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Abstract

We study differential cohomology on categories of globally hyperbolic Lorentzian man-
ifolds. The Lorentzian metric allows us to define a natural transformation whose kernel
generalizes Maxwell’s equations and fits into a restriction of the fundamental exact se-
quences of differential cohomology. We consider smooth Pontryagin duals of differential
cohomology groups, which are subgroups of the character groups. We prove that these
groups fit into smooth duals of the fundamental exact sequences of differential cohomol-
ogy and equip them with a natural presymplectic structure derived from a generalized
Maxwell Lagrangian. The resulting presymplectic Abelian groups are quantized using the
CCR-functor, which yields a covariant functor from our categories of globally hyperbolic
Lorentzian manifolds to the category of C∗-algebras. We prove that this functor satisfies
the causality and time-slice axioms of locally covariant quantum field theory, but that it
violates the locality axiom. We show that this violation is precisely due to the fact that our
functor has topological subfunctors describing the Pontryagin duals of certain singular co-
homology groups. As a byproduct, we develop a Fréchet-Lie group structure on differential
cohomology groups.
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1 Introduction and summary

In [CS85], Cheeger and Simons develop the theory of differential characters, which can be un-
derstood as a differential refinement of singular cohomology Hk( · ;Z). For a smooth manifold
M , a differential character is a group homomorphism h : Zk−1(M ;Z) → T from smooth singular
k−1-cycles to the circle group T = U(1), which evaluated on smooth singular k−1-boundaries
is given by integrating a differential form, the curvature curv(h) of h. This uniquely defines
the curvature map curv : Ĥk(M ;Z) → ΩkZ(M), which is a natural group epimorphism from the
group of differential characters to the group of k-forms with integral periods. To each differ-
ential character one can assign its characteristic class via a second natural group epimorphism
char : Ĥk(M ;Z) → Hk(M ;Z), which is why one calls differential characters a differential
refinement of Hk(M ;Z). In addition to their characteristic class and curvature, differential
characters carry further information that is described by two natural group monomorphisms
ι : Ωk−1(M)/Ωk−1

Z (M) → Ĥk(M ;Z) and κ : Hk−1(M ;T) → Ĥk(M ;Z), which map, respec-

tively, to the kernel of char and curv. The group of differential characters Ĥk(M ;Z) together
with these group homomorphisms fits into a natural commutative diagram of exact sequences,
see e.g. (2.11) in the main text. It was recognized later in [SS08, BB14] that this diagram
uniquely fixes (up to a unique natural isomorphism) the functors Ĥk( · ;Z). It is therefore
natural to abstract these considerations and to define a differential cohomology theory as a
contravariant functor from the category of smooth manifolds to the category of Abelian groups
that fits (via four natural transformations) into the diagram (2.11).

Differential cohomology finds its physical applications in field theory and string theory as an
efficient way to describe the gauge orbit spaces of generalized or higher Abelian gauge theories.
The degree k = 2 differential cohomology group Ĥ2(M ;Z) describes isomorphism classes of
pairs (P,∇) consisting of a T-bundle P → M and a connection ∇ on P . Physically this is
exactly the gauge orbit space of Maxwell’s theory of electromagnetism. The characteristic class
map char : Ĥ2(M ;Z) → H2(M ;Z) assigns the first Chern class of P and the curvature map
curv : Ĥ2(M ;Z) → Ω2

Z(M) assigns (up to a prefactor) the curvature of ∇. The topological

trivialization ι : Ω1(M)/Ω1
Z(M) → Ĥ2(M ;Z) identifies gauge equivalence classes of connections

on the trivial T-bundle P = M × T and the map κ : H1(M ;T) → Ĥ2(M ;Z) is the inclusion
of equivalence classes of flat bundle-connection pairs (P,∇). In degree k = 1, the differential
cohomology group Ĥ1(M ;Z) describes T-valued smooth functions C∞(M,T), where char(h)
gives the “winding number” of the map h :M → T around the circle and curv(h) = 1

2π i d log h;
this field theory is called the σ-model onM with target space T. In degree k ≥ 3, the differential
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cohomology groups Ĥk(M ;Z) describe isomorphism classes of k−2-gerbes with connection,
which are models of relevance in string theory; see e.g. [Sza12] for a general introduction.

The goal of this paper is to understand the classical and quantum field theory described by
a differential cohomology theory. Earlier approaches to this subject [FMS07a, FMS07b] have
focused on the Hamiltonian approach, which required the underlying Lorentzian manifoldM to
be ultrastatic, i.e. that the Lorentzian metric g onM = R×ΣM is of the form g = −dt⊗dt+h,
where h is a complete Riemannian metric on ΣM that is independent of time t. Here we
shall instead work in the framework of locally covariant quantum field theory [BFV03, FV12],
which allows us to treat generic globally hyperbolic Lorentzian manifolds M without this
restriction. In addition, our construction of the quantum field theory is functorial in the sense
that we shall obtain a covariant functor Âk( · ) : Locm → C∗Alg from a suitable category of
m-dimensional globally hyperbolic Lorentzian manifolds to the category of C∗-algebras, which
describes quantized observable algebras of a degree k differential cohomology theory. This
means that in addition to obtaining for each globally hyperbolic Lorentzian manifold M a
C∗-algebra of observables Âk(M), we get C∗-algebra morphisms Âk(f) : Âk(M) → Âk(N)
whenever there is a causal isometric embedding f : M → N . This in particular provides a
mapping of observables from certain subregions of M to M itself, which is known to encode
essential physical characteristics of the quantum field theory since the work of Haag and Kastler
[HK64].

Let us outline the content of this paper: In Section 2 we give a short introduction to differ-
ential cohomology, focusing both on the abstract approach and the explicit model of Cheeger-
Simons differential characters. In Section 3 we restrict any (abstract) degree k differential
cohomology theory to a suitable category of m-dimensional globally hyperbolic Lorentzian
manifolds Locm, introduce generalized Maxwell maps and study their solution subgroups (gen-
eralizing Maxwell’s equations in degree k = 2). The solution subgroups are shown to fit into
a fundamental commutative diagram of exact sequences. We also prove that local generalized
Maxwell solutions (i.e. solutions given solely in a suitable region containing a Cauchy surface)
uniquely extend to global ones. In Section 4 we study the character groups of the differential
cohomology groups. Inspired by [HLZ03] we introduce the concept of smooth Pontryagin duals,
which are certain subgroups of the character groups, and prove that they fit into a commuta-
tive diagram of fundamental exact sequences. We further show that the smooth Pontryagin
duals separate points of the differential cohomology groups and that they are given by a covari-
ant functor from Locm to the category of Abelian groups. In Section 5 we equip the smooth
Pontryagin duals with a natural presymplectic structure, which we derive from a generalized
Maxwell Lagrangian by adapting Peierls’ construction [Pei52]. This then leads to a covariant
functor Ĝk( · ) from Locm to the category of presymplectic Abelian groups, which describes the
classical field theory associated to a differential cohomology theory. The generalized Maxwell
equations are encoded by taking a quotient of this functor by the vanishing subgroups of the
solution subgroups. Due to the fundamental commutative diagram of exact sequences for the
smooth Pontryagin duals, we observe immediately that the functor Ĝk( · ) has two subfunctors,
one of which is Hk( · ;Z)⋆, the Pontryagin dual of Z-valued singular cohomology, and hence is
purely topological. The second subfunctor describes “curvature observables” and we show that
it has a further subfunctor Hm−k( · ;R)⋆. This gives a more direct and natural perspective on
the locally covariant topological quantum fields described in [BDS14] for connections on a fixed
T-bundle. In Section 6 we carry out the canonical quantization of our field theory by using
the CCR-functor for presymplectic Abelian groups developed in [M+73] and also in [BDHS14,
Appendix A]. This yields a covariant functor Âk( · ) : Locm → C∗Alg to the category of C∗-
algebras. We prove that Âk( · ) satisfies the causality axiom and the time-slice axiom, which
have been proposed in [BFV03] to single out physically reasonable models for quantum field
theory from all covariant functors Locm → C∗Alg. The locality axiom, demanding that Âk(f)
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is injective for any Locm-morphism f , is in general not satisfied (except in the special case
(m,k) = (2, 1)). We prove that for a Locm-morphism f :M → N the morphism Âk(f) is injec-
tive if and only if the morphism Hm−k(M ;R)⋆ ⊕Hk(M ;Z)⋆ → Hm−k(N ;R)⋆ ⊕Hk(N ;Z)⋆ in
the topological subtheories is injective, which is in general not the case. This provides a precise
connection between the violation of the locality axiom and the presence of topological sub-
theories, which generalizes the results obtained in [BDHS14] for gauge theories of connections
on fixed T-bundles. In Appendix A we develop a Fréchet-Lie group structure on differential
cohomology groups, which is required to make precise our construction of the presymplectic
structure.

2 Differential cohomology

In this section we summarize some background material on (ordinary) differential cohomology
that will be used in this paper. In order to fix notation we shall first give a condensed summary
of singular homology and cohomology. We shall then briefly review the Cheeger-Simons differ-
ential characters defined in [CS85]. The group of differential characters is a particular model
of (ordinary) differential cohomology. Even though our results in the ensuing sections are for-
mulated in a model independent way, it is helpful to have the explicit model of differential
characters in mind.

2.1 Singular homology and cohomology

Let M be a smooth manifold. We denote by Ck(M ;Z) the free Abelian group of smooth
singular k-chains in M . There exist boundary maps ∂k : Ck(M ;Z) → Ck−1(M ;Z), which are
homomorphisms of Abelian groups satisfying ∂k−1 ◦ ∂k = 0. The subgroup Zk(M ;Z) := Ker ∂k
is called the group of smooth singular k-cycles and it has the obvious subgroup Bk(M ;Z) :=
Im ∂k+1 of smooth singular k-boundaries. The k-th smooth singular homology group of M is
defined as the quotient

Hk(M ;Z) :=
Zk(M ;Z)

Bk(M ;Z)
=

Ker ∂k
Im∂k+1

. (2.1)

Notice that Hk( · ;Z) : Man → Ab is a covariant functor from the category of smooth manifolds
to the category of Abelian groups; for a Man-morphism f :M → N (i.e. a smooth map) the Ab-
morphism Hk(f ;Z) : Hk(M ;Z) → Hk(N ;Z) is given by push-forward of smooth k-simplices.
In the following we shall often drop the adjective smooth singular and simply use the words
k-chain, k-cycle and k-boundary. Furthermore, we shall drop the label k on the boundary maps
∂k whenever there is no risk of confusion.

Given any Abelian group G, the Abelian group of G-valued k-cochains is defined by

Ck(M ;G) := Hom
(
Ck(M ;Z), G

)
, (2.2)

where Hom denotes the group homomorphisms. The boundary maps ∂k dualize to the cobound-
ary maps δk : Ck(M ;G) → Ck+1(M ;G) , φ 7→ φ ◦ ∂k+1, which are homomorphisms of Abelian
groups and satisfy δk+1◦δk = 0. Elements in Zk(M ;G) := Ker δk are called G-valued k-cocycles
and elements in Bk(M ;G) := Im δk−1 are called G-valued k-coboundaries. The (smooth singu-
lar) cohomology group with coefficients in G is defined by

Hk(M ;G) :=
Zk(M ;G)

Bk(M ;G)
=

Ker δk

Im δk−1
. (2.3)

Notice that Hk( · ;G) : Man → Ab is a contravariant functor.
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The cohomology group Hk(M ;G) is in general not isomorphic to Hom(Hk(M ;Z), G). The
obvious group homomorphism Hk(M ;G) → Hom(Hk(M ;Z), G) is in general only surjective
but not injective. Its kernel is described by the universal coefficient theorem for cohomology
(see e.g. [Hat02, Theorem 3.2]), which states that there is an exact sequence

0 // Ext
(
Hk−1(M ;Z), G

)
// Hk(M ;G) // Hom

(
Hk(M ;Z), G

)
// 0 . (2.4)

In this paper the group G will be either Z, R or T = U(1) (the circle group). As R and T are
divisible groups, we have Ext( · ,R) = Ext( · ,T) = 0. Thus Hk(M ;R) ≃ Hom(Hk(M ;Z),R)
and Hk(M ;T) ≃ Hom(Hk(M ;Z),T). However Ext( · ,Z) 6= 0 and hence in general Hk(M ;Z) 6≃
Hom(Hk(M ;Z),Z). Following the notations in [HLZ03], we denote the image of the Abelian
group Ext(Hk−1(M ;Z),Z) under the group homomorphism in (2.4) byHk

tor(M ;Z) ⊆ Hk(M ;Z)
and call it the torsion subgroup. We further denote by Hk

free(M ;Z) := Hk(M ;Z)/Hk
tor(M ;Z)

the associated free k-th cohomology group with coefficients in Z. By (2.4), the Abelian group
Hk

free(M ;Z) is isomorphic to Hom(Hk(M ;Z),Z) and, by using the inclusion Z →֒ R, we can
regard Hk

free(M ;Z) as a lattice in Hk(M ;R).

2.2 Differential characters

Let M be a smooth manifold and denote by Ωk(M) the R-vector space of smooth k-forms on
M .

Definition 2.1. The Abelian group of degree k differential characters1 on M , with 1 ≤
k ∈ N, is defined by

Ĥk(M ;Z) :=
{
h ∈ Hom

(
Zk−1(M ;Z),T

)
: h ◦ ∂ ∈ Ωk(M)

}
. (2.5)

By the notation h ◦ ∂ ∈ Ωk(M) we mean that there exists ωh ∈ Ωk(M) such that

h(∂c) = exp
(
2π i

∫

c
ωh

)
(2.6)

for all c ∈ Ck(M ;Z). We further define Ĥk(M ;Z) := Hk(M ;Z) for all 0 ≥ k ∈ Z.

The Abelian group structure on Ĥk(M ;Z) is defined pointwise. As it will simplify the
notations throughout this paper, we shall use an additive notation for the group structure on
Ĥk(M ;Z), even though this seems counterintuitive from the perspective of differential charac-
ters. Explicitly, we define the group operation + on Ĥk(M ;Z) by (h+ l)(z) := h(z) l(z) for all
h, l ∈ Ĥk(M ;Z) and z ∈ Zk−1(M ;Z). The unit element 0 ∈ Ĥk(M ;Z) is the constant homo-

morphism 0(z) = 1 ∈ T and the inverse −h of h ∈ Ĥk(M ;Z) is defined by (−h)(z) :=
(
h(z)

)−1

for all z ∈ Zk−1(M ;Z).

There are various interesting group homomorphisms with the Abelian group Ĥk(M ;Z) as
target or source. The first one is obtained by observing that the form ωh ∈ Ωk(M) in (2.6) is
uniquely determined for any h ∈ Ĥk(M ;Z). Furthermore, ωh is closed, i.e. dωh = 0 with d being
the exterior differential, and it has integral periods, i.e.

∫
z ωh ∈ Z for all z ∈ Zk(M ;Z). We

denote the Abelian group of closed k-forms with integral periods by ΩkZ(M) ⊆ Ωkd(M) ⊆ Ωk(M),
where Ωkd(M) is the subspace of closed k-forms. Hence we have found a group homomorphism

curv : Ĥk(M ;Z) −→ ΩkZ(M) , h 7−→ curv(h) = ωh , (2.7)

which we call the curvature.

