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We study phase transitions in classical spin ice at nonzero magnetization, by introducing a mean-

field theory designed to capture the interplay between confinement and topological constraints. The

method is applied to a model of spin ice in an applied magnetic field along the [100] crystallographic

direction and yields a phase diagram containing the Coulomb phase as well as a set of magnetization

plateaux. We argue that the lobe structure of the phase diagram, strongly reminiscent of the Bose–

Hubbard model, is generic to Coulomb spin liquids.
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I. INTRODUCTION

Classical spin liquids [1], such as the Coulomb phase [2] in spin ice [3] and related systems, are examples

of phases whose behavior is not captured by the standard Landau picture of broken symmetries [4]. Their

two defining characteristics are fractionalization, the emergence of excitations not constructed from finite

combinations of the elementary degrees of freedom, and topological order, the presence of structure that

can only be discerned by observing the system globally [5].

In the case of the classical spin ices [3], a family of magnetic pyrochlore oxides, the consequences

of these properties have been of sustained interest, from both theoretical and experimental perspectives.

The spins in these materials carry large magnetic moments, and their fractional excitations take the form

of magnetic monopoles [6], acting as sources for the physical magnetic field. Furthermore, transitions

between phases where these excitations are confined and deconfined have particularly interesting properties

that cannot be captured by the Landau–Ginzburg theory of phase transitions [7, 8].

Spin ice also has the unusual feature that the magnetization is a topologically constrained quantity, and

so topological order can be probed directly [5]. In particular, within the low-energy configuration space

relevant at low temperatures, any local dynamics conserves the uniform magnetization [2]. This fact is

known to have interesting consequences for critical properties at certain confinement transitions, such as

the Kasteleyn transition in an applied magnetic field [9, 10].

In this work, we investigate the interplay between these two aspects of the Coulomb spin liquid by

studying confinement phase transitions in spin ice across the full range of magnetization. As noted by

Henley [2], one can distinguish three categories of phase transition from the Coulomb phase: The first,

where the magnetization is zero across the transiton, was studied systematically in Ref. [11]. A second,

where the ordered state has saturated polarization, was considered in Refs. [9, 10]. Here we consider the

phase structure and transitions more generally, including the third case, where the magnetization is nonzero

but unsaturated, and may or may not change across the transition.

To do so, we introduce a mean-field theory (MFT) designed to capture the distinction between confined

and deconfined phases. Standard mean-field approaches, based on the Landau picture of ordered phases,

are not well suited to describing confinement transitions. Instead, we take inspiration from the well-known

MFT for the Bose–Hubbard model [12], making use of a mapping from spin ice to a quantum model of

bosons [10]. We apply the method to a simplified model of classical spin ice, in order to illustrate the

general approach and its physical interpretation. We also briefly discuss extensions to the method that could

be used to treat more physically realistic perturbations.

In addition, we present arguments for the generality of our results, beyond mean-field theory and our
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particular choice of Hamiltonian. We argue that the phase diagram generically consists of a set of confined

phases at low temperature in which the magnetization is, to a very good approximation, fixed. This plateau

structure is strongly reminiscent of the lobes present in the phase diagram of the Bose–Hubbard model

[12, 13], a connection that helps clarify the general phase structure.

While the focus here is on classical spin ice in a [100] field, the distinction between transitions in

different flux sectors is more general. For example, spin ice in a field along the [111] direction also exhibits

magnetization plateaux [14–16], while it has been suggested that the zero-field ground state of quantum

spin ice may have nonzero magnetization [17].

In Section II, we introduce the model to be used and briefly outline the general properties of the Coulomb

phase and confinement transitions. The mean-field method is then described and applied to the model in

Section III. We present general arguments for the phase structure and the nature of the phase transitions in

Section IV, before concluding in Section V.

II. MODEL AND BASIC PROPERTIES

Our presentation will be based on the case of classical spin ice in a magnetic field applied along the [100]

crystallographic direction. We first introduce the nearest-neighbor model of spin ice (NNSI) that describes

the physics of the Coulomb spin liquid, before discussing perturbations, such as an applied field, and the

resulting ordering transitions.

A. Nearest-neighbor spin ice

The spin ices [3] are a family of frustrated magnetic materials with moments on the sites i of a pyrochlore

lattice, a network of corner-sharing tetrahedra. Prominent examples are the “classical” spin ices, such as

Dy2Ti2O7 and Ho2Ti2O7, which are well described in terms of classical spins Si. Each spin is subject to

strong easy-axis anisotropy along the local 〈111〉 direction n̂i which joins the centres of the two tetrahedra

sharing site i, as shown in Fig. 1. The anisotropy results from a large (of order 100 K) crystal-field splitting

between states with maximum projection along n̂i and all other states in the single-moment Hilbert space.

This large gap ensures that tunneling processes between the low-energy states are strongly suppressed,

rendering the moments effectively classical [3]. For the low temperatures of interest, it is therefore sufficient

to treat the spins as effectively constrained to Si = σi n̂i, where σ = ±1 is a classical Ising variable.

