¹ Methane Combustion in MILD Oxyfuel Regime: Influences of Dilu-

² tion Atmosphere in Co-flow Configuration

3

⁴ Sheng Chen ^{*1,2,3}, Hao Liu ¹, Chuguang Zheng ¹

5 1. State Key Laboratory of Coal Combustion, Huazhong University of Science
6 and Technology, Wuhan 430074, China

7 2. Institute for Modelling and Simulation in Fluodynamics, Nanoscience and

8 Industrial Mathematics "Gregorio Millán Barbany", Universidad Carlos III

9 de Madrid, Leganes 28911, Spain

3. Faculty of Engineering, The University of Nottingham, University Park,
 Nottingham NG7 2RD, UK

¹² Corresponding author. Faculty of Engineering, University of Nottingham. E¹³ mail address: shengchen.hust@gmail.com (Sheng Chen)

14

Abstract: MILD (moderate or intense low oxygen dilution) oxyfuel com-15 bustion is a recently proposed clean combustion mode which can remedy 16 the shortcomings of the standard oxyfuel combustion technology. Nowadays 17 most available studies on MILD oxyfuel combustion focus on how to realize 18 this new combustion regime in O_2/CO_2 atmosphere. The open research on 19 methane MILD oxyfuel combustion in O_2/H_2O atmosphere is quite sparse. In 20 the present work, we carry out a comprehensive comparison study on methane 21 MILD oxyfuel combustion in different dilution atmosphere for the first time. 22

The JHC (jet in hot co-flow) burner is adopted as a research prototype. The 23 investigation is based on numerical simulation, so firstly the adopted numer-24 ical approach is validated by some experimental data in open literature. The 25 numerical comparison is conducted by varying the mass fraction of oxygen 26 in the co-flow and the temperature of the hot co-flow, two key parameters 27 affecting fine reaction structures in JHC. Through the present investigation, 28 a number of findings are reported for the first time and some conclusions pre-29 sented in previous publications are checked with analyses, especially on some 30 conflicted claims between the previous publications. In addition, several new 31 questions are raised, which may inspire further research activities in future. 32

³³ Keywords: MILD combustion; Oxyfuel combustion; Methane; CO₂-dilution;
³⁴ H₂O-dilution; oxy-steam

35

36 1 Introduction

MILD oxyfuel combustion [1,2] is a recently emerging term which can be regarded as an organic combination of two promising clean combustion technologies, MILD (moderate or intense low oxygen dilution) combustion and oxyfuel combustion. Originally, some of the present authors proposed this new idea in order to utilize biogas with a higher efficiency [3]. Soon after, it was extended to various fuels [2,4–8]. Through these preliminary studies, it was found that

the MILD combustion regime could be established more easily in oxyfuel con-43 dition [1,3,7] and meanwhile a number of shortcomings of the standard oxyfuel 44 combustion technology could be remedied straightforwardly by the introduc-45 tion of MILD combustion regime [4]. Especially, the experimental efforts [4,7] 46 further demonstrated there was no obvious technical difficulty to establish 47 and to sustain MILD oxyfuel combustion in industrial furnaces. Consequent-48 ly, MILD oxyfuel combustion may become one of the next generation clean 49 combustion technologies for carbon capture which is crucial to the sustainable 50 development of human society [9]. For this purpose, consecutive research on 51 MILD oxyfuel combustion is essential as our knowledge, as well as available 52 open literature, on it is quite limited [1,2]. 53

Originally, the research on MILD oxyfuel combustion focused on how to realize 54 this new combustion regime in O_2/CO_2 atmosphere, namely oxygen in oxidan-55 t flow being diluted by carbon dioxide rather than nitrogen in conventional 56 air-firing mode [2,4–8]. Recently, the present authors discussed the possibility 57 to establish and to sustain MILD oxyfuel combustion in O_2/H_2O atmosphere 58 where oxygen in oxidant flow is diluted by steam rather than carbon dioxide 59 [1]. As shown in Ref.[1], compared with its O_2/CO_2 counterpart, there are 60 at least three advantages to realize MILD oxyfuel combustion in O_2/H_2O at-61 mosphere, such as simpler plant configuration, lower operation cost and high 62 power-generation efficiency. In the oxyfuel combustion research community, 63 the approach to realize oxyfuel combustion in O_2/H_2O atmosphere is named

as steam-moderated oxyfuel combustion or oxy-steam combustion [1,10]. As 65 the chemical and physical properties of steam are quite different from those of 66 CO_2 , inevitably, compared with its O_2/CO_2 counterpart, combustion behavior 67 may be significantly altered in the steam-moderated oxyfuel scenario. Conse-68 quently, comprehensive comparison of combustion characteristics between in 69 O_2/CO_2 and in O_2/H_2O atmosphere is necessary, as it has done between in 70 O_2/CO_2 (standard oxyfuel combustion) and in O_2/N_2 (air-firing mode) con-71 dition [11]. Unfortunately, nowadays the essential studies on this critical topic 72 are extremely sparse. Some of the present authors compared the effects of 73 CO₂- and H₂O-dilution on combustion temperature and reaction kinetics of 74 methane [12]. It was observed that the chemical and thermal effects of CO_2 75 and of H₂O on combustion behavior of methane are quite different and conse-76 quently they will alter combustion temperature and reaction paths of methane 77 in the oxyfuel combustion regime by different ways. Zou et al. investigated 78 steam's effect on temperature distribution in methane oxy-steam combustion 79 [13]. With the aid of numerical simulation, they found out the key elementary 80 reaction step which determined the combustion temperature. In Refs. [14–16], 81 wet recycle of oxy-coal combustion was investigated, not only by numerical 82 simulation but also by experimental approaches. As steam is rich in wet re-83 cycle of oxyfuel combustion, it was observed that high concentration H_2O in 84 recycled flue gas could influence combustion characteristics of pulverized coal 85 significantly [14-16]. However, these studies [12-16] all are limited in the so-86 called "feed-back" combustion regime rather than MILD combustion regime 87

[1], so whether the conclusions made in these studies are tenable in the MILD 88 oxyfuel combustion regime is still an open question. To the best knowledge of 89 the present authors, on comparison study between CO_2 and H_2O on estab-90 lishing and sustaining MILD oxyfuel regime, until now perhaps there are only 91 three open publications [1,16,17]. In Ref. [1], the present authors compared 92 the effects of CO_2 and of H_2O on establishing biogas MILD oxyfuel combus-93 tion with the aid of a counter-flow configuration. It was found that biogas 94 MILD oxy-fuel combustion would be established more easily in O_2/H_2O at-95 mosphere but meanwhile the reaction zone would become more complicated. 96 Sabia et al. discussed propane auto-ignition delay time in MILD combustion 97 regime, where reactants were diluted by CO_2 and H_2O , respectively [16]. In 98 Ref. [16], a cross-flow configuration was adopted. The authors claimed that in 99 the O_2/H_2O option the auto-ignition delay time would be a little shorter than 100 its O_2/CO_2 counterpart. Recently, some of the present authors conducted a 101 numerical investigation about the influence of H₂O addition on MILD oxy-coal 102 combustion [17]. The concentration of H_2O in oxidant flow varied from 0% (s-103 tandard O_2/CO_2 condition) to 70% (oxy-steam atmosphere). It was observed 104 that NO emission could be suppressed and heat transfer would be enhanced 105 in O_2/H_2O atmosphere. As the IFRF (International Flame Research Founda-106 tion) semi-industrial scale co-flow furnace adopted in Ref. [17] is not an ideal 107 MILD oxyfuel combustion research prototype and the extreme complication 108 of coal combustion, Ref. [17] failed to reveal the influence of different types of 109 dilution gases $(H_2O \text{ or } CO_2)$ on fine reaction structures. In our latest work 110