1 We use the conventions in [BB14] for the degree k of a differential character, which is shifted by +1 compared
to the original definition [CS85].
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We can also associate to each differential character its characteristic class, which is an
element in Hk(M ;Z). There exists a group homomorphism

char : Ĥk(M ;Z) −→ Hk(M ;Z) (2.8)

called the characteristic class, which is constructed as follows: Since Zk−1(M ;Z) is a free
Z-module, any h ∈ Ĥk(M ;Z) has a real lift h̃ ∈ Hom(Zk−1(M ;Z),R) such that h(z) =

exp(2π i h̃(z)) for all z ∈ Zk−1(M ;Z). We define a real valued k-cochain by µh̃ : Ck(M ;Z) →

R , c 7→
∫
c curv(h) − h̃(∂c). It can be easily checked that µh̃ is a k-cocycle, i.e. δµh̃ = 0, and

that it takes values in Z. We define the class char(h) := [µh̃] ∈ Hk(M ;Z) and note that it is
independent of the choice of lift h̃ of h.

It can be shown that the curvature and characteristic class maps are surjective, however,
in general they are not injective [CS85]. This means that differential characters have further
properties besides their curvature and characteristic class. In order to characterize these prop-
erties we shall define two further homomorphisms of Abelian groups with Ĥk(M ;Z) as target:
Firstly, the topological trivialization is the group homomorphism

ι :
Ωk−1(M)

Ωk−1
Z (M)

−→ Ĥk(M ;Z) (2.9)

defined by ι([η])(z) := exp(2π i
∫
z η) for all [η] ∈ Ωk−1(M)/Ωk−1

Z (M) and z ∈ Zk−1(M ;Z). This

expression is well-defined since by definition
∫
z η ∈ Z for all η ∈ Ωk−1

Z (M) and z ∈ Zk−1(M ;Z).
Secondly, the inclusion of flat classes is the group homomorphism

κ : Hk−1(M ;T) −→ Ĥk(M ;Z) (2.10)

defined by κ(u)(z) := 〈u, [z]〉 for all u ∈ Hk−1(M ;T) and z ∈ Zk−1(M ;Z), where [z] ∈
Hk−1(M ;Z) is the homology class of z and 〈 · , · 〉 is the pairing induced by the isomorphism
Hk−1(M ;T) ≃ Hom(Hk−1(M ;Z),T) given by the universal coefficient theorem (2.4). (Recall
that T is divisible.)

As shown in [CS85, BB14], the various group homomorphisms defined above fit into a
commutative diagram of short exact sequences.

Theorem 2.2. The following diagram of homomorphisms of Abelian groups commutes and its
rows and columns are exact sequences:

0

��

0

��

0

��

0 //
Hk−1(M ;R)

Hk−1
free

(M ;Z)

��

//
Ωk−1(M)

Ωk−1
Z

(M)

ι
��

d
// dΩk−1(M) //

��

0

0 // Hk−1(M ;T)

��

κ
// Ĥk(M ;Z)

char
��

curv
// ΩkZ(M)

��

// 0

0 // Hk
tor(M ;Z)

��

// Hk(M ;Z)

��

// Hk
free(M ;Z)

��

// 0

0 0 0

(2.11)
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The Abelian group of differential characters Ĥk(M ;Z), as well as all other Abelian groups
appearing in the diagram (2.11), are given by contravariant functors from the category of
smooth manifolds Man to the category of Abelian groups Ab. The morphisms appearing in the
diagram (2.11) are natural transformations.

Example 2.3. The Abelian groups of differential characters Ĥk(M ;Z) can be interpreted as
gauge orbit spaces of (higher) Abelian gauge theories, see e.g. [BB14, Examples 5.6–5.8] for
mathematical details and [Sza12] for a discussion of physical applications.

1. In degree k = 1, the differential characters Ĥ1(M ;Z) describe smooth T-valued functions
on M , i.e. Ĥ1(M ;Z) ≃ C∞(M,T). The characteristic class in this case is the “winding
number” of a smooth map h ∈ C∞(M,T) around the circle, while the curvature is
curv(h) = 1

2π i d log h. Physically the group Ĥ1(M ;Z) describes the σ-model on M with
target space the circle T.

2. In degree k = 2, the differential characters Ĥ2(M ;Z) describe isomorphism classes of
T-bundles with connections (P,∇) on M . The holonomy map associates to any one-
cycle z ∈ Z1(M ;Z) a group element h(z) ∈ T. This defines a differential character
h ∈ Ĥ2(M ;Z), whose curvature is curv(h) = − 1

2π i F∇ and whose characteristic class is

the first Chern class of P . The topological trivialization ι : Ω1(M)/Ω1
Z(M) → Ĥ2(M ;Z)

assigns to gauge equivalence classes of connections on the trivial T-bundle their holonomy
maps. The inclusion of flat classes κ : H1(M ;T) → Ĥ2(M ;Z) assigns to isomorphism
classes of flat bundle-connection pairs (P,∇) their holonomy maps. Physically the group
Ĥ2(M ;Z) describes the ordinary Maxwell theory of electromagnetism.

3. In degree k ≥ 3, the differential characters Ĥk(M ;Z) describe isomorphism classes of
k−2-gerbes with connections, see e.g. [Hit01] for the case of usual gerbes, i.e. k = 3.
These models are examples of higher Abelian gauge theories where the curvature is given
by a k-form, and they physically arise in string theory, see e.g. [Sza12].

2.3 Differential cohomology theories

The functor describing Cheeger-Simons differential characters is a specific model of what is
called a differential cohomology theory. There are also other explicit models for differential
cohomology, as for example those obtained in smooth Deligne cohomology (see e.g. [Bry08]),
the de Rham-Federer approach [HLZ03] making use of de Rham currents (i.e. distributional
differential forms), and the seminal Hopkins-Singer model [HS05] which is based on differential
cocycles and the homotopy theory of differential function spaces. These models also fit into the
commutative diagram of exact sequences in (2.11). The extent to which (2.11) determines the
functors Ĥk( · ;Z) has been addressed in [SS08, BB14] and it turns out that they are uniquely
determined (up to a unique natural isomorphism). This motivates the following

Definition 2.4 ([BB14]). A differential cohomology theory is a contravariant functor
H̃∗( · ,Z) : Man → AbZ from the category of smooth manifolds to the category of Z-graded
Abelian groups, together with four natural transformations

• c̃urv : H̃∗( · ;Z) ⇒ Ω∗
Z( · ) (called curvature)

• c̃har : H̃∗( · ;Z) ⇒ H∗( · ;Z) (called characteristic class)

• ι̃ : Ω∗−1( · )/Ω∗−1
Z ( · ) ⇒ H̃∗( · ;Z) (called topological trivialization)

• κ̃ : H∗−1( · ;T) ⇒ H̃∗( · ;Z) (called inclusion of flat classes)

7



such that for any smooth manifold M the following diagram commutes and has exact rows and
columns:

0

��

0

��

0

��

0 //
H∗−1(M ;R)

H∗−1
free

(M ;Z)

��

//
Ω∗−1(M)

Ω∗−1
Z

(M)

ι̃
��

d
// dΩ∗−1(M) //

��

0

0 // H∗−1(M ;T)

��

κ̃
// H̃∗(M ;Z)

c̃har
��

c̃urv
// Ω∗

Z(M)

��

// 0

0 // H∗
tor(M ;Z)

��

// H∗(M ;Z)

��

// H∗
free(M ;Z)

��

// 0

0 0 0

(2.12)

Theorem 2.5 ([BB14, Theorems 5.11 and 5.14]).

For any differential cohomology theory (H̃∗( · ;Z), c̃urv, c̃har, ι̃, κ̃) there exists a unique natural
isomorphism Ξ : H̃∗( · ;Z) ⇒ Ĥ∗( · ;Z) to differential characters such that

Ξ ◦ ι̃ = ι , Ξ ◦ κ̃ = κ , curv ◦ Ξ = c̃urv , char ◦ Ξ = c̃har . (2.13)

Remark 2.6. In order to simplify the notation we shall denote in the following any differential
cohomology theory by (Ĥ∗( · ;Z), curv, char, ι, κ).

3 Generalized Maxwell maps

Our main interest lies in understanding the classical and quantum field theory described by
a differential cohomology theory Ĥ∗( · ;Z) : Man → AbZ. For a clearer presentation we shall
fix 1 ≤ k ∈ Z and study the differential cohomology groups of degree k, i.e. the contravariant
functor Ĥk( · ;Z) : Man → Ab. Furthermore, in order to formulate relativistic field equations
which generalize Maxwell’s equations in degree k = 2, we shall restrict the category of smooth
manifolds to a suitable category of globally hyperbolic spacetimes. A natural choice, see e.g.
[BFV03, FV12, BG11, BGP07], is the following

Definition 3.1. The category Locm consists of the following objects and morphisms:

• The objects M in Locm are oriented and time-oriented globally hyperbolic Lorentzian
manifolds, which are of dimension m ≥ 2 and of finite-type.2 (For ease of notation we
shall always suppress the orientation, time-orientation and Lorentzian metric.)

• The morphisms f : M → N in Locm are orientation and time-orientation preserving
isometric embeddings, such that the image f [M ] ⊆ N is causally compatible and open.

Remark 3.2. The curvature curv : Ĥk(M ;Z) → ΩkZ(M) is only non-trivial if the degree k is
less than or equal to the dimension m of M . Hence when restricting the contravariant functor
Ĥk( · ;Z) to the category Locm we shall always assume that k ≤ m.

2 A manifold is of finite-type if it has a finite good cover, i.e. a finite cover by contractible open subsets
such that all (multiple) overlaps are also contractible. This condition is not part of the original definition in
[BFV03, FV12], however it is very useful for studying gauge theories as it makes available Poincaré duality. See
also [BDHS14, BDS14] for similar issues.
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When working on the category Locm we have available a further natural transformation
given by the codifferential δ : Ω∗( · ) ⇒ Ω∗−1( · ).3 Our conventions for the codifferential δ are
as follows: Denoting by ∗ the Hodge operator, we define δ on p-forms by

δ : Ωp(M) −→ Ωp−1(M) , ω 7−→ (−1)m (p+1) ∗ d ∗ ω . (3.1)

For any two forms ω, ω′ ∈ Ωp(M) with compactly overlapping support we have a natural
indefinite inner product defined by

〈
ω, ω′

〉
:=

∫

M
ω ∧ ∗ω′. (3.2)

Then the codifferential δ is the formal adjoint of the differential d with respect to this in-
ner product, i.e. 〈δω, ω′ 〉 = 〈ω,dω′ 〉 for all ω ∈ Ωp(M) and ω′ ∈ Ωp−1(M) with compactly
overlapping support.

Definition 3.3. The (generalized) Maxwell map is the natural transformation

MW := δ ◦ curv : Ĥk( · ;Z) =⇒ Ωk−1( · ) . (3.3)

For any object M in Locm, the solution subgroup in Ĥk(M ;Z) is defined as the kernel of
the Maxwell map,

Ŝolk(M) :=
{
h ∈ Ĥk(M ;Z) : MW(h) = δ

(
curv(h)

)
= 0

}
. (3.4)

Lemma 3.4. Ŝolk( · ) : Locm → Ab is a subfunctor of Ĥk( · ;Z) : Locm → Ab.

Proof. Let M be any object in Locm. Then clearly Ŝolk(M) is a subgroup of Ĥk(M ;Z),
since MW is a homomorphism of Abelian groups. Let now f : M → N be any Locm-
morphism. We have to show that Ĥk(f ;Z) : Ĥk(N ;Z) → Ĥk(M ;Z) restricts to an Ab-

morphism Ŝolk(N) → Ŝolk(M). This follows from naturality of MW: for any h ∈ Ŝolk(N)

we have MW
(
Ĥk(f ;Z)(h)

)
= Ωk−1(f)

(
MW(h)

)
= 0, hence Ĥk(f ;Z)(h) ∈ Ŝolk(M).

Remark 3.5. For any Locm-morphism f :M → N we shall denote the restriction of Ĥk(f ;Z)

to Ŝolk(N) by Ŝolk(f) : Ŝolk(N) → Ŝolk(M).

The next goal is to restrict the diagram (2.12) to the solution subgroup Ŝolk(M) ⊆
Ĥk(M ;Z). Let us denote by ΩkZ, δ(M) the Abelian group of closed and coclosed k-forms with
integral periods. From the definition of the solution subgroups (3.4) it is clear that the middle
horizontal sequence in (2.12) restricts to the exact sequence

0 // Hk−1(M ;T)
κ

// Ŝolk(M)
curv

// ΩkZ, δ(M) // 0 . (3.5)

In order to restrict the complete diagram (2.12) to the solution subgroups we need the following

Lemma 3.6. The inverse image of Ŝolk(M) under the topological trivialization ι is given by

Solk(M) := ι−1
(
Ŝolk(M)

)
=

{
[η] ∈

Ωk−1(M)

Ωk−1
Z (M)

: δdη = 0
}
. (3.6)

Proof. This follows immediately from the commutative square in the upper right corner of the
diagram (2.12): the equivalence class [η] ∈ Ωk−1(M)/Ωk−1

Z (M) maps under ι to Ŝolk(M) if
and only if dη is coclosed.

3We have denoted the codifferential by the same symbol as the coboundary maps in singular cohomology. It
should be clear from the context to which of these maps the symbol δ refers to.
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Denoting by (dΩk−1)δ(M) the space of exact k-forms which are also coclosed, we obtain

Theorem 3.7. The following diagram commutes and has exact rows and columns:

0

��

0

��

0

��

0 //
Hk−1(M ;R)

Hk−1
free

(M ;Z)

��

// Solk(M)

ι

��

d
// (dΩk−1)δ(M) //

��

0

0 // Hk−1(M ;T)

��

κ
// Ŝolk(M)

char

��

curv
// ΩkZ, δ(M)

��

// 0

0 // Hk
tor(M ;Z)

��

// Hk(M ;Z)

��

// Hk
free(M ;Z)

��

// 0

0 0 0

(3.7)

Proof. The only nontrivial step is to show that char : Ŝolk(M) → Hk(M ;Z) is surjective. Let
u ∈ Hk(M ;Z) be any cohomology class. By the middle vertical exact sequence in (2.12) there
exists h ∈ Ĥk(M ;Z) such that char(h) = u. Note that h is not necessarily an element in

Ŝolk(M), i.e. in general 0 6= MW(h) ∈ Ωk−1(M). Let us now take [η] ∈ Ωk−1(M)/Ωk−1
Z (M)

and note that the characteristic class of h′ := h+ ι
(
[η]

)
∈ Ĥk(M ;Z) is again u as ι maps to the

kernel of char. We now show that [η] can be chosen such that MW(h′ ) = 0, which completes
the proof. By posing MW(h′ ) = 0 as a condition we obtain the partial differential equation

0 = MW(h) +MW
(
ι([η])

)
= MW(h) + δdη , (3.8)

where η ∈ Ωk−1(M) is any representative of the class [η]. As the inhomogeneity MW(h) =
δ
(
curv(h)

)
is coexact, there always exists a solution η to the equation (3.8), see e.g. [SDH14,

Section 2.3].

Remark 3.8. In the context of compact Riemannian manifolds, a result similar to Theorem 3.7
is proven in [GM09]. They consider harmonic differential characters on a compact Riemannian
manifold, i.e. differential characters with harmonic curvature forms, and prove that these fit
into exact sequences similar to the ones in (3.7). However, the proof in [GM09] relies on the
theory of elliptic partial differential equations and therefore differs from our proof of Theorem
3.7, which uses the theory of hyperbolic partial differential equations. In particular, the results
of [GM09] do not imply our results.

We say that a Locm-morphism f :M → N is a Cauchy morphism if its image f [M ] contains
a Cauchy surface of N . The following statement proves that local solutions to the generalized
Maxwell equation (or more precisely solutions local in time) uniquely extend to global solutions,
i.e. that MW imposes a deterministic dynamical law on Ĥk(M ;Z).

