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Abstract—The increase in penetration of renewable energy sources, 
such as solar or wind, and high peak load demand can cause grid 
network security issues. The incorporation of demand side 
management and energy storage devices can provide a solution to 
these problems. This paper presents a community power flow 
control (PFC) strategy which reduces peak grid demand,  and 
increases self-consumption of renewable energy which produces 
energy cost savings in smart communities with grid-connected 
photovoltaic (PV) systems. The PFC aims to directly control high 
power consumption appliances and the charge/discharge of a 
community battery storage using measurement of the 
instantaneous power demands of the community. Historical data 
records of the community daily energy consumption and the 
available renewable energy are taken into account to manage the 
loads and battery storage. Simulation results show for a community 
of one hundred houses, with 114 kWp of PV arrays, and a 350kWh 
battery system that the percentage of the average peak power 
demand reduction over the year is 32%,whilethePV energy self-
consumption increases by73%. This can produce an annual energy 
cost saving of up to £1100 when compared to the same community 
with only PV. 

Index Terms--Battery energy storage, demand side management, 

peak demand reduction, power flow control, PV system,  

I. INTRODUCTION  

World electricity demand almost doubled from 1990 to 2011 
and seems set to grow further by 81% from 2011 to 2035 (from 
19,004 TWh to 34,454 TWh) [1].In order to respond to this 
growth, an natural gas power plant may be favorable, which 
could result in a rise in electricity price, and greenhouse gas 
emissions. To cope with these issues, sustainable energy sources 
such as solar power, wind power and biomass energy are 
receiving increased attention. In the UK, the government has 
been encouraging households to install PV panels by offering 
Feed-in Tariffs. This has resulted in significant growth of PV 
installations at a domestic level from a cumulative 7MWp in 
2010 to over 2,373 MW in mid of 2016 [2]. However, these 
intermittent renewable energy sources do not always help to 
reduce the peak demand at times of consumption and generation 
mismatch. Furthermore, in some locations, grid problems have 
been observed where a high level of PV generation is injected 
into the distribution system during days with strong solar 
irradiance, and low load demand. This can cause serious issues 
to the distribution system such as high system losses, voltage 
regulation and electricity blackout [4],[5]. The grid 
infrastructure may also need to be upgraded in order to cope with 
these power flows and hence substantial investment could be 

required in certain locations. One solution is to deploy a 
combination of demand side management (DSM) and energy 
storage (ES).The DSM provides the opportunity for load 
shifting from the peak to off-peak periods and also the 
possibility to control the turn on of loads during high PV 
generation. At the same time, the ES stores energy from the 
excess generated by PV or from importing from the grid during 
times of cheap electricity price. This stored energy can then be 
used during periods of high demand [3] thereby reducing the 
peak. 

In order to maximize the benefit of the system, the control 
approach needs to be focused. [6],[7] presented the power flow 
control approach which regulated instantaneous power and 
energy consumption of energy communities ie groups of 
electricity users who worked cooperatively. The advantage of 
working as communities is that this is more likely to allow 
access to a time of use tariff (certainly in the near future) and 
also can benefit from economies of scale for ES and control 
equipment, and also it will increase community self-
consumption. The Power Flow Control approach sets the power 
target set-point based on the predicted average community 
power demand. Then the instantaneous community power is 
compared to the power target to make the decision whether the 
ES should be charged or discharged and the loads should be 
switched on or delayed. However, the problems of the constant 
power flow target are that the energy stored within ES is less 
than the energy required during the peak demand due to high 
demand variation and also there is little benefit in terms of the 
energy cost savings when considering the real-time energy price 
where the energy price varies every half-hour. This paper 
presents a proposed power flow control strategy which uses a 
variable power target which eliminates the weakness found in 
[6],[7]. The major benefits of the incorporation of DSM and 
battery storage systems are to shave the peak power demand and 
to increase renewable self-consumption, resulting in increased 
grid stability and reduced distribution system losses. There are 
two potential energy tariff programs: time-of-use (ToU) and 
real-time price (RTP) which can provide consumers the benefit 
of reducing their energy bill by deploying this system [8]. In this 
work, the RTP based directly on the wholesale market price is 
considered.  

The paper is organized as follows: Section II presents the 
community power flow control (CPFC) strategy. Section III 
discusses the data sources used for the case study including the 
power converter used as an interface and battery system model 



obtained from an experiment. Section IV presents the outputs of 
simulations that illustrate the results of the system operation; 
peak demand reduction, PV self-consumption and energy cost 
savings. Finally, Section V presents conclusions drawn out of 
this work. 

