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1 Introduction

In this paper we consider specification tests for a class of parametric stochastic volatility

models, given by

dYt = σtdBt,

dσ2
t = b(σ2

t ; θ)dt+ a(σ2
t ; θ)dWt,

(1)

where (Bt,Wt)t≥0 is a bivariate standard Brownian motion process, where b and a are

known functions, and where θ is an unknown parameter vector. The model is tested

within a larger class of nonparametric stochastic volatility models

dYt = σtdBt, (2)

where (σt)t≥0 is a stochastic process satisfying certain regularity conditions. The model

(2) is nonparametric in the sense that there is no parametric structure specified for the

volatility process. 1

Model (1) is often used in financial econometrics to describe a logarithmic stock price

process (Yt)t≥0, where (σt)t≥0 is an unobserved spot volatility process. It includes popular

models such as the Hull-White model, the Heston model and the GARCH diffusion model,

which motivates the development of specification tests for this class of models. The

extension of the methods developed in this paper to the case where the parametric model

(1) is augmented with jumps and leverage effects will be discussed in Section 5.

Let Y be observed discretely at times ti = i∆, i = 0, 1, . . . , n. Consider the re-scaled

∆-period return sequence

Xi =
1√
∆

(Yti − Yti−1
) =

1√
∆

∫ ti

ti−1

σsdBs, i = 1, . . . , n. (3)

Let (Xi)
n
i=1 having a stationary density, denoted by q(x), and let q(x; θ) be its spec-

ification implied by the parametric model (1). In this paper we propose to test the

specification (1) by comparing the estimated parametric return density to its nonpara-

metrically estimated counterpart. Stated formally, we are testing

H0 : q(x) = q0(x) ∈ {q(x; θ), θ ∈ Θ}, (4)

where Θ ⊆ Rk is the parameter space, and θ0 is the true parameter under the null

1Jensen and Maheu (2010) consider a Bayesian semiparametric stochastic volatility model, where the
distribution of return innovations dBt is assumed unknown and modeled nonparametrically. Their model
is different from ours, because we test a fully parametric model against a model with a non-parametric
volatility process but parametric (Gaussian) innovation distribution.
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hypothesis: that is, it satisfies q(x; θ0) = q0(x).

Specification tests based on the stationary marginal return distribution have their em-

pirical justifications — as discussed in Section 3.3 of Aı̈t-Sahalia, Hansen, and Scheinkman

(2010), reproducing the stationary distribution is an important aspect of structural eco-

nomic modelling. The return distribution is also widely used as the basis to formulate

specification tests for continuous-time diffusion processes, see e.g. Aı̈t-Sahalia (1996) and

Gao and King (2004). Admittedly, formulating the test based on q(.; θ) will limit its

power in detecting certain deviations in the functions {b(.; θ), a(.; θ)}2; however, tests

constructed this way would still be an important “first check” because of its empirical

significance in any structural modelling. More detailed information could be obtained by

defining test statistics based on the transition distribution of the observed returns. We

discuss this issue in Section 8.

To formulate the test statistic, one can compare either the density functions or the

cumulative distribution functions. It is known from the literature that generally speaking,

density-based tests are more sensitive to local deviations, whereas distribution-based tests

are more sensitive to global deviations (see e.g. Eubank and LaRiccia (1992), Escanciano

(2009) and Aı̈t-Sahalia, Fan, and Peng (2009)), we thus consider both in this paper.

A long-span asymptotic scheme is used in this paper. That is, we consider the asymp-

totics when n → ∞ with fixed ∆. This is because model (1) is often used to describe

price processes observed at relatively low frequencies (usually daily); intraday variation

of volatility (the so-called diurnal effect) and prominent microstructure noise effects in

prices observed at ultra high frequencies (see e.g. Andersen and Bollerslev (1998)) make

the model unsuitable for such data. Throughout, we would need (Xi)
n
i=1 to be a station-

ary and ergodic sequence, and that it is β-mixing with exponentially decaying coefficients.

We do not impose these properties as high level assumptions; instead, checkable sufficient

conditions for these properties to hold in the parametric model are given in Appendix A.

The stochastic volatility model we consider here is essentially a (partially observed)

two dimensional diffusion process, so our test is related to the vast literature on nonpara-

metric tests for diffusion models, such as Aı̈t-Sahalia (1996), Hong and Li (2005), Corradi

and Swanson (2005), Li (2007), Chen et al. (2008), Aı̈t-Sahalia et al. (2010), Kristensen

(2011) and Aı̈t-Sahalia and Park (2012), among others. However, the unobservability of

the volatility process in (1) makes the aforementioned research not directly applicable.

Corradi and Swanson (2011), henceforth CS11, consider a conditional distribution based

nonparametric test for stochastic volatility models, where the authors assume the ob-

served series to be strictly stationary. In our model we assume the observed return series

2That is, there might exist two different specifications {b(.; θ), a(.; θ)} and {b̃(.; θ), ã(.; θ)} leading to
the same return distribution with density q(x).
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(first difference of the observed series) to be stationary and we allow the observed series

to exhibit unit-root type dynamics. Although CS11’s method can be applied to a range

of interest rate stochastic volatility models, where mean-reversion is often observed, it

does not cover the well known Heston model and GARCH diffusion model, which are

used widely in the option pricing literature to describe the evolution of equity prices. Zu

(2015) analyzes an alternative approach to a similar testing problem, by comparing the

nonparametric kernel deconvolution estimator of the volatility density with its parametric

counterpart.

The contributions of the paper are threefold. First, although it appears that CS11’s

work can be adapted to the equity price stochastic volatility models easily, no formal work

has been done so far (according to our knowledge); besides, our the marginal distribution

based tests are by no means a direct adaptation of CS11’s test and the asymptotic theory

is different: CS11 use conditional empirical process techniques while we use a central limit

theorem of U statistics for our density based tests and use empirical process techniques for

our distribution function based test. Second, instead of imposing high level assumptions

that the observed series is stationary and strong mixing as in CS11, we give checkable

conditions in our paper for the necessary probabilistic properties of the model to hold.

Third, it is well-known in the literature that density based tests are more sensitive to

local deviations of the model while distribution function based tests are more sensitive

to global type of deviations to the null model; to account for different types of deviations

to the null model, we consider both the density function based test and the distribution

function based test, and study their finite sample power in Monte Carlo experiments.

An alternative way of formulating a test would be to base the test statistic on the con-

ditional distribution of the observed returns. Although one might expect that conditional

distribution based tests are superior to marginal distribution based tests as considered

in this paper, there is no theoretical result nor empirical evidence to support this claim.

Theoretically, we know that there is no uniformly most powerful test in nonparametric

testing problems (see e.g. Aı̈t-Sahalia et al. (2009) p. 1105). Empirically, as we argued

earlier in this section, the marginal distribution of the observed returns by itself is an

important object of empirical modelling and its specification would need to be checked

usually in the first place. Therefore we view the tests based on the marginal distribution

and the conditional distribution as complementary to each other — both types of tests

contain information that will shed light on our understanding of the source of (possible)

misspecification of a model. Moreover, we also discuss the possible extension of our tests

to exploit the dependence structure of the model in Section 8.3

3We focus on the model specification test under the real world measure in this paper. As suggested
by an anonymous referee, we could consider extending our tests to the risk neutral measure, where we
would have the advantage of an enlarged information set. In relation to this, Song and Xiu (2016) have
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The structure of this paper is as follows. Sections 2 and 3 discuss nonparametric

and parametric estimation of the return density and distribution functions, respectively.

Section 4 defines the test statistics, derives their asymptotic null distributions and consis-

tency, and discusses using the bootstrap to approximate the null distribution. Section 5

discusses the issue of testing general models and testing models estimated with Bayesian

methods. In Section 6 Monte Carlo evidence for the size and power properties of the

tests are given. In Section 7 we study empirical applications. Section 8 discusses possi-

ble extensions and concludes. Technical assumptions are collected in Appendix A. The

proofs of the theorems are collected in Appendix B.

2 Nonparametric estimation

In this section we discuss the nonparametric estimation of density and distribution func-

tions. In the nonparametric model (2), estimation of the stationary marginal return

density and distribution functions is considered under the direct assumption that the

sequence (Xi)
n
i=1 is stationary, ergodic and β-mixing with exponentially decaying coeffi-

cients.

Let hn be a bandwidth, and K(.) be a kernel function. It is well known that the

density function q(x) can be estimated by the kernel density estimator

q̂(x) =
1

nhn

n∑
i=1

K

(
x−Xi

hn

)
.

Under appropriate conditions on the bandwidth parameter and the kernel function, the

consistency and asymptotic distribution of the kernel density estimator are classical re-

sults, we refer the readers to e.g. Pagan and Ullah (1999).

Denote the distribution function of the sequence (Xi)
n
i=1 by Q(x). Letting I(.) denote

the indicator function, the distribution function Q(x) can be estimated by the empirical

distribution function

Q̂(x) =
1

n

n∑
i=1

I(Xi 6 x).