Theorem 3.9. If f : M → N is a Cauchy morphism, then Ŝolk(f) : Ŝolk(N) → Ŝolk(M) is
an Ab-isomorphism.

Proof. Let us start with a simple observation: Any Locm-morphism f : M → N can be
factorized as f = ιN ;f [M ]◦f , where f :M → f [M ] is the Locm-isomorphism given by restricting
f to its image and ιN ;f [M ] : f [M ] → N is the Locm-morphism given by the canonical inclusion
of subsets. As functors map isomorphisms to isomorphisms, it is sufficient to prove that for any
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object N in Locm and any causally compatible, open and globally hyperbolic subset O ⊆ N
that contains a Cauchy surface of N , the canonical inclusion ιN ;O : O → N is mapped to an

Ab-isomorphism Ŝolk(ιN ;O) : Ŝolk(N) → Ŝolk(O).

We first prove injectivity. Let h ∈ Ŝolk(N) be any element in the kernel of Ŝolk(ιN ;O).
Applying char implies that char(h) lies in the kernel of Hk(ιN ;O;Z) : H

k(N ;Z) → Hk(O;Z),
which is an isomorphism since O and N are both homotopic to their common Cauchy surface.
As a consequence char(h) = 0 and by Theorem 3.7 there exists [η] ∈ Solk(N) such that
h = ι

(
[η]

)
. Since ι is natural and injective, this implies that [η] lies in the kernel of Solk(ιN ;O).

We can always choose a coclosed representative η ∈ Ωk−1
δ (N) of the class [η] (by going to Lorenz

gauge, cf. [SDH14, Section 2.3]) and the condition that [η] lies in the kernel ofSolk(ιN ;O) implies
that the restriction η|O ∈ Ωk−1

δ (O) of η to O is an element of Ωk−1
Z (O). In particular, δη|O = 0

and dη|O = 0, so by [Ben16, Theorem 7.8] there exist forms α ∈ Ωktc, d(O) and β ∈ Ωk−2
tc, δ (O)

of timelike compact support such that η|O = G(δα + dβ). Here G := G+ − G− : Ωk−1
tc (O) →

Ωk−1(O) is the unique retarded-minus-advanced Green’s operator for the Hodge-d’Alembert
operator � := δ ◦ d + d ◦ δ : Ωk−1(O) → Ωk−1(O), see [BGP07, Bär15]. Since O ⊆ N contains
a Cauchy surface of N , any form of timelike compact support on O can be extended by zero to
a form of timelike compact support on N (denoted with a slight abuse of notation by the same
symbol). Hence there exists ρ ∈ Ωk−1(N) satisfying ρ|O = 0 such that η = G(δα + dβ) + ρ on
all of N . As η satisfies δdη = 0 and the Lorenz gauge condition δη = 0, it also satisfies �η = 0.
Since also �G(δα + dβ) = 0, we obtain �ρ = 0, which together with the support condition
ρ|O = 0 implies ρ = 0. So η = G(δα+dβ) on all of N and it remains to prove that η ∈ Ωk−1

Z (N).
As η is obviously closed, the integral

∫
z η depends only on the homology class [z] ∈ Hk−1(N ;Z).

The inclusion ιN ;O : O → N induces isomorphisms Hk−1(ιN ;O;Z) : Hk−1(O;Z) → Hk−1(N ;Z)
and Hk−1(ιN ;O;Z) : H

k−1(N ;Z) → Hk−1(O;Z). Thus any z ∈ Zk−1(N ;Z) is homologous to a
cycle of the form ιN ;O∗

(z′ ) for some z′ ∈ Zk−1(O;Z), where ιN ;O∗
is the push-forward. This

yields
∫
z η =

∫
ιN;O∗

(z′ ) η =
∫
z′ ι

∗
N ;O(η) =

∫
z′ η|O ∈ Z, since η|O ∈ Ωk−1

Z (O). Thus η ∈ Ωk−1
Z (N)

and hence h = ι
(
[η]

)
= 0.

We now prove surjectivity. Let l ∈ Ŝolk(O) be arbitrary and consider its characteristic
class char(l) ∈ Hk(O;Z). As we have explained above, Hk(ιN ;O;Z) : Hk(N ;Z) → Hk(O;Z)

is an isomorphism, hence by using also Theorem 3.7 we can find h ∈ Ŝolk(N) such that

char(l) = Hk(ιN ;O;Z)
(
char(h)

)
= char

(
Ŝolk(ιN ;O)(h)

)
. Again by Theorem 3.7, there exists

[η] ∈ Solk(O) such that l = Ŝolk(ιN ;O)(h) + ι
(
[η]

)
. By [Ben16, Theorem 7.4] the equivalence

class [η] has a representative η ∈ Ωk−1(O) which is of the form η = G(α) for some α ∈
Ωk−1
tc, δ (O). We can extend α by zero (denoted with a slight abuse of notation by the same symbol)

and define [G(α)] ∈ Solk(N). Since [η] = Solk(ιN ;O)
(
[G(α)]

)
we have l = Ŝolk(ιN ;O)(h) +

ι
(
Solk(ιN ;O)

(
[G(α)]

))
= Ŝolk(ιN ;O)

(
h+ ι

(
[G(α)]

))
, which gives the assertion.

4 Smooth Pontryagin duality

Let
(
Ĥ∗( · ;Z), curv, char, ι, κ

)
be a differential cohomology theory and let us consider its re-

striction Ĥk( · ;Z) : Locm → Ab to degree k ≥ 1 and to the category Locm with m ≥ k. For
an Abelian group G, the character group is defined by G⋆ := Hom(G,T), where Hom denotes
the homomorphisms of Abelian groups. Since the circle group T is divisible, the Hom-functor
Hom( · ,T) preserves exact sequences. Hence we can dualize the degree k component of the
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diagram (2.12) and obtain the following commutative diagram with exact rows and columns:

0

��

0

��

0

��

0 // Hk
free(M ;Z)⋆

��

// Hk(M ;Z)⋆ //

char⋆

��

Hk
tor(M ;Z)⋆

��

// 0

0 // ΩkZ(M)⋆

��

curv⋆
// Ĥk(M ;Z)⋆

ι⋆

��

κ⋆
// Hk−1(M ;T)⋆

��

// 0

0 //

(
dΩk−1(M)

)⋆

��

d⋆
//

(
Ωk−1(M)

Ωk−1
Z

(M)

)⋆

��

//

(
Hk−1(M ;R)

Hk−1
free

(M ;Z)

)⋆

��

// 0

0 0 0

(4.1)

The diagram (4.1) contains the character groups of Ĥk(M ;Z) and of various groups of
differential forms, whose generic elements are too singular for our purposes. We shall use
a strategy similar to [HLZ03] (called smooth Pontryagin duality) in order to identify suitable
subgroups of such character groups, which describe regular group characters. In order to explain
the construction of the smooth Pontryagin duals of the Abelian group Ĥk(M ;Z) and the various
groups of differential forms, let us first notice that there exists an injective homomorphism of
Abelian groups W : Ωp0(M) → Ωp(M)⋆ , ϕ 7→ Wϕ, from the space of compactly supported p-
forms Ωp0(M) to the character group of the p-forms Ωp(M). For any ϕ ∈ Ωp0(M), the character
Wϕ is defined as

Wϕ : Ωp(M) −→ T , ω 7−→ exp
(
2π i 〈ϕ,ω〉

)
= exp

(
2π i

∫

M
ϕ ∧ ∗ω

)
. (4.2)

With this homomorphism we can regard Ωp0(M) as a subgroup of Ωp(M)⋆ and we shall simply
write Ωp0(M) ⊆ Ωp(M)⋆, suppressing the mapW when there is no risk of confusion. We say that
Ωp(M)⋆∞ := Ωp0(M) ⊆ Ωp(M)⋆ is the smooth Pontryagin dual of the p-forms. It is important
to notice that the smooth Pontryagin dual separates points of Ωp(M) since Wϕ(ω) = 1 for all
ϕ ∈ Ωp0(M) if and only if ω = 0.

We next come to the smooth Pontryagin dual of the Abelian group Ωk−1(M)/Ωk−1
Z (M).

A smooth group character ϕ ∈ Ωk−1
0 (M) = Ωk−1(M)⋆∞ induces to this quotient if and only if

Wϕ(ω) = 1 for all ω ∈ Ωk−1
Z (M). Hence we have to understand the vanishing subgroups of

differential forms with integral periods,

Vp(M) :=
{
ϕ ∈ Ωp0(M) : Wϕ(ω) = 1 ∀ω ∈ ΩpZ(M)

}
. (4.3)

To give an explicit characterization of the subgroups Vp(M) we require some prerequisites:
Any coclosed and compactly supported p-form ϕ ∈ Ωp0, δ(M) defines via the pairing (3.2)

a linear map 〈ϕ, · 〉 : Ωpd(M) → R , ω 7→ 〈ϕ,ω〉 = 〈[ϕ], [ω]〉, which depends only on the
de Rham class [ω] ∈ Ωpd(M)/dΩp−1(M) of ω and the compactly supported dual de Rham class

[ϕ] ∈ Ωp0, δ(M)/δΩp+1
0 (M) of ϕ. By Poincaré duality and de Rham’s theorem, we can naturally

identify the compactly supported dual de Rham cohomology group Ωp0, δ(M)/δΩp+1
0 (M) with

the dual vector space HomR(H
p(M ;R),R). As Hp

free(M ;Z) is a lattice in Hp(M ;R), we have
the subgroup Hp

free(M ;Z)′ := Hom(Hp
free(M ;Z),Z) of HomR(H

p(M ;R),R). (By ′ we denote
the dual Z-module.) We then write [ϕ] ∈ Hp

free(M ;Z)′, for some ϕ ∈ Ωp0, δ(M), if and only
if 〈[ϕ], · 〉 restricts (under the isomorphisms above) to a homomorphism of Abelian groups
Hp

free(M ;Z) → Z.
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Lemma 4.1. Vp(M) =
{
ϕ ∈ Ωp0, δ(M) : [ϕ] ∈ Hp

free(M ;Z)′
}
.

Proof. We first show the inclusion “⊇”: Let ϕ ∈ Ωp0(M) be coclosed, i.e. δϕ = 0, and such that
〈[ϕ], · 〉 restricts to a homomorphism of Abelian groups Hp

free(M ;Z) → Z. For any ω ∈ ΩpZ(M)
we have

Wϕ(ω) = exp
(
2π i 〈ϕ,ω〉

)
= exp

(
2π i 〈[ϕ], [ω]〉

)
= 1 , (4.4)

where in the second equality we have used the fact that the pairing depends only on the
equivalence classes and in the last equality we have used [ω] ∈ Hp

free(M ;Z) via the de Rham
isomorphism.

Let us now show the inclusion “⊆”: Let ϕ ∈ Vp(M). As dΩp−1(M) ⊆ ΩpZ(M) we obtain
Wϕ(dη) = exp (2π i 〈ϕ,dη〉) = exp (2π i 〈δϕ, η〉) = 1 for all η ∈ Ωp−1(M), which implies that
δϕ = 0 and hence ϕ ∈ Ωp0, δ(M). For any ω ∈ ΩpZ(M) we obtain Wϕ(ω) = exp (2π i 〈[ϕ], [ω]〉) =

1, and hence [ϕ] ∈ Hp
free(M ;Z)′.

Motivated by the definition (4.3) we define the smooth Pontryagin dual of the quotient
group Ωk−1(M)/Ωk−1

Z (M) by

( Ωk−1(M)

Ωk−1
Z (M)

)⋆
∞

:= Vk−1(M) . (4.5)

Lemma 4.2. The smooth Pontryagin dual Vk−1(M) separates points of Ωk−1(M)/Ωk−1
Z (M).

Proof. Let η ∈ Ωk−1(M) be such that Wϕ(η) = exp
(
2π i 〈ϕ, η〉

)
= 1 for all ϕ ∈ Vk−1(M). We

need to prove that η is closed and has integral periods, which implies that Vk−1(M) separates
points of the quotient Ωk−1(M)/Ωk−1

Z (M). Since by Lemma 4.1 we have δΩk0(M) ⊆ Vk−1(M),
we obtain in particular the condition 1 = exp

(
2π i 〈δζ, η〉

)
= exp

(
2π i 〈ζ,dη〉

)
for all ζ ∈

Ωk0(M), which implies dη = 0. For any ϕ ∈ Vk−1(M) we then get the condition

1 = exp
(
2π i 〈ϕ, η〉

)
= exp

(
2π i 〈[ϕ], [η]〉

)
(4.6)

for all [ϕ] ∈ Hk−1
free (M ;Z)′, which implies that the de Rham class [η] defines an element in the

double dual Z-module Hk−1
free (M ;Z)′′ of Hk−1

free (M ;Z). As Hk−1
free (M ;Z) is finitely generated (by

our assumption that M is of finite-type) and free, its double dual Z-module is isomorphic to
itself, hence the class [η] defines an element in Hk−1

free (M ;Z) and as a consequence η has integral
periods.

Using further the natural isomorphism (see e.g. [HLZ03, Lemma 5.1])

( Hk−1(M ;R)

Hk−1
free (M ;Z)

)⋆
≃ Hom

(
Hk−1

free (M ;Z),Z
)
= Hk−1

free (M ;Z)′ , (4.7)

we observe that the restriction of the lowest row of the diagram (4.1) to smooth Pontryagin
duals reads as

0 // δΩk0(M) // Vk−1(M) // Hk−1
free (M ;Z)′ // 0 (4.8)

with the dual group homomorphisms

δΩk0(M) −→ Vk−1(M) , δη 7−→ δη , (4.9a)

Vk−1(M) −→ Hk−1
free (M ;Z)′ , ϕ 7−→ [ϕ] . (4.9b)
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Here we have implicitly used the injective homomorphism of Abelian groups W : δΩk0(M) →(
dΩk−1(M)

)⋆
, δζ 7→ Wδζ , defined by

Wδζ : dΩk−1(M) −→ T , dη 7−→ exp
(
2π i 〈ζ,dη〉

)
. (4.10)

We suppress this group homomorphism and call
(
dΩk−1(M)

)⋆
∞

:= δΩk0(M) ⊆
(
dΩk−1(M)

)⋆
the smooth Pontryagin dual of dΩk−1(M). The smooth Pontryagin dual δΩk0(M) separates
points of dΩk−1(M): if exp(2π i 〈ζ,dη〉) = 1 for all ζ ∈ Ωk0(M), then dη = 0. Exactness of the
sequence (4.8) is an easy check.

We now define the smooth Pontryagin dual of the differential cohomology group Ĥk(M ;Z)
by the inverse image

Ĥk(M ;Z)⋆∞ := ι⋆−1(Vk−1(M)
)
. (4.11)

Furthermore, by (4.3) it is natural to set
(
ΩkZ(M)

)⋆
∞

:= Ωk0(M)/Vk(M), as in this way we

divide out from the smooth group characters on Ωk(M) exactly those which are trivial on
ΩkZ(M). The diagram (4.1) restricts as follows to the smooth Pontryagin duals.

Theorem 4.3. The following diagram commutes and has exact rows and columns:

0

��

0

��

0

��

0 // Hk
free(M ;Z)⋆

��

// Hk(M ;Z)⋆ //

char⋆

��

Hk
tor(M ;Z)⋆

��

// 0

0 //
Ωk

0(M)

Vk(M)

δ

��

curv⋆
// Ĥk(M ;Z)⋆∞

ι⋆

��

κ⋆
// Hk−1(M ;T)⋆

��

// 0

0 // δΩk0(M)

��

// Vk−1(M)

��

// Hk−1
free (M ;Z)′

��

// 0

0 0 0

(4.12)

Proof. By the constructions above and (4.1), we have the following commutative subdiagram
with exact rows and columns:

0

��

0

��

0 // Hk
free(M ;Z)⋆ // Hk(M ;Z)⋆ //

char⋆

��

Hk
tor(M ;Z)⋆

��

// 0

Ĥk(M ;Z)⋆∞

ι⋆

��

κ⋆
// Hk−1(M ;T)⋆

��

0 // δΩk0(M) // Vk−1(M)

��

// Hk−1
free (M ;Z)′

��

// 0

0 0

(4.13)

and it remains to prove that it extends to the diagram of exact sequences in (4.12).

