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Abstract 14 

Osmotic stress represents one of the major environmental challenges experienced by yeast during industrial 15 

fermentations. This stress is particularly associated with high gravity processes which utilise concentrated 16 

substrates to yield products with elevated concentrations of ethanol. The aims of this work were to quantitatively 17 

measure factors affecting extracellular osmotic pressure (osmolality) during brewing fermentations, and to 18 

determine their effects on yeast at the physiological and molecular level. Osmolality was observed to increase 19 

during fermentation due predominantly to ethanol production, indicating a strong relationship between these 20 

environmental parameters. High osmolality was shown to have a negative impact on yeast physiology, viability 21 

and vitality and although genome integrity was unaffected, cell membrane fluidity became altered. This data not 22 

only demonstrates the occurrence of an increase in osmotic pressure during fermentation, but provides an 23 

explanation for the decrease in yeast quality typically observed under high gravity conditions. The results 24 

presented here are directly relevant to all brewery fermentations worldwide and have applications within 25 

associated industries where microorganisms are used for ethanol production, including food products, alcoholic 26 

beverages and biofuels. 27 
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Introduction 32 

Osmotic pressure can be defined as the force exerted by the flow of water through a semi-permeable membrane 33 

separating two solutions with different concentrations of solute, and is a major environmental stress factor 34 

experienced by yeast cells during industrial batch fermentations (38,52,64). Within the brewing industry, as well 35 

as other related sectors, there is a growing trend to employ high gravity (HG) and very high gravity (VHG) 36 

substrates (worts) as a means of energy-saving, process optimisation (53,70) and capacity optimisation. Such 37 

worts are concomitant with elevated osmotic pressure (osmolality), potentially leading to a greater influence on 38 

yeast physiology and fermentation characteristics (6,13,71,82). 39 

Current understanding within the brewing industry is that osmotic pressure is encountered when a yeast culture 40 

is first inoculated into brewers wort (a malt-based liquid extract) at the beginning of fermentation, after which 41 
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osmotic pressure reduces as fermentable sugars are assimilated (15). The immediate consequence of exposing 42 

yeast cells to high osmotic pressure is a rapid increase in osmotic potential within the cell, resulting from the 43 

outflow of water, as well as a decrease in cell volume and turgor (33,37,39). The yeast response is to trigger 44 

extensive gene regulation leading to the production of a range of protective compounds including glycerol 45 

(17,37,55,80) and trehalose (18,34,35). Glycerol is known to act as a compatible solute to counterbalance 46 

external pressure and is produced via activation of the High Osmolarity Glycerol (HOG) pathway (9,17,83), 47 

whilst trehalose has been shown to stabilise proteins, internal membrane structures and the plasma membrane 48 

(8,35). This is significant since during osmotic adaptation the plasma membrane functions as a chemi-osmotic 49 

barrier, providing a major interface between the organism and its external environment (67). Consequently, 50 

yeast membrane fluidity has been proposed to be an essential parameter for survival under osmotic stress, as 51 

well as other extreme environments (24,74). Under normal conditions, the phospholipid bilayers of biological 52 

membranes are believed to be structured in a liquid-crystalline state, whereas during stress conditions 53 

phospholipid head-groups are forced together, leading to a phase transition from liquid-crystalline to gel-phase, 54 

characterised by decreased membrane fluidity (4,66). It has been suggested that phase transition within the cell 55 

membrane could be a key step in the induction of cell death as a result of changes in osmotic pressure 56 

(4,24,66,67). In addition to effects on the cell membrane, it has been shown that DNA damage can be induced 57 

by osmotic stress in laboratory yeast strains (11,12,23,38,57). Similarly, Miermont et al. (38) demonstrated that 58 

DNA damage may be related to cell volume reduction caused by severe osmotic stress, and analysis of 59 

chromosomal DNA from yeast cells under hyperosmotic shock has indicated that such conditions can directly 60 

result in DNA breakage, leading to the production of fragments of several hundred kilobases in size (57).  61 

Previous studies of osmotic stress in industrial polyploid brewing yeast strains have typically involved the 62 

examination of fermentations conducted using worts of different sugar concentration, and the subsequent effects 63 

on product characteristics and yeast health (10,43,46,51,64,81,82). However, in these studies the net effects of 64 

osmotic stress alone may have been masked by the combined effects of ethanol toxicity, oxygen availability and 65 

nutritional requirements. Furthermore, given that the presence of wort sugars is not the only factor involved in 66 

determining osmotic potential (20), a precise characterisation of the external osmotic pressures occurring during 67 

brewing fermentations has not previously been achieved. In addition, there have been few reports on the 68 

relationship between external osmotic pressure and the changing environmental conditions occurring during 69 

