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 
Abstract—Time domain electromagnetic simulations employing 

unstructured tetrahedral meshes offer smooth boundary 
approximations and graded meshes for multiscale problems. 
However, multiscale effects may arise not only as a consequence of 
fine geometry, but also from CAD and mesh generation artifacts 
and it is critical that the simulation algorithms can be employed in 
their presence without unduly compromising their computational 
performance. The ability of the Unstructured Transmission Line 
Modeling (UTLM) algorithm to coalesce small computational cells 
into larger entities is a key enabler for the approach. This paper 
demonstrates the use of complexity reduction techniques to both 
notably reduce the preprocessing time required for this and as a 
consequence, substantially extend its capability. 
. 

Index Terms—Transmission Line Modeling. Simulation, 
unstructured meshes. 

I. INTRODUCTION 

Electromagnetic simulations using numerical techniques are 
an established tool for many technological disciplines and, 
notwithstanding the inexorable increase in computational 
power, the demands for assessment of ever larger and more 
complex problems motivates their continued development, [1-
4]. 
 Multiscale problems are particularly challenging and the 
need to mesh down to the scale of the smallest feature can not 
only consume substantial memory, but also more critically for 
time-stepping algorithms, require the use of an impractically 
small value of time step in the simulations, often for reasons of 
algorithmic stability. In practice, multiscale geometries are 
present in many fields of study and here we just highlight 
Electromagnetic Compatibility (EMC) studies in the aerospace 
domain. Complex bundles of thin wires, thin panels of, for 
example, carbon fiber laminates, are routinely found within 
whole aircraft or equipment bays which are significantly larger 
in scale, [5-7]. However, there is a further source of multiscale 
effects which is often overlooked but which can be devastating 
for the ability to perform an electromagnetic simulation; CAD 
and meshing artifices.  
 Large-scale simulations drawing their geometrical inputs 
from CAD data are routinely plagued by inconsistencies such 
as nanoscale gaps, misalignments and overlaps. Often, these 
issues are not problematic for the originator of the CAD data, 
for example, manufacturing engineers, but their repair is a 

 
The authors are with the George Green Institute for Electromagnetics 

Research, The University of Nottingham, Nottingham, UK phone: +44 
1159515567 fax: +44 1159515616; e-mail: phillip.sewell@nottingham.ac.uk. 

substantial time consumer for the EMC modeler. Furthermore, 
once the physically significant inconsistencies have been 
removed, subsequent mesh generation can further contribute to 
the problem. Slightly misaligned features can lead to localized 
refinement of the mesh well beyond that demanded by the need 
to represent the physical phenomena. Fig. 1 shows an example 
of this: The slight misalignment between the core of a feeding 
coaxial probe and the central conductor of a Vivaldi antenna, 
[8, 9], causes exactly this situation. 
 

 
Fig. 1. Illustration of CAD induced multiscale effects. A slight misalignment of 
the feed of a Vivaldi antenna [8, 9] leads to many tiny cells appearing. 
 
 As CAD repair is a labor intensive, and thus expensive, 
activity, there is a strong motivation to equip electromagnetic 
simulation methods with a robust degree of immunity to these 
localized effects. The work presented in this paper considerably 
advances a technique which has been developed for just this 
purpose and is based upon the Unstructured Transmission Line 
Modeling (UTLM) method.  
 TLM methods have been used for a range of physical 
simulations for over 40 years, [2, 3, 10-12] and their core 
distinguishing feature is the mapping of electromagnetic 
problems onto equivalent electrical network problems.  Space 
precludes providing a complete description of this family of 
approaches here, but referring to Fig. 2 we provide a brief 
summary of the UTLM variant. The problem space is 
decomposed into a Delaunay mesh [13] of tetrahedral cells. 
Tetrahedral cells provide smooth boundary models and permit 
significant mesh grading, [10, 14-17]. On the four triangular 
faces of each cell a pair of field samples is established and by 
considering local analytic solutions to Maxwell’s equations 
within the cell, it is possible to derive an admittance operator 
that relates the sampled electric and magnetic field values. This 
admittance operator permits an implementation as an electrical 
network node employing commensurate lengths of 
transmissions line of different characteristic impedances, but 
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with the same transit time, ߜ௧. The latter feature means that a 
time stepping algorithm can be implemented which alternately 
scatters synchronized voltage impulses at the junctions between 
the transmission lines along which they propagate and 
straightforward connection of the transmission lines enforces 
field continuity between adjacent cells. The use of a Delaunay 
mesh not only provides cell geometries with certain quality 
guarantees, but underpins the key feature of diagonalizing the 
cells’ surface admittance operators and maintaining second 
order accurate time and space quantization. Distinctive 
advantages of the TLM approach are first, in contrast to finite 
difference time domain methods, the field samples are co-
located in time and space. Second, compared to finite element 
methods, there is no need to approximate using, for example, 
mass lumping to obtain an explicit time stepping algorithm. 
Finally, and most valuably, stability is provable a priori on a 
cell-by-cell basis without the need to refer to guidelines such as 
the Courant condition. Late time instability has never been 
observed. 

 
Fig. 2. The canonical tetrahedral cell scattering network. (a) Basic cell geometry 
(b) Equivalent network for time stepping (c) Compact circuit representation. 
 