[1], it has been underlined that further research on this topic is necessary as 111 co-flow is more popularly found in practical combustion systems. Especially, 112 through our recent research [12,19], it was observed that the effect of dilution 113 gas on combustion performance in a co-flow configuration may differ from its 114 counter-flow counterpart because flow-reaction interaction, which is exclud-115 ed in a one-dimension model (e.g. a counter-flow configuration), will play an 116 important role in a co-flow configuration. Consequently, in order to deepen 117 our knowledge in this emerging area so to advance its application in energy 118 industry, a systematic comparison between the performance of co-flow MILD 119 oxyfuel combustion in O_2/H_2O condition and that in O_2/CO_2 atmosphere, is 120 essential. 121

In order to bridge the aforementioned gap, in this work we numerically investi-122 gate methane combustion in MILD oxyfuel regime, diluted by carbon dioxide 123 and steam, respectively. The JHC (jet in hot co-flow) burner developed in 124 Ref. [20] is adopted in the present study as the research prototype. Besides the 125 JHC burner proposed by Dally's group[20], there is another popularly used 126 JHC burner developed by the researchers in Delft[21,22]. Within a JHC burn-127 er the influence of surrounding atmosphere on fine reaction structures can 128 be prevented, so it is an ideal benchmark for a comparison study on MILD 129 oxyfuel combustion in various dilution gases. The investigation is based on 130 numerical simulation, so firstly the adopted numerical approach is validated 131 by the experimental data [20]. In the present work, besides the influences of 132

various dilution atmospheres, the effects of temperature of co-flow on MILD
oxyfuel combustion are also investigated as until now no open effort reported on this important issue. Through the present study, a number of findings
are reported for the first time and some conclusions presented in previous
publications are checked with analyses on the differences, especially on some
conflicted claims. In addition, several new questions are raised, which may
inspire future research activities.

140 2 Computational Details

141 2.1 Configuration of the JHC burner and numerical conditions

The configuration of the JHC burner is illustrated by Fig.1 and the detailed 142 description on it please refer to Ref. [20]. As the JHC burner is axisymmetric, 143 in order to reduce numerical simulation cost, the investigated domain can be 144 simplified as a two-dimensional case, as shown by Fig. 2. In the JHC burner, 145 fuel is injected through the central jet pipe whose inner diameter reads 4.25 146 mm. The fuel jet pipe is surrounded by an annulus oxidant co-flow pipe with 147 an inner diameter 77.75 mm. The whole JHC burner is operated inside a wind 148 tunnel filled by environmental gas. The velocity boundary condition is adopt-149 ed for all jet flows and at the downstream exit the pressure outlet boundary 150 condition is assumed. In addition, a zero-shear stress wall boundary condition 151 is employed as the tunnel flow is much wider than the jet flows. Because the 152

JHC burner is originally designed for air MILD combustion research rather 153 than MILD oxyfuel combustion, in the present simulation, we replace air in 154 tunnel flow by steam or carbon dioxide, respectively. Furthermore, the tem-155 perature of tunnel flow is set as 400 K to guarantee H_2O at its steam status 156 in tunnel flow. Finally, to reduce the complication induced by variation of fuel 157 mixture, in the present work it is assumed that the fuel jet flow consists of 158 pure methane, instead of the mixture of methane and hydrogen used in Re-159 f_{1} [20]. Table 1 lists the detailed information of investigated cases covered by 160 the present simulation. In Table 1, **u** and T represent jet flow velocity and 161 temperature, respectively. The mass fraction of reactants is also listed in the 162 Table. As the present study aims at the effects of temperature and oxygen 163 concentration of co-flow on methane MILD oxyfuel combustion in different 164 dilution atmosphere, these two parameters vary over a wider range (the tem-165 perature of the co-flow 1500 \leq T_{cof} \leq 2100 and the oxygen mass fraction 166 in the co-flow $6\% \leq f_{o2} \leq 18\%$). Through a numerical test, it is found that 167 reactants can not be ignited successfully if oxygen mass fraction in the co-flow 168 is lower than 6% or the temperature of the co-flow is less than 1500 K. It is an 169 obvious difference from the air MILD combustion [20] and it may result from 170 two aspects: (1) there is no hydrogen addition in the present fuel flow while 171 hydrogen is more active than methane to establish and to sustain combustion; 172 (2) the specific heat capacity of H_2O , as well as that of CO_2 , is larger than 173 air. 174

The present numerical simulation is conducted with the aid of the commercial 176 CFD software FLUENT (version 6.3) to solve the Reynolds Averaged Navier-177 Stokes (RANS) equations for turbulence [23]. For heat radiation calculation, 178 the discrete ordinate (DO) model is used [23]. In addition, a modified weighted 179 sum of gray gas (WSGG) model is adopted to calculate the gas mixture total 180 emissivity [19]. Finally, the eddy dissipation concept (EDC) model [23] with 181 detailed chemical kinetic mechanisms (GRI-Mech 3.0, excluding the reactions 182 relevant to Nitrogen) [24] is employed for turbulence-reaction interaction and 183 reaction kinetics. In the present numerical research, 46560 cells are employed, 184 as illustrated by Fig.2, which is the same as that used in Ref.[19]. As demon-185 strated by our recent work [19], such grid resolution is fine enough to obtain 186 grid-independent numerical prediction. The detailed information about grid 187 discretization and numerical convergence please refer to our previous work 188 [19]. 189

Because there is no open experimental data on the JHC oxyfuel MILD combustion cases investigated in the present work, we validate the reliability and accuracy of the present numerical approach by the JHC air MILD combustion experiments conducted in Ref.[20]. Fig. 3 illustrates the comparison of temperature and species, along the radial direction, between the present numerical prediction and the experimental measurements of JHC air MILD combustion with 3%, 6%, and 9% oxygen mass fraction in the co-flow at the axial location x = 30 mm [20]. For the measured CO hump in the co-flow stream, it was explained to be the result of cooling and extinction of the secondary flame near the burner outer wall [19,20]. The present prediction agrees well with the experimental data for these three JHC MILD flames, which demonstrates the present numerical approach is adequate for modeling JHC combustion.

202 **3** Results and Discussion

As shown in previous research [2,6,19], for JHC combustion, the temperature of 203 the co-flow (T_{cof}) and the oxygen mass fraction in the co-flow (f_{o2}) are the key 204 parameters that affect fine reaction structures. Therefore, in the present work 205 we compare the MILD oxyfuel combustion characteristics in different dilution 206 atmosphere by adjusting these two parameters, respectively. Firstly we try 207 to reveal the MILD oxyfuel combustion characteristics in different dilution 208 atmosphere with a changeable f_{o2} and a fixed T_{cof} . In succession, T_{cof} varies 209 with a constant f_{o2} . 210

211 3.1 Comparison against various oxygen concentration f_{o2} in co-flow

In order to compare the effects of oxygen mass fraction in the co-flow (f_{o2}) on combustion behavior in different dilution conditions, the cases at $T_{cof} = 1800$ K and $6\% \leq f_{o2} \leq 18\%$ are chosen as the representatives in this section.