The consistency and asymptotic normality of the empirical distribution function are clas-

sical results in statistics, see e.g. Chapter 19 of Van der Vaart (2000) for the results

with independent and identically distributed data. For stationary dependent data, such

properties still hold by application of the Ergodic Law of Large Numbers and the Central

made a nice graphical comparison of the nonparametric and parametric estimates of the pricing kernel
under the risk neutral measure. A formal statistical analysis under the risk neutral measure would be a
useful direction of future research.
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Limit Theorem for dependent data, see Appendix A.5 in Pagan and Ullah (1999) for a

summary.

3 Parametric estimation

Given a parameterization {b(x; θ), a(x; θ)}, to obtain the parametric estimate of the func-

tions q(x; θ) and Q(x; θ), we first need an estimate of the parameter vector, denoted as

θ̂, and then evaluate the two functions given θ̂.

Parametric estimation of stochastic volatility model is by no means an easy task;

substantial research efforts were devoted to it in the past decades. Here we first briefly

review the existing methods and just assume we have a parametric estimator satisfying

certain conditions. Furthermore, evaluating the two functions given θ̂ is also not trivial,

because the density and distribution functions of the observed returns usually do not have

closed-form expressions and one needs to resort to approximation methods to evaluate

them.

3.1 Parametric estimation of stochastic volatility models

Many efforts have been devoted to the estimation of stochastic volatility models in the

past decades. For a review, see e.g. Renault (2009). Here we do not confine ourselves to

any particular parametric estimation method, but only give conditions that a parametric

estimator should satisfy. We will need different assumptions for the density function

based test and the distribution function based test. For the density function based test,

we only need to assume the parametric estimator θ̂n to be
√
n-consistent. We will also

need the parametrization to be smooth.

(P1a) Under the null hypothesis,

|θ̂ − θ0| = Op(n
−1/2),

and q(x, θ) is Lipschitz in the parameter θ with the Lipschitz constant L(x) square

integrable.

For the distribution function based test, however, stronger assumptions are needed —

the estimator has to satisfy a certain first order asymptotic expansion, which will be a

non-vanishing part of the asymptotic distribution. We also need the parameterization to

be differentiable.
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(P1b) Under the null hypothesis,

√
n(θ̂ − θ0) =

1√
n

n∑
i=1

ψθ0(Xi) + op(1),

with Pθ0ψθ0 = 0 and Pθ0‖ψθ0‖2 <∞, and Q(x; θ) is differentiable with respect to θ.

3.2 Approximating the parametric density and distribution func-

tion

When no closed-form expressions for the density and distribution functions exist, we can

in principle use an Euler scheme to simulate the process and hence evaluate intractable

functionals of the process.

Given an estimate θ̂, the parameterization b(., θ) and a(., θ), the observation interval

∆, and the objective variables Xi = 1√
∆

∫ ti
ti−1

σsdBs, i = 1, . . . , n, to be approximated, we

first choose an integerm as the steps to simulate within the interval ∆, and another integer

M as the number of ∆-interval returns, such that we simulate the process Y with step

size δ = ∆/m for m×M steps. Then take first differences to get δ-returns, and aggregate

and rescale over every m returns to get M simulated ∆-returns, X∗i , i = 1, . . . ,M . Using

a kernel density estimator we can approximate q(x; θ̂) from the simulated sample with

q∗(x; θ̂) =
1

MhM

M∑
i=1

K

(
x−X∗i
hM

)
,

where K(.) is a kernel function, and hM is the bandwidth parameter.

Standard consistency results for the kernel density estimator and convergence theo-

rems for the Euler scheme simulation of stochastic differential equations imply that when

M → ∞, hM → 0 and m → ∞, q∗(x; θ̂) → q(x; θ̂) pointwise in x ∈ R. The convergence

should be understood as in the probability space of Monte Carlo simulation. For the tech-

nical conditions on the kernel function K(.), bandwidth hM and the consistency result for

the kernel density estimator, we refer to, e.g. Section 2.6.2 of Pagan and Ullah (1999). For

the convergence result of the Euler simulation method, we refer to Chapter 9 of Kloeden

and Platen (1992). The accuracy of this approximation is determined by the number M

and m that we choose. Because these numbers do not have to be bounded by the sample

size n, they can be chosen very large to make the approximation error arbitrarily small.

The parametric distribution function Q∗(x; θ̂) can be approximated analogously using the

empirical distribution function with the simulated data. For this reason, and for nota-

tional convenience, in the following we treat the approximations q∗(x; θ) and Q∗(x; θ) as
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equal to the corresponding q(x; θ) and Q(x; θ).

Remark 1 Euler’s scheme is widely used in the literature to simulate stochastic volatility

models with leverage effects. This includes Andersen and Lund (1997), Bollerslev and

Zhou (2002), Aı̈t-Sahalia and Kimmel (2007) and Barndorff-Nielsen, Hansen, Lunde, and

Shephard (2008). When used with a stochastic volatility model, usually the Euler Scheme

is applied to a finer grid within the needed sampling interval, as in the method used in this

paper. This will not cause the “stochastic integral” problem as discussed in Bhardwaj,

Corradi, and Swanson (2008), who advocate the use of a generalized Milstein scheme to

avoid this problem.

4 Test statistics and asymptotic properties

4.1 Asymptotic null distribution and consistency

Define

T0 = nh1/2

∫
R
(q̂(x)−Kh ∗ q(x; θ̂))2dx,

where Kh ∗ q(x; θ̂) =
∫
RKh(x− y)q(y; θ̂)dy is the convolution of Kh(x) = K(x/h)/h with

q(x; θ̂), the function K(.) and bandwidth h are the same as used in the definition of q̂(x).

Using the convoluted return density in the formulation of the test statistic corrects the

bias of the test statistic and delivers better asymptotic properties of the test statistic, we

refer to Fan (1994) for a discussion of this issue in the general density testing problem

with i.i.d. data.

Theorem 1 Under the null hypothesis, and if (SV0)–(SV5) and (N1)–(N4) in Appendix

A and (P1a) are satisfied, then(
T0 − h−1/2

∫
R
K2(u)du

)
d−→ N(0, σ2),

where the variance of the asymptotic distribution σ2 := 2
∫
R q

2
0(x)dx

∫
R

(
K(2)(v)

)2
dv and

K(2)(v) denotes the convolution of the kernel function K with itself. Let

σ̂2 =
2

n

n∑
i=1

q̂(Xi)

∫
R

(
K(2)(v)

)2
dv,

which is a consistent estimator of the variance of the asymptotic distribution, then

T1 =
T0 − h−1/2

∫
RK

2(u)du

σ̂

d−→ N(0, 1).
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The test statistic T0 is not asymptotically pivotal as its asymptotic null distribution

depends on the unknown density q0(x), which makes an asymptotic test that rejects for

large values of T0 infeasible. This motivates the use of the corresponding studentized

test T1, which is pivotal. However, both T0 or T1 may be used for a bootstrap test, as

analyzed in Section 4.2.

A Cramer-von Mises type statistic can be formulated by comparing distribution esti-

mates:

T2 = n

∫
R
(Q̂(x)−Q(x; θ̂n))2dQ(x; θ̂).

Theorem 2 Under the null hypothesis, and if (SV0)–(SV5) and (N2) in Appendix A

and (P1b) are satisfied, then as n→∞

T2
d−→
∫
R

(
GQI(· ≤ x)−GQψ

T
θ0

(·)∂Q(x, θ)

∂θ
|θ=θ0

)2

dQ(x), (5)

where GQ is a Q-Brownian bridge indexed by F = {I(· ≤ x), x ∈ R} ∪ {ψθ(·)}, with

zero mean and the covariance function Γ(f, g) = limk→∞
∑∞

i=1 Cov(f(Xk), g(Xi)) with

f, g ∈ F .

The above limiting distribution of T2 is a functional of a Brownian bridge process,

and it depends on the model structure (thus is not model-free) as well as the unknown

parameter values. For this reason, this limit theorem cannot be used directly to define

critical values of the test. We discuss an approximation method to obtain test critical

values in Section 4.2.

We then look at the asymptotic power of these tests under fixed alternatives. To be

specific, we consider

H1 : {q(x) = q1(x) 6= q(x; θ),∀θ ∈ Θ}.

We will need assumptions on the parametric estimator under the alternative model.

(P1a1) Under the alternative hypothesis H1,

|θ̂ − θ∗| = Op(n
−1/2),

where θ∗ is the pseudo true value of the model corresponding to q1(x).

Theorem 3 Assume Conditions (SV0)–(SV5) and Assumptions (N1)–(N4), and (P1a1)

in Appendix A; let α ∈ (0, 1) be a level of significance, and Z1−α be the 1− α quantile of
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the standard normal distribution. Then under H1,

P

(
T0 − h−1/2

∫
RK

2(u)du

σ
> Z1−α

)
→ 1,

and

P (T1 > Z1−α)→ 1.

From the proof of Theorem 3, it is clear that T1 → +∞ asymptotically. This implies

that although T1 has an asymptotic standard normal distribution, the test (still) works

by rejecting large positive values of T1 and is thus a one-sided test.