14



Let us first focus on the left column in (4.12). By (4.1), there exists an injective group
homomorphism Hk

free(M ;Z)⋆ → ΩkZ(M)⋆ and we have to show that its image lies in the smooth
Pontryagin dual Ωk0(M)/Vk(M) of ΩkZ(M). The character group Hk

free(M ;Z)⋆ is isomorphic to
the quotient HomR(H

k(M ;R),R)/Hk
free(M ;Z)′.4 Under this identification, the group homo-

morphism Hk
free(M ;Z)⋆ → ΩkZ(M)⋆ maps ψ ∈ HomR(H

k(M ;R),R) to the group character on
ΩkZ(M) given by

ΩkZ(M) −→ T , ω 7−→ exp
(
2π iψ([ω])

)
= exp

(
2π i 〈ϕψ, ω〉

)
. (4.14)

In the last equality we have used the fact that, by Poincaré duality and de Rham’s theorem,
there exists ϕψ ∈ Ωk0, δ(M) such that ψ([ω]) = 〈ϕψ, ω〉 for all ω ∈ Ωkd(M). Hence the image

of Hk
free(M ;Z)⋆ → ΩkZ(M)⋆ lies in the smooth Pontryagin dual Ωk0(M)/Vk(M) of ΩkZ(M).

Exactness of the corresponding sequence (the left column in (4.12)) is an easy check.

It remains to understand the middle horizontal sequence in (4.12). From the commutative
square in the lower left corner of (4.1) and the definition (4.11), we find that curv⋆ : ΩkZ(M)⋆ →

Ĥk(M ;Z)⋆ restricts to the smooth Pontryagin duals: by commutativity of this square, ι⋆ ◦
curv⋆ maps the smooth Pontryagin dual Ωk0(M)/Vk(M) of ΩkZ(M) into the smooth Pontryagin

dual Vk−1(M) of Ωk−1(M)/Ωk−1
Z (M), thus curv⋆ maps Ωk0(M)/Vk(M) to Ĥk(M ;Z)⋆∞ by the

definition (4.11). We therefore get the middle horizontal sequence in (4.12) and it remains
to prove that it is exact everywhere. As the restriction of an injective group homomorphism,
curv⋆ : Ωk0(M)/Vk(M) → Ĥk(M ;Z)⋆∞ is injective. Next, we prove exactness of the middle part

of this sequence by using what we already know about the diagram (4.12): Let w ∈ Ĥk(M ;Z)⋆∞
be such that κ⋆(w) = 0. As a consequence of the commutative square in the lower right corner
and exactness of the lower horizontal sequence in this diagram, there exists ϕ ∈ Ωk0(M) such
that ι⋆(w) = δϕ. We can use ϕ to define an element [ϕ] ∈ Ωk0(M)/Vk(M). By the commutative
square in the lower left corner we have ι⋆

(
w − curv⋆([ϕ])

)
= 0, hence by exactness of the

middle vertical sequence there exists φ ∈ Hk(M ;Z)⋆ such that w = curv⋆([ϕ]) + char⋆(φ).
Applying κ⋆ yields 0 = κ⋆

(
char⋆(φ)

)
, which by the commutative square in the upper right

corner and exactness of the right vertical and upper horizontal sequences implies that φ has a
preimage φ̃ ∈ Hk

free(M ;Z)⋆. Finally, the commutative square in the upper left corner implies
that char⋆(φ) is in fact in the image of curv⋆ (restricted to the smooth Pontryagin dual), and
hence so is w. It remains to prove that κ⋆ : Ĥk(M ;Z)⋆∞ → Hk−1(M ;T)⋆ is surjective, which
follows from a similar argument based on what we already know about the diagram (4.12): Let
φ ∈ Hk−1(M ;T)⋆ and consider its image φ̃ ∈ Hk−1

free (M ;Z)′ under the group homomorphism

in the right column in this diagram. Since Vk−1(M) → Hk−1
free (M ;Z)′ and ι⋆ : Ĥk(M ;Z)⋆∞ →

Vk−1(M) are surjective, there exists w ∈ Ĥk(M ;Z)⋆∞ which maps under the composition
of these morphisms to φ̃. Hence by the commutative square in the lower right corner we

have κ̃⋆(w) − φ̃ = 0, which by exactness of the right vertical sequence implies that there
exists ψ ∈ Hk

tor(M ;Z)⋆ such that φ = κ⋆(w) + ψ̂, where ψ̂ ∈ Hk−1(M ;T)⋆ is the image of
ψ under the group homomorphism Hk

tor(M ;Z)⋆ → Hk−1(M ;T)⋆. By exactness of the upper
horizontal sequence, ψ has a preimage ψ ∈ Hk(M ;Z)⋆, and by the commutative square in the

upper right corner we get ψ̂ = κ⋆
(
char⋆(ψ )

)
. This proves surjectivity since φ = κ⋆(w′ ) with

w′ = w+ char⋆(ψ ) ∈ Ĥk(M ;Z)⋆∞.

It remains to study two important points: Firstly, we may ask whether the association of
the Abelian groups Ĥk(M ;Z)⋆∞ to objects in Locm is functorial and, secondly, we still have to

4 The isomorphism HomR(H
k(M ;R),R)/Hk

free(M ;Z)′ → Hk

free(M ;Z)⋆ is constructed as follows: Given any
R-linear map ψ : Hk(M ;R) → R, we define a group character on Hk

free(M ;Z) ⊆ Hk(M ;R) by exp(2π iψ( · )).
This association is surjective since, as Hk

free(M ;Z) is a free Abelian group, any character φ : Hk

free(M ;Z) → T has

a real lift φ̃ : Hk

free(M ;Z) → R, i.e. φ( · ) = exp(2π i φ̃( · )), which further has an R-linear extension to Hk(M ;R).
The kernel of this association is exactly Hk

free(M ;Z)′ = Hom(Hk

free(M ;Z),Z).
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prove that Ĥk(M ;Z)⋆∞ separates points of Ĥk(M ;Z). Let us start with the second point:

Proposition 4.4. The smooth Pontryagin dual Ĥk(M ;Z)⋆∞ separates points of Ĥk(M ;Z).

Proof. Let h ∈ Ĥk(M ;Z) be such that w(h) = 1 for all w ∈ Ĥk(M ;Z)⋆∞. Due to the group
homomorphism char⋆ : Hk(M ;Z)⋆ → Ĥk(M ;Z)⋆∞ we have in particular

1 = char⋆(φ)(h) = φ
(
char(h)

)
(4.15)

for all φ ∈ Hk(M ;Z)⋆. As the character group Hk(M ;Z)⋆ separates points of Hk(M ;Z)
we obtain char(h) = 0 and hence by (2.12) there exists [η] ∈ Ωk−1(M)/Ωk−1

Z (M) such that

h = ι
(
[η]

)
. The original condition w(h) = 1 for all w ∈ Ĥk(M ;Z)⋆∞ now reduces to

1 = w
(
ι
(
[η]

))
= exp

(
2π i 〈ι⋆(w), [η]〉

)
(4.16)

for all w ∈ Ĥk(M ;Z)⋆∞. Using (4.12) the homomorphism ι⋆ : Ĥk(M ;Z)⋆∞ → Vk−1(M) is
surjective, and hence by Lemma 4.2 we find [η] = 0. As a consequence, h = ι(0) = 0 and the
result follows.

We shall now address functoriality: First, recall that the compactly supported p-forms are
given by a covariant functor Ωp0( · ) : Loc

m → Ab. (In fact, this functor maps to the category
of real vector spaces. We shall however forget the multiplication by scalars and only consider
the Abelian group structure given by + on compactly supported p-forms.) Explicitly, to any
object M in Locm the functor associates the Abelian group Ωp0(M) and to any Locm-morphism
f : M → N the functor associates the Ab-morphism given by the push-forward (i.e. extension
by zero) Ωp0(f) := f∗ : Ωp0(M) → Ωp0(N). Notice that Vp( · ) : Locm → Ab is a subfunctor of
Ωp0( · ): using the definition (4.3) we find

Wf∗(ϕ)(ω) = exp
(
2π i 〈f∗(ϕ), ω〉

)
= exp

(
2π i 〈ϕ, f∗(ω)〉

)
= 1 (4.17)

for any Locm-morphism f :M → N , and for all ϕ ∈ Vp(M) and ω ∈ ΩpZ(N), where f∗ denotes
the pull-back of differential forms. In the last equality we have used the fact that closed p-forms
with integral periods on N are pulled-back under f to such forms on M . Thus in the diagram
(4.12) we can regard Ωk0( · )/V

k( · ), δΩk0( · ) and Vk−1( · ) as covariant functors from Locm to Ab.
Furthermore, as a consequence of being the character groups (or dual Z-modules) of Abelian
groups given by contravariant functors from Locm to Ab, we can also regard Hk

free( · ;Z)
⋆,

Hk( · ;Z)⋆, Hk
tor( · ;Z)

⋆, Hk−1( · ;T)⋆ and Hk−1
free ( · ;Z)

′ as covariant functors from Locm to Ab.
(Indeed, they are just given by composing the corresponding contravariant functors of degree k
in (2.12) with the contravariant Hom-functor Hom( · ,T) in case of the character groups or with
Hom( · ,Z) in case of the dual Z-modules.) By the same argument, the full character groups
Ĥk( · ;Z)⋆ of Ĥk( · ;Z) are given by a covariant functor Ĥk( · ;Z)⋆ : Locm → Ab.

Proposition 4.5. The smooth Pontryagin dual Ĥk( · ;Z)⋆∞ is a subfunctor of Ĥk( · ;Z)⋆ :
Locm → Ab. Furthermore, (4.12) is a diagram of natural transformations.

Proof. Let f : M → N be any Locm-morphism. Restricting Ĥk(f ;Z)⋆ : Ĥk(M ;Z)⋆ →
Ĥk(N ;Z)⋆ to the smooth Pontryagin dual Ĥk(M ;Z)⋆∞, we obtain by naturality of the (un-
restricted) morphism ι⋆ the commutative diagram

Ĥk(M ;Z)⋆∞

ι⋆

��

Ĥk(f ;Z)⋆
// Ĥk(N ;Z)⋆

ι⋆

��

Vk−1(M)
Vk−1(f)

// Vk−1(N)

(4.18)
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Hence the image of Ĥk(M ;Z)⋆∞ under Ĥk(f ;Z)⋆ is contained in the inverse image of Vk−1(N)
under ι⋆, which is by the definition (4.11) the smooth Pontryagin dual Ĥk(N ;Z)⋆∞. Thus
Ĥk( · ;Z)⋆∞ is a subfunctor of Ĥk( · ;Z)⋆.

Finally, (4.12) is a diagram of natural transformations since it is the restriction to smooth
Pontryagin duals of the diagram (4.1) of natural transformations, which is given by acting with
the Hom-functor Hom( · ,T) on the degree k component of the natural diagram (2.12).

Remark 4.6. For any Locm-morphism f :M → N we shall denote the restriction of Ĥk(f ;Z)⋆

to Ĥk(M ;Z)⋆∞ by Ĥk(f ;Z)⋆∞ : Ĥk(M ;Z)⋆∞ → Ĥk(N ;Z)⋆∞ .

5 Presymplectic Abelian group functors

As a preparatory step towards the quantization of the smooth Pontryagin dual Ĥk( · ;Z)⋆∞ :
Locm → Ab of a degree k differential cohomology theory we have to equip the Abelian groups
Ĥk(M ;Z)⋆∞ with a natural presymplectic structure τ̂ : Ĥk(M ;Z)⋆∞×Ĥk(M ;Z)⋆∞ → R. A useful
selection criterion for these structures is given by Peierls’ construction [Pei52] that allows us to
derive a Poisson bracket which can be used as a presymplectic structure on Ĥk(M ;Z)⋆∞. We
shall now explain this construction in some detail, referring to [BDS14, Remark 3.5] where a
similar construction is done for connections on a fixed T-bundle.

LetM be any object in Locm. Recall that any element w ∈ Ĥk(M ;Z)⋆∞ is a group character,
i.e. a homomorphism of Abelian groups w : Ĥk(M ;Z) → T to the circle group T. Using the
inclusion T →֒ C of the circle group into the complex numbers of modulus one, we may regard
w as a complex-valued functional, i.e. w : Ĥk(M ;Z) → C. We use the following notion of
functional derivative, which we derive in Appendix A from a Fréchet-Lie group structure on
Ĥk(M ;Z).

Definition 5.1. For any w ∈ Ĥk(M ;Z)⋆∞ considered as a complex-valued functional w :
Ĥk(M ;Z) → C, the functional derivative of w at h ∈ Ĥk(M ;Z) along the vector [η] ∈
Ωk−1(M)/dΩk−2(M) (if it exists) is defined by

w(1)(h)
(
[η]

)
:= lim

ǫ→0

w
(
h+ ι

(
[ǫ η]

))
− w(h)

ǫ
, (5.1)

where we have suppressed the projection Ωk−1(M)/dΩk−2(M) → Ωk−1(M)/Ωk−1
Z (M) that is

induced by the identity on Ωk−1(M).

Proposition 5.2. For any w ∈ Ĥk(M ;Z)⋆∞, h ∈ Ĥk(M ;Z) and [η] ∈ Ωk−1(M)/dΩk−2(M)
the functional derivative exists and reads as

w(1)(h)
(
[η]

)
= 2π i w(h) 〈ι⋆(w), [η]〉 . (5.2)

Proof. We compute (5.1) explicitly to get

w(1)(h)
(
[η]

)
= lim

ǫ→0

w(h) w
(
ι
(
[ǫ η]

))
− w(h)

ǫ

= w(h) lim
ǫ→0

exp
(
2π i 〈ι⋆(w), [ǫ η]〉

)
− 1

ǫ
= w(h) 2π i 〈ι⋆(w), [η]〉 . (5.3)

In the first equality we have used the fact that w is a homomorphism of Abelian groups and
in the second equality the group homomorphism (4.2).
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To work out Peierls’ construction we need a Lagrangian, which we take to be the generalized
Maxwell Lagrangian

L(h) =
λ

2
curv(h) ∧ ∗

(
curv(h)

)
, (5.4)

where λ > 0 is a “coupling” constant and the factor 1
2 is purely conventional. The corresponding

Euler-Lagrange equation coincides (up to the factor λ) with the Maxwell map defined in Section

3, so they have the same solution subgroups. Given any solution h ∈ Ŝolk(M) of the Euler-
Lagrange equation λ δ

(
curv(h)

)
= 0, Peierls’ proposal is to study the retarded/advanced effect

of a functional w on this solution. Adapted to our setting, we shall introduce a formal parameter
ε and search for η±w ∈ Ωk−1(M) such that h±w := h + ι

(
[ε η±w ]

)
solves the partial differential

equation

λ δ
(
curv(h±w)

)
+ εw(1)(h±w) = 0 (5.5)

up to first order in ε and such that η±w satisfies a suitable asymptotic condition to be stated
below. Expanding (5.5) to first order in ε (and using δ

(
curv(h)

)
= 0) yields the inhomogeneous

equation

λ δdη±w + 2π i w(h) ι⋆(w) = 0 . (5.6)

The requisite asymptotic condition on η±w is as follows: There exist small gauge transformations
dχ±

w ∈ dΩk−2(M) and Cauchy surfaces Σ±
w in M such that

(
η±w + dχ±

w

)∣∣
J∓
M

(Σ±
w )

= 0 , (5.7)

where J±

M (A) denotes the causal future/past of a subset A ⊆M . In simple terms, this requires
η+w to be pure gauge in the far past and η−w to be pure gauge in the far future. Under these
assumptions, the unique (up to small gauge invariance) solution to (5.6) is given by η±w =
−2π i

λ w(h)G±
(
ι⋆(w)

)
, where G± : Ωk−1

0 (M) → Ωk−1(M) denote the unique retarded/advanced
Green’s operators of the Hodge-d’Alembert operator � := δ ◦d+d ◦ δ : Ωk−1(M) → Ωk−1(M).
Following further the construction of Peierls we define the retarded/advanced effect of w on
v ∈ Ĥk(M ;Z)⋆∞ (considered also as a functional v : Ĥk(M ;Z) → C) by taking the functional
derivative of v at h along [η±w ], i.e.