Figure 4 illustrates the temperature distribution in O_2/H_2O or O_2/CO_2 atmo-215 sphere, respectively. According to this figure, it can be observed that there are 216 two common features between H_2O - and CO_2 -dilution condition: (1) the max-217 imum temperature of the reactants will increase when more oxygen is added 218 into the co-flow; (2) the zone with high temperature will expand towards the 219 exit as f_{o2} increases. These phenomena are expected as combustion will be 220 enhanced with more oxygen. Meanwhile, the differences between them are al-221 so obvious: (1) their maximum temperatures are not identical; and (2) their 222 temperature profiles are quite different. The details are discussed below. 223

Figure 5 plots the maximum temperature (T_{max}) and temperature rise (ΔT) of 224 the reactants in O_2/H_2O or O_2/CO_2 condition, respectively. In both dilution 225 atmosphere, T_{max} , as well as ΔT , is almost a linear increasing function of 226 f_{o2} . As shown by Fig. 5(b), the temperature rise of the reactants is lower 227 than the ignition temperature of methane and the temperature of co-flow is 228 above the ignition temperature of methane, so the reactants react in the MILD 229 oxyfuel regime [1,25]. The peak temperature in O_2/CO_2 condition is always 230 higher than its steam counterpart. In addition, the increasing rate of T_{max} 231 in O_2/CO_2 condition is faster, so the gap between T_{max} in different dilution 232 atmosphere becomes wider with f_{o2} growing up. It mainly results from that 233 the mass specific heat capacity of H_2O is larger than CO_2 . Furthermore, the 234 dilution gas may alter reaction paths by different ways, especially in relation 235 to dissociation reactions, which also will influence heat release in combustion, 236

as discussed in our previous studies [1,12,19]. As shown in our latest work[1],
the exothermic reaction chain of methane will be suppressed in oxy-steam
atmosphere, depending on local temperature.

It has been reported that compared with its air-firing counterpart, in MILD 240 oxyfuel combustion oxidization of fuels will take place within a larger area 241 [2,6]. As shown in Refs. [2,6], in O_2/CO_2 condition, the zone with intensive 242 heat release will expand toward the exit of JHC. In our simulation, this phe-243 nomenon is observed, too. According to Fig. 4, it can be observed that the 244 zone with high temperature will expand towards the exit in both O_2/CO_2 245 and O_2/H_2O condition. Especially, we find that in O_2/CO_2 atmosphere the 246 zone will expand more quickly. However, in its steam dilution counterpart, 247 the zone with high temperature will expand obviously not only axially but 248 also radially. In other words, in oxy-steam condition, most heat is released in 249 the area closer to the fuel jet nozzle. It is another discovery reported by the 250 present work for the first time. In all available open literature on MILD oxyfu-251 el combustion [1,2,4–8,16,17], few pay attention to compare reaction structure 252 alteration between in CO₂- and in H₂O-dilution condition until the present 253 work. This new finding is very crucial for burner and chamber design as they 254 both depend closely on temperature distribution. It is clearer with the aid of 255 the distribution of hydroxyl radial (OH), as depicted by Fig. 6. Usually in the 256 MILD combustion research community OH is used as a kind of marker for 257 "flame" front region as MILD combustion is flameless [26]. As illustrated by 258

Fig. 6, in both dilution atmosphere the OH contours will expand with more 259 oxygen being added, but their shape are completely different. The shape of 260 OH contours in O_2/CO_2 condition looks like dragonflies' wings (namely long 261 and slender), which is similar with its air MILD combustion counterpart [27]. 262 However, the shape of OH contours in O_2/H_2O atmosphere looks like but-263 terflies' wings (namely relative wider but shorter), quite different from its air 264 MILD combustion [27] and CO_2 -dilution counterpart [6]. In the "feedback" 265 oxy-steam combustion [14–16], whether there exists a similar feature is still 266 an open question and we will try to answer it in our future work. As in the 267 oxy-steam condition the "flame" front is closer to the fuel jet nozzle, it is eas-268 ier to establish the MILD oxyfuel regime in H_2O -dilution atmosphere. This 269 conclusion agrees with that drawn from its counterflow counterpart [1]. Figure 270 7 plots the maximum of OH concentration at various f_{o2} . In both dilution at-271 mosphere, the maximum of OH concentration will ascend nearly linearly with 272 f_{o2} . It is in the expectation that the maximum of OH in O_2/H_2O condition 273 is larger than its O_2/CO_2 counterpart since the production of OH will be en-274 hanced by H_2O addition, as explained in detail in our previous work [12]. In 275 Ref. [12], a counter-flow combustion prototype was adopted and the research 276 objective is "feed-back" oxyfuel combustion. The present work demonstrates 277 that the conclusion for "feed-back" oxyfuel combustion can be extended to 278 MILD oxyfuel combustion. With relative lower OH concentration, as well as 279 dragonfly-wing-like OH distribution, in O_2/CO_2 condition it is easier to sus-280 tain the MILD oxyfuel combustion regime across the whole domain, which is 281

 $_{282}$ consistent with the conclusion claimed in Ref.[1].

Figure 8 illustrates CO distribution at various f_{o2} . In Ref.[6], Mei et al. dis-283 cussed the dimension of CH_4 JHC flame in O_2/CO_2 condition and they sug-284 gested to use the contour of CO mass fraction $f_{co} = 0.01$ as an indicator to 285 visualize "flame" size. In this work we follow their suggestion. Through Fig. 6, 286 one can observe the "flame" size in oxy-steam condition will grow dramatical-287 ly with more oxygen addition. However, in its O_2/CO_2 counterpart, the size 288 of "flame" will nearly not change with f_{o2} . In Ref.[6], Mei et al. claimed that 289 "flame" size would decreased against f_{o2} in O_2/CO_2 co-flow. Our observation 290 is different from their claim but similar with that reported in Ref. [5] in which 291 oxyfuel combustion in the IFRF semi-industrial scale furnace was investigat-292 ed. The difference between the present work and Ref.[6] results from that Mei 293 et al. adopted a modified JHC configuration in their research. In Ref. [6], the 294 cold tunnel flow in original JHC burner scheme was removed and replaced 295 by hot co-flow. Consequently, the diameter of the hot co-flow jet in Ref.[6] is 296 so wide that there is sufficient oxygen for combustion anywhere in the whole 297 investigated domain. Accordingly, the consumption speed of CH_4 is mainly 298 determined by reaction rate. It can be looked as a kinetic-controlled combus-299 tion. However, in the present work, the consumption speed of CH_4 depends 300 not only on reaction rate but also on local available oxygen concentration s-301 ince in the present JHC configuration there is no oxygen in the tunnel flow. In 302 other words, the combustion in the present work is diffusion-kinetic-controlled 303