II. COMMUNITY POWER FLOW CONTROL 

The CPFC aims to reduce the peak community demand, 
maximize renewable self-consumption and minimize energy 
bills by controlling DSM based direct load control and the 
battery storage. The controller selects the target power set-point 
based on average power demand for the community (the so-
called Community Power Target (CPT)) and then connects or 
shifts the load and may charge or discharge the battery whenever 
demand is below or above the CPT. In this case, the demand is 
always equal to the average as long as the CPT is close to or 
slightly higher than the actual average demand and the battery 
capacity is large enough. However, in terms of the energy cost 
savings due to the fluctuation of the RTP every half hour, this 
algorithm is not the best. When considering the energy price, the 
CPT must be modified to optimize for both the cost and the peak 
demand. The approach is to increase the CPT to allow the load 
to be switched on or increase stored energy in the battery during 
low price periods and decrease the CPT to avoid the load being 
switched on or discharge the battery to reduce community 
energy demand during the high price periods. However, to 
prevent the battery from charging at too high a power, leading 
to a large low-price peak demand, we use the ratio between the 
RTP and the mean price to determine the level of how much the 
CPT needs to vary around the average power. Furthermore, a 
minimum CPT limit needs to be set in the case of too high a RTP 
to avoid the battery being over discharged, and ensure that there 
will be enough energy for the evening peak. Hence, the CPT can 
be expressed as (1): 
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where ERTP is a real-time price in £/kWh and
RTPE  is the 

mean price per kWh. In addition, Pdm_base is a base demand in 

kW and 
PDdmP _

 is a prediction of the mean demand in kW if all 

the locally-generated renewable energy can be captured and 
used within the community, which can be given as (2): 
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where EC is a prediction of the community energy consumed 
for the next day in kWh and ERES is a prediction of the local 
renewable energy available in kWh over the next 24 hours. The 
weather conditions for the next day can be accessed from 
weather forecasting websites and this can help predict the total 
renewable energy available for the next day. It is assumed that 
as research progresses in this field a sufficiently accurate 
prediction one day ahead will be available in the future, certainly 
for PV systems. The load profile as an hour-by-hour or minute-
by-minute prediction is more difficult to forecast accurately. 
However, the whole day’s energy demand can be estimated 
using energy demand of the equivalent day of the previous week 

and with this approach complicated methods for prediction are 
not required [9],[10]. 

A. Real-Time Control 

As mentioned earlier, the community power flow controller 
operates by comparing the actual instantaneous community 
power (CP) and with the CPT. The summary of the algorithm is 
described below: 

 If the CP is below the CPT then, check if there are 
any appliance requests or any waiting to be 
switched on. If yes, check how many can be 
allowed so that the CP for the next sampling time 
will not go above the CPT. After the decision to 
turn on appliances, a check whether there is enough 
power to charge the battery or not is made. If there 
are no request signals from the appliances, then 
charge the battery at the power equal to the power 
difference between CP and CPT. 

 If the CP is above the CPT then, delay the request 
appliance signal and also discharge the battery 

There are three main controllable appliances considered: 
washing machine, tumble dryer, and dishwasher. The maximum 
time delay for each appliance is set at two hours for consumer 
convenience. At any moment, all appliances are allowed to run 
to complete their full cycle due to the physical nature of the 
equipment. This is unlike some other possible 
equipment/appliances such as fridges, hot water tanks or electric 
space heaters that can be stopped as required. 

III. DATA SOURCES AND MODELING 

A. Residential Community Model 

A simulation of domestic demand was created using a model 
from the Centre for Renewable Energy Systems Technology 
(CREST) created by Richardson and Thompson[9]. This CREST 
tool was used to generate 100 residential power profiles with a 
time resolution of one minute including the on/off switch signals 
for individual appliances for each house. These on/off appliance 
signals were used as a request signal fed into the DSM controller 
for it to decide whether that appliance is allowed to turn on at the 
requested time period. There are three high power appliances: 
washing machine, tumble dryer and dishwasher which are 
considered as controllable loads.   

B. Renewable Energy Sources 

For the PV generation, it is assumed that 30% of consumers 
install a 3.8 kW (peak) PV array for local generation. This 
equates to a PV penetration level as high as 100% of the total 
community peak demand power. The input for the simulation is 
obtained from data recorded at 10-minute intervals made 
publicly available on www.pvoutput.org and the location of the 
PV data is in Nottingham, UK. 