 The value of time step used by the UTLM algorithm is, as 
with all similar algorithms, a fundamental parameter. It is often 
stated that TLM is unconditionally stable, but that the time step  
must be smaller than a particular value. This may appear 
semantically no different than declaring a stability criterion: 
However, the key difference is that as the time step is increased,  
there is a cell-by-cell remedial process, [11], that guarantees 
stability, but accuracy, and eventually physical meaningfulness, 
is the compromised quantity. Typically, a straightforward 
implementation of UTLM as described above needs to use a 
time step comparable to the value prescribed by the Courant 
condition to maintain acceptable accuracy. 
 A breakthrough enabler for UTLM has been the use of 
implicit cell clusters, [11]. Facilitated by the availability of an 
equivalent circuit representation, it has been possible to 
implicitly preprocess clusters of small tetrahedral cells and 
extract larger scattering entities whose algorithmic 
implementation can be expressed in a canonical form which is 
good for computational efficiency. The most significant aspect 

of such cell clustering is that, whilst initially it does not change 
the overall response of the cluster, rather only its 
implementational detail, it does partition the cluster behavior 
into two distinct parts; the physically meaningful and that due 
to the particulars of the mesh detail. The latter behavior, which 
can be regarded as sampling noise, only contributes to the 
dispersion errors of the simulation and although such behavior 
must be present to ensure causality, it is obviously not important 
to respect its detail. As the time step is raised it first affects these 
noise terms and, only after a few orders of magnitude increase, 
do the physically meaningful terms become affected. Typically, 
clusters can be easily identified by specifying a threshold 
length, ܦ௧௛ and adjacent cells separated by less than this amount 
are coalesced into a cluster. To date, clusters of many 10s of 
tetrahedra are routinely formed in our studies and the only limit 
is the time required to pre-process their response, which as shall 
be discussed below, practically means less than 200 tetrahedra. 
The time step is then set by requiring that the behavior of the 
remaining isolated tetrahedra which, by definition of the 
threshold value, are of physically significant size, is not 
affected. As stated above, this often means that a time step 
orders of magnitude larger than the Courant condition value can 
be used. Finally, it is noted that clustering also provides a 
solution to the sliver tetrahedra problem which affects methods 
such as finite elements. Sliver cells are simply joined with their 
well-shaped neighbors to form a cluster.  
 Clustering has been the critical enabler for dealing with 
multiscale effects, both geometrical and due to mesh and CAD 
artifices. Unfortunately, the limit on its usefulness is the 
preprocessing time. Furthermore, it shall be shown below, that 
the time stepping implementation can also benefit from a 
valuable reduction in complexity. The objective of this paper is 
to extend the scale of clustering by significantly reducing its 
computational requirements. 

II. THEORY 

 
Fig. 3. The clustering concept illustrated by a pair of adjacent cells whose 
circumcenters are separated by a small distance Δ. (a) Without clustering, the 
time step is typically required to be 2ܿߜ௧ ൏ Δ (b) With clustering, this time step 
constraint is removed. 
 
Fig. 3a shows the canonical equivalent network associated with 
an adjacent pair of unclustered tetrahedral cells. The 
electromagnetic response of each cell comprises a superposition 
of the behavior of low order electric and magnetic type dipoles 
and multipoles [10]. The link line characteristic impedances, 
specifically the line inductances, have been chosen such that the 
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magnetic dipole behavior is correctly mimicked by the network 
response. The link line joining the two cells is present to provide 
an inductance proportional to the distance between the cell 
circumcenters. As these centers approach each other, the time 
step needs to typically remain below 2ܿߜ௧ ൏ Δ in order that the 
parasitic capacitance associated with the line does not become 
dominant. Fig. 3b shows the essence of the clustering approach: 
replace the link line by an inductive stub and determine an 
overall scatter response for the pair. Note that the network of 
Fig. 3b permits a component of a signal to algorithmically 
transit between the cell centers instantaneously which is 
consistent with the proposition of their close proximity whereas 
that of Fig 3a always incurs a minimum delay time of ߜ௧, thus 
demanding that a small value of ߜ௧ be used.  

The network problem of Fig. 3b can be solved efficiently by 
first considering the compact representation of Fig. 2c 
 

ቀࢂ
0

ቁ = ቆ
݆߱ ௧ࢠ ࢛࡭√

࡭√ࢀ࢛ െ݆߱࡯
ቇ ൬

ࡵ
஼ࢂ

൰                     (1) 

 
with ࡭்࢛ߝ0.5= ࡯ઢሺ1 െ  ,In this work .(See Eqn. 8, [11]) ࢛ෝሻ࢔ෝܖ
matrices are denoted by bold type. The diagonal matrices ࢠ and 
 contain values for the transmission line characteristic ࡭
impedances and the area of each associated cell face which has 
a normal vector nො . Each characteristic impedance is of value 

ܼ௢
୼

௖ఋ೟
 where ܼ ௢ = ඥߤ ⁄ߝ  is the characteristic impedance of the 

material, ߤ and ߝ being the permeability and permittivity.  Δ is 
the distance between adjacent tetrahedral circumcenters. The 
terms u appearing in (1) are the face sampled constant field 
vectors associated with the three electric dipoles modeling the 
quasi-electrostatic behavior of each tetrahedron and their 
orientations are determined by a small eigenvalue equation, 
 .஼ is a vector of amplitudes for the electric dipolesࢂ .[10]