For the distribution based test, we assume that under the alternative hypothesis the

parametric estimator satisfies

(P1b1) Under the alternative hypothesis H1,

√
n(θ̂ − θ∗) =

1√
n

n∑
i=1

ψθ∗(Xi) + op(1),

with Pθ∗ψθ∗ = 0 and Pθ∗‖ψθ∗‖2 < ∞, and Q(x; θ) is differentiable with respect to

θ.

Theorem 4 Under the alternative hypothesis, and if (SV0)–(SV5) and (N2) in Appendix

A and (P1b) are satisfied; let α ∈ (0, 1) be a level of significance, and c1−α be the 1 − α
quantile of the limiting distribution in (5), then as n→∞,

P (T2 > c1−α)→ 1.

As with most nonparametric tests, all the three tests are consistent. That is, they

can detect any fixed deviation to the true model as long as the sample size is sufficiently

large. We have already noted from above that the test T0 and T2 are not feasible as

their asymptotic null distribution are not known. We will discuss how to approximate

the asymptotic null distributions for these two tests in the next section.

Remark 2 We have thus far considered the validity of the parametric specification of

the return density as in (4). This kind of hypothesis is the so-called “composite hypothe-

sis” in nonparametric goodness of fit tests (see e.g. Chapter 14 of Lehmann and Romano

(2005)). The tests developed can be used to test the validity of a specific density function

(corresponding to a particular value θ0), the so-called “simple hypothesis” in nonpara-

metric testing (see also Chapter 14 of Lehmann and Romano (2005)). Considering a
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simple hypothesis is useful because sometimes we may wish to test the validity of a spe-

cific estimated model. In the second empirical application in Section 7, we apply our

methodology to test three estimated models in Eraker et al. (2003), an important paper

in empirical stochastic volatility modelling.

4.2 Bootstrap null distribution

In the literature of nonparametric goodness-of-fit tests, a usual problem is that the asymp-

totic distribution of the density based nonparametric test statistic will provide a poor

approximation of the null distribution in finite samples. For example, Fan (1994) has

found “large” differences between the finite sample null distribution and the asymptotic

approximation. In a related context, Aı̈t-Sahalia et al. (2009) Section 5.2 write that “

... in practical applications, the convergence is slow ... This kind of problem arises in

virtually all nonparametric tests in which function estimation is used; thus using the

asymptotic distribution directly is naive.”

On the other hand, the bootstrap could be used by some infeasible nonparametric tests

to approximate the null distribution. In relation to our density based test T0, Neumann

and Paparoditis (2000) have proposed an (i.i.d.) parametric-type bootstrap method to

approximate the asymptotic null distribution of their test statistic. While in relation

to our distribution function based test T2, nonparametric-type block bootstrap has been

considered in Bhardwaj, Corradi, and Swanson (2008), Corradi and Swanson (2011) to

approximate the asymptotic null distribution.

These problems lead us to develop a bootstrap approximation to the null distribution,

although it is more computationally intensive4 than the corresponding asymptotic test,

if available. We use a parametric or model-based bootstrap procedure to approximate

the distributions of the test statistics under the null hypothesis. A parametric-type of

bootstrap has been considered in e.g. Fan (1995), Andrews (1997), Franke, Kreiss, and

Mammen (2002), Andrews (2005), Gao and Gijbels (2008) and Aı̈t-Sahalia, Fan, and

Peng (2009), among others. In contrast to the classical bootstrap, where one generates

bootstrap samples by resampling the available dataset, the parametric bootstrap involves

generating bootstrap samples by first estimating a parametric model and then simulat-

ing data from the estimated parametric model (see Section 6.5 of Efron and Tibshirani

(1994)). The dependence of the bootstrap sample on the original data is only through the

estimated parameters. The parametric bootstrap is in particular useful in approximating

the null distribution in a testing context because it always simulates data based on the

4The practical implementation of the parametric bootstrap proposed in this paper depends on the
computational burden of simulating the parametric model and evaluating the test statistics a large
number of times.
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null model: it will mimic the null model both under the null hypothesis and under the

alternative hypothesis. In contrast, bootstrap procedures that do not exploit the model

structures will usually mimic the data generating process, which is the alternative model,

under the alternative hypothesis. For example, in testing diffusion models, Corradi and

Swanson (2011) use a block bootstrap procedure. Since the block bootstrap procedure

mimics the data generating process under the alternative hypothesis, the bootstrapped

statistic cannot reproduce the null distribution under a misspecified model, and they

further define a re-centered test statistic to make the block bootstrap work.

The parametric bootstrap procedure is as follows (use T0 as an example):

Step 1 Given a parametric estimate θ̂, and step size ∆, simulate n (original sample size)

discretely observed returns {X∗i }ni=1, which is called one bootstrap sample. Notice

this step has to be done using the method in Section 3.2 over a finer grid.

Step 2 With this bootstrap sample, compute the nonparametric estimator q̂∗(x) and the

parametric estimator θ̂∗, then compute the test statistic T ∗0 analogous to T0. Again,

this involves application of the simulation method of Section 3.2 for each bootstrap

replication.

Step 3 Repeat step 1 and 2 B times to get a bootstrap sample T ∗10 , . . . , T ∗B0 for the

statistic T0.

When B is large, the empirical distribution of T ∗10 , . . . , T ∗B0 approximates the finite sample

null distribution.

A theoretical justification of the proposed parametric procedure is not given in this

paper. This is a highly non-trivial problem, although it may be solved using the method-

ology developed in Fan (1994) and Andrews (1997). In absence of such results, we use

extensive Monte Carlo simulations to study the power properties of the tests under various

realistic scenarios and across different sample sizes in the next section.

5 Testing more general models

5.1 Models with drift, jumps and leverage effects

Many extensions of the benchmark model (1) have been considered in the literature. For

example, the Heston model (Heston (1993)) allows for correlation between the Brownian

motion processes driving the price and the volatility, the so-called leverage effect. Bakshi

et al. (1997), Bates (2000), Andersen et al. (2002) and Pan (2002), among others, have

included jump terms in the price process. Duffie et al. (2000), Eraker et al. (2003) and
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Eraker (2004) have considered the model where both the price process and the volatility

process have jumps. A general parametric stochastic volatility models can be written as,

dYt = µdt+ σtdBt + ξydNy
t ,

dσ2
t = b(σ2

t ; θ)dt+ a(σ2
t ; θ)dWt + ξvdN v

t ,
(6)

where (Bt)t≥0 and (Wt)t≥0 are two Brownian motion processes with correlation coefficient

ρ, µ is the drift parameter of the price process, Ny
t and N v

t are Poisson jumps in the price

and volatility process respectively, with jump intensity λy and λv respectively. ξy and ξv

are random jumps sizes usually assumed to follow certain parametric distributions with

unknown parameters. b and a are drift and diffusion functions of the volatility process

respectively, and θ is an unknown parameter vector in b and a.

The model validation methodology developed in this paper can be used to test these

more general continuous-time stochastic volatility models, as long as the observed returns

satisfy the same probabilistic properties as in this paper, namely strict stationarity and

β-mixing with exponentially decaying coefficients. As discussed in Appendix A, in the

benchmark model (1) these properties are implied by our imposed assumptions (SV0)-

(SV5). In the general model (6), checkable conditions for these probabilistic properties

would be difficult to establish. However, our tests and the asymptotic results would still

be valid if these probabilistic properties are imposed as high-level assumptions directly.

Actually, Corradi and Swanson (2005) impose high level assumptions to develop their

tests. To be specific, the three test statistics T0, T1 and T2 can be applied in the same

way to test the hypothesis

H0 : q(x) = q0(x) ∈ {q(x; θ), θ ∈ Θ},

where q0(x) now is implied by the general model (6) against the alternative hypothesis

that the distribution of the observed returns does not satisfy this restriction. That is,

the developed tests can be used to check the validity of the stationary return distribution

implied by model (6).

5.2 Models estimated with the Bayesian approach

The Bayesian approach has been popular in the literature of estimating of stochastic

volatility models (see e.g. Jacquier et al. (2002), Jacquier et al. (2004), Yu and Meyer

(2006), Chib et al. (2002), Eraker (2001), Eraker et al. (2003) and Eraker (2004), among

others) because of its ability to deal with the latent volatility process. It is thus natural

to ask if the tests developed in this paper could be used to test models estimated with
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Bayesian methods.

In principle, the Bayesian paradigm does not allow for model specification tests, as

they involve sharp hypotheses and asymptotic distributions. However, most empirical

researchers only use the Bayesian approach as an estimation method for the parameters,

so the misspecification issue can be analyzed (see e.g. Kleijn and van der Vaart (2012)

and Müller (2013)). According to the assumptions used in Theorem 1-3, the models

estimated with Bayesian approaches can be tested with our methodology if the Bayesian

point estimator is
√
n-consistent (for T0 and T1) and if it satisfies the first-order expan-

sion (P1b) (for T2), both in a frequentist asymptotic sense. It is known that under rather

general conditions (see e.g. Chapter 10 of Van der Vaart (2000)), a sensible Bayesian

point estimator (for example the posterior mode estimator) will be equivalent to a maxi-

mum likelihood estimator asymptotically. In this sense, testing models estimated with a

Bayesian approach using our tests is not a problem.