(
E±

w (v)
)
(h) := v(1)(h)

(
[η±w ]

)
=

4π2

λ

〈
ι⋆(v), G±

(
ι⋆(w)

)〉
v(h)w(h) . (5.8)

The difference between the retarded and advanced effects defines a Poisson bracket on the
associative, commutative and unital ∗-algebra generated by Ĥk(M ;Z)⋆∞. For two generators
v,w ∈ Ĥk(M ;Z)⋆∞ the Poisson bracket reads as

{v,w} = 4π2 τ̂(v,w) vw , (5.9)

with the antisymmetric bihomomorphism of Abelian groups

τ̂ : Ĥk(M ;Z)⋆∞ × Ĥk(M ;Z)⋆∞ −→ R ,

(v,w) 7−→ τ̂(v,w) = λ−1
〈
ι⋆(v), G

(
ι⋆(w)

)〉
. (5.10)

In this expression G := G+ − G− : Ωk−1
0 (M) → Ωk−1(M) is the retarded-minus-advanced

Green’s operator. Antisymmetry of τ̂ follows from the fact that G is formally skew-adjoint as a
consequence of � being formally self-adjoint with respect to the inner product on forms 〈 · , · 〉.
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By naturality of the Green’s operators G± and the inner product 〈 · , · 〉, the presymplectic
structure τ̂ is also natural. This allows us to promote the covariant functor Ĥk( · ;Z)⋆∞ : Locm →
Ab to a functor with values in the category of presymplectic Abelian groups PAb defined as
follows: The objects in PAb are pairs (G,σ), where G is an Abelian group and σ : G×G→ R

is an antisymmetric bihomomorphism of Abelian groups (called a presymplectic structure), i.e.
for any g ∈ G, the maps σ( · , g), σ(g, · ) : G→ R are both homomorphisms of Abelian groups.
The morphisms in PAb are group homomorphisms φ : G→ G′ that preserve the presymplectic
structures, i.e. σ′ ◦ (φ× φ) = σ.

Definition 5.3. The off-shell presymplectic Abelian group functor Ĝk
o( · ) : Loc

m → PAb

for a degree k differential cohomology theory is defined as follows: To an object M in Locm it
associates the presymplectic Abelian group Ĝk

o(M) :=
(
Ĥk(M ;Z)⋆∞, τ̂

)
with τ̂ given in (5.10).

To a Locm-morphism f : M → N it associates the PAb-morphism Ĝk
o(f) : Ĝ

k
o(M) → Ĝk

o(N)
that is induced by the Ab-morphism Ĥk(f ;Z)⋆∞ : Ĥk(M ;Z)⋆∞ → Ĥk(N ;Z)⋆∞.

The terminology off-shell comes from the physics literature and it means that the Abelian
groups underlying Ĝk

o( · ) are (subgroups of) the character groups of Ĥk( · ;Z). In contrast,
the Abelian groups underlying the on-shell presymplectic Abelian group functor should be
(subgroups of) the character groups of the subfunctor Ŝolk( · ) of Ĥk( · ;Z), see Section 3. We
shall discuss the on-shell presymplectic Abelian group functor later in this section after making
some remarks on Ĝk

o( · ).

Our first remark is concerned with the presymplectic structure (5.10). Notice that τ̂ is the
pull-back under ι⋆ of the presymplectic structure on the Abelian group Vk−1(M) given by

τ : Vk−1(M)× Vk−1(M) −→ R , (ϕ,ψ) 7−→ τ(ϕ,ψ) = λ−1 〈ϕ,G(ψ)〉 . (5.11)

By using this presymplectic structure, the covariant functor Vk−1( · ) : Locm → Ab can be
promoted to a functor Gk

o( · ) : Loc
m → PAb taking values in the category PAb: For any object

M in Locm we set Gk
o(M) :=

(
Vk−1(M), τ

)
with τ given in (5.11) and for any Locm-morphism

f : M → N we set Gk
o(f) : Gk

o(M) → Gk
o(N) to be the PAb-morphism induced by the Ab-

morphism Vk−1(f) : Vk−1(M) → Vk−1(N). By Theorem 4.3 and (5.10), we have a surjective
natural transformation ι⋆ : Ĝk

o( · ) ⇒ Gk
o( · ) between functors from Locm to PAb. Furthermore,

by equipping the Abelian groups Hk(M ;Z)⋆ with the trivial presymplectic structure, we may
regard Hk( · ;Z)⋆ : Locm → Ab as a covariant functor with values in PAb. Theorem 4.3 then
provides us with a natural exact sequence in the category PAb given by

0 // Hk(M ;Z)⋆
char⋆

// Ĝk
o(M)

ι⋆
// Gk

o(M) // 0 . (5.12)

If we pull back τ̂ under the natural transformation curv⋆ : Ωk0( · )/V
k( · ) ⇒ Ĥk( · ;Z)⋆∞, we

can promote the covariant functor Ωk0( · )/V
k( · ) : Locm → Ab to a functor with values in the

category PAb, which we denote by Fko( · ) : Loc
m → PAb. Using again Theorem 4.3, we obtain

a natural diagram in the category PAb given by

0

��

Fko(M)

curv⋆

��

0 // Hk(M ;Z)⋆
char⋆

// Ĝk
o(M)

ι⋆
// Gk

o(M) // 0

(5.13)

where the horizontal and vertical sequences are exact.
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Remark 5.4. The diagram (5.13) has the following physical interpretation. If we think of
the covariant functor Ĝk

o( · ) as a field theory describing classical observables on the differential
cohomology groups Ĥk( · ;Z), the diagram shows that this field theory has two (faithful) sub-
theories: The first subtheory Hk( · ;Z)⋆ is purely topological and it describes observables on the
cohomology groups Hk( · ;Z). The second subtheory Fko( · ) describes only the “field strength
observables”, i.e. classical observables measuring the curvature of elements in Ĥk( · ;Z). In ad-
dition to Ĝk

o( · ) having two subtheories, it also projects onto the field theory Gk
o( · ) describing

classical observables of topologically trivial fields.

Remark 5.5. In the PAb-diagram (5.13) the character groupHk−1(M ;T)⋆ (cf. the Ab-diagram
(4.12)) does not appear. The reason is that there is no presymplectic structure on Hk−1( · ;T)⋆

such that the components of both curv⋆ and κ⋆ are PAb-morphisms: if such a presymplectic
structure σ would exist, then the presymplectic structure on Fko( · ) would have to be trivial
as it would be given by the pull-back of σ along κ⋆ ◦ curv⋆ = 0. This is not the case. We
expect that the role of the flat classes Hk−1( · ;T) is that of a local symmetry group of the field
theory Ĝk

o( · ). This claim is strengthened by noting that adding flat classes does not change
the generalized Maxwell Lagrangian (5.4). In future work we plan to study this local symmetry
group in detail and also try to understand its role in Abelian S-duality.

We shall now discuss the on-shell presymplectic Abelian group functor for a degree k dif-
ferential cohomology theory. Recall that for any object M in Locm we have that Ŝolk(M) ⊆
Ĥk(M ;Z) is a subgroup. Thus any element w ∈ Ĥk(M ;Z)⋆∞ defines a group character on

Ŝolk(M). However, there are elements w ∈ Ĥk(M ;Z)⋆∞ which give rise to a trivial group

character on Ŝolk(M), i.e. w(h) = 1 for all h ∈ Ŝolk(M). We collect all of these elements in
the vanishing subgroups

Îk(M) :=
{
w ∈ Ĥk(M ;Z)⋆∞ : w(h) = 1 ∀h ∈ Ŝolk(M)

}
. (5.14)

Notice that Îk( · ) : Locm → Ab is a subfunctor of Ĥk( · ;Z)⋆∞. In order to characterize this
subfunctor, let us first dualize the Maxwell maps MW = δ ◦ curv : Ĥk(M ;Z) → Ωk−1(M) to
the smooth Pontryagin duals. This yields the group homomorphisms

MW⋆ = curv⋆ ◦ d : Ωk−1
0 (M) −→ Ĥk(M ;Z)⋆∞ . (5.15)

It is immediate to see that the image MW⋆[Ωk−1
0 (M)] is a subgroup of Îk(M): for any ρ ∈

Ωk−1
0 (M) we have

MW⋆(ρ)(h) = exp
(
2π i 〈ρ,MW(h)〉

)
= 1 (5.16)

for all h ∈ Ŝolk(M).

Proposition 5.6. Îk(M) = MW⋆[Ωk−1
0 (M)].

Proof. The inclusion “⊇” was shown above. To prove the inclusion “⊆”, let us take an arbitrary
w ∈ Îk(M). By (3.7) we have κ[Hk−1(M ;T)] ⊆ Ŝolk(M), which implies that κ⋆(w) = 0 is the
trivial group character on Hk−1(M ;T). As a consequence of (4.12) (exactness of the middle
horizontal sequence), we have w = curv⋆

(
[ϕ]

)
for some [ϕ] ∈ Ωk0(M)/Vk(M). Furthermore,

applying ι⋆ on w and using again the commutative diagram (4.12) we find ι⋆(w) = δϕ ∈
Vk−1(M). Due to the injective group homomorphism ι (cf. (3.7)), the group character ι⋆(w)
has to be trivial on Solk(M), i.e.

exp
(
2π i 〈δϕ, [η]〉

)
= 1 (5.17)
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for all [η] ∈ Solk(M). It is immediate to see that [G(α)] ∈ Solk(M), for any α ∈ Ωk−1
tc, δ (M) of

timelike compact support, and by [Ben16, Theorem 7.4] any [η] ∈ Solk(M) has a representative
of the form η = G(α), with α ∈ Ωk−1

tc, δ (M). Hence, we obtain the equivalent condition

〈δϕ,G(α)〉 = 0 (5.18)

for all α ∈ Ωk−1
tc, δ (M). For k = 1 this condition implies G(δϕ) = 0 and hence δϕ = �ρ = δdρ for

some ρ ∈ Ω0
0(M) by standard properties of normally hyperbolic operators [BGP07, Bär15]. For

k > 1 we use Poincaré duality between spacelike and timelike compact de Rham cohomology
groups [Ben16, Theorem 6.2] to find G(δϕ) = dχ for some χ ∈ Ωk−2

sc (M) of spacelike compact
support. Applying δ to this equation yields 0 = δdχ and, again by [Ben16, Theorem 7.4],
there exists β ∈ Ωk−2

0, δ (M) such that dχ = dG(β). Plugging this into the equation above yields

G(δϕ − dβ) = 0 and hence δϕ − dβ = �ρ for some ρ ∈ Ωk−1
0 (M). Applying δ and using the

fact that β is coclosed implies −�β = � δρ, thus β = −δρ. Plugging this back into the original
equation leads to δϕ = δdρ, just as in the case k = 1. As a consequence we obtain

ι⋆
(
MW⋆(ρ)

)
= δdρ = δϕ = ι⋆(w) . (5.19)

By exactness of the middle vertical sequence in the diagram (4.12) there exists φ ∈ Hk(M ;Z)⋆

such that w = MW⋆(ρ) + char⋆(φ). Using the fact that both w and MW⋆(ρ) are trivial group
characters on the solution subgroups we find

1 = char⋆(φ)(h) = φ
(
char(h)

)
(5.20)

for all h ∈ Ŝolk(M). In order to finish the proof we just have to notice that char : Ŝolk(M) →
Hk(M ;Z) is surjective (cf. Theorem 3.7), so φ is the trivial group character and w = MW⋆(ρ)
with ρ ∈ Ωk−1

0 (M).

For any object M in Locm, the vanishing subgroup Îk(M) is a subgroup of the radical in
the presymplectic Abelian group Ĝk

o(M): given any ρ ∈ Ωk−1
0 (M) and any w ∈ Ĥk(M ;Z)⋆∞,

we find

τ̂
(
MW⋆(ρ),w

)
= λ−1

〈
ι⋆
(
MW⋆(ρ)

)
, G

(
ι⋆(w)

)〉

= λ−1
〈
δdρ,G

(
ι⋆(w)

)〉

= λ−1
〈
ρ,G

(
δd ι⋆(w)

)〉

= λ−1
〈
ρ,G

(
� ι⋆(w)

)〉

= 0 , (5.21)

where in the third equality we have integrated by parts (which is possible since ρ is of compact
support) and in the fourth equality we have used the fact that ι⋆(w) ∈ Vk−1(M) is coclosed
(cf. Lemma 4.1), hence δd ι⋆(w) = � ι⋆(w). The last equality follows from G ◦ � = 0 on
compactly supported forms. As a consequence we can take the quotient of the covariant functor
Ĝk

o( · ) : Locm → PAb by the subfunctor Îk( · ), which yields another functor to the category
PAb.

Definition 5.7. The on-shell presymplectic Abelian group functor Ĝk( · ) : Locm → PAb

for a degree k differential cohomology theory is defined as the quotient Ĝk( · ) := Ĝk
o( · )/ Î

k( · ).
Explicitly, it associates to an object M in Locm the presymplectic Abelian group Ĝk(M) :=
Ĝk

o(M)/ Îk(M) with the presymplectic structure induced from Ĝk
o(M).5 To a Locm-morphism

f : M → N it associates the PAb-morphism Ĝk(f) : Ĝk(M) → Ĝk(N) that is induced by
Ĝk

o(f) : Ĝ
k
o(M) → Ĝk

o(N).

5 The induced presymplectic structure is well-defined, since, as we have shown above, Îk(M) is a subgroup

of the radical in Ĝk
o(M).
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We shall now derive the analog of the diagram (5.13) for on-shell functors. By construction,
it is clear that we have two natural transformations char⋆ : Hk( · ;Z)⋆ ⇒ Ĝk( · ) and curv⋆ :
Fko( · ) ⇒ Ĝk( · ), which however do not have to be injective. To make them injective we have
to take a quotient by the kernel subfunctors, which we now characterize.

Lemma 5.8. For any object M in Locm, the kernel of char⋆ : Hk(M ;Z)⋆ → Ĝk(M) is trivial
while the kernel Kk(M) of curv⋆ : Fko(M) → Ĝk(M) is given by

Kk(M) =
[
dΩk−1

0 (M)
]

⊆
Ωk0(M)

Vk(M)
. (5.22)

Proof. To prove the first statement, let φ ∈ Hk(M ;Z)⋆ be such that char⋆(φ) ∈ Îk(M). This

means that char⋆(φ)(h) = φ
(
char(h)

)
= 1 for all h ∈ Ŝolk(M). As char : Ŝolk(M) →

Hk(M ;Z) is surjective (cf. Theorem 3.7), we obtain φ = 0 and hence the kernel of char⋆ :
Hk(M ;Z)⋆ → Ĝk(M) is trivial.