The underpinning technique used to develop the UTLM 
algorithm is to seek eigen-responses of (1) which are defined as 
pairs of vectors ࢂ௞ and ࡵ௞ which are related by a simple scaling 
factor, i.e. ࡵࢠ௞ = ݆߱߬௞ࢂ௞. The physical significance of the 
eigenvalues ߬ is shown in Fig. 4 after introducing the notion of 
incident and reflected voltages on the transmission lines of Fig. 
2b, i.e. ࢂ = ࢏ࢂ ൅ ࡵࢠ and ࢘ࢂ = ࢏ െ  Each eigensolution .࢘ࢂ
provides a set of amplitudes such that, if this set of values were 
incident from the transmission lines onto the cell, it would 
reflect without distortion in shape via a simple reflection 
coefficient  
 

ఛࢂ
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ଵି௝ఠఛ
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~݁ି௝ఠଶఛࢂఛ

௜                        (2) 

 
Besides such solutions, (1) is rank deficient and possesses 
solutions with ࢂ஼=0, I് 0 and with  ߬ = ∞. These physically 
correspond to the quasi-magnetostatic fields and in a similar 
manner to (2) give 
 
ఛୀஶࢂ

௥ = െ݁ି௝ఠఋ೟ࢂఛୀஶ
௜                     (3) 

 
Combining these results yields the algorithm presented in Fig. 
4 which can be expressed as 
 

ඥࢂ࢟௥ = ݁ି௝ఠఋ೟൫െ૚ ൅  ௜         (4)ࢂ࢟൯ඥࢀࡽ௝ఠሺଶఛିఋ೟ሻି݁ࡽ2
 
where ࢟ =  ଵ and Q is a unitary matrix whose columns are theିࢠ
solutions of (1). 
 
ࡽ = ሺ√ࡵࢠఛభ√ࡵࢠఛమ … ሻ                     (5) 
 
The time delays 2߬ െ  ௧ are implemented by using the openߜ
circuited stubs, ݕ௦ shown in Fig. 2b, [11]. 

 
Fig. 4. The generic scattering process. Solutions to (1) with finite values of ߬ 
reflect with just a phase delay, whereas all solutions corresponding to ߬ = ∞ 
reflect with an inversion after one time step. The degrees of freedom, 
subscripted ex and in, have been partitioned into those which connect to the rest 
of the mesh and those which are internal to the cluster respectively. Note that 
the transmission lines shown actually represent multiple lines. 
 
 Clearly the practical viability of (4) as an algorithm depends 
upon whether Q is frequency dependent. Consider the 
frequency independent eigenproblem 
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It is straightforward to show that the eigenvectors of (6) are also 
eigenvectors of (1) and that the eigenvalues are related as 
 

 ߬ =  ఛᇲ

ଵିఠమఛᇲఋ೟
                        (7) 

 
which to second order accuracy are also the same. 
 To extend this technique to cell clusters is straightforward 
with the natural generalization of (1) and (6): Multiple instances 
of (1) are linked by the short stubs shown in Fig. 3b and 
eigensolutions for the whole combination sought in a similar 
manner to that just described. The critical point that permits the 
cluster eigenvectors to remain frequency independent is that 
enforcement of the short circuiting of the inductive stubs in Fig. 
3b is deferred until time stepping. (Otherwise selected elements 
of V in (1) would be 0 and this prevents use of (6) except for 
the particular case that the corresponding elements of z are also 
zero.) 

Whilst the clustering approach is very successful, at this 
point the scaling of its solution with the number of cells in the 
cluster becomes problematic and this is the focus of the 
remainder of this paper. 
 Consider a cell cluster of N cells. There are 3N elements in 
the vector ࢂ஼ and, for large N, 2N elements in the vector I. 
Direct evaluation of eigenproblem (1), which is a generalized 
eigenvalue problem of the form ݔܣ =  may be achieved ,ݔܤߣ
with the QZ algorithm [18]. Iterative approaches are not 
appropriate as we do require all, not just selected, solutions. The 
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solution time for the problem is of the order N3 which is 
untenable for large N. Moreover, (1) is not a well behaved 
problem. There exist solutions with ߬ = ∞, ߬ = 0, and the 
indeterminate ߬ = 0/0 cases where both ݔܣ and ݔܤ are zero. 
Numerically, this severely compromises our ability to extract 
the solutions that are actually needed. Finally, as suggested in 
Fig. 4, the resulting time stepping algorithm actually explicitly 
implements the short circuiting of all inductive stubs each of 
which physically corresponds to a geometrical close proximity 
and it ought to be expected that there is scope to sensibly reduce 
the number of degrees of freedom by seeking a reduced number 
of equivalent stubs that achieve the same net effect. 
 The remainder of this section will address the following three 
issues. (1) Robust solution of (6) for moderate sized N. (2) A 
complexity reduction process that reduces the both the number 
of solutions columns in (5) and also the number of inductive 
stubs required to be present when time stepping. (3) A 
hierarchical combination of the robust eigensolution and 
complexity reduction phases for processing very large clusters. 
  

a. Robust Cluster Eigensolving 
 
In (6), let the number of elements in the vectors I and ࢂ௖ be NI 
and NX respectively. The overall matrix is of size NI+ NX but no 
more than NI solutions with finite ߬  are expected due to the form 
of the left hand side. This can be exploited by scaling through 
to give 
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The singular value decomposition (SVD), [18], 
 