6 Monte Carlo simulations

In this section, we study the finite sample performance of the density-based tests T0 and

T1 and the distribution-based test T2. We use the bootstrap method described in the

previous section to determine the null distribution of the test statistic.

The cross-validation method (e.g. Wasserman (2004), Section 20.3) is used to deter-

mine the bandwidth, and we use the Gaussian kernel in all the nonparametric kernel

density estimators. The GMM method of Meddahi (2002) is used to estimate the para-

metric model. The GMM method is less efficient than likelihood based methods, but

it achieves a good compromise between estimation efficiency and computation time. To

save space, for all the simulated size and power results, we only report the results at the

5% significance level.5

6.1 Size of the tests

We simulate 1000 sample paths of daily observations (∆ = 1/252) from the Heston model,

dYt = σtdBt,

dσ2
t = 5(0.1− σ2

t )dt+ 0.75
√
σ2
t dWt,

(7)

5The computations in this section are conducted with Matlab R© 2012b on the Lisa computing cluster
at the University of Amsterdam. The default random number generator in Matlab (The Mersenne twister
algorithm) is used with seed 12345.
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where the two Brownian motions W and B are independent.6 Within one day, 10 steps

are simulated to reduce the discretization error. We consider the sample sizes 1000, 2000

and 3000, roughly corresponding to 4 years, 8 years and 12 years of daily observations.

With the parameters and sample sizes, the test statistics T0, T1 and T2 are simulated

1000 times. The distribution of these realized test statistics are taken as the true dis-

tribution (except for the Monte Carlo simulation error). For each of the realized 1000

sample paths, we obtain 5 bootstrap samples and compute their resulting test statistics

T ∗0 , T ∗1 and T ∗2 . Aggregating across 1000 samples yields 5000 bootstrap statistics. Their

sampling distribution is taken as the distribution of the bootstrap method. Note that

this aggregation involves an approximation, based on the assumption that the parameter

estimates in each of the Monte Carlo replications are close enough to treat the corre-

sponding bootstrap distributions as identical. This approximation is made to keep the

computation time of the Monte Carlo experiments manageable; a similar approach was

taken by Aı̈t-Sahalia et al. (2009).

Table 1 summarizes the simulated 5% actual size of all the tests for the three sample

sizes. The bootstrap tests seem to have reasonable size properties, especially when the

sample size is large. For T0 and T2, the actual rejection frequencies approach the nominal

size as the sample size increases, though this is not the case for T1.

T0 T1 T2

n = 1000 0.0277 0.0321 0.0377
n = 2000 0.0372 0.0386 0.0397
n = 3000 0.0406 0.0375 0.0411

Table 1: Size of the bootstrap tests.

6.2 Power of the tests

We study the power performance of the tests under four different sample sizes 500, 1000,

2000 and 3000, and we still use 1000 Monte Carlo replications. We take the Heston model

(7) as the null hypothesis. We evaluate the power functions of the three test statistics

under the three families of alternative models. Each family of models is indexed by τ ,

with τ = 0 corresponding to the null model (7).

6Under the so-called in-fill sampling scheme, where ∆→ 0, an explicit formula of the return density
can be obtained as the variance mixture of the stationary volatility density with a standard normal
variable, see e.g. Genon-Catalot et al. (1999). However with the fixed ∆ sampling scheme used in this

paper, the return is a variance mixture of the integrated volatility 1/∆
√∫ ti

ti−1
σ2
t dt with a standard

normal variable. Since the density of 1/∆
√∫ ti

ti−1
σ2
t dt is not the stationary volatility density and not

known, a closed-form formula for the return is not available.
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In the first family of alternative models, the drift functions of the volatility processes

deviate from the Heston model. In the second family of models, the diffusion functions

deviate from the Heston model. In the third family of models, jumps are included in the

volatility process.

6.2.1 Misspecification in the drift function

We evaluate the power function of the three test statistics under the following sequence

of alternative models,

dσ2
t = {(1− τ)(α(β − σ2

t ) + τµ(σ2
t )}dt+ γ

√
σ2
t dWt, (8)

for τ = 0, 0.1, . . . , 1, where µ(σ2
t ) = σ2

t [a(b − lnσ2
t )] with a = 9, b = 3.5. The functional

form of the drift part is motivated by the log SARV model

dYt = σtdBt,

d lnσ2
t = κ(θ − lnσ2

t )dt+ γdWt.

By Ito’s lemma, the volatility process of the log SARV model is

dσ2
t = σ2

t

[
κ(θ − lnσ2

t ) +
1

2
γ2

]
dt+ γσ2

t dWt,

where the drift function is a highly nonlinear function of σ2
t and we use this to determine

the specification of µ(σ2
t ).

Figure 1 shows the differences of the drift functions between the null model and the

alternative models. It also gives the 5% level power functions of the three tests at the 4

different sample sizes. All the three tests show increasing power as the sample size grows

large, confirming the consistency result of the tests. The performance of the three tests

seems to be similar for this type of deviations in the drift function.

6.2.2 Misspecification in the diffusion function

Here we consider the misspecification in the diffusion function of the volatility process.

The null model is still the Heston model (7). In the alternative model, the drift function

remains the same, but the diffusion function corresponds to a GARCH diffusion process.

dσ2
t = α(β − σ2

t )dt+ {(1− τ)γ
√
σ2
t + τρ(σ2

t )}dWt, (9)

16



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−25

−20

−15

−10

−5

0

5

(a) Drift functions

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Power of T0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Power of T1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Power of T2

Figure 1: Power under misspecification of the drift function. (a): drift function with
τ = 0 (solid), τ = 0.2 (dashed), τ = 0.5 (dotted), τ = 0.8 (dash-dotted), τ = 1 (purple
solid). (b), (c), (d): n = 500 (blue), n = 1000 (green), n = 2000 (red), n = 3000 (cyan).

for τ = 0, 0.1, . . . , 1, where ρ(σ2
t ) = cσ2

t with c = 5. When τ = 1, the alternative model

is a GARCH diffusion process.

Figure 2 shows the differences of the diffusion functions between the null model and

the alternative models. It also gives the 5% level power functions of the three tests at

the 4 different sample sizes. Again all the three tests show increasing power (to 1) as the

sample size grows large. The power of T0 seems to be slightly better than T2 when the

deviation is small, while when the deviation is large, the power seems to be similar.

6.2.3 Jumps in the volatility process

We now consider the power of the three tests against a sequence of models where the

volatility process contains jumps

dσ2
t = α(β − σ2

t−)dt+ γ
√
σ2
t−dWt + ξvdNy

t , (10)
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Figure 2: Power under misspecification of the diffusion function. (a): drift function with
τ = 0 (solid), τ = 0.2 (dashed), τ = 0.5 (dotted), τ = 0.8 (dash-dotted), τ = 1 (purple
solid). (b), (c), (d): n = 500 (blue), n = 1000 (green), n = 2000 (red), n = 3000 (cyan).

where σ2
t− := lims↑t σ

2
s , N

v
t is a Poisson process with intensity λv, ξv is the jump size fol-

lowing an exponential distribution, independent of (Wt) and (Bt). We use the Compound

Poisson type, large and infrequent, jump specification for the volatility jumps, which is

a stylized fact observed for daily level equity or equity index data. We consider 5 jump

intensities: 0.5, 1, 1.5, 2, 2.5 and 3. These numbers can be understood as the average

number of jumps in a year. The jump intensity values are based on the estimation result

in Eraker et al. (2003) for the S&P 500 data, where the estimated jump intensity is 1.5

jump per year with a standard deviation of 0.5 jump per year. The jump size ξy is ex-

ponentially distributed with mean 0.2, corresponding to a 20% average sized jump. The

jump size distribution and parameter are also chosen based on the model and estimation

results in Eraker et al. (2003). Figure 3 gives the power functions of the three tests under

different sample sizes. We observe again the consistency of the three tests for this type of

deviations to the null hypothesis. Also we see that as the jump intensity of the volatility
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process increases, the tests are more powerful in detecting the deviations. The relative

performance of the three tests seems to be similar to this type of deviations.
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Figure 3: Power under different volatility jump intensities. (a), (b), (c): n = 500 (blue),
n = 1000 (green), n = 2000 (red), n = 3000 (cyan).

6.2.4 Jumps in the price process

We now consider the power of the three tests when the alternative model have jumps in

the price process.7 To be specific, we consider a sequence of alternative models having a

Poisson-type jump in the price process with jump size ξyt following a normal distribution,

while the volatility model is correctly specified:

dYt = σtdBt + ξydNy
t ,

dσ2
t = 5(0.1− σ2

t )dt+ 0.75
√
σ2
t dWt,

(11)

7We are grateful for the AE for suggesting this simulation.
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where Ny
t is a Poisson process with jump intensity λy, ξy follows i.i.d. normal distribution

with mean µy and standard deviation σy. We set ρ = −0.4, µy = −0.1 (an average

price jump is -10% on an annual basis) and σy = 0.1. The price jump size distribution

and its parameters are based on the specification used in Eraker et al. (2003) and the

estimation results therein. A negative µy is in line with empirical observation as most of

the price jumps are downwards. The sequence of models we consider have different jump

intensities: λy = 5, 10, 15, 20, 25, 30. Figure 4 gives the power functions of the three tests

under different sample sizes. We observe again the monotonic increase in power of the

three tests for this type of deviations to the null hypothesis. Again as the jump intensity

of the price process increases, the deviations are easier to identify. The distribution

function based test seems more powerful than the density function based test for this

type of deviations.

