
Toward Process Control from Formal Models

of Transformable Manufacturing Systems

Otto J. Bakker a, Jack C. Chaplin a, Lavindra de Silva a, *, Paolo Felli a,
David Sanderson a, Brian Logan b, and Svetan Ratchev a

a Institute for Advanced Manufacturing, The University of Nottingham,
University Park, Nottingham, NG7 2RD, UK

b School of Computer Science, The University of Nottingham,
Jubilee Campus, Nottingham, NG8 1BB, UK

* Corresponding author. Tel.: +44-(0)115-748-6352; fax: +44-(0)115-951-3666.
E-mail address: Lavindra.DeSilva@nottingham.ac.uk

Abstract

The automation and flexibility of production systems is a key step towards improved profitability and competitiveness in
high labour cost areas, when producing high-complexity, low-volume products. In the Evolvable Assembly Systems (EAS)
project, the ‘manufacturability’ (or ‘realisability’) and ‘control’ algorithms were introduced to accommodate the batch-size-of-
one production of highly customisable products. These algorithms enable checking whether a production line can manufacture
a given product with its available set of resources, and how the product should be manufactured, e.g. which resources to use,
and when. To this end, the authors formally define production recipes, which represent products, and manufacturing resources
which make up a manufacturing facility. This paper re-defines these notions in the ISO-standard EBNF (Extended Backus-
Naur Form) notation, and adapts the the manufacturability and control algorithms to accommodate the new definitions. The
proposed algorithms and data structures reflect more closely the ones that are used in an implemented software tool. This
paper also reports a method by which recipes and resources could be used to generate manufacturing process controllers in
the Business to Manufacturing Markup Language (B2MML) standard. In doing so, we take a step toward a complete path
from the formal specification of a manufacturing facility and the products to be manufactured, to the automatic generation
executable process plans.

1 Introduction and Context

Advanced manufacturing is the result of the trend towards
the integration of informatics with traditional manufactur-
ing systems. These dynamic, adaptive, decentralised systems
are used to manufacture product lines with a shorter time
to market, increased product diversity, greater specialisation,
and shorter lifecycles. A number of government-backed ini-
tiatives have arisen in recent years to support this trend, in-
cluding the German Industrie 4.0 initiative [4, 14], EU EF-
FRA Roadmap [2], US DMDII Strategic Plan [5], and the re-
cent Japanese “Connected Manufacturing” Industrial Value
Chain Initiative [3]. Academic research in the area includes
reconfigurable manufacturing systems [15, 12] with ‘plug and
produce’ technologies [20, 7], holonic manufacturing [16, 8],
organic computing [17], and the related evolvable production
systems and evolvable assembly systems [19, 18, 20, 9], among
others.

The Evolvable Assembly Systems project at the University
of Nottingham aims to investigate advanced manufacturing
systems that are self-adaptive [21] and able to address the
‘batch-size-of-one’ problem, where each product to be assem-
bled may be unique [9]. In [10], a formal approach was pro-
posed to determine both whether a particular product is man-
ufacturable given a set of available manufacturing resources
(the manufacturability problem), and how the product should
be manufactured using those resources (the control problem).

Their approach takes as input the product in the form of a
recipe specifying the operations necessary to manufacture the
product and transforms the recipe into a controller specify-
ing the detailed steps to be executed by each manufacturing
resource in the production line. In this paper the abstract
representations of [10] are linked to concrete ISA-95 stan-
dards [6], and their algorithms are converted into a format
that manipulates data structures that are defined using the
standard ISO/IEC Extended BNF language [1], which also
reflect more closely the data structures that are used in the
actual implementation.

We first describe an example system in Section 2 that will
serve as a running example for this paper. Section 3 defines
production recipes and manufacturing resources in EBNF no-
tation, which are used as input to the algorithms that check
manufacturability and synthesise an abstract controller. Sec-
tion 4 explains how a resulting abstract controller can be
translated to a more suitable format for controlling industrial
processes, and Section 5 provides the detailed algorithms for
checking manufacturability and for synthesising an abstract
controller. Section 6 summarises the paper.

2 Running Example

The Precision Assembly Demonstrator (PAD) [7] is based on
the Modutec highly flexible assembly platform by Feintool.