ඥି࡯√࢛࡭√࢟ଵ =  (9)                     ்ࢗࣈ࢖
 
reveals solutions of the form 
 
߬ = ;ଶିߦ ௖ࢂ࡯√  = ࡵࢠ√ ,ࢗ =  (10)            ࢖
 

Unfortunately, there are physically meaningful cases where 
elements of both z and C are zero which causes problems. It is 
commonplace in real meshes for the circumcenters of groups of 
tetrahedra to identically coincide (for example, the 5 or 6 
constituent tetrahedra of a cuboid) and these yield z=0 terms. 
Values of C=0 can arise for extreme sliver cells and also when 
a cell has a coincident circumcenter with all four of its 
neighbors. Examination of the terms of (1) permits the 
following tableau picture of the situation to be presented. The 
symbol * denotes unlabeled non zero blocks and the elements 
0௭ and 0஼  denote the zero values of z and C. 
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Useful observations are that, as indicated, the number of non-
zero elements of z is always greater than the number of non-
zero elements of C due to the origin of the terms in (1). Also, 
the block labeled c is always 0 for similar reasons. (11) can be 
explicitly deflated to remove the awkward 0z and 0C terms. This 
can be achieved by a sequence of Householder reflections or 
more robustly, but less efficiently, using SVD in a similar 
manner, [18]. For example, using Householder reflections, 
denoted by matrices H with corresponding upper triangular 
matrices denoted by R 
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which, noting that ࡵ෨௔ = 0 and ࢂ෩௖௕ = 0, reveals the more 
compact problem 
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amenable to solution via SVD as per (8) to (10) and from which 
all other components of I and ࢂ௖ follow. 
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 The procedure just described has been deployed and has 
proved remarkably robust. However, at its core are a number of 
SVD steps which scale cubically with size. For clusters up to a 
200 cells the run time is tractable, however beyond that it 
becomes unacceptable. 
 

b. Complexity Reduction 
 

Referring to Fig. 4 it is clear that whilst the clustering 
achieves its objective of permitting larger time steps, it does not 
reduce the computational complexity associated with a large 
cluster. It has been argued that many very large clusters follow 
the pattern of Fig. 1, tiny cells embedded within increasing size 
cells with the largest cells often forming the outside surface of 
the cluster. For example, one can conceive of a single large 
tetrahedron which is of suitable size for a particular physical 
scenario and with just 8 field samples present on its outer 
surface that has been subdivided internally to contain a very 
large number of smaller cells. The clustering approach still 
requires a computational overhead at run time consistent with 
the number of all the smaller cells, even though the outer cell 
only presents 8 degrees of freedom. All the many degrees of 
freedom associated with the tiny cells are essentially filtered 
down to 8 quantities and only serve to contribute subtle 
variations in the time response of the cell as the seen by the rest 
of the problem. 

The purpose of this section is to minimize the number of 
degrees of freedom a cell cluster must explicitly contain whilst 
maintaining physical integrity. To this end, it is helpful to 
distinguish the voltages and currents present in the evaluation 
of a cluster response (e.g. in (1) and (6)) which are on the outer 
surface of the cluster and hence in contact with the external 
world, Vex and Iex, and those which are internal, Vin and Iin. 

From (1) and (4-6), it is possible to write 
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Equation (17) embodies an impedance matrix of order Nex+Nin, 
where Nex and Nin are the number of terms in Vex and Vin 
respectively. The desire is to collapse this to one of order Nex 
without compromising the physical significance. 
 It is to be noted that the form and size of (17) is due to the 
fact that the short circuiting of the inductive stubs shown in Fig. 
4 is implemented during time stepping. It is recalled that if this 
were not the case, the response times ߬ and, more 
problematically, the matrices Q used in (4) would be frequency 
dependent. Thus the demand for frequency independent Q is 
being bought at some significant cost in terms of problem size. 
However, in a similar vein to the introductory discussion on the 
clustering approach, it is pragmatic to suggest distinguishing 
between strong frequency dependencies attributable to physical 
phenomena and weak frequency dependencies that only affect 
the sampling noise and precise dispersion characteristics. 
Moreover, in the context of cell clustering for multiscale 
purposes, even though a cluster may contain many thousands of 
cells, its volume may still be relatively small and therefore this 

should permit exclusion of certain frequency dependencies by 
asymptotic arguments. As with the clustering approach so far, 
the key is to manipulate the algorithm into a form which 
facilitates this operation. 
 Referring to Fig. 4, it is known that the short-circuiting of the 
stubs during time stepping results in a behavior equivalent to 
setting 
 
௅ࢂ =  െ݆߱ߜ௧ࡵࢠ௅                        (18) 
 
(currents are positively oriented into the cluster) and similarly 
accounting for the inductance on the external link lines, 
combining (18) with (17) after an SVD of block D gives 
 

݆߱ ቀࢂ௘௫
૙

ቁ = ࢠ√ ൬
࡭ െ ૚߱ଶߜ௧ ்࡮

࡮ ࣌ሺࢗ െ ૚߱ଶߜ௧ሻ்ࢗ൰ ࢠ√ ൬
௘௫ࡵ
௜௡ࡵ

൰ 

   
்ࢗ࣌ࢗ =  (19)   ࡰ

and hence 
 
௘௫ࢂ݆߱ = ௧ߜെ૚߱ଶ࡭ሺࢠ√ െ ࣌ሺ்ࢗ࡮ െ ૚߱ଶߜ௧ሻିଵ࡮்ࢗሻ√ࡵࢠ௘௫  

(20) 
 

 
Fig. 5. The generalized Foster form for the cluster behavior, (22).   
 