Next, let us notice that by Theorem 3.7 an element [ϕ] ∈ Ωk0(M)/Vk(M) is in the kernel of

curv⋆ : Fko(M) → Ĝk(M) if and only if

1 = exp
(
2π i 〈ϕ,ω〉

)
(5.23)

for all ω ∈ ΩkZ, δ(M) and for any choice of representative ϕ of the class [ϕ]. It is clear that for

ϕ = dρ ∈ dΩk−1
0 (M) the condition (5.23) is fulfilled: just integrate d by parts and use δω = 0.

To show that any [ϕ] satisfying (5.23) has a representative ϕ = dρ ∈ dΩk−1
0 (M), we first use the

fact that the vector space {G(dβ) : β ∈ Ωk−1
tc, δ (M)} is a subgroup of (dΩk−1)δ(M) ⊆ ΩkZ, δ(M).

Then the condition (5.23) in particular implies that

0 = 〈ϕ,G(dβ)〉 = −〈G(δϕ), β〉 (5.24)

for all β ∈ Ωk−1
tc, δ (M). Arguing as in the proof of Proposition 5.6, this condition implies that

δϕ = δdρ for some ρ ∈ Ωk−1
0 (M). Hence ϕ is of the form ϕ = dρ+ ϕ′ with δϕ′ = 0. Plugging

this into (5.23) we obtain the condition

1 = exp
(
2π i

( 〈
ϕ′, ω

〉
+ 〈ρ, δω〉

))
= exp

(
2π i

〈
[ϕ′ ], [ω]

〉 )
(5.25)

for all ω ∈ ΩkZ, δ(M), where [ϕ′ ] is a dual de Rham class in Ωk0, δ(M)/δΩk+1
0 (M) and [ω]

is a de Rham class in Ωkd(M)/dΩk−1(M). As by Theorem 3.7 the de Rham class mapping
ΩkZ, δ(M) → Hk

free(M ;Z) is surjective, (5.25) implies that [ϕ′ ] ∈ Hk
free(M ;Z)′ and hence that ϕ

is equivalent to dρ in Ωk0(M)/Vk(M).

Taking now the quotient of the covariant functor Fko( · ) : Locm → PAb by its subfunctor
Kk( · ), we get another covariant functor Fk( · ) := Fko( · )/K

k( · ) : Locm → PAb. By Lemma 5.8
there are now two injective natural transformations char⋆ : Hk( · ;Z)⋆ ⇒ Ĝk( · ) and curv⋆ :
Fk( · ) ⇒ Ĝk( · ) to the on-shell presymplectic Abelian group functor Ĝk( · ). To obtain the
on-shell analog of the diagram (5.13) we just have to notice that, by a proof similar to that of
Proposition 5.6, the vanishing subgroups of the topologically trivial field theory are given by

Ik(M) :=
{
ϕ ∈ Vk−1(M) : exp

(
2π i 〈ϕ, [η]〉

)
= 1 ∀ [η] ∈ Solk(M)

}
= δdΩk−1

0 (M) . (5.26)

We define the corresponding quotient Gk( · ) := Gk
o( · )/I

k( · ) : Locm → PAb and notice that
the natural transformation ι⋆ : Ĝk( · ) ⇒ Gk( · ) is well-defined and surjective. Hence we obtain
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a natural diagram in the category PAb given by

0

��

Fk(M)

curv⋆

��

0 // Hk(M ;Z)⋆
char⋆

// Ĝk(M)
ι⋆

// Gk(M) // 0

(5.27)

where the horizontal and vertical sequences are exact. The physical interpretation given in
Remark 5.4 applies to this diagram as well.

We conclude this section by pointing out that the subtheory Fk( · ) of Ĝk( · ) has a further
purely topological subtheory. Let M be any object in Locm. Recall that the Abelian group
underlying Fk(M) is given by the double quotient

(
Ωk0(M)/Vk(M)

)
/
[
dΩk−1

0 (M)
]
, classes of

which we denote by double brackets, e.g. [[ϕ]]. There is a natural group homomorphism
Ωk0,d(M) → Fk(M) , ϕ 7→ [[ϕ]], which induces to the quotient Ωk0,d(M)/dΩk−1

0 (M) → Fk(M)

since [[dρ]] = 0 for any ρ ∈ Ωk−1
0 (M). This group homomorphism is injective: if [[ϕ]] = 0

for some ϕ ∈ Ωk0, d(M), then ϕ = dρ + ϕ′ for some ρ ∈ Ωk−1
0 (M) and ϕ′ ∈ Vk(M) (in par-

ticular δϕ′ = 0). Since dϕ = 0 we also have dϕ′ = 0 and hence �ϕ′ = 0, which implies
ϕ′ = 0. By Poincaré duality and de Rham’s theorem, the quotient Ωk0,d(M)/dΩk−1

0 (M) can

be canonically identified with HomR(H
m−k(M ;R),R) ≃ Hm−k(M ;R)⋆, the character group

of the (m−k)-th singular cohomology group with coefficients in R. We denote the injective
natural transformation constructed above by q⋆ : Hm−k( · ;R)⋆ ⇒ Fk( · ). The pull-back of the
presymplectic structure on Fk( · ) to Hm−k( · ;R)⋆ is trivial. In fact, the presymplectic struc-
ture on Hm−k(M ;R)⋆ is then given by pulling back τ in (5.11) via ι⋆ ◦ curv⋆ ◦ q⋆. For any two
elements in Hm−k(M ;R)⋆, which we represent by two classes [ϕ], [ϕ′ ] ∈ Ωk0,d(M)/dΩk−1

0 (M)
with the isomorphism above, we find

τ
(
ι⋆ ◦ curv⋆ ◦ q⋆

(
[ϕ]

)
, ι⋆ ◦ curv⋆ ◦ q⋆

(
[ϕ′ ]

))
= τ(δϕ, δϕ′ ) = λ−1

〈
ϕ,G

(
dδϕ′

)〉
= 0 (5.28)

since ϕ′ is closed and hence G(dδϕ′ ) = G(�ϕ′ ) = 0. In order to get a better understanding of
q⋆, let us compute how elements in the image of curv⋆ ◦ q⋆ : Hm−k(M ;R)⋆ → Ĝk(M) act on

the solution subgroup Ŝolk(M). For any element in Hm−k(M ;R)⋆, which we represent by a

class [ϕ] ∈ Ωk0, d(M)/dΩk−1
0 (M) with the isomorphism above, and any h ∈ Ŝolk(M) we find

(
curv⋆ ◦ q⋆([ϕ])

)
(h) = exp

(
2π i 〈ϕ, curv(h)〉

)
= exp

(
2π i

∫

M
ϕ ∧ ∗

(
curv(h)

))
. (5.29)

Since h lies in the kernel of the Maxwell map, the forms ∗
(
curv(h)

)
∈ Ωm−k(M) are closed and

the integral in (5.29) depends only on the de Rham classes [ϕ] ∈ Hk
0 (M ;R) and

[
∗
(
curv(h)

)]
∈

Hm−k(M ;R). So the observables described by the subtheory Hm−k( · ;R)⋆ of Ĝk( · ) are exactly
those measuring the de Rham class of the dual curvature of a solution.

Remark 5.9. Following the terminology used in ordinary Maxwell theory (given in degree
k = 2) we may call the subtheory Hm−k( · ;R)⋆ electric and the subtheory Hk( · ;Z)⋆ magnetic.
The structures we have found for the on-shell field theory can be summarized by the following
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diagram with all horizontal and vertical sequences exact:

0

��

0 // Hm−k(M ;R)⋆︸ ︷︷ ︸
electric

q⋆
// Fk(M)

curv⋆

��

0 // Hk(M ;Z)⋆︸ ︷︷ ︸
magnetic

char⋆
// Ĝk(M)

ι⋆
// Gk(M) // 0

(5.30)

6 Quantum field theory

In the previous section we have derived various functors from the category Locm to the cat-
egory PAb of presymplectic Abelian groups. In particular, the functor Ŝk( · ) describes the
association of the smooth Pontryagin duals (equipped with a natural presymplectic structure)
of the solution subgroups of a degree k differential cohomology theory. To quantize this field
theory, we shall make use of the CCR-functor for presymplectic Abelian groups, see [M+73]
and [BDHS14, Appendix A] for details. In short, canonical quantization is a covariant functor
CCR( · ) : PAb → C∗Alg to the category of unital C∗-algebras with morphisms given by unital
C∗-algebra homomorphisms (not necessarily injective). To any presymplectic Abelian group
(G,σ) this functor associates the unital C∗-algebra CCR(G,σ), which is generated by the sym-
bols W (g), g ∈ G, satisfying the Weyl relations W (g)W (g̃) = e− iσ(g,g̃)/2W (g + g̃) and the
∗-involution property W (g)∗ =W (−g). This unital ∗-algebra is then equipped and completed
with respect to a suitable C∗-norm. To any PAb-morphism φ : (G,σ) → (G′, σ′ ) the functor
associates the C∗Alg-morphism CCR(φ) : CCR(G,σ) → CCR(G′, σ′ ), which is obtained as the
unique continuous extension of the unital ∗-algebra homomorphism defined on generators by
W (g) 7→W (φ(g)).

Definition 6.1. The quantum field theory functor Âk( · ) : Locm → C∗Alg for a degree
k differential cohomology theory is defined as the composition of the on-shell presymplectic
Abelian group functor Ĝk( · ) : Locm → PAb with the CCR-functor CCR( · ) : PAb → C∗Alg,
i.e.

Âk( · ) := CCR( · ) ◦ Ĝk( · ) . (6.1)

Remark 6.2. The subtheory structure of the classical on-shell field theory explained in Re-
mark 5.9 is also present, with a slight caveat, in the quantum field theory. Acting with the
functor CCR( · ) on the diagram (5.30) we obtain a similar diagram in the category C∗Alg (with
CCR(0) = C, the trivial unital C∗-algebra). However, the sequences in this diagram will in gen-
eral not be exact, as the CCR-functor is not an exact functor. This will not be of major concern
to us, since by [BDHS14, Corollary A.7] the functor CCR( · ) does map injective PAb-morphisms
to injective C∗Alg-morphisms. Thus our statements in Remark 5.9 about the (faithful) sub-
theories remain valid after quantization. Explicitly, the quantum field theory Âk( · ) has three
faithful subtheories Akel( · ) := CCR( · ) ◦ Hm−k( · ;R)⋆, Akmag( · ) := CCR( · ) ◦ Hk( · ;Z)⋆ and

AkF( · ) := CCR( · ) ◦ Fk( · ), with the first two being purely topological and the third being a
theory of quantized curvature observables.

We shall now address the problem of whether or not our functor Âk( · ) satisfies the axioms
of locally covariant quantum field theory, which have been proposed in [BFV03] to single out
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physically reasonable models for quantum field theory from all possible covariant functors from
Locm to C∗Alg. The first axiom formalizes the concept of Einstein causality.

Theorem 6.3. The functor Âk( · ) : Locm → C∗Alg satisfies the causality axiom: For any
pair of Locm-morphisms f1 : M1 → M and f2 : M2 → M such that f1[M1] and f2[M2] are
causally disjoint subsets of M , the subalgebras Âk(f1)

[
Âk(M1)

]
and Âk(f2)

[
Âk(M2)

]
of Âk(M)

commute.

Proof. For any two generators W (w) ∈ Âk(M1) and W (v) ∈ Âk(M2) we have

[
Âk(f1)

(
W (w)

)
, Âk(f2)

(
W (v)

) ]
=

[
W

(
Ĝk(f1)(w)

)
,W

(
Ĝk(f2)(v)

)]

= −2 iW
(
Ĝk(f1)(w) + Ĝk(f2)(v)

)
sin

(
1
2 τ

(
f1∗(ι

⋆(w)), f2∗(ι
⋆(v))

))
= 0 , (6.2)

where we have used the Weyl relations and the fact that, by hypothesis, the push-forwards
f1∗(ι

⋆(w)) and f2∗(ι
⋆(v)) are differential forms of causally disjoint support, for which the

presymplectic structure (5.11) vanishes. The result now follows by approximating generic
elements in Âk(M1) and Âk(M2) by linear combinations of generators and using continuity of
Âk(f1) and Âk(f2).

The second axiom formalizes the concept of a dynamical law. Recall that a Locm-morphism
f :M → N is called a Cauchy morphism if the image f [M ] contains a Cauchy surface of N .

Theorem 6.4. The functor Âk( · ) : Locm → C∗Alg satisfies the time-slice axiom: If f :M →
N is a Cauchy morphism, then Âk(f) : Âk(M) → Âk(N) is a C∗Alg-isomorphism.

Proof. Recall that the Abelian groups underlying Ĝk( · ) are subgroups of the character groups

of Ŝolk( · ) and that by definition Ĝk(f) : Ĝk(M) → Ĝk(N) , w 7→ w◦Ŝolk(f). Using Theorem

3.9 we have that Ŝolk(f) is an Ab-isomorphism for any Cauchy morphism f : M → N , hence
Ĝk(f) is a PAb-isomorphism and as a consequence of functoriality Âk(f) = CCR

(
Ĝk(f)

)
is a

C∗Alg-isomorphism.

In addition to the causality and time-slice axioms, [BFV03] proposed the locality axiom
which demands that the functor Âk( · ) : Locm → C∗Alg should map any Locm-morphism
f : M → N to an injective C∗Alg-morphism Âk(f) : Âk(M) → Âk(N). The physical idea
behind this axiom is that any observable quantity on a sub-spacetime M should also be an
observable quantity on the full spacetime N into which it embeds via f : M → N . It is
known that this axiom is not satisfied in various formulations of Maxwell’s theory, see e.g.
[DL12, BDS14, BDHS14, SDH14, FL16]. The violation of the locality axiom is shown in most
of these works by giving an example of a Locm-morphism f : M → N such that the induced
C∗-algebra morphism is not injective. A detailed characterization and understanding of which
Locm-morphisms violate the locality axiom is given in [BDHS14] for a theory of connections
on fixed T-bundles. It is shown there that a morphism violates the locality axiom if and only
if the induced morphism between the compactly supported de Rham cohomology groups of
degree 2 is not injective. Thus the locality axiom is violated due to topological obstructions.
Our present theory under consideration has a much richer topological structure than a theory
of connections on a fixed T-bundle, see Remark 6.2. It is therefore important to extend the
analysis of [BDHS14] to our functor Âk( · ) : Locm → C∗Alg in order to characterize exactly
those Locm-morphisms which violate the locality axiom.