By comparing the power results for price jump deviations and the volatility jump

deviations in Section 6.2.3, we have also found some interesting results on how the return

distribution is affected differently by these two types of jumps. In Section 6.2.3 we have

seen that the power of the three tests are close to 1 when the volatility jump intensity is

close to 3 (on average 3 jumps a year); while in this section, the power of all the tests

get close to 1 when the jump intensity is close to 30 (on average 30 jumps a year). This

clearly means that the return distribution based tests are more sensitive to volatility

jumps, hinting that jumps in volatility have a large effect on the return distribution.

Considering the modelling implication of the two types of jumps we find that the

obtained results are reasonable: volatility jumps, even if they only happen a few times

a year, will bring persistent change to the volatility process as it needs to revert to its

long-run mean for an extended period of time, which will cause substantial distortion

to the return distribution. While price jumps, if they only happen a few times a year,

even when the jump size is large, only add a couple of “outliers” to the tail of the return

distribution and will not have a big influence on the shape of the return distribution. Only

when the jump intensity is high enough (30 here), the tail part will receive enough mass

and the change in the return distribution will become obvious. The testing results echo

the comments made in Eraker et al. (2003) that “the volatility jumps bring persistent

change to the returns and price jumps bring transient changes...”, but they also provide

a concrete and transparent illustration of the difference.

6.3 Power performance of the tests in a more general model

Section 5 has discussed that the tests developed in this paper can be used to test more

general models. To study the robustness of the power performance of the three tests in

more general models, in this section we redo the Monte Carlo experiment in the previous
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Figure 4: Power under different price jump intensities. (a), (b), (c): n = 500 (blue),
n = 1000 (green), n = 2000 (red), n = 3000 (cyan).

subsection in a model with leverage effect.

To be specific, in the null model (1) the Brownian motions {Wt}t≥0 and {Bt}t≥0 now

correlated with a coefficient ρ = −0.4. We consider the same 4 types of deviations as in

(8), (9), (10) and (11) in Section 6.2, the corresponding power plots are given in Figure

1-4 of the online appendix to this paper to save space. The simulation results show that,

when the leverage effect exists, the power of the tests is not much affected.
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7 Empirical applications

7.1 Apple stock, 2000–2014

In this section, we apply our tests to a daily Apple stock price dataset, with the purpose of

illustrating the use of the tests proposed in this paper. The dataset contains the adjusted

closing prices from January 3rd, 2000 to February 3rd, 2014, making 3543 observations

in total. Figure 5 gives the plot of the log-price levels and log-returns.
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Figure 5: (a): Log prices of Apple stock, 2000–2014. (b): Log returns of Apple stock,
2000–2014.

The Heston model (7) is fitted to the data, using the GMM approach of Meddahi

(2002). The estimated parameters are α̂ = 17.5119, β̂ = 0.1793, γ̂ = 2.4715. We then

apply the nonparametric specification tests proposed in this paper to study the validity of

the Heston model. We still use the cross-validation method to determine the bandwidth

and use the Gaussian kernel. Based on 1000 bootstrap samples, the estimated p-values for

T0, T1 and T2 are 0.009, 0.014 and 0.000 respectively. The p-values of all the tests provide

strong evidence of rejection of the Heston model. The p-value of the distribution-based

test is smaller than the p-values of the other two tests.

Although it is well-known that the Heston model is misspecified for many return series,

the results of this empirical application provides evidence that the model misspecification

(partly) comes from the misspecification in the marginal distribution of the model. We

also give a plot of the nonparametrically estimated density of Apple returns and the cor-

responding model implied density in Figure 6. Although the parametric density provides

a reasonable fit to the empirical density, our tests results show that the discrepancy is

large enough to reject the model. Also, the parametric density seems to exhibit a slight

location shift from the empirical density, which is also in line with the observed lower
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p-value for the distribution function based test and the known results in nonparametric

tests that the distribution function based tests are in general more sensitive to global

shifts of the whole distribution. The location shift could be caused by a combination

of price jumps and leverage effects, although the skewness and excess kurtosis in the

empirical density (relative to the parametric density) are not very large.
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Figure 6: Nonparametric and parametric density estimates of Apple returns.

7.2 Eraker et al. (2003)’s models of S&P 500 returns

The Heston model is popular in empirical finance and has been used widely in option

pricing. However, the statistical fit of the Heston model has long been questioned; one

reason is that it has limited capacity in modelling the large movements in empirical

returns. Towards a more realistic model for the stock price, Bakshi et al. (1997), Bates

(2000), Andersen et al. (2002) and Pan (2002), among others, have included jump terms

in the price process. The empirical results in Bakshi et al. (1997) and Bates (2000) have

also pointed to the possible existence of jump terms in the volatility process. Eraker et al.

(2003) have advanced the empirical literature of stochastic volatility in this direction by

considering stochastic volatility models with jumps in both the price process and the

volatility process. They estimate the model with a likelihood based method implemented

by a Markov Chain Monte Carlo sampling scheme and find evidence for the existence
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of volatility jumps. To be specific, Eraker et al. (2003) have fitted 20 years of S&P

500 equity index data to four models, namely a stochastic volatility model (SV), which

is essentially the Heston model; a stochastic volatility model with price jumps (SVJ);

a stochastic volatility model with correlated price and volatility jumps (SVCJ); and a

stochastic volatility model with independent price and volatility jumps (SVIJ). Eraker

et al. (2003) have found that the models with jumps in price and volatility (both the

SVIJ and the SVCJ model) have the best fit.

Although Eraker et al. (2003) have used several diagnostics to test the validity of their

models, none of these has considered the validity of the model implied return distribution.

Treating the estimated models as specific models, we apply our tests to study the validity

of the model implied return distributions using the methodology discussed in Section 5.

Since the SVIJ model and the SVCJ model exhibit very similar properties in all the

diagnostics in Eraker et al. (2003), with the SVIJ model performing slightly better, we

thus only study the SVIJ model, together with the SV model and the SVJ model. We

acquire the same S&P 500 index data from January 2, 1980 to December 31, 1999, and

test the estimated model with these data.

Since our tests are based on the density function and the distribution function of the

return data, we first give a plot of the empirical density function estimated and all the

model implied return densities in Figure 7. The empirical density is estimated using a

kernel density estimator with the bandwidth selected by the cross-validation method. It

is seen that there are some discrepancies between the empirical density and the model

implied densities, especially at the left tail and around the peak. The SV model implies a

return density with a lower peak than the empirical density, its distance to the empirical

density is also the largest in the left tail. The SVJ model improves upon the SV model

both in the peak of the density and in the left tail. One surprising observation is that the

SVIJ model does not seem to improve the distributional fit of the returns upon the SVJ

model: the peak of the SVIJ model implied density is even slightly further away from

the empirical density than the SV model, but the SVIJ model does seem to improve the

fit of the left tail over the SV model, and has a left tail indistinguishable from the SVJ

model. Visual inspection suggests that the SVJ model probably provides the best fit to

the empirical density. We next apply the statistical tests developed in this paper to see

if this is indeed the case.

We apply the three tests to the three estimated models and calculate the p-values of the

tests based on the parametric bootstrap method. Cross-validation is used to determine

the bandwidth and 1000 parametric bootstrap replications are used. The p-values for the

three tests for the SV model, the SVJ model and the SVIJ model are given in Table 2.

It seems that the statistical test results are consistent with our visual inspection of the
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Figure 7: Empirical density of S&P 500 daily returns and model implied return densities.

T0 T1 T2

SV 0.029 0.033 0.017
SVJ 0.189 0.194 0.129
SVIJ 0.039 0.040 0.022

Table 2: p-values of all the tests for the models in Eraker et al. (2003).

densities. The SV model implied density is too far from the empirical density, thus is

rejected significantly at the 5% level. The SVJ model improves over the SV model, and

we don’t find enough statistical evidence to reject the density implied by it, even using

a 10% significance level. Our tests confirm that the SVIJ model implied return density

is worse than that implied by the SVJ model, it is not favoured by all three tests and is

rejected significantly at the 5% level.