C. Energy Prices 

The economic case for adding a direct load control system 
and battery storage to a smart energy community cannot be 
made using fixed energy price rate where the energy is charged 
per kWh at a constant price. There needs to be a significant price 
differential between peak and off-peak consumption periods to 
help drive value creation for DSM and battery systems in typical 
residential dwellings. There are two types of time variable 



energy price schemes; Time of Use (ToU) and Real-Time Price 
(RTP).  The ToU provides two or three price levels so called 
‘off-peak’, ‘mid-peak’ and ‘peak’ while the RTP is based on 
hourly or half-hourly price differences to reflect the price on the 
wholesale market [12]. The study in [13] concludes that the RTP 
delivers the most benefits in terms of reducing the peak and 
flattening the demand. Therefore, the RTP based directly on the 
wholesale market has been considered in this work. The dataset 
used for the energy price of the RTP, is based on the total UK 
electricity consumption over the year of 2011 and can be found 
from New Electricity Trading Arrangements (NETA) [14]. The 
data shows the energy price per MWh divided into half hour 
blocks and also contains both selling and buying prices which 
can be used to calculate the energy cost when the energy has 
been imported (load demand and charging battery) or exported 
(excess PV generation).  

D. Power Converter Model 

The power converter model in this work is obtained from the 
experiment in the laboratory at the University of Nottingham 
[15]. The available 12kW power converter has been tested 
across a range of operating power and the input and output 
powers have been measured. As a result, the output power 
equation of this converter derived from measured dataset can be 
expressed as (3). 
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where Pout is the output power of the converter and Pin is the 
input power in watts. It can be found from (3) that the efficiency 
( ) of the converter becomes extremely poor as the operating 

power reduces. This would affect the total energy cost saving 
corresponding to the payback of the system when the 
charge/discharge decision process was made. This power 
converter can also be scaled to match with the battery converter 
interface power requirement, which will be used for the 
simulation case study.   

E. Battery Model 

The parameters that determine usage of the battery are the 
instantaneous battery voltage (battery terminal voltage) and 
battery degradation. The battery voltage evolves with the battery 
state of charge and battery degradation is associated with 
capacity fade and resistance rise. These parameters will 
determine the maximum charge- and discharge- power of the 
battery as well as the maximum battery capacity. In order to 
determine the instantaneous battery voltage, a simple battery 
equivalent circuit is considered. Two important battery 
parameters are the battery open-circuit voltage and battery 
internal series resistance which can be derived from the 
experiments of previous work [15].In terms of the battery 
degradation, the battery manufacturer data sheet provides the 
curves of cycle life and calendar life. The degradation of the 
internal resistance information of the battery cell has been 
derived from the SAFT battery pack [16]. 

 

IV. CASE STUDY AND SIMULATION RESULTS 

The proposed PFC is verified through simulations using 
MATLAB software. The case study is based on 100residential 
homes linked as an energy community. It is also assumed that 
there are thirty houses installing 3.8kWp PV array, which make 
up the total PV peak power of 114kW. The community energy 
storage deploys a 50kW 350kWh lithium-ion battery system 
where its power rated and capacity have been  selected based on 
the optimal power and energy usage for the battery each day 
throughout the year. These can be worked out by running the 
CPT and the CP profiles together and considering the 
differential power and energy between CPT and CP, which 
indicates the amount of power and energy required to charge 
(when CPT level is greater than the CP) or discharge (when CPT 
level is lower than the CP) the battery. By applying the 
probability density function method on differential power and 
energy, the most likely operating range of battery power and 
capacity are defined. In terms of the load control consideration, 
each house is assumed to have installed remote control switches 
at all three controllable appliances to give a total of 300 
appliances to be controlled. It is considered that the load shifting 
may be undesirable for a consumer and therefore the consumers 
are allowed to override the control switch if preferred. It is 
assumed that only 20% of all appliances are compliant to the 
DSM controller each day. There are two main conditions 
regarding the load shifting strategy. One is the load can be 
delayed to a maximum period of two hours. The other is if the 
load is delayed after 20.00hrs, that load will be shifted further 
and started from 04.00hrs on the next day. To extend the battery 
life time, the battery state of charge is limited to be between 10% 
and 90%. The simulations compare the algorithms between the 
RTP driven CPT (RTPDCPT) and the CPT based average power 
(CPTBAVP). 

The results of operating the DSM and battery system are 
given in the various plots of Figure 1showing a typical winter 
day. Figure1(a) shows the underlying community power 
demand (red),and the community demand when including  the 
PV generation and DSM without (black) and with (blue) the 
battery. The CPT is shown in green for reference and the PV 
generation is shown in yellow. Figure 1(b) is similar to Figure 
1(a) but shows a system with the CPTBAVP. Figure 1(c) shows 
the RTP in £/kWh. Figure 1(d) shows the battery state of charge. 
Similar graphs for summer will also be presented in Figure 2. 