where chemical kinetics and aerodynamics (turbulent mixing) compete with 304 each other. No doubt, the combustion style investigated in the present work is 305 much closer to real combustion situation than the modified JHC scheme in Re-306 f_{6} . It also can explain why the result obtain in the present study is consistent 307 with that from the semi-industrial scale furnace [5]. Nowadays there appear 308 a number of studies (please see [19] and references therein) in which a mod-309 ified JHC burner like that used in Ref. [6] was adopted as a co-flow research 310 prototype. Through the present work, it is indicated that we should check 311 carefully before extending the conclusions claimed in these studies to realistic 312 co-flow combustion systems. To mimic a realistic MILD oxyfuel combustion 313 system, the present settings may be better. In addition, through Fig. 8 it can 314 be observed that the "flame" size in oxy-steam condition is generally smaller 315 and closer to the fuel jet nozzle, in comparison with its O_2/CO_2 counterpart. 316 This observation is consistent with the above conclusion made from tempera-317 ture and OH distribution. In Ref. [6], it was observed that with more oxygen 318 addition in the O_2/CO_2 co-flow, the peak value of CO concentration within 319 the reaction zone would increase, similar with its air-firing MILD combustion 320 counterpart [20]. A comprehensive explanation on this phenomenon has been 321 presented in Ref. [12]. Through the present work, we find such conclusion is 322 also true in O_2/H_2O condition. In addition, as Ref. [12] focuses on "feed-back" 323 oxyfuel combustion, through the present work it can be proved the above phe-324 nomenon is a common feature in oxyfuel combustion, regardless of dilution 325 gases. In Ref.[2], it was reported that CO concentration would decrease slight-326

ly against f_{o2} . At first glance it seems that this conclusion is opposed to that 327 in Refs. [6,20] and the present study. In fact, the conclusion in Ref. [2] was 328 tenable within the mix layer (namely the network reactor illustrated by Fig. 329 11 in Ref. [2] rather than the whole domain of JHC [6,20]. As shown by Fig. 9, 330 the CO maximum in both dilution atmosphere will grow almost linearly with 331 f_{o2} . Whatever f_{o2} is, the CO maximum in O_2/CO_2 is always bigger than that 332 in its oxy-steam counterpart. Especially, their gap will be enlarged with f_{o2} 333 increasing. In our previous work [12], it was observed a similar phenomenon in 334 counter-flow "feed-back" oxyfuel combustion. Consequently, it is also a com-335 mon feature of oxyfuel combustion. The detailed explanation on how H_2O 336 addition will suppress CO generation please refer to Ref. [12]. Figures 10-11 337 plot the CO profiles at different axial positions x = 90 and x = 120 mm. The 338 profiles in both O_2/CO_2 and O_2/H_2O condition are similar with their air-firing 339 counterpart: the gradient of CO concentration along radial direction becomes 340 sharp with more oxygen addition [6,20]. Furthermore, it can be observed in 341 O_2/H_2O condition the gradient of CO concentration along radial direction is 342 more gentle than its O_2/CO_2 counterpart. This observation implies that in 343 oxy-steam co-flow condition the MILD combustion regime can be established 344 more easily, agreeing with the conclusion from the counter-flow configuration 345 [1]. Moreover, in our previous study [28], it was found that the co-flow methane 346 MILD combustion would be influenced significantly by the shape of furnace 347 chamber. According to Figs.8, 10 and 11, one may conclude MILD combustion 348 in oxy-steam condition is more flexible as the size of reaction zone in O_2/H_2O 349

condition is smaller (especially at low oxygen concentration) and within the near-field of the fuel jet nozzle. Accordingly it will receive less effect than its O_2/CO_2 counterpart.

Figure 12 depicts the distribution of O_2 with various f_{o2} . One can observe that 353 in the vicinity of the jet, the profiles of O_2 in O_2/H_2O and O_2/CO_2 condition 354 are very similar, however their discrepancies become obvious in the far-field. 355 It is more clear with the aid of Fig.13, where the profiles of O_2 at x = 30 mm356 (near-field) and x = 90 mm (far-field) are illustrated. In the near-field, the 357 profiles of O_2 in both dilution atmosphere nearly overlap with each other. It 358 agrees with the observation in Ref.[2] where only O_2/CO_2 condition was con-359 sidered. In the far-field, O_2 concentration in O_2/H_2O condition is always lower 360 than its O_2/CO_2 counterpart, which is consistent with Fig.10 and indicates 361 oxidants are consumed faster in oxy-steam condition. 362

In Ref. [2], it was reported that in the near field (x = 30 mm), the differences 363 between the profiles of CO, O_2 and OH in O_2/N_2 atmosphere and those in 364 O_2/CO_2 condition are very small. However, through the present work, it is 365 observed that except O_2 , there are obvious differences in most scalar distri-366 butions between in O_2/H_2O and in O_2/CO_2 condition, even in the near field. 367 Consequently, one should pay great attention on burner design for oxy-steam 368 combustion due to its complicated reaction structures. This conclusion is con-369 sistent with that in Ref.[1]. 370

The distribution of formyl (HCO) is shown by Fig.14. In the near-field of the 371 fuel jet nozzle, HCO concentration will increase with more oxygen addition in 372 both dilution atmosphere. In Ref. [6] it was reported in O_2/CO_2 condition the 373 peak value of HCO would grow up with f_{o2} . The present results are consistent 374 with it and prove this conclusion also can hold water in its oxy-steam counter-375 part. As HCO is an indicator for heat release during combustion [2,26], it can 376 be concluded that heat release will be enhanced by increasing f_{o2} . Moreover, 377 HCO concentration in O_2/CO_2 condition is always higher than its O_2/H_2O 378 counterpart, as illustrated by Figs.14 and 16 (a), so in O_2/CO_2 condition 379 heat release intensity is higher than in oxy-steam atmosphere, which is con-380 sistent with Fig. 4. It can answer why MILD oxyfuel combustion is easier 381 to be sustained in O_2/CO_2 condition. In our previous work [12], it was also 382 observed that HCO concentration in O_2/H_2O condition was lower than its 383 O_2/CO_2 counterpart, which resulted from that H_2O addition would modify 384 the chemical equilibrium of the reaction step R46. Through the present work, 385 it can be proved the analysis in Ref. [12] where counter-flow prototype adopted 386 still works well for JHC configuration. And it is a common feature between 387 "feed-back" oxyfuel combustion and MILD oxyfuel combustion. 388

Figure 15 plots the distribution of formaldehyde (CH₂O) which can serve as an indicator for ignition [2,26]. Since CH₂O predominantly exists in low temperature condition, therefore the concentration of CH₂O will decrease against f_{o2} increasing [6,26]. The present results agree with the conclusion in [6,26].

As shown by Fig.4, a higher f_{o2} implies a higher combustion temperature. Be-393 cause H_2O addition will suppress CH_2O generation [12], in oxy-steam atmo-394 sphere CH_2O concentration in the near-field is a slightly lower than its O_2/CO_2 395 counterpart. In O_2/CO_2 condition, the profiles of CH_2O alter sensitively to 396 the variation of f_{o2} , while in O_2/H_2O atmosphere the change is relatively 397 smaller. It implies the establishment of MILD combustion in O_2/H_2O condi-398 tion receives less influence by oxygen fluctuation. Consequently, it is easier 399 to establish MILD combustion regime in oxy-steam condition. It is consistent 400 with the above analysis and the conclusion in Ref. [1]. Fig. 16 (b) depicts the 401 maximums of CH_2O in both dilution atmosphere. The peak value of CH_2O in 402 CO_2 -dilution atmosphere is always larger than its H_2O -dilution counterpart, 403 which is consistent with its counter-flow "feed-back" counterpart [12]. Togeth-404 er with Fig.5, Fig. 16 (b) indicates that over the whole domain the uniformity 405 of ignition in oxy-steam is better than its CO₂-dilution counterpart. 406

407 3.2 Comparison against various temperature T_{cof} of co-flow

In order to compare the effects of the temperature of the hot co-flow (T_{cof}) on combustion behavior in O₂/H₂O and O₂/CO₂ condition, the cases at $f_{o2} = 9\%$ and $1500K \leq T_{cof} \leq 2100K$ are chosen as the representatives in this section.