1

Load and Unload

Workspace

1

Robot

Arm 1

Tool-Changing

Rack

Robot

Arm 2

Workspace

2

Testing

Station

Figure 1: The Precision Assembly Demonstrator from the
front with safety screens raised (top), and its diagrammatic
layout (bottom).

It consists of a shuttle transport system linking modular sta-
tions to a loading/unloading area; two KUKA six-axis robotic
arms with associated workspaces; a shared tool changing rack;
and a testing and inspection station. The modules and their
layout is shown in Figure 1.

The parts to be assembled into a product are mounted on
a pallet. At the loading/unloading area, the system operator
can place the pallet on a shuttle that runs along a linear
transfer system. In Figure 1, the six resources corresponding
to the stations in the PAD are configured as follows: the pallet
is first removed from the shuttle and placed at ‘Workspace 1’,
a working area for ‘Robot Arm 1’, where the robot works on
it before returning it to the shuttle; the ‘Tool-Changing Rack’
is shared between the two robot arms and holds a number of
end effectors, including grippers and suction tools, that are
used for product assembly; ‘Robot Arm 2’ and ‘Workspace
2’ are a mirror image of the previous robot and workspace,
but otherwise identical; the ‘Testing Station’ allows vision
and mechanical tests to be performed on the product once
it has been assembled; the product is then returned to the
loading/unloading area where an operator removes it from
the system.

The product that is assembled with the PAD is a detent
hinge for the cab interior of a truck. In the basic hinge, inte-
rior and exterior plastic leaves are fitted together and linked
with a metal hinge pin. More complex hinges can be cre-
ated by adding up to three metal ball–spring pairs within the
interior leaf to adjust the engaging force. Additional end ef-
fectors may be used to apply glue to secure the hinge pin, or
to engrave serial codes onto the leaves.

3 System Description

This section provides definitions for manufacturing resources
which make up the manufacturing system, and for production
recipes which represent products. These definitions are pro-
vided in the ISO/IEC Extended BNF language [1], and are

〈Operation〉 ::= 〈ObservableOp〉 | 〈ManufactOp〉
〈CompositeOp〉 ::= 〈Test〉 (“;” 〈Step〉)∗

〈Step〉 ::= 〈ParallelStep〉 | 〈ObservableOp〉
〈ParallelStep〉 ::= 〈ObservableOp〉

(“‖” 〈ObservableOp〉)+
〈Test〉 ::= 〈ObsOperationName〉 〈InputParts〉

〈ObservableOp〉 ::= 〈ObsOperationName〉 〈InputParts〉
〈OutputParts〉 | 〈ObsOperationName〉
“()” 〈OutputParts〉

〈ManufactOp〉 ::= 〈ObsOperationName〉 |
〈InternalOperation〉

〈InternalOperation〉 ::= 〈IntOperationName〉 | nop |
〈Transfer〉

〈Transfer〉 ::= in “:” integer+ | out “:” integer+

〈InputParts〉 ::= “(” 〈Parts〉 “)”
〈OutputParts〉 ::= “(” 〈Parts〉 “)”

〈Parts〉 ::= 〈Part〉 (“,” 〈Part〉)∗
〈Part〉 ::= string

〈ObsOperationName〉 ::= unique string
〈IntOperationName〉 ::= unique string

〈Recipe〉 ::= 〈InitialRecipeState〉 “{”
〈RecipeTrans〉
(“,” 〈RecipeTrans〉)∗ “}”

〈RecipeTrans〉 ::= “(” 〈RecipeState〉 “,”
〈CompositeOp〉 “,”
〈RecipeStateTo〉 “)”

〈InitialRecipeState〉 ::= 〈RecipeState〉
〈RecipeState〉 ::= string

〈Resource〉 ::= 〈InitialRecipeState〉 “{”
〈ResourceTransition〉
(“,” 〈ResourceTransition〉)∗ “}”

〈ResourceTransition〉 ::= “(” 〈ResourceState〉 “,”
〈ManufactOp〉 “,”
〈ResourceStateTo〉 “)”