As discussed above, (20) has a reduced dimensionality, but 
frequency dependent, representation. A further manipulation 
yields 
 

௘௫ࢂ = ࢠ√ ቆ
࡮೅ࢗషభ࣌ࢗ೅࡮ି࡭

௝ఠ
൅ ݆߱ሺ૚ߜ௧ ൅ ሻቇ࡮்ࢗડ்ࢗ࡮    ௘௫ࡵࢠ√

 

ડ௜௝ = ௜௝ߜ
ఋ೟/ఙ೔

మ

ଵି
ഘమഃ೟

഑೔

    (21) 

 
This presents the impedance as a generalized Foster form [19] 
as can be clarified by a further SVD step 
  

௘௫ࢂ = ቆ
ܶ࢖઩࢖

௝ఠ
൅ ݆߱൫ߜ௧ࢠ ൅ ൯ቇࢠ√࡮்ࢗડ்ࢗ࡮ࢠ√               ௘௫ࡵ

ࢠ√ ቀ࡭ െ ቁ࡮ܶࢗെ1࣌ࢗܶ࡮ ࢠ√ =  (22)        ܶ࢖઩࢖

 
which corresponds to the circuit shown in Fig. 5. It is noted that 

the matrix√ࢠ ቀ࡭ െ ቁ࡮ܶࢗെ1࣌ࢗܶ࡮  is that which would arise if ࢠ√

all the stub impedances in, for example, (1) were zero which 
gives a basis for asserting that it is positive semi-definite. 

௤′ࢂ = ඥ ଴ܻ√ࢂ்ࢗ࡮ࢠ௤ 
௤ࡵ = ඥ ଴ܻࡵࢠ√࡮்ࢗ௘௫ 

௤ࢂ = ඥܼ଴࡮்ࢗඥࢂ࢟′௤ 
௘௫ࡵ = ඥܼ଴ඥࡵ்ࢗ࡮࢟௤ 

௘ܰ௫ ൒ ௜ܰ௡  

 
௘ܰ௫ ൑ ௜ܰ௡  

 ௘௫ࡵ

௣ܥ ௣ࢂ = ௒೚

ஃ೛
  

௤ܮ =
ܼ଴ߜ௧

௤ߪ
ଶ  

 
௤ܥ = ଴ܻߪ௤ 

 ௣′ࢂ ௘௫ࢂ

 ௤ࡵ ௤ࢂ

ܮ =  ௧ߜࢠ

௣′ࢂ =  ௣ࢂ࢖

௣ࡵ =  ௘௫ࡵ்࢖

 

 ௤′ࢂ
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At this point, the separation of the strong and weak frequency 
dependencies can be made on physical grounds. Each of the 
parallel LC circuits exhibits a resonance which precludes 
further simplification. However, in most cases the whole cluster 
does not encompass sufficient geometry for any of these to be 
physically relevant and indeed the LC circuits are well 
approximated by just a simple inductance over the full useful 
frequency range of the method. Hence 
 
௘௫ࢂ  = ቀ࢖ ઩

݆߱
ܶ࢖ ൅ ݆߱ሺߜ௧ࢠ ൅ ડሺ்߱ࢗ࡮ࢠ√ = 0ሻࢠ√࡮்ࢗሻቁ    ௘௫ࡵ

(23) 
and one final SVD yields 
 

௘௫ࢂ = ቀ݆߱ߜ௧ࢠ࢘෤்࢘ ൅ ࢖ ઩

௝ఠ
ቁ்࢖             ௘௫ࡵ

 
ࢠ௧ߜ ൅ ડሺ்߱ࢗ࡮ࢠ√ = 0ሻࢠ√࡮்ࢗ =  (24)    ܶ࢘෥ࢠ࢘ݐߜ

 
It is commented that in the event that a number of the 
resonances do have a physical significance, there is no reason 
why selected LC circuits cannot be implemented in their 
complete form. This model represents the physical expectation 
that the quasi-electrostatic behavior of the cluster maps to a 
capacitive network with an inductive correction which 
increases as the volume of space the cluster encompasses 
increases.  
 (24) can now be compared to (1) by expressing it as 
 

ቀࢂ௘௫
0

ቁ = ൬
݆߱ ௧ࢠ࢘෤்࢘ ࢖

்࢖ െ݆߱઩ିଵ൰ ൬
௘௫ࡵ
௖ࢂ

൰                  (25) 

 
with a view to processing it, via the eigensolutions, ࡵࢠ௘௫ =
௘௫ࢂ݆߬߱ ,  to obtain a canonical implementation of the form 
shown in Fig. 4. However, this cannot be done immediately due 
the fact that the term ࢠ࢘෤்࢘ , which physically corresponds to the 
link line impedances, is not a diagonal matrix. One might 
consider seeking solutions of the generalized eigenproblem 
defined by the matrix pair ࢠ࢘෤்࢘  and ࢖઩்࢖ , however, it is 
straightforward to show that this yields solutions such that 
matrix Q in (5) is no longer unitary and hence the algorithm of 
(4) would be unstable. 