VHG brewing, or the effects of this on brewing yeast cell integrity, damage to DNA and membrane structures. 70 

In this study we aimed to determine the precise changes in osmotic pressure encountered by lager 71 
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(Saccharomyces pastorianus) and ale (S. cerevisiae) yeast populations during brewery fermentations, and to 72 

investigate the impacts of these stress factors on cells at the physiological and molecular level. 73 

EXPERIMENTAL 74 

Yeast strains and growth media 75 

Lager yeast (S. pastorianus) W34/70 was obtained from Hefebank Weihenstephan (Germany) and ale yeast (S. 76 

cerevisiae) NCYC1332 was collected from the National Collection of Yeast Culture (UK). Yeast strains were 77 

maintained on YPD agar slopes containing 1 % (w/v) yeast extract, 2 % (w/v) neutralized bacteriological 78 

peptone, 2 % (w/v) D-glucose and 1.2 % (w/v) agar at 4 ºC. All chemicals were purchased from Fisher 79 

Scientific, UK and media was sterilised by autoclaving at 121 ºC and 15 psi for 15 min immediately after 80 

preparation.  81 

Wort preparation 82 

Standard gravity (13 ºP) and high gravity (25 ºP) all-malt worts were obtained from Molson Coors Brewing 83 

Company (UK).  The 13 ºP wort was used without modification, while the 25 ºP wort was diluted with sterile 84 

reverse-osmosis (RO) water to produce 18 ºP (HG) and 24 ºP (VHG) worts. All worts were supplemented with 85 

0.2 mg/L Zn
2+

 by the addition of ZnSO4·7H2O (Fisher Scientific, UK) and oxygenated prior to use. For the latter, 86 

in order to mimic typical oxygen concentrations employed within industrial fermentations, 18 ºP and 24 ºP 87 

worts were oxygenated, whilst 13 ºP worts were aerated for 3 hours (to achieve saturation) prior to pitching. 88 

Fermentations 89 

Fermentations were carried out in triplicate in glass hypo-vials according to the method previously described 90 

(50,54). Well-mixed yeast slurry was pitched into 100 mL wort to create five different experimental conditions 91 

(Table I). All fermentations (lager and ale) were performed at isothermal 15 ºC with constant stirring (350 rpm). 92 

It is acknowledged that this temperature is not reflective of industrial ale-type fermentations, however it was 93 

applied consistently across yeast strains to standardise environmental conditions. Samples were taken at regular 94 

intervals for up to 120 hours after pitching and cooled immediately on ice. Wort was separated from yeast cells 95 

by centrifugation at 4 ºC and stored at -80 ºC prior to analysis. 96 

Measurement of osmolality 97 

Throughout this study osmotic pressure is determined and expressed in the form of osmolality, commonly used 98 

in practical osmometry, and defined as the number of milliosmoles of osmotically active particles per kilogram 99 

of solvent. Osmolality was determined using a micro-osmometer (Model 3300, Advanced Instrument, USA) and 100 
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applied to analysis of worts and component analyses, including 24 ºP wort (in dilutions of 100, 75, 50 and 25 % 101 

[v/v]), ethanol (10, 20, 30, 40, 50, 60, 70, 80 and 90 g/L) and glycerol (1, 2, 3, 4 and 5 g/L). These values were 102 

selected to cover the typical range of individual concentrations observed throughout standard, HG and VHG 103 

fermentations. 104 

Osmotic challenge using sorbitol  105 

In order to mimic the range of extracellular osmolality observed during fermentations, sorbitol solutions (10, 20, 106 

30, 40 and 50 %, w/v) were prepared, alongside sterile RO water as a baseline control. Solutions were sterilised 107 

by autoclaving at 121 ºC and 15 psi for 15 min prior to use. Populations of yeast cells harvested at both 108 

exponential and stationary phase were washed twice in sterile RO water and re-suspended in 100 mL of either 109 

sterile RO water or sorbitol solutions (10-50% as above) to achieve a concentration of 5.0 × 10
8
 cells/mL, and 110 

incubated at 15 ºC using an orbital shaker at 120 rpm for 48 hours prior to analysis.  111 

Yeast viability determination 112 

Yeast viability was determined using brightfield methylene blue staining according to the method of Pierce (47). 113 

Methylene blue (Sigma, UK) was dissolved in 2 % (w/v) sodium citrate to a final concentration of 0.01 % (w/v). 114 

A washed cell suspension (0.5 mL, 1.0 × 10
7
 cells/mL) was mixed with an equal amount of methylene blue 115 

solution and gently agitated. The solution was incubated for 5 min and cells were examined using a microscope 116 

at a magnification of 400× (Nikon, Japan). Dark blue cells were considered to be dead cells and those which 117 

remained unstained were counted as viable. A minimum of 200 cells were enumerated for each sample and 118 

viability was expressed as a percentage of the total population, representing the mean of triplicate samples. 119 