〈InitialRecipeState〉 ::= 〈ResourceState〉
〈ResourceState〉 ::= string

〈Topology〉 ::= 〈InitialTopState〉 “{”
〈TopTrans〉
(“,” 〈TopTrans〉)∗ “}”

〈TopTrans〉 ::= “(” 〈ResStates〉 “,” 〈ResOps〉
“,” 〈ResStatesTo〉 “)”

〈InitialTopState〉 ::= 〈ResStates〉
〈ResStatesTo〉 ::= 〈ResStates〉

〈ResStates〉 ::= 〈ResourceState〉+
〈ResOps〉 ::= 〈ManufactOp〉 (“‖” 〈ManufactOp〉)∗

〈ResParts〉 ::= 〈ResourceParts〉+
〈ResourceParts〉 ::= “(” 〈Parts〉 “)” | “()”

Figure 2: The EBNF syntax of operations and composite op-
erations (above the double lines), and of recipes and resources
(below the double lines).

based on the formal definitions in [10].

3.1 Resources and Topologies

In a manufacturing system, a (manufacturing) resource is a
piece of hardware with a top-level controller (and potentially
sub-controllers), which is typically a Programmable Logic
Controller (PLC). The PLC controls the resource, sending
signals to the hardware to perform actions, and collecting
readings from sensors. Manufacturing resources are either
production resources, which primarily perform observable op-
erations on parts, or transport resources, such as a conveyor
belt or shuttle system, which perform internal operations that
transport parts between resources. Production resources can
also perform internal operations, which would then enable
operations such as data logging (e.g. from sensors), or main-
tenance actions.

Resources are defined as state diagrams, or more specifi-
cally, as labelled transition systems (LTSs), where nodes cor-
respond to the states of the resource, and edges correspond to
operations that can be performed in the relevant states. Fig-
ure 2 defines resources and their operations as EBNF gram-
mars.

2

Figure 3: Simplified labelled transition systems modelling the
resources in our assembly platform, and an example of a recipe
(top left). For brevity, the guards after the tests have been
omitted. State s0 and A are initial states.

For example, the LTSs representing the resources in the
PAD are shown in Figure 3; when there are multiple transi-
tions from one state to another they are shown on a single
edge, separated by commas. Resource R1 is able to load a
new pallet, and then either remove a (potentially partially-
)completed product for disposal or rework, or store it for de-
livery. The labels in:1 and out:1 represent transfer operations,
which allow a part to be transferred between resources, from
the one performing the out operation into the one perform-
ing the matching in operation. The nop labels denote special
“no operation” tasks, which simply do nothing to the items
and represent the machine idling. Resources R2 and R3 are
the two robotic arms: R2 can either take in a pallet on in:2
and separate the hinge and pin, outputting each on a separate
out:2 transition, or accept each of those two parts on separate
in:2 transitions, insert the pin into the hinge barrel, and pro-
duce a single part on out:2. Resource R3 can either engrave
a serial number or apply glue to a given part, and R4 is the
testing station, which can perform a vision test and then pos-
sibly a force test. Note that (i) the vision test checks that the
hinge is correctly assembled, so it must be performed before
a force test, and (ii) it is not possible for the machine to idle
between the two tests, hence the lack of a nop transition.

While resources R1 to R4 are production resources, R5 is a
transport resource which models the possible routing of parts
by the shuttle system. The transitions represent the ‘allow-
able’ routes between production resources; e.g., although a
newly loaded pallet can be transported from R1 to R2, a
freshly glued part cannot be transported from R3 to R4 in
order to prevent it becoming stuck to the testing equipment.
Observe that the out transfer operations of production re-

sources (e.g. out:1 in R1) match with in transfer operations
of transport resources (e.g. in:1 in R5) and vice-versa.

These resources together form the production topology, for-
mally defined as the cross product of the LTSs representing
the resources, excluding transitions which have no matching
in (e.g. in:2) and out (e.g. out:2) transfer operations [10].

3.2 Production Recipes

The products to be assembled on the system are defined
through production recipes. A recipe includes the constituent
parts and the operations required to process and assemble
these parts into the final product, any tests that must occur
to verify the product during and at the end of the manufac-
turing process, and how to respond to the results of tests (e.g.,
whether a partially completed product should be reworked or
discarded following a test). The recipes specify how, but not
where, these operations and checks should be performed in
order to assemble a given product.