To proceed requires making a second order accurate 
approximation. Recall that there are two types of solutions to 
(25), those which lie entirely within the null space of p, 
corresponding to the quasi-magnetostatic case, and those which 
overlap the range of p corresponding to the quasi-electrostatic 
case. The latter are sought using a diagonal approximation to 
்࢘෤ࢠ࢘ →  ො , i.e. fromࢠ 

 

݆߱߬ ቀࢂ௘௫
0

ቁ = ݆߱߬
࢖ ොࢠ௧ߜ݆߱

்࢖ െ݆߱઩ିଵ൰ ൬
௘௫ࡵ
௖ࢂ

൰ = ൬
௘௫ࡵ
௖ࢂ

൰    (26) 

 
Note that the values contained in ࢠො now become the link line 
impedances of the transmission lines connecting the cluster 
with the rest of the problem, i.e., these link lines contribute a 
part of the net inductance seen looking into the whole cell 
cluster but are no longer associated with particular geometrical 
distances. 

Denoting the solutions to (26) by ࡵ௘௫
௘

ఛ, the quasi-
magnetostatic solutions are defined to be orthogonal to this set 
and satisfy (24), hence 
 
௘௫ࢂ

௤௠ = ௧ሺ૚ߜ݆߱ െ ௘ࡽࢋࡽ
்ሻࢠ࢘෤்࢘ሺ૚ െ ௘ࡽࢋࡽ

்ሻࡵ௘௫
௠ ௘௫ࡵ ߞ݆߱ =

௠  
 

ࢋࡽ   = ቀ√ࢠොࡵ௘௫
௘

ఛభ
௘௫ࡵොࢠ√

௘
ఛమ

… ቁ      ࢓ࡽ   = ሺ√ࢠොࡵ௘௫
௠

఍భ
௘௫ࡵොࢠ√

௠
఍మ

… ሻ     (27) 

 
The eigenvalue ߞ physically corresponds to the total value of 
inductance that each particular quasi-magnetostatic solution 
sees when incident on the cluster. This is partly provided by the 
link line impedances ࢠො and the remainder is now provided by a 
short circuit stub. Referring to Fig. 4, this leads to an algorithm 
of the same form as originally developed for the cluster, except 
that each inductive stub no longer represents a particular 
geometrical feature and they are fewer in number. As before, 
the enforcement of the short circuiting of the inductive stubs 
will be deferred to time stepping and Fig.6 summarizes the 
practical algorithm. 

 
Fig. 6. The complexity reduced scattering process.  
 
 The diagonal approximation ࢠො may be selected in a number 
of ways, for example, ࢠො = ො௜௜ࢠ or ࢠ = ்࢘෤ࢠ࢘ 

௜௜. However, the 
particular choice will only affect the precise nature of the 
second order dispersion error and there are a number of 
consequences to consider. If ࢠො =  are ߞ then all the values of ,ࢠ
greater than 1, but for other choices some drop below 1 which 
leads to instability. However, the smaller values of ߞ correspond 
to high order spatial fields and in the context of cell clustering, 
may again be regarded as modeling mesh noise and thus may 
be legitimately approximated by setting  ߞ = 1 which also has 
the added attraction of removing a number of stubs from the 
algorithm. Indeed, as explained in the introduction, the 
clustering approach already adopts the same approach towards 
the high order spatial quasi-electrostatic solutions 
corresponding to small values of ߬, by setting  ߬ =  .௧ߜ

In summary, the manipulation of this section, coupled with 
the physically grounded approximation of resonance 
phenomena that are only relevant at frequencies where 
dispersion noise dominates, has reduced the number of degrees 
of freedom from Nex+Nin to of the order Nex. In fact, this gain 

Stub short circuit enforced as part of the connection process  
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proves even more useful in the context of hierarchical clustering 
discussed in the next section. 
           

c. Hierarchical Clustering 
 

The foregoing analysis and the hitherto deployed scheme 
described in section (a) make significant use of SVD which 
scales cubically with matrix size. The purpose of this section is 
to propose the construction of the responses of large cell 
clusters using a subdivision approach. It is straightforward to 
modify (1) or (25) to permit this: In place of the dipole related 
terms in (1), √࢛࡭ and ࡯, will appear the quantities Q and ߬ in 
the manner of (5) and (6) of the smaller constituent clusters that 
have already been processed. The previous section has reduced 
the degrees of freedom of the constituent sub-clusters to the 
number of exterior sample points, removing all their internal 
detail which is a substantial gain.  

III. RESULTS 

 

 
Fig. 7. The meshed Vivaldi antenna, the full details of which are given in [8, 9]. 
(a) Showing the antenna embedded within the air, (b) with the air removed. (c) 
The large cluster of 695 cells which forms at the misalignment shown in Fig. 1. 
 

The first example presented derives from the geometry shown 
in Fig. 1, a compact Vivaldi antenna [8, 9]. The geometry has 
been meshed relatively crudely as shown in Fig. 7. The antenna 
is of length 55 mm and so the threshold Dth controlling cluster 
formation is set at 0.1 µm. Table 1 shows that many small 
clusters are formed which is typical. However, there are two 
large clusters approaching 700 cells. These can be located 
where the misalignment of Fig.1 causes very fine localized 
meshing. The cluster with 695 cells is shown in Fig. 7c and it is 
seen that the outer surface of the cluster in contact with the rest 
of the mesh is much cruder than the highly resolved interior 
detail. The overall cluster fits within a cube of side 2 µm and is 
barely geometrically significant in the overall problem context.  