With these test results, we find some new evidence on the statistical fit of the mod-

els considered in Eraker et al. (2003). As discussed in Eraker et al. (2003), page 1274,

“models with only jumps in returns and diffusive stochastic volatility can generate real-

istic patterns of both unconditional and conditional nonnormalities ...”. Our test results

confirm this claim that the SVJ model is sufficient in modelling the unconditional return
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distribution. They also write, “... but they (return jumps) have difficulty capturing the

dynamics of the conditional volatility of returns,” for which jumps in the volatility would

probably be needed. Here, Eraker et al. (2003) have discussed the potential improvement

offered by the SVIJ model. From our evidence, however, we remark that even if the SVIJ

model could potentially improve the fit of the conditional return distribution (dynamics

of conditional volatility), this improvement does not come without any costs: introducing

the volatility jump factor leads to a worse fit of the unconditional distribution relative to

the SVJ model.

8 Conclusion and extensions

We propose three tests for stochastic volatility model specification by comparing the

parametrically and nonparametrically estimated stationary marginal density functions

and distribution functions of the observed returns. The consistency of the three tests are

derived and we have studied their finite sample power property under various alternative

models. In empirical applications, our tests provide some new insights in the model

misspecification issue of some popular stochastic volatility models.

To consider extensions, our approach can be adapted to discrete-time stochastic

volatility models easily, as long as the volatility process is stationary and β-mixing as

assumed in this paper. One can then compare the estimated density functions and distri-

bution functions as discussed for continuous-time models analogously. Another possible

extension to consider is to formulate the test statistics based on the conditional distribu-

tion of returns: as discussed in the introductory section, the stationary marginal return

distribution does not contain information on the dynamics in the data. To exploit the

dependence structure in the model, we could extend our approach to the one-step con-

ditional distribution function and density function of Xi|Xi−1, i = 2, . . . , n, to formulate

the test statistics. These are left for future research.
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Appendix A: Basic setup and probabilistic properties

(N1) (kernel function) The kernel function K is a bounded, symmetric, nonnegative

function on R, satisfying∫ ∞
−∞

K(x)dx = 1,

∫ ∞
−∞

xK(x)dx = 0,

∫ ∞
−∞

x2K(x)dx = 2k <∞,

where k > 0 is a constant, and ∫ ∞
−∞

K2(x)dx <∞.

(N2) (density function) q(x) and its second order derivative are bounded and uniformly

continuous on R.

The above assumptions on the kernel function, and the smoothness assumption on the

density function are not the weakest possible. However, Assumptions (N1) and (N2) are

sufficient for the present purpose and simplify the argument in the proof.

(N3) For the process (Xi)
n
i=1, all two dimensional joint densities of (X1, . . . , Xn) exist, are

bounded and Lipschitz continuous. This implies that the corresponding distribution

functions satisfy the same conditions.

(N4) As n→∞, hn → 0 and nhn →∞.

These set of conditions will be used to derive the asymptotic properties of the test statis-

tics, but together with the mixing conditions we assume throughout, they are also suffi-

cient to make q̂(x) a (pointwise) consistent estimator of q(x) for all x ∈ R.

The tests developed in this paper require the observed return sequence to be station-

ary, ergodic and β-mixing with exponentially decaying coefficients. In the nonparametric

model, it is sufficient to assume the observed return sequence (Xi)
n
i=1 to satisfy the above

conditions directly. However, in the parametric model, it is non-trivial to check that

these conditions are satisfied for particular choices of the functions b(x; θ) and a(x; θ). In

the parametric stochastic volatility model (1), we first assume

(SV0) (B,W ) is a standard Brownian motion in R2, defined on the probability space

(Ω,F ,P), and σ2
0 is random variable defined on the same probability space, inde-

pendent of (B,W ).

The following are standard assumptions from Genon-Catalot et al. (1998).
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(SV1) For all θ ∈ Θ, the function b(x) = b(x; θ) is continuous on (0,+∞), and the

function a(x) = a(x; θ) is continuously differentiable on (0,+∞), such that

∃K > 0, ∀x > 0, b2(x) + a2(x) ≤ K(1 + x2),

and

∀x > 0, a(x; θ) > 0.

This assumption ensures the existence and uniqueness of an almost surely positive strong

solution to the stochastic differential equation (1) generating the volatility process.

Define, for v0 > 0, the scale measure

s(x; θ) = exp

(
−2

∫ x

v0

b(v; θ)

a2(v; θ)
dv

)
,

and the speed measure

m(x; θ) =
1

a2(x; θ)s(x; θ)
.

Then the assumption

(SV2) ∫ ·
0

s(x; θ)dx =∞,
∫ ∞
·

s(x; θ)dx =∞,
∫ ∞

0

m(x; θ)dx = M <∞,

where the · in the integral means an arbitrary point in the domain of s(x; θ), ensures a

unique and positive recurrent solution on (0,∞), see Genon-Catalot et al. (1998).

The last condition in (SV2) guarantees the existence of a stationary distribution (for

the volatility process), with density defined as

π(x; θ) =
m(x; θ)

M
I(x > 0).

If the process is initiated from this stationary distribution, i.e., under assumption

(SV3) The initial random variable σ2
0 has density π(x; θ),

the solution is strictly stationary and ergodic.

Now we give sufficient conditions to ensure that the volatility process is β-mixing

with exponentially decaying coefficients. From Theorem 3.6 of Chen et al. (2010), a

sufficient condition (together with (SV1) and (SV2)) for exponential decay of the β-mixing

coefficients is that the process is ρ-mixing, so in the following we give the conditions for

the process to be ρ-mixing. Also, we note the result that if a diffusion process is ρ-mixing,

its ρ-mixing coefficients decay at an exponential rate (Bradley (2005), Theorem 3.3, or
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Genon-Catalot, Jeantheau, and Laredo (2000), Proposition 2.5). Furthermore, β-mixing

and ρ-mixing with exponential decay are almost equivalent concepts for scalar diffusions,

as discussed in Chen et al. (2010).

(SV4)

lim
x↓0

a(x; θ)m(x; θ) = 0, lim
x↑∞

a(x; θ)m(x; θ) = 0.

(SV5) Let

γ(x; θ) = a′(x; θ)− 2b(x; θ)

a(x; θ)
;

the limits of 1/γ(x; θ), as x ↓ 0 and as x ↑ ∞, exist.

Appendix B: Lemmas and proofs

The conditions in Appendix A ensure strict stationarity, ergodicity and β-mixing of the

volatility process. Notice that the return sequence (Xi)
n
i=1 is a sequence of stochastic

integrals of the volatility process with respect to an independent Brownian motion B over

small fixed intervals. By the following lemma from Zu (2015), the return series inherit

the stationarity, ergodicity and the β-mixing properties from the volatility process.

Lemma 1 In the model (1), if the volatility process (σ2
t )t≥0 is stationary, ergodic and

β-mixing with a certain decay rate, then the normalized return sequence (Xi)
n
i=1 is also

stationary, ergodic and β-mixing, with a mixing decay rate at least as fast as that of

(σ2
t )t≥0.

In all the proofs in this appendix, we take the above mentioned probabilistic properties

for the return series as given to avoid repetition. When we use an integral without the

range of integration, the integration is over the full real axis R.

Proof (of Theorem 1) We first derive the asymptotic distribution of T0. Notice that

T0

= nh1/2

∫
(q̂(x)−Kh ∗ q(x; θ̂n))2dx

= nh1/2

∫
(q̂(x)−Kh ∗ q(x))2dx+ nh1/2

∫
(Kh ∗ q(x)−Kh ∗ q(x; θ̂n))2dx

+nh1/2

∫
(q̂(x)−Kh ∗ q(x))(Kh ∗ q(x)−Kh ∗ q(x; θ̂n))dx.

Define

T ′0 = nh1/2

∫
(q̂(x)−Kh ∗ q(x))2dx.
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It will be shown later that T ′0 = Op(1); the second term nh1/2
∫

(Kh ∗ q(x) − Kh ∗
q(x; θ̂n))2dx = Op(h

1/2) because θ̂n is a
√
n-consistent estimator of θ0 and by the square

integrable assumption on the Lipschitz constant L(x) as in Assumption (P1a), so this

term is dominated by T ′0; the crossproduct term is clearly dominated by T ′0 by the Cauchy-

Schwarz inequality. Thus we have that

T0 = T ′0(1 + op(1)),

and we derive the asymptotic distribution of T ′0 in the following.

First notice

∫ (
1

n

n∑
i=1

(Kh(x−Xi)−Kh ∗ q(x))

)2

dx

=
1

n2

n∑
i=1

∫
(Kh(x−Xi)−Kh ∗ q(x))2dx

+
2

n2

∑
i<j

∫
(Kh(x−Xi)−Kh ∗ q(x))(Kh(x−Xj)−Kh ∗ q(x))dx

:=
1

n2

n∑
i=1

ϕn(Xi, Xi) +
2

n2

∑
i<j

ϕn(Xi, Xj),

where

ϕn(u, v) :=

∫
(Kh(x− u)−Kh ∗ q(x))(Kh(x− v)−Kh ∗ q(x))dx.

Next, we show that

1. The sum of the diagonal terms

1

n2

n∑
i=1

ϕn(Xi, Xi)
p−→ (nh)−1

∫
K2(u)du.

2. The sum of the off-diagonal terms

nh1/2

(
2

n2

∑
i<j

ϕn(Xi, Xj)

)
d−→ N

(
0, 2

∫
q2

0(u)du

∫
(K(2)(u))2du

)
.