Recipes are formalised as LTSs, where the labels represent
composite operations and nodes are states of parts in the as-
sembly. Composite operations represent the observable op-
erations to be performed by the resources on the parts, and
an observable operation specifies the parts that are consumed
and produced by it. Operations can be preceded by guards
(tests), which test whether the product meets certain prop-
erties (e.g. whether a hole has the correct depth), and they
can be combined in sequence or in parallel. Figure 2 defines
recipes and composite operations as EBNF grammars. Sym-
bol ‘;’ denotes sequential composition, and ‘‖’ denotes parallel
composition.

Figure 3 shows an example hinge recipe that is to be as-
sembled by the PAD. The first composite operation (between
states A and B) loads a new fixture pallet f , separates the
pin p and hinge h, applies glue to p, engraves a serial number
on h, and inserts p into h to form h2, which is then visually
examined, generating data. At this point, a test is performed
against the vision data (the guards are not shown in order
to improve the readability of the diagram), and based on the
result the product is either removed from the system or a
force analysis is performed. The outcome of performing a test
against the force data generated similarly determines whether
the product is removed or sent to storage for delivery.

3.3 Manufacturability and Control

We now informally define what it means for a production
recipe to be manufacturable on a production topology, or in
other words, when it is possible to manufacture a product
using the supplied set of connected manufacturing resources.
A recipe Recipe is said to be manufacturable on a topology
Topology if it is possible to associate states in the topol-
ogy to states in the recipe, by taking into account the parts
currently present in the resources, such that each transition
(composite operation) in the recipe can be executed by tran-
sitions (manufacturing operations) in the topology, and the
same is possible for the entire recipe, irrespective of the out-
come of guards and the ‘path’ through recipe transitions that
might be followed at runtime. If a recipe is manufacturable
on a topology, then there is an associated controller (or “so-

3

Figure 4: A graphical illustration adapted from [10], showing
a single transition in a controller, between the first two states
in the recipe of Figure 3. The dotted states are “intermediate”
steps. The overall transition in the controller is labelled with
(i) the entire composite operation in the first recipe transition,
and (ii) the complete sequence of transitions in the topology
that are needed to execute the composite operation. Dashes
are used in place of nop operations; symbol ε denotes the
absence of parts; and the five vertical numbers (resp. strings)
in states correspond to the states of (resp. parts in) the five
resources.

lution”) which specifies how resources should be orchestrated
in order to manufacture the product.

Intuitively, a controller is a state diagram with the same
structure as the recipe. A controller is obtained by annotat-
ing each recipe state with the associated resource states (i.e.,
topology state) and the parts being worked on in those states,
and annotating each recipe transition with the sequence of
topology transitions (or the “solution”) that need to be car-
ried out in order to execute the recipe transition.

Figure 4 depicts a part of a controller, corresponding to the
first two recipe states in Figure 3. Each row in parenthesis on
a transition represents one topology transition, and each ele-
ment within the row represents the operation to be performed
by the corresponding resource. For example “(-,-,applyglue,-
,-)” indicates that the third resource should apply glue and
that the rest of them should idle.

4 Controllers for Industrial Pro-
cesses

In this section, we explain how a controller defined in the pre-
vious section could be converted to the Business to Manufac-
turing Markup Language (B2MML) [6] standard. B2MML
implements the ANSI/ISA-95 (Enterprise-Control System
Integration) standards in XML, and is increasingly being
adopted in the manufacturing industry [13]. B2MML de-
fines the data and process models that form the interface to
manufacturing execution systems (MESs) [22], which manage
and monitor the work-in-progress on low-level shop floor con-
trol systems, via PLCs for example. Thus, B2MML provides
higher-level enterprise control systems, such as multi-agent
systems, with a convenient interface to hardware. The part
of B2MML that we focus on here is the operations-schedule,

