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Abstract 21 

Neuropathic pain-like joint symptoms (NP) are seen in a proportion of individuals 22 

diagnosed with osteoarthritis (OA) and post-total joint replacement (TJR). In this study we 23 

performed a genome-wide association study (GWAS) using NP as defined by the 24 

painDETECT questionnaire (score >12 indicating possible NP) in 613 post-TJR 25 

participants recruited from Nottinghamshire (UK). The prevalence of possible NP was 26 

17.8%. The top four hits from the GWAS and one other biologically relevant SNP were 27 

replicated in individuals with OA and post-TJR from an independent study in the same area 28 

(N=908) and in individuals from the Rotterdam Study (N=212). Three of these SNPs 29 

showed effect sizes in the same direction as in the GWAS results in both replication 30 

cohorts. The strongest association upon meta-analysis of a recessive model was for the 31 

variant allele in rs887797 mapping to the protein kinase C alpha (PRKCA) gene 32 

ORpossNP=2.41 (95%CI 1.74-3.34, p= 1.29x10-7). This SNP has been found to be associated 33 

with multiple sclerosis and encodes a functional variant affecting splicing and expression of 34 

the PRKCA gene. The PRKCA gene has been associated with long-term potentiation, 35 

synaptic plasticity, chronic pain and memory in the literature, making this a biologically 36 

relevant finding. 37 

 38 
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Introduction 41 

Neuropathic pain-like joint symptoms (NP) have been reported in people with osteoarthritis 42 

(OA) of the knee or hip and in some people who have undergone total-joint replacement 43 

(TJR) for OA (ref. 1, 2). Estimates for NP post-TJR range from 1% to 63% in the literature 44 

depending on the methodology (ref. 2, 3, 4). 45 

Neuropathic pain is defined as “pain arising as a direct consequence of a lesion or disease 46 

affecting the somatosensory system”, adapted from the International Association for the 47 

Study of Pain (IASP) definition (ref. 5). Symptoms can include burning, hypersensitivity, 48 

prickling and numbness in both the affected areas and areas of the body distant from the 49 

site of damage (ref. 6). Treatments for NP have been reported to be of limited effectiveness 50 

for many individuals and the condition can have a large impact on quality of life (ref. 7, 8). 51 

There are numerous risk factors for NP identified in the literature such as nerve damage 52 

from surgery, chronic nociceptive input (as seen in chronic pain), complications from 53 

herpes zoster infection and diabetes (ref. 9, 10). There are some common risk factors for 54 

OA pain and NP such as age, past joint surgery and psychological factors (ref. 1, 7, 11). 55 

Heritability of NP has been estimated at 37% in the single published twin study on NP in 56 

humans (ref. 12). This is within the range of heritability estimates for other painful 57 

conditions such as back pain, migraine and sciatica which range from 21% to 58% (ref. 13, 58 

14, 15, 16, 17). 59 

There have been numerous candidate gene studies on pain, including chronic pain post-60 

surgery (ref. 18). Genes reported in the literature on NP from candidate gene studies 61 
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include the COMT gene, TRPV1 gene, P2X receptor genes and the CACNG2 gene (ref. 19, 62 

20, 21, 22). The genetics of NP are still not fully understood (ref. 23). NP is thought to have 63 

distinct genetic mechanisms, and different types of hypersensitivity (e.g. to heat or 64 

mechanical stimuli) and, according to mouse studies, different molecular mechanisms may 65 

be  involved depending on the method for inducing NP (ref. 23). 66 

A genome-wide association scan (GWAS) can be used to study the genetic basis of 67 

complex traits so is an appropriate design to study NP which can have a complex aetiology. 68 

GWAS identifies the genetic locations (single nucleotide polymorphisms; SNPs) which 69 

differ significantly between cases and controls for a specific phenotype. The genes in which 70 

these loci are located offer clues about the mechanisms behind the phenotype. 71 

To date only one GWAS has been published on NP, in individuals with diabetic 72 

neuropathy. Results from this GWAS identified SNPs in the GFRA2 and ZSCAN20 genes 73 

(ref. 24, 25). Zinc finger proteins are potentially relevant in the treatment of NP (ref. 26). 74 

Previous GWAS for migraine and chronic widespread pain (CWP) have identified 75 

susceptibility loci relating to genes involved in synaptic plasticity and some types of 76 

neuropathy, respectively (ref. 27, 28). A GWAS has also been published on acute post-77 

surgical pain (ref. 29). 78 

The aim of this study was to identify genes associated with the risk of NP in individuals 79 

post-TJR using a genome-wide approach. The replication analysis aimed to reproduce these 80 

findings in other groups containing individuals with knee and hip OA and knee pain. 81 

Methods 82 



5 

 

