature 

oscillation a voltage drop emanates at the inner contacts containing a component of tripled excitation 

frequency 3𝜔 with complex amplitude[20]: 

Re[𝑈3𝜔] =
𝛼 𝑅2𝐼0

3𝑙

48 𝜅 𝐴

1

1 + (𝜔𝜏/5)2
 (2) 
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Im[𝑈3𝜔] =
𝛼 𝑅2𝐼0

3𝑙

48 𝜅 𝐴

𝜔𝜏/5

1 + (𝜔𝜏/5)2
 

Here, 𝑅 is the resistance of the crystal of cross section 𝐴 and length 𝑙, 𝜅 the thermal conductivity and 

𝜏 =  cmol 𝜌dens 𝑙
2 (𝜅 𝑚mol)⁄  the thermal response time allowing for determination of the molar 

specific heat 𝑐mol  if the material’s density 𝜌dens  and molar mass 𝑚mol  are known (compare 

supplementary information). 

Figure 2b depicts the measured complex 3ω-voltage together with the fits of Equation 2 for a 

DCNQI2Cu crystal at RT: 𝜅 is determined by the amplitude of the real part extrapolated to zero 

frequency while 𝜔 = 5/𝜏 corresponds to the peak position in the imaginary part. The fit yields a 

thermal conductivity of 𝜅 = (1.73 ± 0.1) W/(m K) and a molar specific heat of 𝑐mol = (526 ±

70) J/(mol K) for DCNQI2Cu agreeing in magnitude with extrapolated literature data[22,23]. The 

measured values were also chosen to simulate the dynamic evolution of the temperature profiles 

inside the crystal for different excitation frequencies in the applied geometry by means of finite-

element methods (Figure 2c). At low frequencies, i.e. 𝜔 ≪ 5 𝜏⁄ , the temperature oscillates in-phase 

with the heating current. At frequencies approaching 5/𝜏, the amplitude of the oscillation decreases 

and shifts in phase with respect to the periodic stimulus. Additionally, the temperature does not fully 

relax back at zero-crossing current amplitude. For 𝜔 ≫ 5/𝜏 the amplitude decreases proportional to 

𝜔−1 corresponding to DC-heating of the crystal as its thermal response is too slow. Simulating the 

complex 3ω-voltage, the amplitude extrapolated to zero frequency perfectly agrees with the measured 

one, as illustrated in Figure 2b. Thus, the method allows us to determine thermal conductivities with 

high reproducibility and accuracy. Another benefit is the compensation of errors in the sample 

dimensions when determining 𝑧𝑇. For TTT2I3 we obtained RT values of 𝜅 = (3.7 ± 0.2) W/(m K)   

and 𝑐mol = (1191 ± 150) J/(mol K). 

For both materials the temperature-dependent electrical resistivity 𝜌 together with the thermopower 

𝑆 and the thermal conductivity 𝜅 is displayed in Figure 3a-c in a temperature regime between 20 K 

and 300 K. The TTT2I3 p-type conductivity of 𝜎RT = 2.1 ⋅ 105 S m⁄  at RT is among the highest 
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reported for organic solids exceeding values obtained in the organic polymer PEDOT:Tos[5]. With 

𝜎RT = 105 S/m the conductivity of DCNQI2Cu also achieves an extraordinary high value for an n-

type organic conductor. Furthermore, the quantities are measured across the macroscopic distances 

(~mm) necessary for thermoelectric devices to retain a temperature gradient. The strong temperature 

dependence of the resistivity 𝜌 = 𝜌0 + 𝛽𝑇𝛾 , with 𝛾 > 1 , is typical for low-dimensional organic 

metals. The RT Seebeck coefficients 𝑆TTT2I3 = +42 μV K⁄  and 𝑆DCNQI2Cu = −34 μV K⁄  are in 

agreement with values previously reported[24,25]. From the slope of the temperature-dependent 

Seebeck coefficients a large band width of 𝑊TTT2I3 = 632 meV is estimated for TTT2I3 enabling high 

charge carrier mobilities, a key requirement for good thermoelectrics. Another feature of the Seebeck 

coefficient is its non-zero offset when extrapolating the linear fits to zero temperature. This additional 

contribution persists at RT. In addition to the diffusive electronic part 𝑆d being linear in temperature, 

for DCNQI2Cu we also considered a phonon drag contribution in the fit (supplementary information): 

𝑆 = 𝑆d + 𝑆drag = 𝑎 ⋅ 𝑇 +
𝐷

𝑇𝑐
⋅ (

𝜃E

𝑇
)
2 𝑒𝜃E/𝑇

(𝑒𝜃E/𝑇 − 1)2
 (3) 

From the slope 𝑎  the band width was determined as 𝑊DCNQI2Cu = 333 meV . The scattering 

parameter 𝑐 = 1.2 is close to the predicted value of 1 for neat phonon-phonon Umklapp scattering. 

The Einstein temperature of 𝜃E = 85 K, characterizing the average energy of heat-carrying phonon 

modes, agrees with values obtained from a Debye fit of low-temperature specific heat data[26]. The 

tail of the phonon drag extends to anomalously high temperatures accounting for an offset of 

−5 μV/K at RT for DCNQI2Cu. 