3. Then we show that

T ′0
d−→ N

(
0, 2

∫
q2

0(u)du

∫
(K(2)(u))2du

)
,

and the asymptotic distribution of T0 follows easily.
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Step 1 We first compute the order of the mean,

E

(
1

n2

n∑
i=1

ϕn(Xi, Xi)

)
=

1

n
Eϕn(X1, X1)

=
1

n

∫ ∫
(Kh(x−X1)−Kh ∗ q(x))2dxq(X1)dX1

=
1

nh2

∫ ∫ (
K

(
x−X1

h

))2

q(X1)dxdX1(1 + o(1))

=
1

nh

∫ ∫
(K(u))2q(X1)dudX1(1 + o(1))

= (nh)−1

∫
K2(u)du(1 + o(1)). (12)

Then we compute the order of the variance

Var

(
1

n2

n∑
i=1

ϕn(Xi, Xi)

)

6 E

(
1

n2

n∑
i=1

ϕn(Xi, Xi)

)2

=
1

n3
Eϕ2

n(X1, X1) +
2

n4

∑
i<j

Eϕn(Xi, Xi)ϕn(Xj, Xj). (13)

We look at the two terms separately. For the first term

Eϕ2
n(X1, X1)

=

∫ (∫
K2
h(x−X1)dx

)2

q(X1)dX1(1 + o(1))

=
1

h4

∫ (∫
K2

(
x−X1

h

)
dx

)2

q(X1)dX1(1 + o(1))

=
1

h2

∫ (∫
K2(u)du

)2

q(X1)dX1(1 + o(1))

= O

(
1

h2

)
. (14)
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For the second term,

Eϕn(Xi, Xi)ϕn(Xj, Xj)

=

∫ ∫ ∫
K2
h(x−Xi)dx

∫
K2
h(x−Xj)dxq(Xi, Xj)dXidXj(1 + o(1))

=
1

h2

∫ ∫ (∫
K2(u)du

)2

q(Xi, Xj)dXidXj(1 + o(1))

= O

(
1

h2

)
. (15)

Use the result in (14) and (15) in (13), we get

Var

(
1

n2

n∑
i=1

ϕn(Xi, Xi)

)

6
1

n3
O

(
1

h2

)
+

2

n4
n2O

(
1

h2

)
= O

(
1

n2h2

)
. (16)

Use the results in (12) and (16) and apply Markov’s inequality we have

P

(∣∣∣∣∣ 1

n2

n∑
i=1

ϕn(Xi, Xi)− (nh)−1

∫
K2(u)du

∣∣∣∣∣ > ε

)

6
E
∣∣ 1
n2

∑n
i=1 ϕn(Xi, Xi)− (nh)−1

∫
K2(u)du

∣∣2
ε2

= O

(
1

n2h2

)
= o(1),

because nh→∞. Thus we have proved that

1

n2

n∑
i=1

ϕn(Xi, Xi)− (nh)−1

∫
K2(u)du = op(1).

Step 2 Now we use Theorem A, Appendix 1 in Hjellvik, Yao, and Tjøstheim (1998) to

show

nh1/2

(
2

n2

∑
i<j

ϕn(Xi, Xj)

)
d−→ N

(
0, 2

∫
q2

0(u)du

∫
(K(2)(u))2du

)
.

Notice that ϕn(x, y) is a degenerate symmetric kernel, and the mixing condition is satis-

fied.

First we calculate the asymptotic variance. Let X̃i, X̃j be independent variables with
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the same distribution as Xi. First we compute

Eϕ2
n(X̃i, X̃j)

=

∫ ∫ (∫
Kh(x−Xi)Kh(x−Xj)dx

)2

q(Xi)q(Xj)dXidXj(1 + o(1))

=
1

h2

∫ ∫ (∫
K(u)K

(
u+

Xi −Xj

h

)
dx

)2

q(Xi)q(Xj)dXidXj(1 + o(1))

=
1

h2

∫ ∫ (
K(2)

(
Xi −Xj

h

))2

q(Xi)q(Xj)dXidXj(1 + o(1))

=
1

h

∫ ∫
(K(2)(u))2q(Xj + uh)q(Xj)dudXj(1 + o(1))

=
1

h

∫
(K(2)(u))2du

∫
q2(x)dx(1 + o(1)).

then the asymptotic variance is

σ2
n =

n2

2
Eϕ2

n(X̃i, X̃j) =
n2

2h

∫
(K(2)(u))2du

∫
q2(x)dx(1 + o(1)). (17)

Then we check the conditions related to the 6 quantities Mni, i = 1, . . . , 6, as defined

in Theorem A, Appendix 1 in Hjellvik, Yao, and Tjøstheim (1998). For Mn1, notice that

for 1 > δ > 0,

E|ϕn(X1, Xj)ϕn(Xi, Xj)|1+δ

=

∫ ∫ ∫ ∣∣∣∣∫ Kh(x−X1)Kh(x−Xj)dx

∫
Kh(x−Xi)Kh(x−Xj)dx

∣∣∣∣1+δ

q(X1, Xi, Xj)dX1dXidXj(1 + o(1))

=

∫ ∫ ∫ ∣∣∣∣ 1

h4

∫
K

(
x−X1

h

)
K

(
x−Xj

h

)
dx

∫
K

(
x−Xi

h

)
K

(
x−Xj

h

)
dx

∣∣∣∣1+δ

q(X1, Xi, Xj)dX1dXidXj(1 + o(1))

=

∫ ∫ ∫ ∣∣∣∣ 1

h2
K(2)

(
X1 −Xj

h

)
K(2)

(
Xi −Xi

h

)∣∣∣∣1+δ

q(X1, Xi, Xj)dX1dXidXj(1 + o(1))

= h2

∫ ∫ ∫ ∣∣∣∣ 1

h2
K(2)(u)K(2)(v)

∣∣∣∣1+δ

q(Xj + uh,Xj + vh,Xj)dudvdXj(1 + o(1))

=
1

h2δ

(∫
|K(2)(u)|1+δdu

)2 ∫
q(Xj + uh,Xj + vh,Xj)dXj(1 + o(1))

= O

(
1

h2δ

)
.

Using the same strategy it can be shown that Mn1 also has this upper bound and we thus
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have

n2M
1

1+δ

n1 /σ2
n = O

(
h

h2δ/(1+δ)

)
= O

(
h

1−δ
1+δ

)
= o(1).

Similarly, we can show that

E|ϕn(X1, Xj)ϕn(Xi, Xj)|2(1+δ) = O

(
h2

h4(1+δ)

)
= O

(
1

h4δ+2

)
,

E|ϕn(X1, Xj)ϕn(Xi, Xj)|2 = O

(
1

h2

)
,

E|ϕn(X1, Xi)ϕn(Xj, Yk)|2(1+δ) = O

(
1

h4δ+2

)
,

which further imply that

n
3
2M

1
2(1+δ)

n2 /σ2
n = O

(
1

n1/2hδ/(1+δ)

)
= o(1),

n
3
2M

1
2
n3/σ

2
n = O

(
1

n1/2

)
= o(1).

n
3
2M

1
2(1+δ)

n4 /σ2
n = O

(
1

n1/2hδ/(1+δ)

)
= o(1),

by noticing again that δ/(1 + δ) < 1/2 and nh→∞.

For Mn5, we first calculate
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E

∣∣∣∣∫ ϕn(X1, Xi)ϕn(X1, Xj)dP (X1)

∣∣∣∣2(1+δ)

=

∫ ∫ ∣∣∣∣∫ (∫ Kh(x−X1)Kh(x−Xi)dx

∫
Kh(x−X1)Kh(x−Xj)dx

)
q(X1)dX1

∣∣∣∣2(1+δ)

q(Xi, Xj)dXidXj(1 + o(1))

=

∫ ∫ ∣∣∣∣∫ 1

h4

(∫
K

(
x−X1

h

)
K

(
x−Xi

h

)
dx

∫
K

(
x−X1

h

)
K

(
x−Xj

h

)
dx

)
q(X1)dX1

∣∣∣∣2(1+δ)

q(Xi, Xj)dXidXj(1 + o(1))

=

∫ ∫ ∣∣∣∣∫ 1

h2
K(2)

(
X1 −Xi

h

)
K(2)

(
X1 −Xj

h

)
q(X1)dX1

∣∣∣∣2(1+δ)

q(Xi, Xj)dXidXj(1 + o(1))

=

∫ ∫ ∣∣∣∣∫ 1

h
K(2)(u)K(2)

(
u+

Xi −Xj

h

)
q(Xi + uh)du

∣∣∣∣2(1+δ)

q(Xi, Xj)dXidXj(1 + o(1))

6
1

h2(1+δ)

∫ ∫ ∫ ∣∣∣∣K(2)(u)K(2)

(
u+

Xi −Xj

h

)∣∣∣∣2(1+δ)

q(Xi + uh)duq(Xi, Xj)dXidXj(1 + o(1))

=
h

h2(1+δ)

∫ ∫ ∫
|K(2)(u)K(2)(u+ v)|2(1+δ)q(Xi + uh)duq(Xi, Xi − vh)dXidv(1 + o(1))

6 C × h

h2(1+δ)

(∫
|K(2)(u)|2(1+δ)du

)2

= O

(
1

h2δ+1

)
.