Figure 17 illustrates the temperature distribution in O_2/H_2O and O_2/CO_2 condition at various T_{cof} . In CO₂-dilution condition, the maximum temper-

ature of the reactants will climb up with a higher T_{cof} and the zone with 413 high temperature will expand towards the exit as T_{cof} increases. The former 414 phenomenon has been reported in Ref.[6] and the latter one was also ob-415 served in Ref. [2]. Refs. [2,6] just focused on O_2/CO_2 atmosphere. Through the 416 present study, we can confirm these phenomena exist in oxy-steam condition, 417 too. However, the influences of variation of T_{cof} on the temperature field in 418 O_2/H_2O and O_2/CO_2 condition are quite different. The isotherms in these two 419 types of dilution atmosphere differ with each other obviously, especially in the 420 vicinity of the fuel jet nozzle. In addition, the high temperature zone expands 421 more quickly in CO₂-dilution atmosphere. The maximum temperature of the 422 reactants is illustrated by Fig.18. T_{max} is a monotonic increasing function of 423 T_{cof} in both dilution conditions and since $T_{cof} \ge 1600 \text{ K} T_{max}$ grows up almost 424 linearly. T_{max} in O₂/H₂O atmosphere is always smaller than its CO₂-dilution 425 counterpart. As mentioned above, it results from that the mass specific heat 426 capacity of H_2O is larger than CO_2 . However, their gap will decrease against 427 T_{cof} increasing, which implies a higher T_{cof} will improve the uniformity of 428 temperature field of MILD oxyfuel combustion in either dilution atmosphere. 429 This observation agrees with that presented in Ref. 6. Moreover, making a 430 comparison between Figs. 4-5 and Figs. 17-18, one may conclude the influence 431 of variation of f_{o2} on the temperature field is more significant than T_{cof} . 432

⁴³³ The distribution of OH with various T_{cof} is depicted by Fig. 19. It can be ⁴³⁴ observed that the "flame" front region in oxy-steam atmosphere is more sen-

sitive to T_{cof} , in comparison with its O_2/CO_2 counterpart. With a relative 435 low co-flow temperature, such as $T_{cof} = 1500$ K, the "flame" front region 436 in oxy-steam atmosphere is much smaller than its O_2/CO_2 counterpart. The 437 shape of OH contours in H₂O-dilution condition looks like a dragonfly's wing, 438 similar with its CO₂-dilution counterpart although the former is shorter. S-439 ince $T_{cof} \ge 1600$ K, the "flame" front region in oxy-steam condition expands 440 substantially along the radial direction and now the shape of OH contours 441 in H_2O -dilution condition looks like a butterfly's wing, not resembling that 442 in O_2/CO_2 atmosphere any longer. And now the "flame" front region in the 443 former is much larger than the latter. The sensitivity of OH generation to 444 T_{cof} in oxy-steam condition is also reflected by Fig.20. The maximum of OH 445 concentration in O_2/H_2O condition ascends much faster than in O_2/CO_2 at-446 mosphere. In our previous study on MILD oxyfuel counterflow combustion [1], 447 it was found that the reaction structures in steam-dilution condition would be 448 more complex than in O_2/CO_2 atmosphere. The present work demonstrates 449 such conclusion can apply to the co-flow scenario. Fig.20 illustrates the varia-450 tion of maximum of OH concentration at various T_{cof} . The maximum of OH 451 concentration in either dilution atmosphere will grow up with T_{cof} , which is 452 consistent with the result reported in Ref.[6]. As mentioned above, as the peak 453 temperature in O_2/H_2O condition is lower than its O_2/CO_2 counterpart, the 454 maximum of OH concentration in the former is always higher than the latter. 455 The increasing rate of the maximum of OH concentration in oxy-steam atmo-456 sphere is much faster than its CO_2 -dilution counterpart, which also implies 457

the fine reaction structures in O_2/H_2O condition are more sensitive to T_{cof} , 458 in comparison with its O_2/CO_2 counterpart. In our previous work [1], it was 459 claimed that the MILD oxyfuel combustion regime was established more eas-460 ily in oxy-steam condition. Through Figs. 19-20, we find this conclusion may 461 depend on T_{cof} in the present co-flow configuration. Only since $T_{cof} > 1500$ K, 462 in O_2/H_2O condition, the peak value of OH concentration is significantly larg-463 er than its O_2/CO_2 counterpart and the "flame" front region is substantially 464 wider than that in CO_2 -dilution atmosphere. Consequently, in the present in-465 vestigated cases, only since $T_{cof} > 1500$ K, it is sure that the MILD oxy-fuel 466 combustion regime can be established more easily in O_2/H_2O atmosphere. 467

Figure 21 plots the distribution of CO with various T_{cof} . The iso-concentration 468 lines of CO are affected significantly by the variation of T_{cof} , especially in oxy-469 steam condition. If taking the contour of CO mass fraction $f_{co} = 0.01$ as an 470 indicator to visualize the "flame" size, as mentioned above, one can observe 471 that the "flame" size in O_2/H_2O atmosphere changes substantially with T_{cof} . 472 When $T_{cof} = 1500$ K, the "flame" size in H₂O-dilution condition is much s-473 maller than its CO_2 -dilution counterpart. Then the "flame" size in the former 474 atmosphere grows quickly with T_{cof} increasing. While $T_{cof} = 2100$ K, the 475 "flame" size in both dilution conditions is almost the same. On the contrary, 476 although the CO iso-concentration lines in O_2/CO_2 condition will alter obvi-477 ously with T_{cof} , the "flame" size in CO₂-dilution atmosphere grows slightly. 478 The maximum of CO is depicted by Fig. 22. It is clear that the maximum 479

of CO will ascend with a higher T_{cof} , which is consistent with the conclusion 480 given in Ref. [6]. In Ref. [6] only O_2/CO_2 atmosphere was investigated. The 481 present work shows there is a similar trend in oxy-steam condition. However, 482 the increasing rate of the peak value of CO in O_2/H_2O condition is much 483 slower than its O_2/CO_2 counterpart. Taking Figs. 9 and 22 together, one can 484 conclude that a crucial issue to guarantee the performance of MILD oxyfuel 485 combustion in O_2/CO_2 atmosphere is to ensure fuel to burn out in a finite 486 room as the maximum of CO concentration at the outlet of the investigated 487 domain will jump up quickly, exceeding 10%, with the fluctuation of either 488 T_{cof} or f_{o2} . Such high value of CO concentration at the outlet implies an 489 extremely low combustion efficiency. On the contrary, in the oxy-steam con-490 dition, the maximum of CO concentration at the outlet of the investigated 491 domain is always less than 4%, no matter whatever T_{cof} and f_{o2} are. From 492 this viewpoint, burner and chamber design, which can improve aerodynamics 493 in furnace and accordingly improve combustion efficiency, is more critical for 494 operation in CO₂-dilution condition. 495