Yeast vitality determination 120 

Yeast vitality was determined by proton efflux using acidification power, according to Siddique and Smart (63). 121 

The assay contains two components, a base-line water acidification power (WAP) and a sugar-related glucose 122 

acidification power (GAP). For determination of WAP, a pre-calibrated pH probe (Mettler Toledo, UK) was 123 

placed into a sterile universal bottle, containing 19 mL sterile RO water and a magnetic flea, on a magnetic 124 

stirrer. Following equilibration of the bottle at room temperature, 1 mL of the cell suspension (5.0 × 10
8
 125 

cells/mL) was added followed by the immediate measurement of an initial pH, defined as WAP0. At the end of 126 

10 min, 5 mL of sterile RO water was added and pH measurement continued until the end of 20 min (WAP20). 127 

A final WAP value was obtained: WAP=WAP0-WAP20. Determination of GAP was similar to the method for 128 



6 

 

WAP; however, at the end of 10 min, 5 mL of sterile 20.2 % (w/v) glucose solution was added instead of 5 mL 129 

sterile RO water. GAP was calculated as follows: GAP=GAP0-GAP20. Consequently, net glucose induced 130 

proton efflux (GIPE) was obtained by subtracting WAP from GAP:  GIPE=GAP-WAP, where GIPE provides a 131 

relative indication of cellular vitality. 132 

Analysis of intracellular trehalose and glycerol 133 

Intracellular trehalose was quantified using the method of Parrou and Francois (45). Aliquots of 1.0 × 10
9
 total 134 

cells were suspended in Na2CO3 (0.25 mL, 0.25 M) and incubated in a 95 ºC water bath for 2 hours followed by 135 

the addition of sodium acetate (0.6 mL, 0.2 M) and  acetic acid (0.15 mL, 1 M). Subsequently 0.5 mL of the 136 

mixture was transferred to an Eppendorf tube and incubated at 37 ºC for 10 hours in the presence of 3 mU of 137 

freshly prepared trehalase (Sigma, UK). After incubation, samples were centrifuged at 13,000 rpm for 2 min and 138 

the liberated glucose in suspension was determined using a glucose assay kit (Megazyme, Ireland) at an optical 139 

density of 510 nm. The concentration of trehalose in samples was expressed as µg glucose derived from 10
8
 140 

cells.  141 

Intracellular glycerol was quantified according to the method of Hounsa, Brandt, Thevelein, Hohmann and Prior 142 

(18). Aliquots of 1.0 × 10
9
 total cells were suspended in 1 mL boiling Tris-HCl (pH 7.0) for 10 min. The 143 

supernatant was harvested by centrifugation for 10 min and glycerol concentration was determined using a 144 

glycerol assay kit (Megazyme, Ireland). Results were expressed as µg glycerol per 10
8 
cells.  145 

Measurement of membrane fluidity 146 

Yeast membrane fluidity was determined by fluorescent staining using laurdan (6-lauroyl-2-dimethylamino 147 

naphthalene), based on the methods of Learmonth and Gratton (27), and Walker et al (75). 5 mM of laurdan 148 

stock solution was prepared by the addition of laurdan (Molecular Probes, Invitrogen, USA) into absolute 149 

ethanol. Cell suspension (OD600 = 0.1) was mixed with the laurdan solution to achieve a final concentration of 5 150 

μM and incubated in the dark for 1 hour. Fluorescence was measured at an excitation wavelength (350 nm) and 151 

two emission wavelengths (440 nm and 490 nm) using a Varioskan Flash micro-plate reader (Thermo Fisher 152 

Scientific, UK). Consequently, Generalized Polarization (GP) was obtained to provide an index of membrane 153 

fluidity: 154 

𝐺𝑃 =
𝐼440 − 𝐼490
𝐼440 + 𝐼490

 

Where I440 and I490 indicate relative fluorescence intensities at wavelengths of 440 nm and 490 nm, respectively. 155 
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 156 

Analysis of yeast DNA integrity via inter-delta sequences  157 

Yeast genomic DNA was extracted according to the method described by Powell and Diacetis (48) and stored at 158 

4 ºC prior to PCR amplification. The primers (delta12: 5′-TCAACAATGGAATCCCAAC-3′ and delta21: 5′-159 

CATCTTAACACCGTATATGA-3′) (28) were obtained from Eurofins MWG, UK. Each reaction contained 1 160 

µM primer delta12, 1 µM primer delta21, 1× Phusion Master Mix (New England Biolabs, UK) and 100 ng of 161 

DNA in a total volume of 25 µL. The amplification reaction was conducted using a TC-512 thermal cycler 162 