Each tetrahedron t in the pyrochlore lattice can be labeled according to its orientation εt = ±1, and

the lattice structure is such that all neighbors of t have orientation −εt. The fixed unit vector n̂i for each
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FIG. 1. A pair of tetrahedra forming part of the pyrochlore lattice. In the classical spin-ice compounds, magnetic

moments Si (shown as green arrows) lie at the sites i of the lattice and are constrained to point along the local 〈111〉

axes (dashed lines) that join the centers of adjacent tetrahedra.

pyrochlore site i, directed along the line joining the centers of its two tetrahedra, can be chosen to point

towards the tetrahedron with εt = −1, and so εtσi indicates whether Si points out of (+1) or into (−1)

tetrahedron t. With this convention, n̂i · n̂j = −1
3 and hence Si · S j = − 1

3σiσ j, for all nearest neighbors i and

j.

The minimal Hamiltonian that captures the spin-liquid physics of the classical spin ices [5] contains only

interactions between nearest-neighbor pairs 〈i j〉,

Hnn = −J
∑
〈i j〉

Si · S j =
J
3

∑
〈i j〉

σiσ j . (1)

The coupling between moments Si is ferromagnetic (J > 0), incorporating the net effect of the dipolar inter-

actions between nearest neighbors and (antiferromagnetic) exchange [3]. The effective interactions between

the Ising variables σi are therefore antiferromagnetic, and hence frustrated. Further-neighbor interactions,

both dipolar and exchange, are significant in spin ice, but can be treated as a relatively small perturbation to

Hnn [5]; we will return to these in Section II C.

Because two sites are nearest neighbors if and only if they share a tetrahedron, the interactions can be

rewritten as

Hnn =
2
3

J
∑

t

(
Q2

t − 1
)

, (2)

where
∑

t includes all tetrahedra (of both orientations) and

Qt =
1
2
εt

∑
i∈t

σi (3)
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is referred to as the (fictional) “charge” on tetrahedron t in terms of a sum over its sites i ∈ t. The energy

is therefore minimized by configurations with Qt = 0, which are those where two spins point into and two

out of each tetrahedron. Configurations that satisfy this condition are said to obey the ice rule [3, 5]; all

configurations that do so at every tetrahedron are degenerate minimal-energy states ofHnn.

Tetrahedron configurations with three spins in and one out, or vice versa, have energy ∆ = +2
3 J above

the ice-rule configurations; they have charge Qt = ±1 and are hence referred to as “monopoles”. (Note

that
∑

t Qt = 0, and so all configurations are globally charge-neutral.) For Dy2Ti2O7, the effective nearest-

neighbor coupling is 1
3 J = 1.1 K [3], corresponding to a monopole cost of ∆ = 2.2 K. The corresponding

Boltzmann weight ζ = e−∆/T is called the monopole fugacity. While the significance of the term “monopole”

is here only that they carry effective “charge” Qt, it has been argued that monopole excitations in the classical

spin ice materials in fact carry true magnetic charge [6].

For temperature T significantly below ∆, the system is effectively constrained by the ice rule, and the en-

semble of ice-rule configurations therefore determines its behavior [3]. The number of such configurations

grows exponentially with the total number of spins N, and so the entropy density remains nonzero even well

below ∆, the temperature scale at which an unfrustrated system would order. In spite of the absence of or-

der, the ensemble exhibits correlations that decay only algebraically with distance. The resulting correlated

paramagnet is referred to as a Coulomb phase [2], and is an example of a classical spin liquid [1].

The long-wavelength properties of the Coulomb phase can be captured by coarse-graining the vector

spins S to give a continuum fieldB(r) referred to as the effective “magnetic field” [2]. The ice-rule constraint

applied to S implies that B is divergenceless, while monopoles act as sources or sinks, according to an

effective Gauss law. The resulting predictions for spin–spin correlation functions are in good agreement

with neutron-scattering experiments in classical spin ice [2].

The ice-rule configurations also display interesting topological properties [5]. For our purposes, the

most important is that any pair of ice-rule configurations is connected by flipping all spins along one or

more loops. For a system with periodic boundary conditions (which we will assume), such a loop can

only change the total magnetization M =
∑

i Si if it has nontrivial winding number. For other systems that

host Coulomb phases [2], such as classical dimer models, an analogous quantity, called the “flux”, can be

defined, but does not necessarily correspond to a quantity that is so directly accessible experimentally.

B. Confinement transitions

A second important property of the Coulomb phase is that monopoles, defects in the ice rule, are decon-

fined [6]. To make this statement precise, imagine imposing a pair of monopoles with opposite charges ±1
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at tetrahedra t and t′ in a background that otherwise obeys the ice rule. Let Ct,t′ denote the set of spin con-

figurations {σi} compatible with this charge configuration. Their number Zm(rt,t′) = |Ct,t′ | is a function of

the separation rt,t′ that decreases with |rt,t′ | but reaches a finite limit as |rt,t′ | → ∞. The result is an effective

entropic interaction

Um(rt,t′) = −T lnZm(rt,t′) (4)

between the charges that is bounded, and hence allows them to be separated to infinity at finite free-energy

cost. In fact, since monopoles are charges in the continuum field B, coarse-graining predicts that the inter-

action obeys the Coulomb law, Um(r) ∼ const − |r|−1, for large |r| [2].