〈OperationsRequest〉
〈OperationsType〉 Loading 〈/OperationsType〉
〈ID〉 Load 〈/ID〉
〈Desc〉 Load a fresh part 〈/Desc〉
〈SegmentReqmnt〉
〈ID〉 load()(f) 〈/ID〉
〈Desc〉 First instance of the load type 〈/Desc〉
〈SegmentParam〉
〈ID〉 Integer 〈/ID〉
〈Value〉 3 〈/Value〉
〈Desc〉 Load from third shelf 〈/Desc〉

〈/SegmentParam〉
〈MaterialReqmnt〉
〈MaterialUse〉 Produced 〈/MaterialUse〉
〈Quantity〉 1 〈/Quantity〉
〈MaterialReqmntProperty〉
〈ID〉 f 〈/ID〉
〈Value〉 Fixture 〈/Value〉

〈/MaterialReqmntProperty〉
〈/MaterialReqmnt〉

〈/SegmentReqmnt〉
〈/OperationsRequest〉

Figure 5: A B2MML operations-request for the load()(f) op-
eration in the recipe in Figure 3.

which specifies each of the operations to be performed in se-
quence.

The operations-schedule contains the Bill of Process, Bill
of Materials, and Bill of Tooling. To accommodate this
information, an operations-schedule is divided into one or
more operations-requests, each describing an operation. Each
operations-request consists of one or more segment require-
ments, which subdivide the operation into smaller, lower-level
tasks (for example, the operations-request may be a ‘pick &
place’ operation, resulting in segment requirements for mov-
ing the gripper to the object, grasping it, then moving it
elsewhere, and releasing it). Each segment requirement can
have a number of parameters that will be passed along to
the equipment controllers (for example, variables specifying
which gripper or drill bit to use, or the gripper separation or
depth of cut required). The segment requirements can also in-
clude materials requirements, specifying the bill of materials
for each step (which may also have parameters); and equip-
ment requirements, specifying the bill of tooling for each step
(again, these may have parameters). The segment parameters
differ from the materials/equipment requirements in that the
former are values to be sent to lower-level controllers, whereas
the latter can include requirements that must be fulfilled be-
fore the operation can proceed, which could be verified by an
external RFID sensing system, for example.

We use B2MML operations-requests to encode the opera-
tions (both observable and internal) as well as the manipu-
lation of parts as specified in the controller. Basically, there
is an operations-request for each operation in the considered
controller. The specifications shown in Examples 5 and 6 are
respectively the task to load a fixture/pallet of parts into the
system from a shelf (the pallet is identified as a materials re-
quirement, and the shelf location as a segment parameter),
and the task to separate a fixture that was previously loaded
into its constituents. Note that in Example 6, we use the
MaterialUse tag in each material requirement in two ways:
we can both specify the inputs to the system, which ensures
that the part is present before the operation begins, and also
use it to specify the outputs of the operation, which together
with the inputs ensure the correct part/material-flow for the

4

〈OperationsRequest〉
〈OperationsType〉 Production 〈/OperationsType〉
〈ID〉 Separate 〈/ID〉
〈Desc〉 Separate pin and hinge from fixture 〈/Desc〉
〈SegmentReqmnt〉
〈ID〉 separate(f)(p,h) 〈/ID〉
〈Desc〉 First instance of the separate type 〈/Desc〉
〈SegmentParam〉
〈ID〉 String 〈/ID〉
〈Value〉 Gripper3 〈/Value〉
〈Desc〉 Use Gripper3 from tool rack 〈/Desc〉

〈/SegmentParam〉
〈MaterialReqmnt〉
〈MaterialUse〉 Consumed 〈/MaterialUse〉
〈Quantity〉 1 〈/Quantity〉
〈MaterialReqmntProperty〉
〈ID〉 f 〈/ID〉
〈Value〉 Fixture 〈/Value〉

〈/MaterialReqmntProperty〉
〈/MaterialReqmnt〉
〈MaterialReqmnt〉
〈MaterialUse〉 Produced 〈/MaterialUse〉
〈Quantity〉 1 〈/Quantity〉
〈MaterialReqmntProperty〉
〈ID〉 p 〈/ID〉
〈Value〉 Pin 〈/Value〉

〈/MaterialReqmntProperty〉
〈/MaterialReqmnt〉
〈MaterialReqmnt〉
〈MaterialUse〉 Produced 〈/MaterialUse〉
〈Quantity〉 1 〈/Quantity〉
〈MaterialReqmntProperty〉
〈ID〉 h 〈/ID〉
〈Value〉 Hinge 〈/Value〉