The cluster problem solved by (1) has 695 cells and Nex=112 
and Nin=2892. Note that many of the numerous faces visible in 
Fig. 7c are adjacent to the perfect conductor of the antenna and 
so define short circuit boundary conditions rather than 
belonging to the set of external faces. Fig. 8a shows the values 
of ߬ recovered from (1). There are 2006 solutions and there is 
little to distinguish which are the most significant contributors 
to the physical meaningful behavior of the cell. After applying 
the complexity reduction process using alternatively ࢠො =  and ࢠ
ො௜௜ࢠ = ்࢘෤ࢠ࢘ 

௜௜, the total number of solutions to (26) is 24 in both 
cases. Fig 8b shows the associated inductive stub values, ߞ, 
recovered from (27), numbering 79 and 89 respectively. For the 
case of ࢠො =  .these remain above, albeit many approach, 1 ,ࢠ
For ࢠො௜௜ = ்࢘෤ࢠ࢘ 

௜௜, half of the values of ߞ drop below 1. If the 

latter set were to be used these would be given a value of ߞ = 1 
which removes the need for a stub. 

The net value of the complexity reduction on this example is 
that at time stepping the size of the matrix Q in (5) is reduced 
from 112*2892=323904 elements to (24+89)*(112+89)= 
22713, which is a factor of 14 saving in both memory and 
calculation time. 
 

Cluster size Number 
1 3 
2 4635 
3 650 
4 15 
5 8 
6 7 
7 1 
8 2 
9 1 
12 1 
14 1 
19 1 
679 1 
695 1 

 
Table 1. The number of instances of each cluster size for the example of Fig.7 
with the threshold value Dth =0.1 µm. 

 
Fig. 8. The distribution of solutions for the cluster shown in Fig 7c before and 
after complexity reduction. The solutions to (a) (26), the quasi-electrostatic 
solutions (b) (27), the quasi-magnetostatic solutions. 
  

The benefit of the previous example has been a significant 
gain at run time, albeit with increased, rather than reduced 
preprocessing time. Fig. 9 shows the substantial improvement 
if a recursive cluster splitting policy is adopted. A threshold 
number of cells, NT, is defined and clusters with more than this 
number are split into two, each part of which is solved 

(a)                                 (b)                                      (c)  
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independently using (1), (26) and (27). The solutions from each 
part are then combined by a further application of (1), (26) and 
(27). Naturally this split-solve-reduce-combine-reduce strategy 
is applied recursively. Fig. 9a shows the preprocessing time 
required as the threshold level NT is varied for cell clusters of 
different sizes. (These are obtained by changing the clustering 
parameter that gave Fig. 7c and so are related. All timings in 
this paper were obtained using a serial code running on a Sandy 
Bridge CPU). The case of ࢠො =  is considered and all stub ࢠ
solutions to (26) and (27) are kept. A very large improvement 
in run preprocessing time is observed which reaches its 
optimum when NT~100 as shown in Fig. 9a. Below this value 
the ratio of Nex to Nin, which is analogous to a surface area to 
volume ratio, is no longer small enough to provide an advantage 
and the bookkeeping overhead of the recursion then causes the 
time to increase again. Fig. 9b plots the preprocessing time 
versus overall cluster size and it is clear that the approximately 
cubic relationship of the scheme without using recursion or 
complexity reduction becomes more logarithmic in nature when 
both are employed and that recursive splitting without 
complexity reduction is of little value. Space precludes 
extensive explicit demonstration, but it is stated that when using 
complexity reduction, the recursive approach yields the same 
net solutions as the non-recursive case consistent with the 
second order accuracy of the overall method. An overall 
simulation example is given below to support this contention. 

 
Fig. 9. The preprocessing time using hierarchical complexity reduction based 
upon the example of Fig. 7. (a) For various large clusters, versus the number of 
cells, NT, above which a cluster is split into two and (b) for NT=50 versus overall 
cluster size. 

In this work, the splitting of clusters was performed using 
[20, 21] seeking equal volume partitioning. There is clearly 
scope to further investigate both this aspect and the choice 
between using  ࢠො = ො௜௜ࢠ and ࢠ = ்࢘෤ࢠ࢘ 

௜௜ or else another 
possibility. Space precludes further comment here, but it is clear 
from Fig 9b that the ability to viably move to using clusters of 
1000s, rather than 100s of cells in simulations involving 
multiscale effects strongly motivates continued study. 
  

 
Fig. 10. Geometry of a 5-core wire bundle. The cores are twisted around each 
other and the cable is also twisted back on itself. (a) With and (b) without the 
outer sheath shown. Typical bundle lengths might be several 10’s of meters in 
an aerospace context.   

 
Fig. 11. Mesh of the geometry of Fig. 10. There are 847,211 tetrahedra of an 
extremely diverse range of scales. 
 