More generally, consider the partition function

Zm(rt,t′) =
∑

{σi}∈Ct,t′

e−V/T , (5)

where V is a perturbation that splits the degeneracy of the ice-rule configurations. This will tend to suppress

fluctuations, and can eventually, as the temperature is reduced compared to the scale of the perturbation,

drive the system out of the Coulomb phase. A transition into a phase where Um(rt,t′) increases without

limit as |rt,t′ | → ∞, and so Zm(rt,t′) → 0, is referred to as a confinement transition [7, 8]. (In terms of the

effective continuum field B, Gauss’ law implies that an imposed pair of charges must be joined by a fixed

quantity of flux. Linear confinement, where Um(r) ∼ |r| for large |r|, occurs when the flux forms a narrow

tube connecting the monopoles, with finite tension.)

While confinement may occur simultaneously with appearance of conventional symmetry-breaking or-

der [18], there is no local order parameter that provides a signature of confinement. The confinement

criterion, that Zm(rt,t′) approaches zero as |rt,t′ | → ∞ in a confined phase and conversely has a finite limit

in a deconfined phase, instead resembles the characterization of a conventional symmetry-broken phase in

terms of long-range order. This connection can be pursued further by considering the partition function with

an unconstrained charge distribution and a position-dependent fugacity ζt,

Z[ζt] =
∑
{σi}

e−V/T
∏

t

ζ |Qt |
t , (6)

in terms of which [19]

Gm(rt,t′) ≡
Zm(rt,t′)
Z

=
1
2

∂

∂ζt

∂

∂ζt′
lnZ[ζt]

∣∣∣∣∣
ζ·=0

, (7)

whereZ = Z[ζt]|ζ·=0 is the partition function restricted to ice-rule configurations. The relationship between

the monopole distribution function Gm and the fugacity ζ expressed by Eq. (7) is exactly analogous to the

fluctuation–dissipation theorem relating, for example, a spin–spin correlation function and an applied field.
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This connection motivates a mean-field theory, analogous to standard Weiss theory [20], that describes the

confinement transition in terms of an effective self-consistent fugacity.

It should be noted that the confinement distinction is only sharp in the limit ζ = 0, because any nonzero

density of monopoles screens the effective interaction U+1,−1 at large separation. There are nonetheless

implications for the critical properties away from this limit [7, 8]. If the phase transition also involves a

different type of order (such as spontaneous symmetry breaking), then it may survive for ζ > 0, but with a

different universality class [18].

C. Perturbations to NNSI

Within the nearest-neighbor modelHnn, all configurations that obey the ice rules are degenerate and the

system exhibits a deconfining Coulomb phase. To drive a confinement transition, one must add perturbations

that split the degeneracy of the ice-rule configurations. Here we consider a Hamiltonian of the form

H = Hnn +Hu +Hh , (8)

where Hh is the coupling to an applied magnetic field and Hu contains additional interactions described

below.

Coupling to a magnetic field h is described by a Zeeman term

Hh = −h · M = −h ·
∑

i

Si , (9)

where a factor dependent on the size of the magnetic moments has been included in the definition of h. The

case that we consider here has h = huz where uz is a unit vector along [100], and so h · Si = huz · σi n̂i =

± 1√
3
hσi. The coupling can therefore be written as

Hh = −
h
√

3

∑
i

ηiσi , (10)

where ηi =
√

3n̂i · uz = ±1. Using the choice described in Section II A, where n̂i points towards the

tetrahedron with εt = −1, ηi alternates in sign on successive (100) planes of spins. The component of the

magnetization along the field can likewise be expressed as

Mz =
∑

i

uz · Si =
1
√

3

∑
i

ηiσi . (11)

The perturbation Hh alone can drive a confinement transition, referred to as a Kasteleyn transition [9].

For ∆ � h � T , all spins align with the field (to the extent allowed by the easy-axis anisotropy), an

arrangement that satisfies the ice rules. Any excitation within the ice-rule states involves flipping a loop
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of spins, but starting from the fully polarized state, the only available loops span the system in the [100]

direction. Such excitations therefore have energy cost proportional to the linear system size Lz and are

suppressed in the thermodynamic limit.

The result is a strictly saturated magnetization Mz = Msat ≡
1√
3
N even for nonzero T/h (but in the limit

T/∆ → 0). Above a temperature TK, however, the energy cost is outweighed by the gain in entropy, also

∝ Lz, associated with the multitude of available paths for a spanning loop, and a Kasteleyn transition occurs

from the saturated paramagnet to the Coulomb phase. The transition is possible only because the ice rule

restricts to loop-like excitations; away from the limit T/∆ = 0, the transition is replaced by a crossover

[8, 9].

To study the interplay between the topological constraints on the magnetization, inherent in the ice-rule

configurations, and conventional ordering transitions, we also consider an additional interaction Hu that

induces spontaneous symmetry breaking. A natural choice would be the further-neighbor coupling present

in the spin-ice compounds, due to a combination of further-neighbor exchange [21] and long-range dipolar

interactions. The latter have been shown using Monte Carlo [22] to lead to a phase transition into the ordered

configuration shown in Fig. 2, which we will call the Melko–den Hertog–Gingras (MDG) state [23].