(Techne, UK) using the following conditions: 98 ºC for 30 sec, followed by 35 cycles of 98 ºC for 10 sec, 48 ºC 163 

for 30 sec and 72 ºC for 3 min, and a final extension at 72°C for 10 min. PCR products were resolved by 164 

electrophoresis on a 1.5% agarose gel. 165 

Statistical analysis 166 

The mean and standard deviation of each data set were calculated using Excel (Microsoft, USA). Statistical 167 

analyses were performed using SPSS version 20.0 for windows (Chicago, USA). Data was subjected to one-way 168 

analysis of variance (ANOVA) with either least significant difference (LSD) or Student’s t-test used to 169 

determine the significant differences between samples. The null hypothesis was that there was no significant 170 

difference between data sets, and differences were considered significant at P < 0.05. 171 

RESULTS AND DISCUSSION 172 

Extracellular osmolality during fermentation and potential contributors 173 

Consideration of the range and extent of osmotic pressure that brewing yeast cells encounter in fermentations is 174 

critical since this can not only affect the movement of solutes and water across the cell membrane, but may also 175 

cause cell damage (11,67). Damage to yeast cells is extremely undesirable in brewing fermentations since lysis 176 

can lead directly to haze production (56) and poor head retention (5), while poor population health is known to 177 

result in a number of process related abnormalities, including atypical yeast flocculation, poor sugar utilisation 178 

and inappropriate flavour production (31,71). 179 

A series of lab-scale fermentations were conducted using 13 ºP, 18 ºP and 24 ºP worts. Fermentation progression 180 

was determined by monitoring carbon dioxide evolution (data not shown), and utilisation of wort sugars over 181 

time. Analysis indicated that fermentations were complete within an acceptable period of time, and uptake of 182 

wort sugars was as expected (Fig. 1). To determine the potential impact of osmotic stress on yeast health, the 183 
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osmolality of wort was determined by analysis of samples obtained during fermentation.  It was observed that 184 

increasing wort density resulted in an elevated starting osmolality, as expected. However, once sugars began to 185 

be utilized, the extracellular osmolality was observed to increase during fermentation, irrespective of original 186 

wort gravity or the yeast strain applied (Fig. 2). In 13 ºP, 18 ºP and 24 ºP fermentations, extracellular osmolality 187 

increased from approximately 700 to 1500 mOsm/kg, from 800 to 1800 mOsm/kg and from 1100 to 2500 188 

mOsm/kg, respectively. This observation was perhaps surprising given that sugar concentration, believed to be a 189 

major contribution to environmental osmotic pressure, is reduced during fermentation. To investigate this 190 

further, the contribution of potential compounds to osmolality was investigated in more details, specifically 191 

focusing on the major components of fermenting wort, i.e. the wort itself, ethanol and glycerol (Table II). It was 192 

observed that each of these components exerts an osmotic pressure (Fig. 3): wort osmolality became reduced in 193 

response to the dilution of an original 24 ºP wort, whereas the osmolality of ethanol and glycerol were observed 194 

to increase at higher concentrations. The extent to which this occurred was dependent on the type of solute, as 195 

indicated by variation in the scale of the y-axis in each instance. Given the concentration range of each 196 

component observed during fermentations, it can be concluded that ethanol is the major contributor to 197 

extracellular osmolality during fermentation, whereas wort sugars and glycerol have a comparatively minor 198 

effect. This finding is in accordance with Jones and Greenfield (20), who reported a non-specific inhibitory 199 

effect of ethanol on yeast growth, resulting from reduced water activity (i.e. increased osmolality). The same 200 

authors also provide evidence to suggest that the inhibitory effects of ethanol on biomass yield were 201 

significantly greater than the relative concentration of substrate sugars, again providing partial support to the 202 

results presented here. This data therefore indicates that osmotic pressure derived from ethanol may play an 203 

important role in brewing fermentations, and that this effect may be exacerbated by the use of HG and VHG 204 

worts.  Furthermore, it is suggested that since internal (cellular) ethanol forms an equilibrium with external 205 

ethanol during fermentation, due to passive diffusion at the cell membrane, this does affect our overall 206 

understanding of osmotic stress during fermentation. Yeast cells are subject to a significant ‘internal’ as well as 207 

general osmotic shock, which cannot be countered simply by the movement of water. Ethanol-derived osmotic 208 

stress will therefore have a direct impact on cellular organelles, an observation which provides a likely 209 

explanation for the production of compounds known to protect internal membrane structures such as trehalose 210 

(18,34,35). 211 
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 The effect of extracellular osmolality on yeast cells 212 