The temperature dependence of 𝜅  for both materials is illustrated in Figure 3c. In TTT2I3, it 

qualitatively reflects the electronic thermal conductivity as calculated from the WF law 𝜅el = 𝜎𝐿0𝑇, 

with 𝐿0 =
𝜋2

3
(
𝑘B

e
)
2

 denoting the Lorenz number for ideal metals. The difference between 𝜅 and 𝜅el 

may be attributed to the heat carried by phonons accounting for a rather temperature-independent 

contribution of 𝜅ph ≈ 2.1 W/(m K). Similar values of 1.6 W/(m K) in semiconducting, needle-like 

crystals of functionalized pentacenes have been determined along the stacking direction[27]. The large 
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apparent 𝜅ph may also point to an increased 𝐿 as predicted and experimentally verified for quasi-one-

dimensional Luttinger liquids[10,28]. In DCNQI2Cu however, a weaker temperature-dependence of 𝜅 

than expected from the WF law is observed. In addition, the calculated electronic contribution 

exceeds the experimental data upon approaching the Debye temperature of 𝜃D ≈ 82 K[26] defining the 

lower validity limit of the WF law due to different relaxation times for thermal and electric field 

perturbations of the electronic system. Considering an additional phonon contribution on the order of 

1 W (m K)⁄  the WF law seems to be violated even far above 𝜃D. Hence, other effects emerging from 

the low dimensionality of the materials seem to come into play, the details of which are currently 

investigated. The lattice thermal conductivity should reveal a temperature dependence similar to the 

phonon drag part of the thermopower since both processes are limited by phonon-phonon Umklapp 

scattering above a small fraction of the Debye temperature. At first glance, the drop in thermal 

conductivity below 40 K seems contradictory to the peak in the thermopower. Yet, the data is 

superimposed by the electronic contribution to heat conduction and the decrease is only evidenced 

by one data point. Hence, the drop in 𝜅  at this temperature is disregarded in the subsequent 

conservative estimation of the thermoelectric performance. Boundary scattering may be neglected in 

the investigated temperature regime according to the calculated scattering rate of 𝜏𝑏𝑑
−1 ≤ 108𝑠−1 

being small compared to the phonon relaxation rate of 𝜏𝑏𝑑
−1 ≈ 1011𝑠−1 estimated from the thermal 

conductivity at 40 𝐾 (compare supplementaries). A detailed discrimination of lattice and electronic 

contributions to the thermal conductivity will be provided in a forthcoming paper. 

At RT, the measured electronic properties result in power factors of 387 μW (m K2)⁄  and 

110 μW (m K2)⁄  for TTT2I3 and DCNQI2Cu, respectively. These are similar to those of polymer-

based thermoelectrics[4] but were obtained without additional crystal doping. Even with the rather 

high thermal conductivity of organic single crystals we obtain figures of merit reaching 𝑧𝑇TTT2I3 =

0.03 and 𝑧𝑇DCNQI2Cu = 0.02 which to our knowledge are the highest values consistently determined 

on single organic crystals so far[3]. Taking further control over the charge transfer process, e.g. by 

intentionally alloying of DCNQI2CuxLi1-x
[29]

 or reducing the iodine concentration in TTT2I3
[25], might 
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enable a distinct manipulation of the charge carrier density. This should allow, in principle, for 𝑧𝑇 

values comparable to or even beyond those of polymers and inorganic thermoelectrics. The potential 

of the material class under study becomes obvious when looking at the temperature dependence of 

the power factors as well as at the individual and combined figures of merit in Figure 3d-e. Above 

100 K, the 𝑧𝑇 temperature-dependence of both materials appears flat, enabling a broad temperature 

usability for single-stage devices. For DCNQI2Cu at low temperatures, the high power factor 

emerging from the phonon drag effect in the thermopower together with the anomalous strong 

temperature dependence of the resistivity render a 𝑧𝑇DCNQI2Cu(< 40 𝐾) ≥ 0.15  possible 

outperforming the, to our knowledge, maximum value of 𝑧𝑇 =  0.12 obtained for YbAgCu4 in this 

temperature regime[30]. Therefore, thermoelectric materials based on small molecule radical ion salts 

can be expected to open up new fields of application, in low temperature thermoelectrics.  

As a proof-of-concept, we finally built an organic single-junction thermoelectric generator with 

TTT2I3 as p-type and DCNQI2Cu as n-type conducting materials as illustrated in Figure 4a. The RT 

output characteristics of the generator are depicted in Figure 4b for various temperature differences 

applied. The linear slope relating the open-circuit voltage to the applied temperature difference 

corresponds to the sum of the Seebeck coefficients obtained for DCNQI2Cu and TTT2I3, indicating 

an good retention of the temperature gradient across the crystals (see inset). Using only a single 

junction we reached power outputs of up to 125 nW at Δ𝑇 = 92 K . The efficiency (supplementary 

information) reached values of 𝜂max = 0.017 % and an effective 𝑧𝑇eff  =  0.005, being of the same 

order as the combined 𝑧𝑇comb = 0.026 calculated from the individual crystals in Figure 3e. We 

optimized the overall contact resistance down to values as small as 𝑅cont ≈ 23 Ω which still reduces 

the power output and 𝑧𝑇eff of the generator. Going beyond the scope of this study, contact engineering 

will be essential for efficient organic thermoelectric devices manufactured in future. While the 

absolute efficiency values still require further improvement, it is worth looking at the specific power 

output normalized to the active cross-sectional area of both crystals, as depicted on the right ordinate 

of Figure 4b. This key parameter for cost-per-watt in waste heat recovery[31] reaches values of 
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1 mW/cm2 at Δ𝑇 = 30 K being three orders of magnitude larger than those of thermoelectric devices 

based on polymers[2].  