The actual perturbation Hu that we will use here is one that is simpler to treat within our mean-field

theory but that is expected to lead to an ordered phase of the same type. It is given by

Hu = +
u
2

∑
〈i j〉∈R

(3Si · S j − 1) = −
u
2

∑
〈i j〉∈R

(σiσ j + 1) , (12)

where R is the set of nearest-neighbor bonds highlighted in Fig. 2, which form a set of left-handed screw

chains. The effect of u > 0 is to reduce the strength of the interactions on these bonds and to favor the

MDG configuration shown, or the one with all spins inverted. Fig. 3 shows the energy for each of the

six configurations of a single tetrahedron that obey the ice rule, including both the applied field and the

perturbationHu.

Unlike dipolar interactions, the perturbation Hu reduces the symmetry of the lattice by picking an axis

and a chirality. The 12-fold degeneracy of the MDG state is therefore reduced by a factor of 3 × 2, but the

symmetry under inversion of all spins remains, and so an ordering transition into this state spontaneously

breaks an Ising symmetry. This transition (at h = 0) is in fact a type considered in Ref. [11], where it was

argued to be most likely of first order.

As we will show, this simplified model has a phase diagram that illustrates general features emerging

from the interplay between deconfinement, ordering, and topological constraints. In Section V, we will

briefly discuss the prospects for including more realistic perturbations in the mean-field theory.
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FIG. 2. Melko–den Hertog–Gingras (MDG) state and a perturbation that favors it. The spins (green arrows) show

the fully ordered MDG configuration, which has M = 0 and ordering wavevector along [100] (vertical). The spins

in each (100) plane are aligned (to the extent allowed by the local easy axes), and between successive planes the

magnetization rotates in the right-handed sense by 90◦. The perturbation Hu reduces the ferromagnetic coupling of

the red bonds by u, and hence favors the configuration shown, or the one with all spins inverted.

D. Mapping to extended Bose–Hubbard model

Some aspects of the phase structure can be elucidated using a mapping between classical spin ice and

an effective quantum model of hard-core bosons on a lattice [9, 10]. This proceeds by identifying the

[100] direction, along which the external field is applied, with the imaginary-time axis in a path-integral

representation of the quantum problem. The thermodynamic limit of the original classical system therefore

corresponds to the zero-temperature limit in the quantum problem.

This mapping has previously been studied in detail for the Hamiltonian Hnn + Hh [10]. The fully

polarized state (along the +z direction, say) is identified with the vacuum; flipped spins relative to this

configuration form system-spanning loops, which are viewed as the world lines of bosons. The result is

an effective model of hard-core bosons on a lattice with density ρ = 1
2 (1 − Mz/Msat) and hence chemical

potential µ ∼ −h. In general, one expects all other local terms compatible with symmetry, such as hopping
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-
2
3
h 0 -2 u

+
2
3
h 0 -2 u

FIG. 3. The six ice-rule configurations of a tetrahedron and their energies with the perturbationHu, defined in Eq. (12),

as well as an applied field h along [100] (upwards). The red bonds, as in Fig. 2, are those where the ferromagnetic

coupling is reduced by u. The configurations favored by this perturbation are therefore those in the right column

where the spins joined by the red bond are antialigned.

between nearby sites and further-neighbor interactions, with parameters related in nontrivial ways to those

of the spin model [10].

As µ is increased, the system passes from the vacuum through a quantum phase transition [13] to a

superfluid, which corresponds to the Coulomb phase of spin ice. (Off-diagonal long-range order in the

superfluid can be associated with deconfinement in the Coulomb phase [10].) For sufficiently large positive

µ, the system is driven into a fully occupied Mott insulator, with ρ = 1, corresponding to a saturated

paramagnet with Mz = −Msat in an inverted applied field. Critical properties at the phase transitions in spin

ice are, mutatis mutandis, equivalent to those in the quantum model [10].

The presence of interactions between bosons on different lattice sites also makes possible Mott insulators

with fractional filling. These can be identified with confining phases of spin ice (because they lack superfluid

order) in which the magnetization is fixed to a value less than Msat. The MDG phase, for example, is an

ordered phase with Mz = 0, and corresponds to a Mott insulator at half filling.

In general, more exotic phases such as supersolids are also possible in the effective quantum model. A

supersolid would correspond to a Coulomb phase with broken spatial symmetry; such phases have been

proposed in spin ice [26], but are not captured by the mean-field theory used here.
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III. TRANSFER-MATRIX MEAN-FIELD THEORY

The phase structure of H in Eq. (8) is expected to contain: the Coulomb phase, characterized by de-

confinement of monopoles; the saturated paramagnet, in which fluctuations are suppressed by the ice-rule

constraints; and the MDG phase, with conventional order that breaks spin-inversion and spatial symmetries.

A mean-field theory that describes all three must therefore capture the confinement–deconfinement distinc-

tion, unlike mean-field approaches based on finite clusters [27], and also respect the spatial structure, unlike

Bethe-lattice calculations [9].

Here we apply an approach that is analogous to the standard mean-field theory for the Bose–Hubbard

model [12], but is applied directly to the classical partition function, written in terms of a transfer matrix.