〈/MaterialReqmntProperty〉
〈/MaterialReqmnt〉

〈/SegmentReqmnt〉
〈/OperationsRequest〉

Figure 6: A B2MML operations-request for the
separate(f)(p, h) operation in the recipe in Figure 3.

finished product.
Once the individual operations have been defined as

B2MML operations-requests, the controller is expressed as
one or more B2MML operations-schedules. In each of these,
operations-requests are included in the required sequence,
with added equipment requirements to tie them to the ap-
propriate manufacturing resources. Observe from Figure 4
that the correct sequence of operations to perform and the
resources which are responsible for them are both specified
in the controller. One controller may amount to multiple
operations-schedules because the former could have choice
points like the ones shown in the recipe of Figure 3; thus,
one operations-schedule represents a single execution path
through the controller.

5 Algorithms for Manufacturability
and Control

In this section we present algorithms describing how the
manufacturability of a given production recipe Recipe on a
precomputed production topology Topology is determined.
The algorithms also briefly show how in answering the ques-
tion of manufacturability, the solutions found (if any) for in-
dividual composite operations in the recipe are stored as part
of a controller, which details how the available manufacturing
resources should be orchestrated in order to manufacture the
product. The algorithms in this section are adapted from the
ones in [10] to use the EBNF data structures defined in Figure
2.

The top-level algorithm, Algorithm 1 works as follows.
Given a state of the recipe RecipeState (e.g. the initial
state of the recipe) and the group of resource states (i.e., a
state of the topology) ResStates representing the state of
the entire manufacturing facility at a given point in time, the
algorithm determines, for each recipe transition of the form

(RecipeState, CompositeOp, RecipeStateTo),

whether the available resources can (hypothetically) ex-
ecute CompositeOp from their corresponding states as
indicated in ResStates. The latter is checked via Algorithm
2, which iterates over the groups of (parallel) manufacturing
operations ResOps that are executable from ResStates by
the various resources, to find a group that can perform the
first step (of parallel operations) in CompositeOp. More
specifically, each topology transition of the following form is
considered:

(ResStates, ResOps, ResStatesTo),

where the last element is the group of resource states
that result from executing ResOps. Checking whether the
first group of parallel operations in CompositeOp is exe-
cutable by ResOps, amounts to checking whether the former
can be allocated to ResOps. This holds if two conditions
are met: (i) there is a one-to-one mapping from the names
of the parallel recipe operations to the names of the parallel
resource operations, and (ii) the parts required as input by
the recipe operations are currently present in the resources
that were mapped to those operations. If the allocation is
successful, then ResParts2 is not false, and it contains the
group of parts that will be produced by the recipe operations
(e.g. the input parts with some modifications).

If ResOps indicates that parts need to be transferred be-
tween pairs of resources, i.e., it has pairs of matching in and
out transfer operations (e.g. in:3 and out:3), one part per
pair is transferred from the resource performing the out op-
eration to the one performing the in; the new locations of
the parts in the manufacturing system are then referred to as
ResParts2.

Next, the group of resource states ResStatesTo, i.e., the
states that would result from performing the group of re-
source operations ResOps, is annotated with the new loca-
tions of parts, and ResOps is appended to the current plan
CurrPlan that is being built (which is later stored as part
of the controller, if the composite operation being considered
does turn out to be executable). The algorithm is then called
recursively in order to check the executability of the remain-
ing steps in CompositeOp above, until there are no steps
left to process.

If, on the other hand, ResOps contains only internal op-
erations, such as transfer operations (to which it will not be
possible to allocate the first step (group)—of observable par-
allel operations—in CompositeOp), the algorithm checks
whether the first and subsequent steps in CompositeOp
could instead be allocated after the internal operations com-
plete, i.e., to a group of (parallel) resource operations that
are possible from ResStatesTo. In order to ensure, how-
ever, that the algorithm does not follow this line of reasoning

5

Algorithm 1 CheckManuf
Input: Topology Topology and recipe Recipe;

Current state of recipe RecipeState;
Current states of all resources ResStates.