Figure 23 shows the CO radial profiles at x = 90 mm. In Ref.[29], it was reported that, in air MILD condition, the peak value of CO concentration along the radial direction would grow up with T_{cof} increasing. The present work proves such conclusion can be extended to MILD oxyfuel regime. In addition, a higher T_{cof} will sharpen the gradient of CO concentration in both dilution conditions. A similar observation was reported in Ref.[6] where only

 O_2/CO_2 atmosphere was investigated. Through the present work, it is found 502 the radial gradient of CO concentration in O_2/H_2O is always much smaller 503 than its CO_2 -dilution counterpart, no matter whatever T_{cof} is. The results 504 reveal that the potential performance of MILD oxyfuel combustion in O_2/H_2O 505 condition may be better than its O_2/CO_2 counterpart not only along the axial 506 direction but also along the radial direction of a chamber as in oxy-steam 507 condition most fuel can be burnt out in a relative small zone, in comparison 508 with its CO_2 -dilution counterpart. 509

The O_2 distribution with various T_{cof} is plotted by Fig. 24. Generally, the 510 variation of T_{cof} will alter O₂ distribution significantly in both dilution atmo-511 sphere, especially in the far-field. Against T_{cof} increasing, O₂ concentration 512 near the exit will decrease as a higher T_{cof} will intensify chemical reactions. 513 Near the fuel jet nozzle, the influence of variation of T_{cof} on O_2 distribution is 514 slight, as illustrated by Fig.25. In Ref. [29], it was also found that, in methane-515 air MILD combustion, O_2 distribution in the near-field is insensitive to T_{cof} . 516 Through the present work, one may conclude that it is a common feature of 517 methane MILD JHC combustion, regardless of dilution atmosphere. Taking 518 Figs. 13 and 24 together, it can be observed that for any T_{cof} and f_{o2} , in 519 the far-field the O_2 radial concentration in O_2/H_2O condition is always low-520 er than its O_2/CO_2 counterpart. Such observation demonstrates once again 521 that in oxy-steam condition the "flame" size is smaller than its CO_2 -dilution 522 counterpart. 523

Figure 26 illustrates HCO profiles in O_2/H_2O and O_2/CO_2 atmosphere, re-524 spectively. HCO concentration will increase with a higher T_{cof} in both dilution 525 atmosphere as heat release will be enhanced by a hotter co-flow. A similar phe-526 nomenon was also observed in methane-air MILD combustion [29]. No matter 527 whatever T_{cof} is, HCO concentration in O_2/CO_2 condition is always higher 528 than its O_2/H_2O counterpart, as shown by Fig.27 (a). At a relative low co-529 flow temperature ($T_{cof} = 1500$ K), one can observer HCO concentration in 530 oxy-steam atmosphere is rarefied. According to Fig. 27, it can be observed 531 that in oxy-steam condition the variation of OH concentration versus T_{cof} is 532 "smooth", which also can be reflected by Fig. 26 (a). However, it is not true 533 for its O_2/CO_2 counterpart. As shown by Fig. 26 (b), when $T_{cof} < 1700$, the 534 peak value of HCO at x = 30 mm will increase quickly with T_{cof} , but since 535 $T_{cof} \geq 1700$, the change becomes slow. It agrees with the results depicted 536 by Figs.19 and 21. Through these figures, one can observe that in O_2/CO_2 537 condition the shapes of OH, CO and HCO contours in the near-field change 538 significantly when T_{cof} rises from below 1700 K to above 1700 K. It implies 539 there appears a substantial change of the reaction structure in CO_2 -dilution 540 atmosphere. In other words, the MILD oxyfuel combustion performance in 541 O_2/CO_2 condition is more sensitive to T_{cof} . 542

The radial distribution of CH₂O in the near-field is plotted by Fig.28. In Ref.[29], it was found in the near-field of air MILD combustion the maximum of CH₂O concentration along the radial direction would decrease against T_{cof}

growing up . The present results show this conclusion can be extended to CO_2 -546 dilution MILD oxyfuel combustion. However, it is not true in MILD oxy-steam 547 condition. In O_2/H_2O atmosphere, there will appear two obvious peak values 548 of CH_2O concentration along the radial direction while in Ref. [29] only one was 549 observed. In O_2/CO_2 condition, the second peak of CH_2O distribution along 550 the radial direction is not as obvious as that in its H_2O -dilution counterpart. 551 This phenomenon implies in oxy-steam atmosphere the ignition of reactants 552 will take place over a wider range than in O_2/CO_2 or O_2/N_2 condition. Fur-553 thermore, it also indicates the effect of T_{cof} on ignition is more complicated 554 in H_2O -dilution condition. In addition, in Ref. [29], it was observed that the 555 "sharp angle" of the CH₂O profile at a low T_{cof} (e.g. $T_{cof} = 1500$ K) will be 556 flattened by a high T_{cof} (e.g. $T_{cof} = 1800$ K). Although it was observed firstly 557 in methane-air MILD combustion, the present work reveals that this conclu-558 sion is also tenable in the MILD oxyfuel combustion regime, either diluted by 559 CO_2 or by H_2O . Such phenomenon indicates chemical reaction will become to 560 vary mildly as T_{cof} increasing, which is consistent with the available research 561 on high temperature air combustion [30]. 562

563 4 Conclusion

⁵⁶⁴ In order to deepen our insight into MILD oxyfuel combustion, a recently e-⁵⁶⁵ merging idea for next generation clean combustion technology, in the present work we carry out a comprehensive comparison study on methane MILD oxyfuel combustion in different dilution atmosphere (O_2/H_2O and O_2/CO_2). The JHC burner is adopted as a research prototype. The comparison is conducted by varying the mass fraction of oxygen in the co-flow (f_{o2}) and the temperature of the hot co-flow (T_{cof}), two key parameters affecting fine reaction structures in JHC. The literature survey demonstrates the present work is a pioneering effort in this field.

Through the present study, a number of findings are reported for the first time and it is found the combustion characteristics in various dilution atmosphere are obviously different:

(1) In oxy-steam condition, the CO contours are affected more significantly by the variation of T_{cof} and f_{o2} . But generally speaking, the "flame" size in CO₂-dilution atmosphere is much larger than its O₂/H₂O counterpart. The maximum concentration of CO in O₂/CO₂ atmosphere is about ten times large than its steam-dilution counterpart.

(2) In oxy-steam atmosphere the ignition of reactants will take place over a wider range than its O_2/CO_2 or O_2/N_2 counterpart. Especially, the effect of T_{cof} on ignition is more complicated in H₂O-dilution condition.

 584 (3) In general, it is easier to establish the MILD oxyfuel regime in H₂O-dilution atmosphere and in O₂/CO₂ condition it is easier to sustain the MILD oxyfuel combustion regime across the whole domain. This conclusion agrees with that ⁵⁸⁷ drawn from its counter-flow counterpart investigated in our previous work [1].