Sorbitol was selected as an osmotic agent since it does not dissociate into ions in liquids, and has no nutritional 213 

role or toxic effect on yeast cells (16). Furthermore this sugar has been used previously for the analysis of 214 

osmotic stress in a variety of yeast strains (13,16,38,40,52,79). As shown in Fig. 4, sorbitol at various 215 

concentrations (10, 20, 30, 40, 50 %, w/v) provided a range of osmolality levels ranging from approximately 216 

560 to 2800 mOsm/kg, alongside a baseline control comprising sterile RO water at 0 mOsm/kg. These 217 

concentrations were selected as they represent the range of external osmolality levels (approximately 650-2500 218 

mOsm/kg) observed during fermentations (Fig. 2).  219 

Yeast viability 220 

In order to assess the impact of extracellular osmolality on cell survival, yeast viability was determined using 221 

three different staining techniques: the brightfield stain methylene blue, and the fluorophores MgANS (36) and 222 

Oxonol (30). This approach was taken to eliminate the effect of the mode of action of individual stains on 223 

determining the relationship between osmolality and cell health. However, although variations in viability were 224 

observed when different methods of assessment were used, the application of different staining protocols 225 

yielded comparable results, hence only data from methylene blue staining is displayed here. Cell viability was 226 

observed to decrease with increasing external osmolality for each yeast strain, irrespective of growth phase (Fig. 227 

5). Although viability loss was strain-dependent, the general trend was consistent with the findings of Panchal 228 

and Stewart (43), who observed a decline in cell viability with increasing sorbitol-induced osmotic challenge. 229 

The data presented here therefore indicates that increased external osmolality could be one of the primary causes 230 

of viability loss occurring during fermentation. It is likely that the reduction in viability can be directly 231 

apportioned to the external osmotic pressure and, as such, acts as a retrospective indicator of the impact of 232 

osmotic stress on cell physiology. Perhaps unsurprisingly, the data also demonstrates that stationary phase cells 233 

of ale and lager yeast are more tolerant to external osmotic pressure than their exponential counterparts. For 234 

example, stationary phase cells from lager yeast populations (W34/70) exhibited a 10-20 % reduction in 235 

viability following exposure to 30 % (w/v) sorbitol, whereas a 30-40 % reduction in viability was observed for 236 

the corresponding exponential phase populations. Similarly for the ale strain NCYC1332, a 20-30 % and 40-50 % 237 

viability loss was observed for stationary and exponential phase populations, respectively, in the presence of 30 % 238 

(w/v) sorbitol. The difference in resistance is likely to be due to intrinsic physiological changes and altered 239 

expression levels of general stress response genes that are concomitant with the onset of stationary phase (42,76-240 

78). These modifications provide cells with the ability to survive for extended periods of time during stressful 241 
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conditions (3,78), and are likely to aid cells against stress occurring during the latter stages of fermentation 242 

when cell activity slows.  243 

Yeast vitality 244 

The acidification power test, based on proton efflux in response to sugar utilisation, was used as a measure of 245 

yeast activity related to the fermentation capabilities of yeast cultures (14,29,62,65). In the current study this 246 

assay was performed to obtain net glucose induced proton efflux (GIPE), as a measure of population vitality, 247 

where a higher GIPE value indicates greater yeast vitality.  248 

In general, GIPE values were observed to decrease with increasing osmolality, regardless of yeast strain and 249 

growth phase applied (Fig. 6). This suggests that the capacity of yeast to utilize exogenous glucose may become 250 

reduced with elevated extracellular osmolality and is consistent with previous findings showing that the rate of 251 

proton efflux is inhibited during the latter stages of HG and VHG brewing fermentations (81). It should be noted 252 

that although these authors (81) provided evidence that higher concentrations of ethanol had a significant 253 

inhibitory effect on proton efflux, they did not link this to osmotic stress per se. This has major implications for 254 

yeast fermentation performance and suggests that cells may exhibit a reduction in the ability to pump hydrogen 255 

ions out of the cell, potentially impacting on internal pH homeostasis and the uptake of wort sugars by proton 256 

mediated active transport. Such effects are likely to be exacerbated during HG and VHG brewing and may 257 

contribute to the elongated production times frequently associated with such fermentations (64,82).  258 

Intracellular trehalose and glycerol 259 

Trehalose and glycerol are regarded as important stress protectants in brewing yeast (10,35,46,82), however the 260 

precise relationship between their production and osmolality within the range associated with industrial brewery 261 

fermentations has yet to be reported. To address this, concentrations of these compounds were determined in 262 

yeast cells pre-exposed to a variety of osmolality environments. A marked decrease in trehalose was observed in 263 

cells following exposure to 0 % (w/v) sorbitol, irrespective of growth phase and yeast strain applied (Fig. 7AB), 264 

indicating potential utilisation of trehalose as a carbohydrate source due to nutrient limitation. However, 265 

trehalose was observed to accumulate when cells were subjected to 10-50 % (w/v) sorbitol (corresponding to 266 