Output: Either success if Recipe is manufacturable or fail otherwise.
1: Let CurrentPlan be the empty sequence
2: for each transition RecipeTrans from RecipeState do
3: result← ProcessCompositeOp(ResStates,

CompositeOp,RecipeStateTo,
CurrentPlan)

// RecipeTrans contains CompositeOp
// and RecipeStateTo

4: if result = fail then
5: return fail
6: end if
7: end for
8: return true

indefinitely, all considered groups of resource states (anno-
tated with the parts that were present in the corresponding
resources) are remembered and checked at each recursive call
to avoid reconsidering them.

6 Conclusion

This paper has presented definitions in the EBNF notation
for the notions of a production recipe, production resource,
and production topology, based on the formalism introduced
in [10]. Once a controller is synthesised for manufacturing
a recipe on a topology, an approach for translating the con-
troller into the B2MML format was provided, which is being
increasingly widely adopted by industrial manufacturing sys-
tems. Finally, detailed algorithms were provided based on
[10] for manipulating the data structures defined in EBNF.
These algorithms can be used both to determine whether a
given recipe is manufacturable on a precomputed topology,
and in doing so to also incrementally build a valid controller
for orchestrating the available resources in order to manufac-
ture the product. The algorithms and data structures pre-
sented in this paper have been implemented as part of a us-
able tool, which can synthesise standard manufacturing pro-
cess controllers in B2MML from initial formal specifications
of production recipes and resources [11].

Acknowledgements

The authors are grateful for support by the Engineering and
Physical Sciences Research Council via grants EP/K018205/1
and EP/K014161/1.

References

[1] Information technology - Syntactic metalanguage - Ex-
tended BNF, 1996 (accessed March 10, 2017).

[2] Factories of the Future: Multi-annual roadmap for the
contractual PPP under Horizon 2020. Technical report,
EFFRA, 2013.

[3] Connected Manufacturing. Technical report, Industrial
Value Chain Initiative, 2014.

Algorithm 2 ProcessCompositeOp
Input: Topology Topology and recipe Recipe;

Current states of all (part-annotated) resources ResStates;
Composite operation currently being processed CompositeOp;
The next recipe state to explore RecipeStateTo;
The current plan being composed CurrPlan.

Output: Either success if Recipe is manufacturable or fail otherwise.
1: if CompositeOp has been completely processed then
2: Store CurrPlan in the controller for the initial CompositeOp
3: result← CheckManuf(RecipeStateTo,ResStates)
4: return result
5: end if
6: if ResStates was already visited then
7: return the empty result
8: end if
9: for each transition TopTrans from ResStates do //

ResOps,ResStatesTo are in TopTrans, which is in Topology
10: Let FirstOp be the first (possibly parallel) step of CompositeOp
11: Set result to fail
12: ResParts2← Allocate(FirstOp,ResOps,ResParts)
13: if ResParts2 6= false then
14: ResParts2← TransferParts(ResParts2,ResOps)
15: ResStatesTo← AnnotateParts(ResStatesTo,ResParts2)
16: CurrPlan← Append(ResOps,CurrPlan)
17: Let Rest be the remaining steps of CompositeOp
18: result← ProcessCompositeOp(ResStatesTo,

Rest,RecipeStateTo,CurrPlan)
19: end if
20: if ResOps has no observable operations then
21: ResParts2← TransferParts(ResParts,ResOps)
22: ResStatesTo← AnnotateParts(ResStatesTo,ResParts2)
23: CurrPlan← Append(ResOps,CurrPlan)
24: result← ProcessCompositeOp(ResStatesTo,

CompositeOp,RecipeStateTo,CurrPlan)
25: end if
26: if result = success then
27: return result
28: end if
29: end for
30: return fail

[4] Industrie 4.0 - Innovationen für die Produktion von
morgen, 2014. Bundesministerium für Bildung und
Forschung.

[5] Strategic Investment Plan. Technical report, Digital
Manufacturing and Design Innovation Institute, 2015.

[6] Business To Manufacturing Markup Language
(B2MML), 2015 (accessed February 11, 2017).