(For other applications of the variational method to the transfer matrix, see Refs. [28, 29].) We start by

partitioning the lattice into chains that span the system, which are the minimal units that can obey the ice

rule. An effective model is then defined for each chain, with the coupling between chains treated self-

consistently.

In standard mean-field theory for a symmetry-breaking transition [20], coupling between lattice sites is

replaced by an effective field related to the order parameter. Here, in the absence of a local order parameter,

we capture the confinement–deconfinement transition by introducing an effective self-consistent fugacity

ζmf for monopoles. Since, according to Eq. (7), the monopole distribution function can be interpreted as the

correlation function corresponding to a monopole fugacity, a nonzero ζmf implies deconfinement.

This decoupling is closely analogous to that used for the Bose–Hubbard model, where superfluid order

is captured by introducing a self-consistent source term for bosons. Following the mapping between this

quantum problem and the classical statistical mechanics of spin ice, we apply the method at the level of

the transfer matrix. It should be emphasized that this differs from the standard mean-field approach for

classical statistical systems, where one chooses a trial distribution to minimize the free energy. (The latter

method cannot be used, because a trial configuration with nonzero fugacity does not enforce the ice rule

and therefore has infinite energy.)

While we treat deconfinement using an effective mean-field fugacity ζmf, we set the true monopole

fugacity ζ = e−∆/T to zero. Nonzero ζ could straightforwardly be included in the approximation and is

analogous to standard Weiss mean-field theory in the presence of an applied magnetic field [20].
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FIG. 4. Decomposition of the MDG state into screw chains of spins, shown as thick green and blue lines, with axes

along the [100] crystallographic direction. In the MDG state, the chains are ordered in a checkerboard pattern, with

spins along each chain aligned and neighboring chains antialigned.

A. Decomposition of the pyrochlore lattice into chains

We choose to decompose the pyrochlore lattice into right-handed screw chains with axes parallel to

the [100] direction, as illustrated in Fig. 4. For our purposes, this choice has two advantages: First, the

chains span the system in the imaginary-time direction under the mapping to a bosonic model, and so the

connection to the Bose–Hubbard mean-field theory is transparent. Second, the ordered states that we aim to

describe have natural interpretations in terms of chain order: in the MDG state, shown in Fig. 4, the chains

order in a checkerboard pattern, while in the fully polarized paramagnet, all chains are aligned. Other

orderings, such as the partially polarized state observed by Lin and Kao [24], can be described in terms

of ordered configurations of the same chains, while the general approach can likely be adapted for ordered

states that are not captured by this decomposition of the lattice. (For example, McClarty et al. [25] consider

ordered states described in terms of linear chains of spins.)

The division of the lattice into screw chains has the property that each chain c has 4 neighbors, which

it meets in turn at tetrahedra in successive (100) layers. The set of tetrahedra at a given layer, at vertical
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position z, amounts to a partition of the chains into pairs, which we denote Pz. We also define Cc,z as the

chain that meets chain c in a tetrahedron at layer z. The pyrochlore lattice is symmetric under translations

by Λz = 4 layers in the [100] direction [10], and so Pc+Λz = Pc and Cc,z+Λz = Cc,z.

In the quantum mapping, the vertical direction is treated as imaginary time. Applying the mapping at

a microscopic level would therefore lead to a time-evolution operator that couples different pairs of lattice

sites at successive time steps. This “stroboscopic” [30] implementation of the hopping in the effective

quantum Hamiltonian has been shown to be irrelevant for the critical properties [10], but must be handled

with some care when implementing the mean-field theory.

B. General approach

The partition function Z can be expressed exactly in terms of a set of operators acting on degrees of

freedom associated with the chains. To each chain c is associated a pair of basis vectors, |↑〉c and |↓〉c,

representing the orientation, up or down (i.e., σiηi = ±1), of the spin at a given vertical position z along the

chain. Denoting by Hc the space spanned by these vectors, the full Hilbert space for a layer of the system

is H =
⊗

c Hc. (Note that there is a single two-dimensional Hilbert space for each chain, and so the basis

vectors are labeled only by their chain c, and not by their position z along the chain.)

The partition function can then be written as

Z = Tr
1∏

z=Lz

Tz = Tr
(
TLzTLz−1 · · · T2T1

)
, (13)

where Lz is the system size (number of layers) in the z direction and

Tz =
∏

cc′∈Pz

Tcc′ . (14)

is the transfer operator for the layer of tetrahedra at vertical position z. (We assume periodic boundary

conditions in the z direction.) The tetrahedron transfer operator Tcc′ , acting on Hc ⊗ Hc′ , accounts for the

possible configurations of the chains c and c′ on entering and leaving this tetrahedron. Using the symmetry

of the pyrochlore lattice under translations by Λz = 4 layers in the z direction, the product in Eq. (13) can

be rewritten as

Z = Tr
[
T (Λz)

]Lz/Λz , where T (Λz) =

1∏
z=Λz

Tz . (15)

In the thermodynamic limit, the partition function is therefore given by
[
ρ
(
T (Λz)