To sum up, organic thermoelectrics composed of crystalline low-dimensional molecular metals 

present a promising alternative to existing material concepts, especially considering ongoing research 

to take full control over the amount of charge-transfer and band filling[32]. The peculiar phenomena 

observed in this material class such as violation of the WF law, the anomalous temperature-

dependence of the electrical conductivity or phonon drag effects in the thermopower, will furthermore 

unlock new possibilities in low-temperature thermoelectrics. 
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Figure 1: Quasi-1D organic single crystals. (a) Photograph of a macroscopic p-type TTT2I3 single crystal together with its crystal 
structure showing the separated molecular stacks. (b) The same is illustrated for the investigated crystalline n-type organic conductor 
DCNQI2Cu. 
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Figure 2: Self-Heating 3ω-technique. (a) Sample holder utilized to measure all three thermoelectric quantities on the same crystal 
attached to four free-standing copper leads, thermally connected to two independent heating blocks. (b) Measured and simulated 
real and imaginary part of the 3ω-voltage. The thermal conductivity is determined from the amplitude of the real part at zero 
frequency while the peak position in the imaginary part corresponds to 5 (2 𝜋 𝜏)⁄ , 𝜏 = 4.0 𝑠 being the thermal relaxation time of the 
crystal. The cubic current dependence of the total 3ω-voltage, as anticipated by Equation 2, is depicted in the inset for 𝑓 =  0.1 𝐻𝑧. 
Especially at low frequencies, the simulated 3ω-voltage agrees well with the measurement enabling an accurate determination of 𝜅. 
This was derived from the simulated temporal evolution of the temperature profile along the crystal, as depicted for three different 
frequencies in (c). The thermal conductivity and specific heat as determined by fitting the experimental data have been used as 
material properties. The temperature profiles between the contacts at ±𝑙/2 are quasi-parabolic. While the temperature oscillation 
follows the current amplitude for small frequencies, a phase-shift occurs for 𝑓 ≈  5 (2 𝜋 𝜏)⁄ . Moreover, the temperature rise does not 
relax back to zero at vanishing current amplitude anymore. At high frequencies the oscillation amplitude is decreasing, corresponding 
to DC heating of the crystal to a constant temperature offset by the effective power 𝑈𝑅𝑀𝑆 ∙ 𝐼𝑅𝑀𝑆. 
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Figure 3: Thermoelectric properties of TTT2I3 (p-type) and DCNQI2Cu (n-type) crystals. (a) The temperature dependence of the 
electrical resistivity 𝜌 = 𝜌0 + 𝛽𝑇𝛾, with 𝛾 > 1, for both materials is typical for low-dimensional organic metals. (b) Absolute values 
of the Seebeck coefficient 𝑆. The linear fit in the metallic regime of TTT2I3 yields a band width of 632 𝑚𝑒𝑉. In the case of DCNQI2Cu, 
an additional contribution of the phonon drag is considered (Equation 3) resulting in 𝑊𝐷𝐶𝑁𝑄𝐼2𝐶𝑢 = 333 𝑚𝑒𝑉 . (c) Temperature 

dependence of the thermal conductivity 𝜅, determined by means of 3ω-measurements. In addition, the electronic thermal conductivity 
𝜅𝑒𝑙 as calculated by the WF law is shown. The phonon contributions 𝜅𝑝ℎ at RT for TTT2I3 and DCNQI2Cu are roughly estimated to 

2.1 𝑊/(𝑚 𝐾) and 1 𝑊/(𝑚 𝐾), respectively. The quantities 𝜌, 𝑆, 𝜅, all of which were measured on the same respective specimen, 
result in (d) the power factor 𝑆2/𝜌 and (e) the dimensionless figure of merit 𝑧𝑇. 
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Figure 4: Organic thermoelectric generator. (a) Scheme of a prototypical device build-up of n-type DCNQI2Cu and p-type TTT2I3 legs. 
Crystals are electrically contacted with graphite paint. The common contact of the two crystals was heated via a copper wire attached 
to a heating block. The opposite electrical contacts were attached to an alumina block at RT and connected to the measurement 
circuit. At various temperature differences the current-voltage curves were recorded resulting in (b) the power output characteristics. 
Normalized to the overall cross section of both crystals the resulting high power output per area reveals values demonstrating the 
potential of organic thermoelectrics. The inset reveals the open circuit voltage to scale linearly with the temperature difference 
applied. 