It can be seen in Figure 1 that in winter, with less PV 
generation, for the RTPDCPT algorithm the battery charges 
more energy than the CPTBAVP overnight. This causes the 
battery with the CPTBAVP to run out too early at 17.00hrs 
resulting in a large amount of peak energy consumption left 
during the evening high price period, whilst the battery with the 
RTPDCPT can be utilized throughout the evening peak period. 
The DSM controller also helps the battery to shift the load as 
seen from the comparison between the black and red lines. 
Between 04.00hrs and 05.00hrs, the demand on black line is 
obviously higher than that on the red. This is due to the 
appliances having been shifted from the previous day evening 
high price periods. Furthermore, between 16.00hrs and 18.00hrs 
when the RTP reaches its peak, the black line runs below the red 
line. This again shows that the DSM is able to shift the load 
away from the peak. In summer, as shown inFigure2, the CPT is 
set low due to expected high PV generation during the daytime 



and therefore the battery charges a small amount of energy 
overnight which can be utilized during the early morning. Then 
the battery starts to charge at a high rate using the excess PV 
energy until it is full (at 90% SOC) when the PV generation 
nearly ends for the day. Both algorithms are able to flatten the 
demand through the whole day. However, the RTPDCPT has an 
advantage by making use of the energy price difference to 
reduce energy cost further. 
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Figure 1Simulation Results in Winter: (a) Community Grid Demand for the 

RTPDCPT control, (b) Community Grid Demand with CPTBAVP control (c) 

Real-time price, and (d) Battery State of Charge. 
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Figure 2Simulation Results in Summer: (a) Community Grid Demand for the 

RTPDCPT control, (b) Community Grid Demand with CPTBAVP control (c) 

Real-time price, and (d) Battery State of Charge. 

 

The overall performance of the algorithm can be quantified 
by assessing how the DSM and battery change energy 
consumption patterns – particularly its ability to move 
consumption from high to low price periods. In order to make it 
simple, four different energy consumption zones have been 
categorized. An expensive zone (high price periods) is identified 
where the energy prices are above 10% of the average price. A 
cheap zone is located where the energy prices are below 10% of 
the average price whilst all other are assumed to be an average 
zone. An export zone is considered to be where the net demand 
is below zero, the excess generated PV energy is exported to the 
grid. Figure 3 shows the total community energy consumption 
over the year for the five scenarios considered. Due to the high 
PV penetration, the grid with PV array (blue) can reduce the 
energy consumption from each zone by approximately 30% 
compared to grid supply only (red). By adding DSM and battery 
(green) for RTPDCPT control the expensive-rate consumption 
is moved to the cheap-rate increasing to around 30% of total 
community demand whilst 10% less for the CPTBAVP control. 
The DSM and battery also considerably reduces the amount of 
PV energy exported, by 73% (i.e. self-consumption is 
significantly increased). 

In order to quantify the benefit of peak power demand 
reduction, Figure 4 shows the average percentage of the peak 
demand reduction over the year. It is obvious that the DSM and 
battery provides a significant peak reduction close to 20% even 
though there is no PV array installed and about 10% more with 
the PV array. 

The energy cost saving based on the actual wholesale market 
prices is shown in Figure 5. It is clear that the RTPDCPT control 
delivers a great energy cost saving by more than double 
compared to the CPTBAVP control. However, the saving is 
incomparable to the capital cost of the DSM and battery system 
because the energy prices are currently still low and also this 
analysis does not include the cost of peak demand charge based 
on the highest peak power demand in kW which is charged by 
the distribution network and transmission network operators.  
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Figure 3Annual Community Energy Consumption at Different Price Zones 
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Figure 4Average Percentage of the Peak Demand Reduction over the Year. 
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Figure 5Energy Cost Saving over the Year. 

V. CONCLUSIONS 

This paper develops a CPFC algorithm to reduce the peak 
energy and power demand, improve energy cost savings and 
increase renewable self-consumption through use of a DSM and 
community battery storage system. The proposed CPFC uses 
historical load (previous week, same day), PV data (previous 
day) and the RTP based directly on the wholesale energy market 
as input variables to determine the DSM control and the battery 
charge/discharge decision through creation of a CPT set point. 
Two algorithms which are RTPDCPT and CPTBAVP are 
compared to prove the proposed RTPDCPT can perform better 
in terms of reducing energy cost and peak demand while being 
more robust to error in predictions. The simulation study reveals 
that with CPTBAVP control the battery often runs out early 
before fully peak-shaving the evening peak period. This could 
be due to an error when predicting the average power demand. 
Since the CPT is based on the average power prediction, if the 
predicted average is below the actual average demand, then the 
battery will charge less and therefore there is not enough energy 
for the high price or peak periods. This scenario could happen 
to both RTPDCPT and CPTBAVP controls however; as the 
RTPDCPT also uses the RTP to vary the CPT from the average 
power. As a result, the battery can have more energy coming in 
during the low price when the CPT is increased. The 
effectiveness of the CPFC indicates that the average peak 
demand over the year can be reduced by 32% with an increase 

in the PV self- consumption by 73% as well as a reduction of 
£1100 energy cost when compared to a similar community with 
PV but without the DSM or battery storage. 
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