[7] Nikolas Antzoulatos, Elkin Castro, Lavindra de Silva,
André Dionisio Rocha, Svetan Ratchev, and José Barata.
A multi-agent framework for capability-based reconfig-
uration of industrial assembly systems. International
Journal of Production Research (IJPR), pages 1–11,
2016.

[8] Radu F. Babiceanu and F. Frank Chen. Development
and Applications of Holonic Manufacturing Systems: A
Survey. Journal of Intelligent Manufacturing, 17(1):111–
131, 2006.

[9] J.C. Chaplin, O.J. Bakker, L. de Silva, D Sanderson,
E Kelly, B Logan, and S.M. Ratchev. Evolvable Assem-
bly Systems: A Distributed Architecture for Intelligent
Manufacturing. IFAC-PapersOnLine, 48(3):2065–2070,
2015.

6

[10] Lavindra de Silva, Paolo Felli, Jack C Chaplin, Brian
Logan, David Sanderson, and Svetan Ratchev. Realis-
ability of Production Recipes. In European Conference
on Artificial Intelligence (ECAI), pages 1449–1457, 2016.

[11] Lavindra de Silva, Paolo Felli, Jack C Chaplin, Brian
Logan, David Sanderson, and Svetan Ratchev. Syn-
thesising industry-standard manufacturing process con-
trollers (demonstration). In Proceedings of the Interna-
tional Conference on Autonomous Agents and Multiagent
Systems (AAMAS), page to appear, 2017.

[12] Hoda A. ElMaraghy. Flexible and reconfigurable man-
ufacturing systems paradigms. International Journal of
Flexible Manufacturing Systems, 17(4):261–276, 2005.

[13] Dave Emerson, Haruhisa Kawamura, and Wayne
Matthews. Plant-to-business (P2B) interoperability us-
ing the ISA-95 standard. Yokogawa Technical Report,
43:17, 2007.

[14] H Kagermann, J Helbig, A Hellinger, and W Wahlster.
Recommendations for Implementing the Strategic Initia-
tive INDUSTRIE 4.0: Securing the Future of German
Manufacturing Industry; Final Report of the Industrie
4.0 Working Group. 2013.

[15] Y. Koren, U. Heisel, F. Jovane, T. Moriwaki,
G. Pritschow, G. Ulsoy, and H. Van Brussel. Recon-
figurable Manufacturing Systems. CIRP Annals - Man-
ufacturing Technology, 48(2):527–540, jan 1999.

[16] Paulo Leitão, Armando W. Colombo, and Francisco
Restivo. An approach to the formal specification of
holonic control systems. In Vladimı́r Mař́ık, Duncan Mc-
Farlane, and Paul Valckenaers, editors, Proceedings of
the International Conference on Industrial Applications
of Holonic and Multi-Agent Systems (HoloMAS), pages
59–70, 2003.

[17] Christian Müller-Schloer, Hartmut Schmeck, and Theo
Ungerer, editors. Organic Computing - A Paradigm Shift
for Complex Systems. Springer Basel, 2011.

[18] P Neves and J Barata. Evolvable production systems. In
IEEE International Symposium on Assembly and Manu-
facturing, pages 189–195, 2009.

[19] Mauro Onori, José Barata, and Regina Frei. Evolvable
Assembly Systems Basic Principles. In Information Tech-
nology For Balanced Manufacturing Systems, volume 220
of IFIP International Federation for Information Pro-
cessing, pages 317–328. 2006.

[20] Mauro Onori, Daniel Semere, and Bengt Lindberg.
Evolvable systems: an approach to self-X production.
International Journal of Computer Integrated Manufac-
turing, 24(5):506–516, may 2011.

[21] David Sanderson, Nikolas Antzoulatos, Jack C Chap-
lin, Didac Busquets, Jeremy Pitt, Carl German, Alan
Norbury, Emma Kelly, and Svetan Ratchev. Advanced
Manufacturing: An Industrial Application for Collective
Adaptive Systems. In IEEE International Conference on

Self-Adaptive and Self-Organizing Systems Workshops,
pages 61–67, 2015.

[22] B. Scholten. MES Guide for Executives: Why and how
to Select, Implement, and Maintain a Manufacturing Ex-
ecution System. International Society of Automation,
2009.

7