)]Lz/Λz , where ρ is the

spectral radius (largest absolute eigenvalue). It should be noted that, even if Tz is hermitian, in general

[Tz,Tz′] , 0 for z , z′ (mod Λz), and so T (Λz) is not hermitian.
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The approximation we propose is to replace the system with an effective model of decoupled chains,

whose parameters are determined self-consistently. The partition function for chain c is taken as

Zmf
c = Trc

1∏
z=Lz

Tmf
c,z , (16)

where the effective transfer operator for chain c is

Tmf
c,z =

〈
vCc,z,z

∣∣∣
Cc,z
Tc,Cc,z

∣∣∣vCc,z,z−1
〉
Cc,z

, (17)

an operator on Hc. The normalized vector
∣∣∣vc,z

〉
c ∈ Hc, which is interpreted as an ansatz for the config-

uration of chain c immediately above layer z, is determined self-consistently as the thermal state of the

one-dimensional system defined by Eq. (16). Assuming a self-consistent solution exists with at least peri-

odicity under translation in z by Λz, it is given by the normalized (right) eigenvector with largest absolute

eigenvalue of

z−Λz+1∏
z′=z

Tmf
c,z . (18)

For the types of phases that we aim to describe, it will in fact be sufficient to consider
∣∣∣vc,z

〉
c = |vc〉c

uniform along each chain. This leads to the simplification that

Tmf
c,z =

〈
vCc,z

∣∣∣
Cc,z
Tc,Cc,z

∣∣∣vCc,z

〉
Cc,z

, (19)

which is therefore hermitian. For such a solution to exist, |vc〉c must be a simultaneous eigenvector of Tmf
c,z

for all z.

C. Two-chain order in spin ice

For the case with an applied field h and a chain-favoring interaction u, the tetrahedron transfer operator

can be written explicitly as

Tcc′ = e
2√
3

h/T
|↑〉c |↑〉c′ 〈↑|c 〈↑|c′ + e−

2√
3

h/T
|↓〉c |↓〉c′ 〈↓|c 〈↓|c′

+ e2u/T |↑〉c |↓〉c′ 〈↑|c 〈↓|c′ + e2u/T |↓〉c |↑〉c′ 〈↓|c 〈↑|c′

+ |↑〉c |↓〉c′ 〈↓|c 〈↑|c′ + |↓〉c |↑〉c′ 〈↑|c 〈↓|c′ .

(20)

Each term corresponds to one of the six ice-rules configurations of the tetrahedron, illustrated in Fig. 3,

and is associated with a Boltzmann weight implementing the termsHh andHu in the Hamiltonian. (Terms

breaking the ice rule could also be included; we are here treating such configurations as having zero Boltz-

mann weight.) The first four terms correspond to cases where the two chains maintain their configurations
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after passing through the tetrahedron—i.e., the two spins on each chain are aligned—while in the last two

terms the chains exchange orientations.

Taking the inner product in Hc′ gives

Tmf
c,z =

[
1
2

(1 + mmf
c′ )e

2√
3

h/T
+

1
2

(1 − mmf
c′ )e2u/T

]
|↑〉c 〈↑|c

+

[
1
2

(1 − mmf
c′ )e−

2√
3

h/T
+

1
2

(1 + mmf
c′ )e2u/T

]
|↓〉c 〈↓|c

+ ζmf
c′ |↑〉c 〈↓|c +

(
ζmf

c′
)∗
|↓〉c 〈↑|c ,

(21)

where the expectation values

mmf
c′ = 〈vc′ |

(
|↑〉 〈↑| − |↓〉 〈↓|

)
|vc′〉 (22)

ζmf
c′ = 〈vc′ |↓〉 〈↑|vc′〉 (23)

are mean fields describing the magnetization and density of monopoles on chain c′ = Cc,z. The effective

model for chain c, described by the transfer operator Tmf
c,z , involves an applied field that is a function of mmf

c′

and an effective monopole fugacity ζmf
c′ .

This is the crux of the approximation: The exchange of orientation between chains, described by the last

two terms of Eq. (20), has been replaced by terms where a single chain flips orientation, thus creating or

destroying a monopole. The criterion for deconfinement, that a distant pair of monopoles can be inserted

with finite free-energy cost, is trivially satisfied whenever ζmf
c′ , 0. (In the analogous mean-field theory for

the Bose–Hubbard model [12], the expectation value of the bosonic annihilation operator is used as a mean

field.)

In general, the solution of the self-consistent approximation requires finding simultaneous eigenvectors

of Tmf
c,z , given in Eq. (21), for all the values of z. For the types of ordered phases expected in our model

of spin ice, however, some further simplifications are possible. In particular, to describe the MDG and

saturated phases, it is sufficient to divide the chains into two “chain sublattices”, which we label 1 and

2, with one chain of each type meeting in every tetrahedron, as illustrated in Fig. 4. The operator Tmf
c,z

is therefore independent of z, and it is sufficient to find |v1〉 and |v2〉 such that |vc〉c is the eigenvector of

Tmf
c = 〈vc′ |c′ Tcc′ |vc′〉c′ with largest eigenvalue [31], for both c = 1, c′ = 2 and vice versa. Because Tmf

c is

hermitian, this is equivalent to maximizing

Θ(|v1〉 , |v2〉) = 〈v1|1 〈v2|2 T12 |v1〉1 |v2〉2 (24)

with respect to normalized |v1〉 and |v2〉.