Using the same method, we can show that the other quantities in the definition of Mn5

also have this upper bound and Mn5 = O
(

1
h2δ+1

)
. We thus have

n2M
1

2(1+δ)

n5 /σ2
n = O

(
h

h
2δ+1
2(1+δ)

)
= O

(
h

1
2(1+δ)

)
= o(1).

Similarly we have

E

∣∣∣∣∫ ϕn(X1, Xi)ϕn(X1, Xj)dP (X1)

∣∣∣∣2 = O

(
1

h

)
,

and

n2M
1
2
n6/σ

2
n = O

(
h

1
2

)
= o(1).

We have then checked the condition

1

σ2
n

{
n2

{
M

1
1+δ

n1 +M
1

2(1+δ)

n5 +M
1
2
n6

}
, n

3
2

{
M

1
2(1+δ)

n2 +M
1
2
n3 +M

1
2(1+δ)

n4

}}
→ 0,

and the CLT for the U-statistic is proved and we have finished proving Step 2.
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Step 3 The asymptotic distribution of T ′0 is an easy consequence of Step 1 and 2. The

asymptotic distribution of T0 is obtained by noticing T0 = T ′0(1 + op(1)).

For the asymptotic distribution of T1, first, using the result in Fan and Ullah (1999)

Theorem 4.1, we have
1

n

n∑
i=1

q̂(Xi)
p−→
∫
q2(x)dx,

then the CLT for T1 follows easily from Slutsky’s lemma. �

In proving Theorem 2, we will need the following weak convergence results for empir-

ical processes of β-mixing sequences:

Lemma 2 (Kosorok (2008), Theorem 11.24) Let X1, X2, . . . be stationary with marginal

distribution P , and β-mixing with

∞∑
k=1

k2/(p−2)β(k) <∞,

for some 2 < p < ∞. Let F be a class of functions in L2(P ) satisfying the entropy

condition, where the bracketing number satisfies

J[ ](∞,F , Lp(P )) <∞. (18)

then

Gnf = n1/2

n∑
i=1

(f(Xi)− Pf)
d−→ GPf,

in l∞(F), where f 7→ GPf is a tight, mean zero Gaussian process with covariance function

Γ(f, g) = lim
k→∞

∞∑
i=1

Cov(f(Xk), g(Xi)),

for all f, g ∈ F .

Proof (of Theorem 2) We prove the theorem using empirical processes techniques. We

are working with dependent data, so we need the empirical process result for β-mixing

sequences in Lemma 2, which is Theorem 11.24 in Kosorok (2008). The exponential decay

of β-mixing coefficients is sufficient for the above lemma to work.

We first prove

√
n(Q̂(x)−Q(x; θ̂n)) l∞(F) x 7→ GQI(u 6 x)−GQψ

T
θ0

∂Q(x, θ)

∂θ
|θ=θ0 , (19)

36



using the strategy discussed in Van der Vaart (2000), pp. 278–279. Here the notation

 l∞ denote weak convergence of stochastic process. Notice that

√
n(Q̂(x)−Q(x; θ̂n)) =

√
n(Q̂(x)−Q(x; θ))−

√
n(Q(x; θ̂n)−Q(x; θ))

=
√
n(Q̂(x)−Q(x; θ))−

√
n(θ̂n − θ)

∂Q(x, θ)

∂θ
,

=
√
n(Q̂(x)−Q(x; θ))− 1√

n

n∑
i=1

ψθ(Xi)
∂Q(x, θ)

∂θ
+ op(1),

where we use the differentiability of the parameterization and the assumption (P1b) about

the expansion of the parametric estimator. With this, the above limiting distribution is

determined by the joint distribution of(
√
n(Q̂(x)−Q(x; θ)),

1√
n

n∑
i=1

ψθ0(Xi)

)
.

Notice that our F is the class of indicator functions F = {I(−∞, x)}, which satisfies

the entropy condition (18) and thus is a Donsker class. Adding the k components of ψθ

to F will make a larger class which we call G, which is again Donsker (a finite class is

Donsker); this is because the union of Donsker classes is also Donsker. Therefore(
√
n(Q̂(x)−Q(x; θ)),

1√
n

n∑
i=1

ψθ0(Xi)

)
 l∞(G) g 7→ GQg,

and using the continuous mapping theorem we get

√
n(Q̂(x)−Q(x; θ))− 1√

n

n∑
i=1

ψθ0(Xi)
∂Q(x, θ)

∂θ
 l∞ x 7→ GQI(u 6 x)−GQψ

T
θ

∂Q(x, θ)

∂θ
.

Notice that the process GQI(u 6 x) and the variable GQψ
T
θ are dependent because they

can be viewed as marginals of the process g 7→ GQg. Therefore, under the null hypothesis,

(19) is proved.

Then, under the null hypothesis,

T2n = n

∫
(Q̂(x)−Q(x; θ̂n))2dQ(x; θ̂)

=

∫ (√
n(Q̂(x)−Q(x; θ̂n))

)2

dQ(x; θ0)(1 +Op(n
−1/2))

=

∫ (√
n(Q̂(x)−Q(x; θ̂n))

)2

dQ(x; θ)(1 + op(1)),
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and the result of the theorem follows easily from continuous mapping, because the map

z 7→
∫
z2(t)dQ(t) from D[−∞,+∞] into R is continuous with respect to the supremum

norm. �

Proof (of Theorem 3) Under the alternative hypothesis, we can make the following

decomposition of the test statistic,

T0

= nh1/2

∫
(q̂(x)−Kh ∗ q(x; θ̂n))2dx

= nh1/2

∫
(q̂(x)−Kh ∗ q1(x))2dx+ nh1/2

∫
(Kh ∗ q1(x)−Kh ∗ q(x; θ̂n))2dx

+2nh1/2

∫
(q̂(x)−Kh ∗ q1(x))(Kh ∗ q1(x)−Kh ∗ q(x; θ̂n))dx

Using the same approach as in Theorem 1, it can be shown that the first term satisfies

nh1/2

(∫
(q̂(x)−Kh ∗ q1(x))2dx− (nh)−1

∫
K2(u)du

)
d−→ N

(
0, 2

∫
q2

1(u)du

∫
(K ∗K)2(u)du

)
.

For the second term, by definition∫
(Kh ∗ q1(x)−Kh ∗ q(x; θ̂n))2dx

p−→
∫

(q1(x)− q(x; θ̂n))2dx = Op(1),

as h → 0, because this is the L2 distance between the alternative model and the pseu-

dotrue model. The limit exists because we are considering functions in L2 space. Thus

we have

nh1/2

∫
(Kh ∗ q1(x)−Kh ∗ q(x; θ̂n))2dx→∞.

For the third term, by Cauchy-Schwarz inequality∫
(q̂(x)−Kh ∗ q1(x))(Kh ∗ q1(x)−Kh ∗ q(x; θ̂n))dx

6

(∫
(q̂(x)−Kh ∗ q1(x))2dx

)1/2(∫
(Kh ∗ q1(x)−Kh ∗ q(x; θ̂n))2dx

)1/2

= Op(n
−1/2h−1/4).

Then it is obvious that (T0 −
∫ 2

K
(u)du)/σ → +∞ under H1 and the the claimed results

for T0 is true. The consistency of the test T1 follows easily. �
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Proof (of Theorem 4) Let F (x) = Q(x, θ∗) be the projection of Q1(x) onto the space

of parametric models. That is, Q(x, θ∗) is the pseudotrue model. Let X1, X2, . . . be the

observations generated from Q(x, θ∗), and denote F̂ (x) to be the empirical distribution

function of the sample {Xi}ni=1. Then under the alternative hypothesis, we can make the

following decomposition

T2

= n

∫
(Q̂(x)−Q(x; θ̂n))2dQ(x; θ̂n)

= n

∫
(Q̂(x)− F̂ (x))2dQ(x; θ̂n) + n

∫
(F̂ (x)−Q(x; θ̂n))2dQ(x; θ̂n)

+2n

∫
(Q̂(x)− F̂ (x))(F̂ (x)−Q(x; θ̂n))ddQ(x; θ̂n).

When n→∞, the first term satisfies

n

∫
(Q̂(x)− F̂ (x))2dQ(x; θ̂n)

p−→ n

∫
(Q1(x)− F (x))2dF (x) = Op(n).

Using the same method as in the proof of Theorem 2, it can be shown that the second

term n
∫

(F̂ (x) − Q(x; θ̂n))2dQ(x; θ̂n) satisfy the same convergence in distribution result

as in that theorem, such that

n

∫
(F̂ (x)−Q(x; θ̂n))2dQ(x; θ̂n) = Op(1).

By Cauchy-Schwarz inequality the cross product term is Op(n
1/2). Then it is obvious

that T2 →∞ under H1 when n→∞ and the test is consistent. �
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