⁵⁸⁸ (4) In Ref.[2], it was reported that in the near field of the JHC, the differences ⁵⁸⁹ between the profiles of CO, O_2 and OH in O_2/N_2 and in O_2/CO_2 atmosphere ⁵⁹⁰ are very small. However, through the present work, it is observed that ex-⁵⁹¹ cept O_2 , there are obvious differences in most scalar distributions between in ⁵⁹² O_2/H_2O and in O_2/CO_2 condition, even in the near field. Consequently, one ⁵⁹³ should pay great attention on burner design for MILD oxy-steam combustion ⁵⁹⁴ due to its complicated reaction structures.

Finally, several new questions are raised by the present study. For example, whether the shape of OH contours in "feed-back" oxyfuel combustion diluted by H₂O will change from the dragon-wing-style to butterfly-wing-style? It is an important question as "feed-back" oxyfuel combustion diluted by H₂O already appeared in industrial-scale furnaces [14–16] but until now nobody is aware of this issue. We will try to answer it in our future work since it will influence combustion performance, as shown by the present study.

602 Acknowledgments

This work has received funding from the Universidad Carlos III de Madrid, the European Unions Seventh Framework Programme for research, technological development and demonstration under grant agreement No. 600371, el Ministerio de Economa y Competitividad (COFUND2014-51509), el Ministerio de

- Educacin, cultura y Deporte (CEI-15-17) and Banco Santander. We also acknowledge the support from the British Newton Alumni Fellowship Scheme,
- the National Natural Science Foundation of China (Grant No. 51176061).

610 References

613

[1] Liu Y, Chen S, Yang B, Liu K, Zheng C. First and second thermodynamic-law
 comparison of biogas MILD oxy-fuel combustion moderated by CO₂ or H₂O.

Energy Conversion and Management 2015;106:625-634.

- [2] Mardani A, Ghomshi AF. Numerical study of oxy-fuel MILD (moderate or
 intense low-oxygen dilution combustion) combustion for CH₄-H₂ fuel. Energy
 2016;99:136-151
- ⁶¹⁷ [3] Chen S, Zheng CG. Counterflow diffusion flame of hydrogen-enriched biogas
 ⁶¹⁸ under MILD oxy-fuel condition. International Journal of Hydrogen Energy
 ⁶¹⁹ 2011;36:15403-15413.
- [4] Li P, Dally BB, Mi J, Wang F. MILD oxy-combustion of gaseous fuels in a
 laboratory-scale furnace. Combust Flame 2013;160:933-946.
- ⁶²² [5] Tu Y, Liu H, Chen S, Liu Z, Zhao H, Zheng C. Numerical study of combustion
 ⁶²³ characteristics for pulverized coal under oxy-MILD operation. Fuel Processing
 ⁶²⁴ Technology 2015;135: 80-90
- [6] Mei ZF, Mi JC, Wang F, Zheng CG. Dimensions of CH4-Jet Flame in Hot
 O₂/CO₂ Coflow. Energy Fuels 2012; 26: 3257-3266.

- [7] Zhang J, Mi JC, Li P, Wang F, Dally BB. Moderate or Intense Low-Oxygen
 Dilution Combustion of Methane Diluted by CO₂ and N₂. Energy Fuels 2015;29
 : 4576C4585
- [8] Liu R, An E, Wu K, Liu Z. Numerical simulation of oxy-coal MILD
 combustion with high-velocity oxygen jets. Journal of the Energy Institute
 (2015), http://dx.doi.org/10.1016/j.joei.2015.11.002
- [9] Budzianowski WM. An oxy-fuel mass-recirculating process for H2 production
 with CO₂ capture by autothermal catalytic oxyforming of methane.
 International Journal of Hydrogen Energy 2010;35:7454-7469
- ⁶³⁶ [10] Seepana S, Jayanti S. Steam-moderated oxy-fuel combustion. Energy
 ⁶³⁷ Conversion and Management 2010;51: 1981-1988.
- [11] Toftegaard MB, Brix J, Jensen PA, Glarborg P, Jensen AD. Oxy-fuel
 combustion of solid fuels. Progress in Energy and Combustion Science
 2010;36:581-625
- [12] Wang L, Liu Z, Chen S, Zheng, CG, Li J. Physical and Chemical Effects of CO₂
 and H₂O Additives on Counter flow Diffusion Flame Burning Methane. Energy
 Fuels 2013;27: 7602-7611
- [13] Zou C, Song Y, Li G, Cao S, He Y, Zheng, CG. The Chemical Mechanism
 of Steams Effect on the Temperature in Methane Oxy-Steam Combustion.
 International Journal of Heat and Mass Transfer 2014; 75: 12-18.
- [14] Perrone D. A Study of an oxy-coal combustion with wet recycle using CFD
 modelling. Energy Procedia 2015;82: 900- 907

- [15] Yi B, Zhang L, Huang F, Mao Z, Zheng C. Effect of H₂O on the combustion
 characteristics of pulverized coal in O₂/CO₂ atmosphere. Applied Energy 2014;
 132: 349-357
- [16] Mao Z, Zhang L, Zhu X, Pan C, Yi B, Zheng C. Modeling of an oxy-coal flame
 under a steam-rich atmosphere. Applied Energy 2016;161: 112-123.
- ⁶⁵⁴ [17] Sabia P, Lavadera ML, Giudicianni P, Sorrentino G, Ragucci R, Joannon de
 ⁶⁵⁵ M. CO₂ and H₂O effect on propane auto-ignition delay times under mild
 ⁶⁵⁶ combustion operative conditions. Combustion and Flame 2015;162: 533-543.
- [18] Tu Y, Liu H, Su K, Chen S, Liu Z, Zheng C, Li W. Numerical study of
 H₂O addition effects on pulverized coal oxy-MILD combustion. Fuel Processing
 Technology 2015;138 :252-262
- [19] Tu Y, Su K, Liu H, Chen S, Liu Z, Zheng C. Physical and Chemical Effects
 of CO₂ Addition on CH₄/H₂ Flames on a Jet in Hot Coflow (JHC) Burner.
 Energy Fuels 2016; 30: 1390-1399
- [20] Dally BB, Karpetis AN, Barlow R S. Structure of turbulent non-premixed jet
 flames in a diluted hot coflow. Proceedings of the Combustion Institute 2002;
 29: 1147-1154.
- [21] Oldenhof E, Tummers MJ, van Veen EH, Roekaerts DJEM. Role of entrainment
 in the stabilisation of jet-in-hot-coflow flames. Combustion and Flame
 2011;158:1553-1563
- ⁶⁶⁹ [22] De A, Oldenhof E, Sathiah P, Roekaerts D. Numerical simulation of delft ⁶⁷⁰ jet-in-hot-coflow (djhc) flames using the eddy dissipation concept model