As an aside, we note that this amounts to maximizing the matrix element of the layer transfer operator

Tz in the subspace of factorizable vectors |v〉 =
∏

c |vc〉c. In these terms, it is clear how this is related
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to the mean-field theory for the Bose–Hubbard model, where one minimizes the matrix element of the

Hamiltonian H . (Recall the standard connection between classical and quantum statistical mechanics,

where e−τH is the evolution operator in imaginary time τ.) In both cases, the operator is hermitian and so

the matrix element is bounded by its extremal eigenvalue, but only for the BH model is the Hamiltonian

constant in time and the matrix element bounded by the true ground-state energy. In the present case, the

product of extremal matrix elements
∏

z 〈v| Tz |v〉 provides an approximation to the exact partition function,

but this approximation is not variational.

To maximize Θ(|v1〉 , |v2〉), we express both vectors as

|vc〉 = |↑〉 cos
θc

2
+ |↓〉 eiφc sin

θc

2
, (25)

where 0 ≤ θc ≤ π and −π ≤ φ < π, in terms of which

Θ(|v1〉 , |v2〉) =
1
2

(1 + cos θ1 cos θ2) cosh
2h
√

3T
+

1
2

(cos θ1 + cos θ2) sinh
2h
√

3T

+
1
2

(1 − cos θ1 cos θ2)e2u/T +
1
2

sin θ1 sin θ2 cos(φ1 − φ2) . (26)

The distinct maxima of this expression correspond to phases of the mean-field theory, shown in Fig. 5. The

phase boundaries can be found by expanding in small deviations from the ordered phases and identifying

the points where they cease to be stable maxima. (We have verified numerically that the ordered states

maximize the matrix element globally if and only if they are local maxima.)

At low temperature, there are three confined phases with different, fixed, values of the magnetization

Mz

Msat
=

1
2

(
mmf

1 + mmf
2

)
=

1
2

(cos θ1 + cos θ2) . (27)

For e
2√
3
|h|/T

> e2u/T + 1, the maximum of Eq. (26) has θc = 0 (h > 0) or θc = π (h < 0) for all c, representing

a fully polarized paramagnet with Mz = ±Msat. For eu/T > 2 cosh 2h√
3T

, it has θc = 0 for c = 1 and θc = π for

c = 2, or vice versa. The two chain sublattices therefore have opposite orientations, mmf
1 = −mmf

2 , and the

total magnetization vanishes. Comparison with Fig. 2 confirms that this corresponds to the MDG phase.

At higher temperature, the maximum has 0 < θc < π for all c and φ1 = φ2, corresponding to a paramagnet

with continuously varying magnetization. This last phase is deconfined, having ζmf
c = e−iφc sin θc , 0, and

is therefore identified as the Coulomb phase.

Fig. 5 also shows the magnetization Mz evaluated at the maximum of Θ(|v1〉 , |v2〉). The resulting phase

diagram consists of a set of low-temperature confined phases with fixed magnetization, surrounded by the

Coulomb phase in which the magnetization varies smoothly with the parameters. The MDG phase consists

of a lobe, whose width, i.e., the range of fields for which it is stable, decreases with increasing temperature.
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FIG. 5. Mean-field phase diagram, with magnetization shown on the color scale. The three low-temperature phases

are, from top to bottom, a saturated paramagnet with Mz = +Msat, the Melko–den Hertog–Gingras (MDG) phase [22]

with Mz = 0, and a saturated paramagnet with Mz = −Msat. At higher-temperatures is a Coulomb spin liquid whose

magnetization is a smooth function of the applied field h. (Dotted lines are contours of constant magnetization.)

As a benchmark for the method, we note that our model reduces for u = 0 to that considered by Jaubert

et al. [9] (in the limit of zero monopole fugacity). In this case, one can restrict to confined phases with all

chains equivalent (i.e., |v1〉 = |v2〉), and it is straightforward to show that the magnetization is given by

Mz

Msat
=


sgn h if T ≤ TK

sinh 2h√
3T

2−cosh 2h√
3T

if T > TK,
(28)

where TK = 2h√
3 log 2

. Our method therefore agrees, in this case, with the results of the Bethe-lattice calcula-

tion [32].

IV. DISCUSSION

We have shown that applying mean-field theory to the model defined by H in Eq. (8) produces a phase

diagram containing the Coulomb phase [2] as well as a fully-polarized paramagnet [9] and the MDG phase

[22]. In this section, we argue that the general features in the phase diagram of Fig. 5, and in particular

the lobe structure, can be understood by considering the interplay of confinement and flux in the Coulomb
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phase. We first consider the limit of vanishing monopole density, approximately valid at temperatures well

below ∆, before discussing the qualitative effect of including monopoles.

A. Structure of phase diagram

The crucial observation underlying the phase structure is that confinement implies suppression of fluctu-

ations in the magnetization M, and hence vanishing uniform magnetic susceptibility χ. By contrast, phases

where monopoles are deconfined, such as the Coulomb phase, are magnetizable (i.e., have nonzero sus-

ceptibility χ). This relationship between confinement and vanishing susceptibility (or, more generally, flux

variance) occurs in any local model with a confining phase [33].