563 to 2813 mOsm/kg), although the final concentration was similar regardless of the range of sorbitol 267 

concentration applied.  This reinforces the view that trehalose plays an important role in protecting cells from 268 

damage even at very low levels of external osmotic pressure (34), likely to be a factor of non-specific stress 269 
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responses pathways (34,35). Moreover, accumulation of trehalose was more marked in stationary phase cells 270 

than in exponential phase cultures, consistent with the enhanced osmo-tolerance associated with stationary 271 

phase cells, as indicated during yeast viability analysis. It should be noted that despite accumulation of this 272 

sugar, decreased cell viability with increasing osmolality was still observed. Indeed, it has been previously 273 

reported that the hyper accumulation of trehalose in yeast does not necessarily improve survival rates when 274 

compared to wild-type strains (18). Although trehalose has been regarded as a membrane stabilizer and stress 275 

protectant under stressful fermentations (34,35), it remains unclear to what extent this molecule acts to preserve 276 

yeast cells in industrial fermentations, or the minimum and maximum effective concentrations required to 277 

protect individual cellular components. 278 

There was a dramatic decrease in the concentration of glycerol following exposure to 0 % (w/v) sorbitol, 279 

regardless of growth phase (Fig. 7CD). This is likely to be explained by the opening of Fps1p driven glycerol 280 

channels (32) due to hypo-osmotic shock, required to export glycerol to prevent cell lysis (32,73). However, 281 

irrespective of this, glycerol production became elevated as the concentration of sorbitol was increased from 10 282 

to 50 % (w/v), indicating a relationship between the levels of external osmolality encountered and the 283 

concentration of internal glycerol produced. In addition, the lager strain W34/70 produced higher amounts of 284 

glycerol than the ale strain NCYC1332 (within the range of sorbitol concentrations utilized), irrespective of 285 

growth phase applied, which provides some explanation for the different osmo-sensitivities observed between 286 

the two strains. Given that glycerol is primarily produced as a result of the activation of the HOG pathway, this 287 

result could be related to the expression levels of genes involved in the cellular signalling route, including 288 

GPD1 and GPP1, involved in catalysing the conversion of dihydroxyacetonephosphate (DHAP) via glycerol-3-289 

phosphate (G3P) to glycerol (22). 290 

Membrane fluidity 291 

The fluidity of the plasma membrane can be affected by various types of stress, leading to cellular damage and 292 

cell death (4,27,74). However, no analysis of the effect of external osmolality on this cell parameter in brewing 293 

yeast strains has been performed previously. To achieve this, membrane fluidity was determined using laurdan 294 

generalized polarization (GP) to represent membrane fluidity by indicating different emission spectra in the 295 

liquid-crystalline (490 nm) and gel phases (440 nm) of the membrane, where a low GP value indicates high 296 

membrane fluidity and vice versa. 297 
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As shown in Fig. 8, the lipid bilayer of both yeast cells was composed of a mixture of liquid-crystalline and gel 298 

phases, since the GP value was intermediate between the theoretical range from -1 to +1 (27,44). Although 299 

fluidity was not observed to vary when cells were exposed to low osmolality conditions (0-10% sorbitol), the 300 

predominant trend was that membrane fluidity gradually decreased with increasing osmotic pressure. Although 301 

cells of W34/70 and NCYC1332 were affected in slightly different ways, the membrane fluidity within 302 

populations was gradually reduced to a similar degree under high osmolality conditions (40 % and 50 % [w/v] 303 

sorbitol). This data confirmed the existence of a link between the membrane state and the extracellular 304 

osmolality, indicating that yeast cells are able to implement a change in membrane fluidity during growth in 305 

response to external osmotic pressure. The reduced membrane fluidity resulting from the modification of 306 

membrane structure and composition may act to compensate for changes in osmolality and to govern cell 307 

resistance to stress both directly and via cell signalling pathways (4). Indeed, it was observed that stationary 308 

phase W34/70 cells displayed lower membrane fluidity than NCYC1332 in the presence of 10 and 20 % (w/v) 309 

sorbitol. Simultaneously, stationary phase cells of W34/70 displayed a higher viability and vitality, as well as 310 

higher glycerol accumulation than their exponential phase counterparts. Interestingly, it has been proposed that a 311 

heat-induced signal for pathway activation is generated in response to a weakness in the cell wall (21), perhaps a 312 

consequence of decreased membrane fluidity. Moreover, the degree of lipid unsaturation and the presence of 313 

ergosterol in the membrane of S. cerevisiae, have been related to stress tolerance (72). Other studies have also 314 