- for turbulence-chemistry interaction. Flow, Turbulence and Combustion
 2011;87:537-567
- ⁶⁷³ [23] Fluent Inc, Fluent 6.3 Users Guide, 2003.
- 674 [24] Smith GP, Golden DM, Frenklach M, Moriarty NW, Eiteneer B, Goldenberg
 675 M. GRI-Mech 3.0, 1999, http://www.me.berkeley.edu/gri_mech/
- [25] Chen S, Mi J, Liu H, Zheng CG. First and second law analysis of hydrogen-air
 counter-flow diffusion combustion in various combustion modes. International
 Journal of Hydrogen Energy 2012;37: 5234-5245
- [26] Medwell PR, Kalt PAM, Dally BB. Simultaneous imaging of OH, formaldehyde,
 and temperature of turbulent nonpremixed jet flames in a heated and diluted
 coflow. Combust Flame 2007;148:48-61.
- [27] Afarin Y, Tabejamaat S. Effect of hydrogen on H_2/CH_4 flame structure of MILD combustion using the LES method. International Journal of Hydrogen Energy 2013;38: 3447-3458
- [28] Tu Y, Liu H, Chen S, Liu Z, Zhao H, Zheng C. Effects of furnace chamber
 shape on the MILD combustion of natural gas. Applied Thermal Engineering
 2015;76:64-75
- [29] Wang F, Mi J, Li P, Zheng C. Diffusion flame of a CH₄/H₂ jet in hot low-oxygen
 coflow. International Journal of Hydrogen Energy 2011;36:9267-9277.
- [30] Weber R, Smart JP, vd Kamp W. On the (MILD) combustion of gaseous,
 liquid, and solid fuels in high temperature preheated air. Proceedings of the
 Combustion Institute 2005;30: 2623-2629

Fig. 1. Configuration of the JHC burner proposed in Ref. [20].

Fig. 2. Schematic configuration and coordinate system of the computational domain.

Fig. 3. comparison of (a) temperature, (b) CO mass fraction, (c) OH mass fraction, (d) O_2 mass fraction profiles between the present numerical prediction (CFD) and the experimental measurements (EXP) for JHC air MILD combustion with 3%, 6%, and 9% oxygen mass fraction in the co-flow at the axial location x = 30 mm [20].

Fig. 4. Temperature distribution in O_2/H_2O or O_2/CO_2 condition at (a) $f_{o2} = 6\%$ (b) $f_{o2} = 12\%$ and (c) $f_{o2} = 18\%$: $T_{cof} = 1800$ K.

Fig. 5. Maximum temperature (a) and temperature rise (b) at various f_{o2} and $T_{cof} = 1800$ K.

Fig. 6. OH distribution in O_2/H_2O or O_2/CO_2 condition at (a) $f_{o2} = 6\%$ (b) $f_{o2} = 12\%$ and (c) $f_{o2} = 18\%$ and $T_{cof} = 1800$ K.

Fig. 7. The maximum of OH concentration at various f_{o2} and $T_{cof} = 1800$ K.

Fig. 8. CO distribution in O_2/H_2O or O_2/CO_2 condition at (a) $f_{o2} = 6\%$ (b) $f_{o2} = 12\%$ and (c) $f_{o2} = 18\%$ and $T_{cof} = 1800$ K.

Fig. 9. The maximum of CO concentration at various f_{o2} and $T_{cof} = 1800$ K.

Fig. 10. CO profile in (a) O_2/H_2O and (b) O_2/CO_2 condition at x = 90 mm and $T_{cof} = 1800$ K.

Fig. 11. CO profile in (a) O_2/H_2O and (b) O_2/CO_2 condition at x = 120 mm and $T_{cof} = 1800$ K.

Fig. 12. O₂ distribution in O₂/H₂O or O₂/CO₂ condition at (a) $f_{o2} = 6\%$ (b) $f_{o2} = 12\%$ and (c) $f_{o2} = 18\%$ and $T_{cof} = 1800$ K.

Fig. 13. O₂ profile at (a) x = 30 mm and (b) x = 90 mm : $f_{o2} = 12\%$ and $T_{cof} = 1800$ K.

Fig. 14. HCO profile in (a) O_2/H_2O and (b) O_2/CO_2 condition at x = 30 mm and $T_{cof} = 1800$ K.

Fig. 15. CH₂O profile in (a) O_2/H_2O and (b) O_2/CO_2 condition at x = 30 mm and $T_{cof} = 1800$ K.

Fig. 16. The maximum of HCO (a) and CH₂O (b) concentration at various f_{o2} and $T_{cof} = 1800$ K.

Fig. 17. Temperature distribution in O_2/H_2O or O_2/CO_2 condition at (a) $T_{cof} = 1500$ K (b) $T_{cof} = 1800$ K and (c) $T_{cof} = 2100$ K: $f_{o2} = 9\%$.

Fig. 18. Maximum temperature at various T_{cof} and $f_{o2} = 9\%$.

Fig. 19. OH distribution in O_2/H_2O or O_2/CO_2 condition at (a) $T_{cof} = 1500$ K (b) $T_{cof} = 1800$ K and (c) $T_{cof} = 2100$ K: $f_{o2} = 9\%$.

Fig. 20. The maximum of OH concentration at various T_{cof} and $f_{o2} = 9\%$.

Fig. 21. CO distribution in O_2/H_2O or O_2/CO_2 condition at (a) $T_{cof} = 1500$ K (b) $T_{cof} = 1800$ K and (c) $T_{cof} = 2100$ K: $f_{o2} = 9\%$.

Fig. 22. The maximum of CO concentration at various T_{cof} and $f_{o2} = 9\%$.

Fig. 23. CO profile in (a) O_2/H_2O and (b) O_2/CO_2 condition at x = 90 mm and $f_{o2} = 9\%$.

Fig. 24. O₂ distribution in O₂/H₂O or O₂/CO₂ condition at (a) $T_{cof} = 1500$ K (b) $T_{cof} = 1800$ K and (c) $T_{cof} = 2100$ K: $f_{o2} = 9\%$.

Fig. 25. O₂ profile at (a) x = 30 mm and (b) x = 90 mm : $f_{o2} = 9\%$ and $T_{cof} = 2100$ K.

Fig. 26. HCO profile in (a) O_2/H_2O and (b) O_2/CO_2 condition at x = 30 mm and $f_{o2} = 9\%$.

Fig. 27. The maximum of HCO concentration at various T_{cof} and $f_{o2} = 9\%$.

Fig. 28. CH₂O profile in (a) O_2/H_2O and (b) O_2/CO_2 condition at x = 30 mm and $f_{o2} = 9\%$.

Computational conditions of the present work.

Table 1

Case	Fuel Flow			Co-flow					Tunnel Flow			
	$\begin{array}{c} \mathbf{u} \\ (m/s) \end{array}$	Т (К)	$\begin{array}{c} \mathrm{CH}_4 \\ (\%) \end{array}$	$\begin{array}{ c } \mathbf{u} \\ (m/s) \end{array}$	Т (К)	$\begin{array}{c} O_2 \\ (\%) \end{array}$	$ \begin{array}{c} H_2O\\ (\%) \end{array} $	$\begin{array}{c} \mathrm{CO}_2 \\ (\%) \end{array}$	\mathbf{u} (m/s)	Т (К)	$ \begin{array}{c} H_2O\\ (\%) \end{array} $	$\begin{array}{c} \mathrm{CO}_2 \\ (\%) \end{array}$
O ₂ /H ₂ O	60	305	100	3.2	$\begin{array}{c}1500\\/\\2100\end{array}$	6 / 18	82 / 94	0	3.2	400	100	0
O_2/CO_2	60	305	100	3.2	$\begin{array}{c}1500\\/\\2100\end{array}$	6 / 18	0	82 / 94	3.2	400	0	100