The lobe structure of the phase diagram follows immediately from this observation. Starting within

a confining phase and changing the applied field will eventually tip the balance in favor of the Coulomb

phase, whose free energy is quadratic in the field. The higher entropy in the Coulomb phase implies that

the range of applied fields for which a given ordered state is favored narrows as the temperature increases.

The confined phases therefore comprise lobes with fixed magnetization, each centered around favorable

values of the applied field. (The fully polarized phases are exceptions, extending to arbitrarily large |h| as

a result of their saturated magnetization.) This qualitative structure is confirmed in the mean-field phase

diagram, Fig. 5. With more realistic interactions, we expect more lobes with other commensurate values of

magnetization to appear in the gaps between the lobes shown, as indeed seen in the MC results of Ref. [24].

The general phase structure can also be understood through the mapping to a quantum model of bosons,

described in Section II D and Ref. [10]. For an extended hard-core Bose–Hubbard model in the grand

canonical ensemble, the phase diagram contains a set of Mott-insulator lobes at small hopping, consisting

of different possible ordered states [12, 13, 35, 36]. Returning to spin ice, each of these corresponds to a

confined phase with order in the spin degrees of freedom and fixed magnetization.

The susceptibility strictly vanishes in the ordered phases only in the thermodynamic limit at zero

monopole fugacity ζ = e−∆/T . With finite monopole cost, confinement of monopoles is no longer precisely

defined and the susceptibility becomes nonzero, though remains exponentially small at low temperature.

The plateaux are therefore rounded for nonzero ζ. Those phases that have conventional order, such as the

MDG phase, remain separated from the paramagnet by a symmetry-breaking transition.
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B. Phase transitions

Certain properties of the phase transitions can also be determined on general grounds, following similar

arguments to those for the Bose–Hubbard model [12, 13], but with density replaced by magnetization. We

first note that phase transitions can be classified by whether the magnetization changes across the transition.

The magnetization necessarily changes in the case where the ordered phase has saturated magnetization,

but it can also change across a transition into a magnetically ordered phase.

At the tip of the lobe, the magnetization is identical in the two phases (ordered within and Coulomb

outside), and so this is the only point at which the magnetization stays the same across the transition. The

argument is that, inside the ordered phase but sufficiently close to the tip, an arbitrarily small change in

the applied field pushes the system into the Coulomb phase, regardless of its sign. If the two phases had

different magnetizations at this point, their linear coefficients in the free energy would be different and this

could not be the case. (This argument is essentially identical to the corresponding one for the Bose–Hubbard

phase diagram [12].)

For any continuous transitions with fixed magnetization, critical properties can be calculated using the

approach of Ref. [11], but with a modified projective symmetry group due to the nonzero magnetization.

While MDG found a strongly first-order transition [22] and the transition into the partially polarized phase

was seen to be of first order in Ref. [24], it remains possible that transitions in the presence of different

perturbations could be continuous. (The possibility of unconventional transitions between a superfluid and

fractional Mott insulators has been discussed in the extended Bose–Hubbard model [37].)

When the magnetization changes across the transition, i.e., everywhere except at the tip, the transition

is in the same universality class as the Kasteleyn transition [9, 38]. It should be noted, however, that

only the transitions into the saturated phases, with Mz = ±Msat, are true Kasteleyn transitions, which are

distinguished by the complete absence of fluctuations on the ordered side.

V. CONCLUSIONS

We have presented a mean-field theory designed to study confinement transitions, based on the analogy

between the confinement criterion and long-range order in conventional ordering transitions. The method

has been applied to a simplified model of classical spin ice and shown to produce a phase diagram con-

taining, besides the Coulomb spin liquid [2], a set of magnetization plateaux. These include the saturated

paramagnet [9] as well as the MDG phase expected to occur in dipolar spin ice at low temperature [22]. We

have argued that the general properties of the phase diagram follow from the interplay between confinement
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and magnetization that characterizes the ice-rule states and pointed out the analogy with the phase diagram

of the extended Bose–Hubbard model [12].

The simplified model that was studied here reproduces the MDG phase and is particularly amenable to

the mean-field approach. It would be desirable to extend the approach to allow for more realistic further-

neighbor interactions between spins, particularly the dipolar interactions that are known to be significant

in the classical spin-ice materials. Further-neighbor interactions can also stabilize the partially magnetized

phase observed using MC in Ref. [24]. (This phase can be described in terms of the chains shown in Fig. 4,

but distinguishes four chain sublattices, rather than two.)

A transfer operator written in the form of Eq. (20) has the limitation, however, that it can represent

interactions only within a single tetrahedron. (One cannot even define the layer transfer operator for general

interactions.) A potential route to include further-neighbor interactions is through an additional mean-field

decoupling, replacing a pairwise interaction Vi jσiσ j with terms such as Vi jσi〈σ j〉, representing a mean field

acting on site i. This extension, and others such as including nonzero monopole fugacity ζ, are left to future

work.
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