 
Fig. 12. Cluster formation in the example of Fig. 10 for different thresholds, 
Dth, 
 

Fig. 10 shows a second test case arising from a study of 
complex wiring configurations [22]. The scale of the wiring 
detail is significantly smaller than that of its enclosure (not 
shown) and Fig. 11 shows a section through the tetrahedral 
mesh which is extremely multiscale in nature and not unrealistic 
for aerospace scenarios. This example differs in nature to the 
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previous one as now the multiscaling is physically intended and 
not due to CAD and meshing artifacts. Fig. 12 shows the 
numbers and sizes of clusters formed for different values of the 
clustering threshold and Table 2 presents the total 
preprocessing time of the clusters with and without use of the 
hierarchical complexity reduction approach. Table 2 shows that 
for all threshold values, the time required to perform the 
complexity reduction approximately doubles the preprocessing 
time. However, use of the hierarchical scheme compensates for 
this and for Dth=0.4 and 0.5 mm, provides a net improvement. 
Whilst these results may not appear as impressive as those for 
single large clusters arising from the Vivaldi antenna problem, 
i.e. Fig. 9, it must be recognized that the preprocessing task 
parallelizes perfectly on a cluster by cluster basis, so that the 
true impact of a few large and very slow to process clusters is 
that they undermine the ability to load balance the 
parallelization and in fact dominate the total time almost as if 
serial computation were used. This argument is confirmed by 
the case of Dth=0.5 mm which is significantly improved by the 
hierarchical scheme. In this case, there are a total of 165799 
clusters but only 31 have more than 200 cells and it is these that 
dominate the calculation time. Table 2 also shows a measure of 
the impact of the complexity reduction on the run time 
performance. The accumulated size of all the matrices Q, (5)¸ 
quantifies the amount of parameter (not variable) data that must 
be retrieved through cache at each time step. Moreover, the time 
to evaluate the scattering using (4) linearly depends upon the 
number of elements of the Q matrices. Therefore, this is a useful 
measure of the impact of the complexity reduction scheme on 
the computational efficiency of the time stepping algorithm. It 
is clear that the complexity reduction scheme provides a 
consistent and useful gain on this measure. Fig. 13 shows more 
detail of how the different cluster sizes contribute to both 
figures of merit in Table 2 and confirms that the most 
significant impact is for the particularly large cluster sizes. 
Finally, it is noted that load balancing for parallelization of the 
time stepping algorithm suffers from similar problems to that of 
the preprocessing in the presence of large clusters, so reducing 
the size of their Q matrices by an order of magnitude is 
extremely advantageous. 
 

 Comp. Red.  H’cal Dth=0.3 mm Dth=0.4 mm Dth=0.5 mm 

Preprocessing time (secs) 

  63 243 2007 

  103 468 3528 

  77 237 677 

Accumulated size of Q 
matrices 

  6.8M 31M 117M 

  1.3M 6M 19M 

 
Table 2. For the example presented in Figs. 10-11: Impact on the preprocessing 
time and parameter set size for the time stepping algorithm of the complexity 
reduction scheme evaluated with and without hierarchical (H’cal) evaluation. 
Complexity reduction is only applied to clusters with more than 25 cells. 
 
 As this work concerns the computational efficiency of 
preprocessing and time stepping rather than the results of the 
simulations themselves, we do not show comprehensive 
simulation outputs due to limited space. However, it is stated 
that the foregoing development fully respects the second order 
accuracy of the UTLM technique and that the overall simulation 
results agree within this framework. To illustrate this point, Fig. 
14b shows the return loss of a Vivaldi antenna when mounted  

 

 
Fig. 13. For the example presented in Figs. 10-11 and Dth =0.4 mm: (a) The 
quantity of cluster parameter data required during time stepping by each cluster 
expressed as the number of floating point values of matrix Q, (5). (b) 
Preprocessing time versus cluster size. 
 

 
Fig. 14. (a) A Vivaldi antenna mounted on a perfectly conducting plate. The 
dimensions and other parameters are given in [9]. (b) The return loss for the 
antenna evaluated with and without the use of complexity reduction for the pre-
processing phase. A threshold of Dth=5 μm, a time step of ߜ௧=0.2 ps and a total 
simulated time of 0.04 μs were used. 
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upon a perfectly conducting plate; a configuration, shown in Fig 
14a, that has been studied more fully as part of an investigation 
into the coupling between airborne antennas and radomes, [9], 
wherein the full details of the geometry and other simulation 
parameters are presented. With the same mesh used to generate 
Fig.2 of [9], a relatively large value of Dth=5 μm has been 
chosen which causes three large clusters of 220, 453 and 528 
cells to be formed, all other clusters comprising less than 30 
cells. The two curves presented in Fig. 14b for the return loss, 
obtained with and without the complexity reduction approach 
for preprocessing the simulation, are indistinguishable. This 
confirms that the complexity reduction does not compromise 
the practical accuracy of the method. However, in this example 
the pre-processing time is reduced by 35% and the subsequent 
simulation by 8% when using the complexity reduction 
techniques presented in this paper. This clearly shows the 
dominant impact that just 3 large clusters can have and why the 
adoption of complexity reduction schemes is important. 

IV. CONCLUSION 

 
In this work a significant expansion of the value of cell 
clustering for the UTLM time domain electromagnetic solver 
has been demonstrated. First a robust and efficient means of 
solving the clustering equations has been presented. Second, a 
complexity reduction technique has been used to substantially 
reduce the number of run time parameters involved in a 
simulation. This reduction has been achieved by a combination 
of SVD techniques and physically grounded approximations. 
Finally, a hierarchical method of evaluating large clusters has 
proved to be highly effective, extending the size of clusters that 
can be practically employed by an order of magnitude. 
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