We collect some results which will simplify our analysis: Let φ : (G,σ) → (G′, σ′ ) be any
PAb-morphism. Then CCR(φ) is injective if and only if φ is injective: the direction “⇐” is
shown in [BDHS14, Corollary A.7] and the direction “⇒” is an obvious proof by contraposition
(which is spelled out in [BDHS14, Theorem 5.2]). Hence our problem of characterizing all Locm-
morphisms f : M → N for which Âk(f) is injective is equivalent to the classical problem of
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characterizing all Locm-morphisms f : M → N for which Ĝk(f) is injective. Furthermore, the
kernel of any PAb-morphism φ : (G,σ) → (G′, σ′ ) is a subgroup of the radical in (G,σ): if
g ∈ G with φ(g) = 0 then 0 = σ′

(
φ(g), φ(g̃)

)
= σ(g, g̃) for all g̃ ∈ G, which shows that g is

an element the radical of (G,σ). For any object M in Locm the radical of Ĝk(M) is easily
computed:

Lemma 6.5. The radical of Ĝk(M) is the subgroup

Rad
(
Ĝk(M)

)
=

{
v ∈ Ĝk(M) : ι⋆(v) ∈

δ
(
Ωk0(M) ∩ dΩk−1

tc (M)
)

δdΩk−1
0 (M)

}
. (6.3)

Proof. We show the inclusion “⊇” by evaluating the presymplectic structure (5.10) for any
element v of the group on the right-hand side of (6.3) and any w ∈ Ĝk(M). Using ι⋆(v) = [δdρ]
for some ρ ∈ Ωk−1

tc (M), we obtain

τ̂(v,w) = λ−1
〈
ι⋆(v), G

(
ι⋆(w)

)〉

= λ−1
〈
δdρ,G

(
ι⋆(w)

)〉

= λ−1
〈
ρ,G

(
δd ι⋆(w)

)〉

= λ−1
〈
ρ,G

(
� ι⋆(w)

)〉

= 0 . (6.4)

We now show the inclusion “⊆”. Let v be any element in the radical of Ĝk(M), i.e. 0 =
τ̂(w, v) = λ−1 〈ι⋆(w), G(ι⋆(v))〉 for all w ∈ Ĝk(M). As ι⋆ is surjective, this implies that
〈ϕ,G(ι⋆(v))〉 = 0 for all ϕ ∈ Vk−1(M), from which we can deduce by similar arguments as in
the proof of Proposition 5.6 that ι⋆(v) = [δdρ] for some ρ ∈ Ωk−1

tc (M) with dρ ∈ Ωk0(M).

We show that the radical Rad
(
Ĝk(M)

)
, and hence also the kernel of any PAb-morphism

with source given by Ĝk(M), is contained in the images of curv⋆ ◦q⋆ : Hm−k(M ;R)⋆ → Ĝk(M)
and char⋆ : Hk(M ;Z)⋆ → Ĝk(M). To make this precise, similarly to [FS15, Section 5] we
may equip the category PAb with the following monoidal structure ⊕: For two objects (G,σ)
and (G′, σ′ ) in PAb we set (G,σ) ⊕ (G′, σ′ ) := (G ⊕ G′, σ ⊕ σ′ ), where G ⊕ G′ denotes the
direct sum of Abelian groups and σ ⊕ σ′ is the presymplectic structure on G ⊕ G′ defined by
σ ⊕ σ′

(
g ⊕ g′, g̃ ⊕ g̃′

)
:= σ(g, g̃) + σ′(g′, g̃′ ). For two PAb-morphisms φi : (Gi, σi) → (G′

i, σ
′
i ),

i = 1, 2, the functor gives the direct sum φ1 ⊕ φ2 : (G1 ⊕ G2, σ1 ⊕ σ2) → (G′
1 ⊕ G′

2, σ
′
1 ⊕ σ′2).

The identity object is the trivial presymplectic Abelian group. We define the covariant functor
describing the direct sum of both topological subtheories of Ĝk( · ) by

Chargek( · ) := Hm−k( · ;R)⋆ ⊕Hk( · ;Z)⋆ : Locm −→ PAb . (6.5)

There is an obvious natural transformation top⋆ : Chargek( · ) ⇒ Ĝk( · ) given for any object M
in Locm by

top⋆ : Chargek(M) −→ Ĝk(M) , ψ ⊕ φ 7−→ curv⋆
(
q⋆(ψ)

)
+ char⋆(φ) . (6.6)

This natural transformation is injective by the following argument: Using the isomorphism
explained in the paragraph before Remark 5.9, we can represent any ψ ∈ Hm−k(M ;R)⋆ by a
compactly supported de Rham class [ϕ] ∈ Ωk0, d(M)/dΩk−1

0 (M). Applying ι⋆ on the equation

top⋆(ψ⊕φ) = 0 implies [δϕ] = 0 in Vk−1(M)/δdΩk−1
0 (M), i.e. δϕ = δdρ for some ρ ∈ Ωk−1

0 (M),
which after applying d and using dϕ = 0 leads to ϕ = dρ, i.e. [ϕ] = 0 and thus ψ = 0. As char⋆

is injective, the condition top⋆(ψ ⊕ φ) = 0 implies ψ ⊕ φ = 0 and so top⋆ is injective.
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Lemma 6.6. The radical Rad
(
Ĝk(M)

)
is a subgroup of the image of Chargek(M) under

top⋆ : Chargek(M) → Ĝk(M). In particular, the kernel of any PAb-morphism with source given
by Ĝk(M) is a subgroup of the image of Chargek(M) under top⋆ : Chargek(M) → Ĝk(M).

Proof. The second statement follows from the first one, since as we have argued above kernels
of PAb-morphisms are subgroups of the radical of the source. To show the first statement,
let v ∈ Rad

(
Ĝk(M)

)
and notice that by Lemma 6.5 there exists ρ ∈ Ωk−1

tc (M) with dρ

of compact support such that ι⋆(v) = [δdρ]. As the element v − curv⋆
(
q⋆([dρ])

)
∈ Ĝk(M)

lies in the kernel of ι⋆, Remark 5.9 implies that there exists φ ∈ Hk(M ;Z)⋆ such that v =
curv⋆

(
q⋆([dρ])

)
+ char⋆(φ) = top⋆

(
[dρ] ⊕ φ

)
, and hence v lies in the image of Chargek(M)

under top⋆ : Chargek(M) → Ĝk(M).

Remark 6.7. Notice that the converse of Lemma 6.6 is in general not true, i.e. the image of
Chargek(M) under top⋆ : Chargek(M) → Ĝk(M) is not necessarily a subgroup of the radical
Rad

(
Ĝk(M)

)
. For example, for any object M in Locm which has compact Cauchy surfaces

(such as M = R × Tm−1 equipped with the canonical Lorentzian metric), Lemma 6.5 implies
that the radical is the kernel of ι⋆, which by Remark 5.9 is equal to the image of char⋆. If
Hm−k(M ;R)⋆ is non-trivial (as in the case M = R×Tm−1 for any 1 ≤ k ≤ m), then its image
under curv⋆ ◦ q⋆ is not contained in the radical.

We can now give a characterization of the Locm-morphisms which violate the locality axiom.

Theorem 6.8. Let f : M → N be any Locm-morphism. Then the C∗Alg-morphism Âk(f) :
Âk(M) → Âk(N) is injective if and only if the PAb-morphism Chargek(f) : Chargek(M) →
Chargek(N) is injective.

Proof. We can simplify this problem by recalling from above that Âk(f) is injective if and
only if Ĝk(f) is injective. Furthermore, it is easier to prove the contraposition “Ĝk(f) not
injective ⇔ Chargek(f) not injective”, which is equivalent to our theorem. Our arguments will
be based on the fact that top⋆ : Chargek( · ) ⇒ Ĝk( · ) is an injective natural transformation, so
it is helpful to draw the corresponding commutative diagram in the category PAb with exact
vertical sequences:

Ĝk(M)
Ĝk(f)

// Ĝk(N)

Chargek(M)

top⋆

OO

Chargek(f)
// Chargek(N)

top⋆

OO

0

OO

0

OO

(6.7)

Let us prove the direction “⇐”: Assuming that Chargek(f) is not injective, the diagram (6.7)
implies that top⋆ ◦Chargek(f) = Ĝk(f) ◦ top⋆ is not injective, and hence Ĝk(f) is not injective
since top⋆ is injective. To prove the direction “⇒” let us assume that Ĝk(f) is not injective.
By Lemma 6.6 the kernel of Ĝk(f) is a subgroup of the image of Chargek(M) under top⋆ :
Chargek(M) → Ĝk(M), hence Ĝk(f) ◦ top⋆ is not injective. The commutative diagram (6.7)
then implies that top⋆ ◦Chargek(f) is not injective, hence Chargek(f) is not injective since top⋆

is injective.

Example 6.9. We provide explicit examples of Locm-morphisms f : M → N which violate
the locality axiom. Let us take as Locm-object N = Rm, the m-dimensional oriented and
time-oriented Minkowski spacetime. Choosing any Cauchy surface ΣN = Rm−1 in N , we take
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the subset ΣM :=
(
Rp \ {0}

)
× Rm−1−p ⊆ ΣN , where we have removed the origin 0 of a p-

dimensional subspace with 1 ≤ p ≤ m − 1. We take the Cauchy development of ΣM in N
(which we denote by M) and note that by [BGP07, Lemma A.5.9] M is a causally compatible,
open and globally hyperbolic subset of N . The canonical inclusion provides us with a Locm-
morphism ιN ;M :M → N . Using the diffeomorphism Rp \{0} ≃ R×Sp−1 with the p−1-sphere
Sp−1 (in our conventions S0 := {−1,+1}), we find that M ≃ Rm−p+1 × Sp−1. Using the fact
that the singular cohomology groups are homotopy invariant, we obtain

Chargek(M) ≃ Hm−k(Sp−1;R)⋆ ⊕Hk(Sp−1;Z)⋆ , (6.8a)

Chargek(N) ≃ Hm−k(pt;R)⋆ ⊕Hk(pt;Z)⋆ , (6.8b)

where pt denotes a single point. By Theorem 6.8, the C∗Alg-morphism Âk(ιN ;M ) is not injective
if and only if Chargek(ιN ;M ) is not injective. The following choices of p lead to Locm-morphisms
ιN ;M :M → N which violate the locality axiom:

• k = 1: Since by assumptionm ≥ 2, the second isomorphism in (6.8) implies Charge1(N) =
0. Since 1 ≤ p ≤ m − 1, we have Hm−1(Sp−1;R)⋆ = 0 and hence the first isomorphism
in (6.8) implies Charge1(M) ≃ H1(Sp−1;Z)⋆. For m ≥ 3 we choose p = 2 and find that
Charge1(M) ≃ Z⋆ ≃ T, hence Charge1(ιN ;M ) is not injective (being a group homomor-
phism T → 0). The case m = 2 is special and is discussed in detail below.

• 2 ≤ k ≤ m − 1: The second isomorphism in (6.8) implies Chargek(N) = 0. Choosing
p = m− k + 1 (which is admissible since 2 ≤ p ≤ m− 1), the first isomorphism in (6.8)
gives Chargek(M) ≃ R ⊕ δk,m−k T, where δk,m−k denotes the Kronecker delta. Hence
Chargek(ιN ;M ) is not injective (being a group homomorphism R⊕ δk,m−kT → 0). Alter-
natively, if 2 ≤ k ≤ m−2 we may also choose p = k+1 and find via the first isomorphism
in (6.8) that Chargek(M) ≃ δk,m−k R ⊕ T, which also implies that Chargek(ιN ;M ) is not
injective.

• k = m: The second isomorphism in (6.8) implies Chargem(N) ≃ R. Choosing p = 1
(which is admissible since m ≥ 2) we obtain Chargem(M) ≃ R2, hence Chargem(ιN ;M ) is
not injective (being a group homomorphism R2 → R).

Corollary 6.10. Choose any m ≥ 2 and 1 ≤ k ≤ m such that (m,k) 6= (2, 1). Then the
quantum field theory functor Âk( · ) : Locm → C∗Alg violates the locality axiom.

Proof. This follows from the explicit examples of Locm-morphisms given in Example 6.9 and
Theorem 6.8.

The case m = 2 and k = 1 is special. As any object M in Loc2 is a two-dimensional
globally hyperbolic spacetime, there exists a one-dimensional Cauchy surface ΣM such that
M ≃ R×ΣM . By the classification of one-manifolds (without boundary), ΣM is diffeomorphic
to the disjoint union of copies of R and T, i.e. ΣM ≃

∐nM

i=1 R ⊔
∐cM
j=1 T (the natural numbers

nM and cM are finite, since M is assumed to be of finite-type). By homotopy invariance, we
have

Charge1(M) ≃ H1(ΣM ;R)⋆ ⊕H1(ΣM ;Z)⋆ ≃ RcM ⊕ TcM . (6.9)

As any Locm-morphism f :M → N is in particular an embedding, the number of compact com-
ponents in the Cauchy surfaces ΣM and ΣN cannot decrease, i.e. cM ≤ cN . As a consequence,
Charge1(f) is injective and by Theorem 6.8 so is Â1(f).

Proposition 6.11. The quantum field theory functor Â1( · ) : Loc2 → C∗Alg satisfies the
locality axiom. Thus it is a locally covariant quantum field theory in the sense of [BFV03].
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A Fréchet-Lie group structures

In this appendix we show how to equip the differential cohomology groups Ĥk(M ;Z), as well
as all other Abelian groups in the diagram (2.11), with the structure of an Abelian Fréchet-Lie
group such that the morphisms in this diagram are smooth maps. Our notion of functional
derivatives in Definition 5.1 then coincides with directional derivatives along tangent vectors
corresponding to this Abelian Fréchet-Lie group structure. Furthermore, we show that the
contravariant functor Ĥk( · ;Z) : Locm → Ab can be promoted to a functor to the category of
Abelian Fréchet-Lie groups. For the notions of Fréchet manifolds and Fréchet-Lie groups we
refer to [Ham82].

Let M be any smooth manifold that is of finite-type. The Abelian groups in the lower
horizontal sequence in the diagram (2.11) are finitely generated discrete groups, hence we shall
equip them with the discrete topology and therewith obtain zero-dimensional Abelian Fréchet-
Lie groups. All arrows in the lower horizontal sequence in (2.11) then become morphisms of
Abelian Fréchet-Lie groups. Next, we consider the upper horizontal sequence in (2.11). We
endow the R-vector space of differential p-forms Ωp(M) with the natural C∞-topology, i.e. the
topology of uniform convergence together with all derivatives on any compact set K ⊂M . An
elegant way to describe the C∞-topology is by choosing an auxiliary Riemannian metric g on
M and a countable compact exhaustion K0 ⊂ K1 ⊂ · · · ⊂ Kn ⊂ Kn+1 ⊂ · · · ⊂M , with n ∈ N.
We define the family of semi-norms

‖ω‖l,n := max
j=0,1,...,l

max
x∈Kn

|Djω(x)| (A.1)

for all l, n ∈ N and ω ∈ Ωp(M), where Dj : Ωp(M) → Γ∞
(
M,

∧p T ∗M ⊗
∨j T ∗M

)
is the

symmetrized covariant derivative corresponding to the Riemannian metric g and | · | is the
fibre metric on

∧p T ∗M ⊗
∨j T ∗M induced by g. The C∞-topology on Ωp(M) is the Fréchet

topology induced by the family of semi-norms ‖ · ‖l,n with l, n ∈ N. It is easy to check that this
topology does not depend on the choice of Riemannian metric g and compact exhaustion Kn,
as for different choices of g and Kn the corresponding semi-norms can be estimated against
each other.