demonstrated a relationship between the composition of membrane lipid and expression of stress-induced 315 

proteins (7,58,59). Nevertheless, it should be noted that membrane fluidity can be modified transiently or 316 

permanently by environmental stress factors (24-26,61). In the case of extreme stress conditions, regulation may 317 

not compensate for the changes in the physical membrane characteristics (4,24), and may result in cellular 318 

damage or death in industrial fermentations as shown here. 319 

DNA inter-delta regions 320 

Although genome instability, as a consequence of environmental stresses, has been suggested to provide stress 321 

adaptation in yeast strains, it inevitably has a negative effect on beer quality (68). Inter-delta sequences are DNA 322 

repeats that flank the Ty1 yeast retrotransposon and are known to be subject to frequent positional change within 323 

the genome (41). Consequently these elements are good candidate targets for analysis of genetic variation and 324 

have been used previously to investigate potential genetic changes during serial repitching (48), as well as the 325 

analysis of the effect of dehydration and rehydration on active dried yeast genetic integrity (19). In order to 326 

further investigate potential damage caused by changes in extracellular osmolality, analysis of inter-delta 327 
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sequences was performed in the two brewing yeast strains. Analysis of DNA from cells subjected to 328 

extracellular osmotic pressure revealed that there were no detectable genetic changes within these regions, 329 

suggesting that cells were genetically stable over the range of osmolality tested (0 to 2813 mOsm/kg) (Fig. 9). 330 

Although this result is important, it was perhaps not entirely surprising, given that previous results have shown 331 

evidence to suggest that DNA is not impacted by stress factors associated with dehydration and rehydration of 332 

cells (19). It should also be recognised that there are significant differences between industrial yeast strains in 333 

terms of their propensity to form genomic mutants through successive generations (1,2,48,49,60,69) and that 334 

other strains may be more susceptible to osmotic stress related DNA damage. Finally, it must be recognized that 335 

due to the nature of PCR based techniques, which require analysis of cell populations rather than individuals, 336 

DNA damage occurring at an extremely low rate may not be detected.  However, this data does indicate that 337 

genomic DNA damage should not be directly associated with the range of osmolality encountered within 338 

standard, HG and VHG brewery fermentations. 339 

CONCLUSIONS 340 

The move towards higher gravity fermentations within the brewing industry has resulted in a change in the 341 

demands placed on industrial yeast strains. In particular, stress factors associated with fermentation are 342 

exacerbated, which can directly impact on yeast health and subsequently fermentation performance. 343 

Consequently, there is significant interest within the industry in understanding the response of yeast to stress 344 

factors associated with high gravity brewing, and specifically those associated with osmotic pressure. 345 

Measurement of wort osmolality indicated that external osmotic pressure increased throughout brewing 346 

fermentations, with the largest contributor appearing to be derived from ethanol. This observation highlights the 347 

osmotic potential of ethanol during fermentation and has implications with regard to protracted osmotic stress 348 

for both brewery and other yeast-based fermentation systems, including wines, distilled spirits and biofuels. The 349 

effects of extracellular osmolality on the physiological manifestations of the yeast stress response were 350 

investigated by analysis using media containing various concentrations of sorbitol. Cell viability and vitality 351 

(proton efflux) were both negatively affected, while cells responded to osmotic shock by production of both 352 

trehalose and glycerol.  Although glycerol production appeared to be directly correlated to the level of external 353 

osmolality, trehalose was observed to be produced to maximum concentration once low levels of stress were 354 

encountered, potentially indicating an important but less specific stress response. Although analysis of DNA 355 

inter-delta regions indicated that brewing yeast cells were genetically stable under the effects of increased 356 
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osmolality, it was demonstrated that the cell membrane was affected. Membrane fluidity was observed to 357 

decrease with increasing osmolality, indicating potential changes to the membrane structure which may be either 358 

a function of damage, or a manifestation of the cellular response to this specific stress. Irrespective, such 359 

impacts on cellular physiology have implications for the brewing process since performance is largely dictated 360 

by membrane health and cell vigour in general. Importantly, the response of yeast cells to osmotic stress may 361 

also have a direct impact both on performance and final product characteristics, particularly since many 362 

metabolic pathways are repressed in the presence of trehalose, and since the production of carbon-based 363 

metabolites typically occurs at the expense of ethanol production. It is suggested that mitigation of osmotic 364 

stress by ensuring yeast health prior to and during fermentation may become increasingly important within the 365 

industry both to ensure that brand specifications are met, and to ensure fermentation efficiency. 366 
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Figure Captions 554 

Fig. 1. Concentrations of glucose (A, B), maltose (C, D) and maltotriose (E, F) during fermentations using lager 555 

strain W34/70 (A, C, E) and ale strain NCYC 1332 (B, D, F). Data points represent the mean of triplicate 556 

samples, with error bars indicating the standard deviation. 557 

Fig. 2. Wort osmolality during fermentations using lager strain W34/70 (A) and ale strain NCYC1332 (B) as a 558 

function of time. Data points represent the mean of triplicate samples, with error bars indicating the standard 559 

deviation. 560 

Fig. 3. Osmolality of individual fermentation components including 24 ºP brewer wort (A), ethanol (B) and 561 

glycerol (C).  Data points represent the mean of triplicate samples, with error bars showing the standard 562 

deviation. Mean values and linear equations (y and R
2
 values) are shown. 563 

Fig. 4. Osmolality induced by 0-50 % (w/v) sorbitol solutions. Data points represent the mean of triplicate 564 

samples, with error bars showing the standard deviation. Mean values and linear equations (y and R
2
 values) are 565 

shown. 566 

Fig. 5. Viability of exponentially-growing (A) and stationary phase yeast cells (B) following exposure to a range 567 

of osmolality levels induced by sorbitol. Yeast viability was determined using methylene blue staining.  Error 568 

bars represent standard deviation from the mean values of triplicate samples. 569 

Fig. 6. Vitality analysis by determination of glucose induced proton efflux (GIPE) for W34/70 and NCYC1332 570 

yeast cells prior to (control) and post exposure to a range of osmolality levels induced by sorbitol. Exponential 571 

(A) and stationary phase (B) cells were examined using the acidification power test. Values represent the mean 572 

of triplicate samples and the standard deviation is indicated by error bars. 573 

Fig. 7. Concentrations of trehalose (A, B) and glycerol (C, D) in W34/70 and NCYC1332 yeast cells prior to 574 

(control) and post exposure to a range of osmolality levels induced by sorbitol over 48 hours. Exponential (A, C) 575 

and stationary phase (B, D) cells were examined. Values represent the mean of triplicate samples and the 576 

standard deviation is indicated by error bars. 577 

Fig. 8. Membrane fluidity of yeast strains W34/70 and NCYC1332 prior to (control) and post exposure to a 578 

range of osmolality levels induced by sorbitol over 48 hours, as indicated by Generalized Polarization (GP). 579 

Exponential (A) and stationary phase (B) cells were examined and data represents the mean of triplicate samples 580 

and the standard deviation is indicated by error bars. 581 

Fig. 9. Analysis of DNA inter-delta regions derived from exponential phase lager yeast W34/70 (A) and 582 

NCYC1332 (B). In each instance, lane 1: 100bp ladder; lane 2-3: 0 % sorbitol; lane 4-5: 10 % sorbitol; lane 6-7: 583 
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30 % sorbitol; lane 8-9: 50 % sorbitol; lane 10-11: fresh cells (control); lane 12: blank (pure water); lane 13: 584 

1Kb marker.  Note that stationary phase cells yielded identical results (data not shown). 585 

  586 
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Fig. 7 637 
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TABLE I 672 

Experimental conditions applied 673 

 674 

Test conditions 
Wort gravity 

(°P) 

Pitching rate 

(Viable cells per mL) 

13P15M 13 1.5 × 10
7
 

18P15M 18 1.5 × 10
7
 

18P18M 18 1.8 × 10
7
 

24P15M 24 1.5 × 10
7
 

24P24M 24 2.4 × 10
7
 

 675 

  676 
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TABLE II 677 

Final fermentation characteristics. Data represents the mean of triplicate independent samples ± 678 

standard deviation 679 

Parameters 
Fermentation conditions 

13P15M 18P15M 18P18M 24P15M 24P24M 

   W34/70   

Final wort gravity (°P) 1.8 ± 0.3 2.5 ± 0.1 2.5 ± 0.1  4.2 ± 0.1 3.6 ± 0.2 

Final ethanol yield (g/L) 44.0 ± 0.9 58.8 ± 0.5 60.0 ± 0.8 80.8 ± 0.5 84.5 ± 0.7 

Final glycerol yield (g/L) 3.0 ± 0.2 3.6 ± 0.1 3.3 ± 0.1 3.9 ± 0.1 4.5 ± 0.2 

   NCYC1332   

Final wort gravity (°P) 1.7 ± 0.3 2.4 ± 0.2 2.5 ± 0.1 4.7 ± 0.3 3.5 ± 0.1 

Final ethanol yield (g/L) 43.0 ± 1.0 54.9 ± 0.8 57.3 ± 1.1 72.4 ± 0.8 79.5 ± 0.7 

Final glycerol yield(g/L) 3.2 ± 0.1 4.3 ± 0.2 3.9 ± 0.2 4.6 ± 0.2 5.1 ± 0.2 

 680 