The subspace of exact forms dΩk−1(M) ⊆ Ωk(M) is a closed subspace in the C∞-topology
on Ωk(M), hence dΩk−1(M) is a Fréchet space in its own right. Forgetting the multiplication
by scalars, the Abelian group dΩk−1(M) (with respect to +) in the upper right corner of (2.11)
is an Abelian Fréchet-Lie group. Let us now describe the Abelian Fréchet-Lie group structure
on Ωk−1(M)/Ωk−1

Z (M). For us it will be convenient to provide an explicit description by using
charts. As model space we shall take the Fréchet space Ωk−1(M)/dΩk−2(M). To specify a

29



topology on Ωk−1(M)/Ωk−1
Z (M) by defining a neighborhood basis around every point [η] ∈

Ωk−1(M)/Ωk−1
Z (M), notice that Ωk−1(M)/Ωk−1

Z (M) is the quotient of Ωk−1(M)/dΩk−2(M)

by the finitely generated subgroup Hk−1
free (M ;Z). Let Vn ⊆ Ωk−1(M)/dΩk−2(M), with n ∈

N, be a countable neighborhood basis of 0 ∈ Ωk−1(M)/dΩk−2(M), which consists of “small
open sets” in the sense that Vn ∩ Hk−1

free (M ;Z) = {0} for all n ∈ N. Thus the quotient map

q : Ωk−1(M)/dΩk−2(M) → Ωk−1(M)/Ωk−1
Z (M) is injective when restricted to Vn. We may

assume without loss of generality that Vn is symmetric, i.e. −Vn = Vn. We now define a
neighborhood basis around every point [η] ∈ Ωk−1(M)/Ωk−1

Z (M) by setting

U[η],n := [η] + q
[
Vn

]
⊆

Ωk−1(M)

Ωk−1
Z (M)

. (A.2)

The topology induced by the basis
{
U[η],n : [η] ∈ Ωk−1(M)/Ωk−1

Z (M) , n ∈ N
}

makes the

quotient Ωk−1(M)/Ωk−1
Z (M) into a Fréchet manifold: as charts around [η] we may take the

maps

ψ[η],n : U[η],n −→ Vn ⊆
Ωk−1(M)

dΩk−2(M)
, [η] + q([ω]) 7−→ [ω] . (A.3)

The change of coordinates is then given by affine transformations V → [ω′ ]+V , [ω] 7→ [ω′ ]+[ω]
on open subsets V ⊆ Ωk−1(M)/dΩk−2(M), which are smooth maps. Fixing any point [η′ ] ∈
Ωk−1(M)/Ωk−1

Z (M), consider the map [η′ ] + ( · ) : Ωk−1(M)/Ωk−1
Z (M) → Ωk−1(M)/Ωk−1

Z (M).
The inverse image of any open neighborhood U[η],n is given by

(
[η′ ] + ( · )

)−1(
U[η],n

)
= [η]− [η′ ] + q

[
Vn

]
= U[η]−[η′ ],n , (A.4)

which is open. Hence + is continuous. Analogously, we see that the group inverse is con-
tinuous since the inverse image of any U[η],n is U−[η],n. To see that the group operations
are also smooth, notice that for any U[η],n the map [η′ ] + ( · ) : U[η]−[η′ ],n → U[η],n induces
the identity map idVn : Vn → Vn in the charts ψ[η]−[η′ ],n and ψ[η],n. Similarly the inverse
− : U−[η],n → U[η],n induces minus the identity map −idVn : Vn → Vn in the charts ψ−[η],n and

ψ[η],n. Hence Ωk−1(M)/Ωk−1
Z (M) is an Abelian Fréchet-Lie group. Since Ωk−1(M)/Ωk−1

Z (M)

carries the quotient topology induced from the Fréchet space Ωk−1(M)/dΩk−2(M) and the
exterior differential d : Ωk−1(M) → dΩk−1(M) is smooth, the same holds for the induced map
d : Ωk−1(M)/Ωk−1

Z (M) → dΩk−1(M).

The Abelian Fréchet-Lie group structure on Hk−1(M ;R)/Hk−1
free (M ;Z) is modeled on the

subspace Hk−1(M ;R) ≃ Ωk−1
d (M)/dΩk−2(M) ⊆ Ωk−1(M)/dΩk−2(M) equipped with the sub-

space topology. Explicitly, we define charts on Hk−1(M ;R)/Hk−1
free (M ;Z) by noticing that

Hk−1(M ;R)

Hk−1
free (M ;Z)

≃
Ωk−1
d (M)

Ωk−1
Z (M)

⊆
Ωk−1(M)

Ωk−1
Z (M)

(A.5)

and setting

ψ̃[η],n :
(
U[η],n ∩

Ωk−1
d (M)

Ωk−1
Z (M)

)
−→

(
Vn ∩

Ωk−1
d (M)

dΩk−2(M)

)
,

[η] + q([ω]) 7−→ [ω] (A.6)

for any [η] ∈ Ωk−1
d (M)/Ωk−1

Z (M) and n ∈ N. This defines on Hk−1(M ;R)/Hk−1
free (M ;Z) an

Abelian Fréchet-Lie group structure. The smooth inclusion Ωk−1
d (M) →֒ Ωk−1(M) of Fréchet

spaces descends to a smooth inclusion Hk−1(M ;R)/Hk−1
free (M ;Z) →֒ Ωk−1(M)/Ωk−1

Z (M) of
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Abelian Fréchet-Lie groups. Hence we have shown that all arrows in the upper horizontal
sequence in (2.11) are morphisms of Abelian Fréchet-Lie groups.

From the Abelian Fréchet-Lie group structure on the groups in the lower and upper hori-
zontal sequence in (2.11) we can derive an Abelian Fréchet-Lie group structure on the groups
in the middle horizontal sequence. Our strategy makes use of the vertical exact sequences in
(2.11). As the construction is the same for all three vertical sequences, it is enough to discuss
the example of the middle vertical sequence. As char : Ĥk(M ;Z) → Hk(M ;Z) is an Abelian
group homomorphism to a discrete Abelian Fréchet-Lie group, the connected components of
Ĥk(M ;Z) are precisely the fibers of the characteristic class map char. Thus we shall take
as model space for Ĥk(M ;Z) the same Fréchet space Ωk−1(M)/dΩk−2(M) as for the group
Ωk−1(M)/Ωk−1

Z (M) describing the kernel of char. Explicitly, we take the topology on Ĥk(M ;Z)
which is generated by the basis

Ûh,n := h+ (ι ◦ q)
[
Vn

]
⊆ Ĥk(M ;Z) , (A.7)

for all h ∈ Ĥk(M ;Z) and n ∈ N. The charts are given by

ψ̂h,n : Ûh,n −→ Vn , h+ (ι ◦ q)([ω]) 7−→ [ω] , (A.8)

and the proof that the change of coordinates is smooth is the same as above. By construc-
tion of the topology on Ĥk(M ;Z), the group operations are smooth, since it suffices to con-
sider them along the connected components and there the proof reduces to the one above
for the smoothness of the group operations on Ωk−1(M)/Ωk−1

Z (M). Again by construction,

the topological trivialization ι : Ωk−1(M)/Ωk−1
Z (M) → Ĥk(M ;Z) is a diffeomorphism onto

the connected component of 0 ∈ Ĥk(M ;Z). The characteristic class char : Ĥk(M ;Z) →
Hk(M ;Z) is smooth, since Hk(M ;Z) carries the discrete topology. Likewise, the inclusions
Hk−1(M ;R)/Hk−1

free (M ;Z) →֒ Hk−1(M ;T) and dΩk−1(M) →֒ ΩkZ(M), as well as the projec-
tions Hk−1(M ;T) → Hk

tor(M ;Z) and ΩkZ(M) → Hk
free(M ;Z), in the left and right vertical

sequences in (2.11) are smooth maps.

It remains to show that the arrows in the middle horizontal sequence of (2.11) are smooth:
A basis for the topology on ΩkZ(M) is given by sets of the form ω + V , where ω ∈ ΩkZ(M) and
the sets V are taken from an open neighborhood basis of 0 ∈ dΩk−1(M). The inverse image
of an open set ω + V under curv : Ĥk(M ;Z) → ΩkZ(M) is the union over all h ∈ curv−1(ω)
of the open sets h + ι[d−1(V )], hence it is open and curv is continuous. Furthermore, the
curvature curv is smooth with differential Dhcurv([ω]) = dω, where h ∈ Ĥk(M ;Z) and [ω] ∈
Ωk−1(M)/dΩk−2(M) = ThĤ

k(M ;Z) is a tangent vector. By a similar argument, the group
homomorphism κ : Hk−1(M ;T) → Ĥk(M ;Z) is smooth with differential given by the inclusion

T[φ]

( Hk−1(M ;R)

Hk−1
free (M ;Z)

)
= Hk−1(M ;R) →֒

Ωk−1(M)

dΩk−2(M)
= Tκ([φ])Ĥ

k(M ;Z) , (A.9)

where [φ] ∈ Hk−1(M ;R)/Hk−1
free (M ;Z).

With respect to the Abelian Fréchet-Lie group structure developed above, the tangent space
at a point h ∈ Ĥk(M ;Z) is given by the model space Ωk−1(M)/dΩk−2(M). The functional
derivative given in Definition 5.1 is the directional derivative along tangent vectors.

It remains to show that the contravariant functor Ĥk( · ;Z) : Locm → Ab can be promoted
to a functor with values in the category of Abelian Fréchet-Lie groups. For any smooth map
f :M → N the pull-back of differential forms f∗ : Ωk−1(N) → Ωk−1(M) is smooth with respect
to the Fréchet space structure on differential forms. The same holds true for the induced map
on the quotients f∗ : Ωk−1(N)/dΩk−2(N) → Ωk−1(M)/dΩk−2(M). Since the characteristic
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class is a natural transformation char : Ĥk( · ;Z) ⇒ Hk( · ;Z), the argument for smoothness
of the pull-back directly carries over from the groups in the upper row of the diagram (2.11)
to the middle row: As above, by construction of the topology on the differential cohomology
groups it suffices to consider Ĥk(f ;Z) : Ĥk(N ;Z) → Ĥk(M ;Z) on the connected components,
i.e. along the fibers of the characteristic class. Thus Ĥk(f ;Z) : Ĥk(N ;Z) → Ĥk(M ;Z) is a
smooth map with differential

DhĤ
k(f ;Z) : ThĤ

k(N ;Z) =
Ωk−1(N)

dΩk−2(N)
−→ TĤk(f ;Z)(h)Ĥ

k(M ;Z) =
Ωk−1(M)

dΩk−2(M)
,

[ω] 7−→ f∗
(
[ω]

)
. (A.10)

It follows that Ĥk( · ;Z) : Locm → Ab extends to a contravariant functor to the category of
Abelian Fréchet-Lie groups, and all natural transformations in the definition of a differential
cohomology theory are natural transformations of functors in this sense.

A.1 Isomorphism types

We shall now identify the isomorphism types of the Fréchet-Lie groups Ωk−1(M)/Ωk−1
Z (M) and

Ĥk(M ;Z) by splitting the rows in the diagram (2.11). The lower row splits sinceHk
free(M ;Z) is a

free Abelian group and all groups in the lower row carry the discrete topology. By construction,
all rows in (2.11) are central extensions of Abelian Fréchet-Lie groups. In particular, they define
principal bundles over the groups in the right column. In the following we denote the k-th Betti
number of M by bk with k ∈ N; then all bk <∞ by the assumption that M is of finite-type.

For the upper row, notice that dΩk−1(M) is contractible, hence the corresponding torus
bundle is topologically trivial. In fact, it is trivial as a central extension, i.e. the Fréchet-Lie
group Ωk−1(M)/Ωk−1

Z (M) is (non-canonically isomorphic to) the topological direct sum of the

bk−1-torus H
k−1(M ;R)/Hk−1

free (M ;Z) with the Fréchet space dΩk−1(M): Any choice of forms

ω1, . . . , ωbk−1 ∈ Ωk−1
d (M) whose de Rham classes form a Z-basis of Hk−1

free (M ;Z) provides us
with (non-canonical) topological splittings

Ωk−1
d (M) = spanR

{
ω1, . . . , ωbk−1

}
⊕ dΩk−2(M) , (A.11a)

Ωk−1
Z (M) = spanZ

{
ω1, . . . , ωbk−1

}
⊕ dΩk−2(M) , (A.11b)

Ωk−1(M) = spanR
{
ω1, . . . , ωbk−1

}
⊕ F k−1(M) . (A.11c)

Here F k−1(M) ⊆ Ωk−1(M) is a topological complement of the subspace spanned by the k−1-
forms ω1, . . . , ωbk−1 . By a Hahn-Banach type argument, we may choose the complement
F k−1(M) such that dΩk−2(M) ⊆ F k−1(M): Taking de Rham cohomology classes yields a
continuous isomorphism

[ · ] : spanR
{
ω1, . . . , ωbk−1

}
→ Hk−1(M ;R) . (A.12)

Thus we obtain a continuous projection p : Ωk−1
d (M) → spanR

{
ω1, . . . , ωbk−1

}
with kernel

dΩk−2(M). Denote by prj : spanR
{
ω1, . . . , ωbk−1

}
→ Rωj the projection to the j-th com-

ponent. Then the continuous linear functionals pj := prj ◦ p : Ωk−1
d (M) → Rωj, with

j ∈ {1, . . . , bk−1}, have continuous extensions to Ωk−1(M), and so does their direct sum
p = p1 ⊕ · · · ⊕ pbk−1

: Ωk−1
d (M) → spanR

{
ω1, . . . , ωbk−1

}
. Then put F k−1(M) := ker(p) to

obtain a decomposition of Ωk−1(M) as claimed. By construction, the exterior differential in-
duces a continuous isomorphism of Fréchet spaces d : F k−1(M)/dΩk−2(M) → dΩk−1(M). This
yields the decomposition of Abelian Fréchet-Lie groups

Ωk−1(M)

Ωk−1
Z (M)

=
spanR

{
ω1, . . . , ωbk−1

}

spanZ
{
ω1, . . . , ωbk−1

} ⊕
F k−1(M)

dΩk−2(M)

[ · ]⊕d
−−−→

Hk−1(M ;R)

Hk−1
free (M ;Z)

⊕ dΩk−1(M) . (A.13)
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Thus Ωk−1(M)/Ωk−1
Z (M) is the direct sum in the category of Abelian Fréchet-Lie groups of the

bk−1-torus H
k−1(M ;R)/Hk−1

free (M ;Z) and the additive group of the Fréchet space dΩk−1(M),
as claimed.

For the middle row in the diagram (2.11), since the connected components of ΩkZ(M) are

contractible, the corresponding principal Hk−1(M ;T)-bundle curv : Ĥk(M ;Z) → ΩkZ(M) is
topologically trivial. We can also split the middle exact sequence in the diagram (2.11) as
a central extension: Choose differential forms ϑ1, . . . , ϑbk ∈ Ωkd(M) whose de Rham classes
form a Z-module basis of Hk

free(M ;Z); this yields a splitting of ΩkZ(M) analogous to the one

in (A.11b). Thus we may write any form µ ∈ ΩkZ(M) as µ =
∑bk

i=1 ai ϑ
i + dν, where ai ∈ Z

and ν ∈ Ωk−1(M). Now choose elements hϑi ∈ Ĥk(M ;Z) with curvature curv(hϑi) = ϑi, for
all i = 1, . . . , bk. By the splitting (A.13) we may choose a Fréchet-Lie group homomorphism
σ′ : dΩk−1(M) → Ωk−1(M)/Ωk−1

Z (M) such that d ◦ σ′ = iddΩk−1(M). Now we define a splitting
of the middle row in the diagram (2.11) by setting

σ : ΩkZ(M) = spanZ
{
ϑ1, . . . , ϑbk

}
⊕ dΩk−1(M) −→ Ĥk(M ;Z) ,

bk∑

i=1

ai ϑ
i + dν 7−→

bk∑

i=1

ai hϑi + ι
(
σ′(dν)

)
. (A.14)

By construction, σ is a homomorphism of Abelian Fréchet-Lie groups, i.e. it is a smooth
group homomorphism. Moreover, for any form µ =

∑bk
i=1 ai ϑ

i + dν ∈ ΩkZ(M) we have

curv(σ(µ)) =
∑bk

i=1 ai curv(hϑi) + dν = µ. Thus σ is a splitting of the middle horizontal
sequence of Abelian Fréchet-Lie groups in the diagram (2.11), and we have obtained a (non-
canonical) decomposition

Ĥk(M ;Z) ≃ Hk−1(M ;T)⊕ ΩkZ(M) (A.15)

of Abelian Fréchet-Lie groups.
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