Participants 83 

Nottingham discovery cohort: Participants were recruited post-total hip or knee 84 

replacement (n=613) from secondary care in the Nottinghamshire area (see Figure S1, 85 

Supplements). 86 

Nottingham replication cohort: Participants from an independent Nottingham-based study 87 

(n=908) including individuals with knee OA, hip OA, or both and individuals post-total hip 88 

or knee replacement were used as a replication cohort (see Figure S1, Supplements). 89 

The North Nottinghamshire Research Ethics Committee gave approval for the ethics of 90 

both studies. All participants gave written, informed consent. 91 

To improve statistical power, in each of the above two Nottingham groups, total hip 92 

replacement participants and total knee replacement participants were combined into one 93 

post-TJR group, as seen in previous GWAs analyses 94 

The Rotterdam Study: The selected individuals were part of Rotterdam Study III (RS-III) 95 

which was started in 2006 and comprised of in total 3 932 participants. A total of 212 96 

women that reported knee pain had data on painDETECT and genetic data (see Figure S1, 97 

Supplements). This population-based cohort study has been previously described and is 98 

studied in the context of chronic disabling diseases in older adults (ref. 30). The Erasmus 99 

University Medical School medical ethics committee gave approval for this study. All 100 

participants gave written, informed consent.  101 

Stage 1: GWAS 102 
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Blood samples from the participants in this study were processed to obtain genotype data. 103 

Genotype data was analysed using the Illumina 610k array 104 

(https://www.ebi.ac.uk/ega/studies/EGAS00001001017). Only directly typed SNPs were 105 

used. Genotyping and QC were carried out as previously described (ref. 31), gPLINK 106 

software (version 1.07) was used to analyse GWAS data from this array (ref. 32). The 107 

results of this association are a list of genetic variants (SNPs) and information about their 108 

location in the genome, as well as an odds ratio (OR), chi square value, and p value to 109 

indicate the level of association of the variants with the specified phenotype. The statistics 110 

program R (version 3.0.2) was used to create Manhattan and QQ plots using the “ggplot2” 111 

library and “qqplot” script. 112 

Post-genomic analysis was undertaken using the Database for Annotation, Visualization 113 

and Integrated Discovery (DAVID) (ref. 33). This is an online tool to which a list of genes 114 

can be submitted and subsequently results are generated regarding the genes’ involvement 115 

in biological processes (ref. 33). The gene list was comprised of genes corresponding to all 116 

SNPs with a p value of p<0.0001 in the GWAS analysis. The BioCarta and Kegg pathways 117 

maps were used for functional annotation. 118 

Stage 2: replication cohorts 119 

Five SNPs with a nominal p value of p<10-4 after the stage 1 GWAS analysis and one 120 

additional lower-ranking but potentially relevant SNP were selected for replication 121 

(rs1133076; see Discussion). Genotype information for these SNPs from in silico and de 122 

https://www.ebi.ac.uk/ega/studies/EGAS00001001017
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novo genotype data were used for further analysis. In total six SNPs were selected for 123 

replication analysis. 124 

Stage 3: meta-analysis 125 

The “meta” library in the statistics program R (version 3.0.2) was used to run the meta-126 

analysis using the four cohorts described above. Meta-analysis takes the effect size, 127 

standard error and sample size into account to give an overall effect from the different 128 

groups studied. If heterogeneity was significant between the cohorts in the meta-analysis, a 129 

Han Eskin random effects model was used as an alternative meta-analysis method as, 130 

compared to traditional models, it allows for more heterogeneity in the data (ref. 34). 131 

Phenotype 132 

Individuals were assigned a phenotype by classifying them according to their scores on the 133 

painDETECT questionnaire. This is a seven-item questionnaire scored from 0-39 which 134 

uses a Likert scale for participants to describe the nature of their pain, in order to 135 

distinguish hit from nociceptive pain. Questions are included on qualities such as burning 136 

pain, tingling, sudden pain and sensitivity to heat and cold. In all cohorts, scores of >12 137 

were classified as “possible neuropathic pain” as described by Freynhagen et al. (ref. 35). 138 

Results 139 

Stage 1: GWAS 140 

The results of the unadjusted GWAS on NP can be seen in Table 1 and Figure 2.  A total 141 

of 548 382 SNPs were tested for association with NP. The genomic control inflation factor 142 
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for the p values was low (λ=0.99) and the quantile-quantile (QQ) plot indicated no 143 

substantial population stratification due to cryptic relatedness, population substructure or 144 

other biases (Figure 2). 145 

The results of the GWAS are summarised in Manhattan plots of the p values (Figure 3). 146 

Table 1 shows the odds ratios (OR) and significance of the results from the Illumina array 147 

NP GWAS for five of the top-scoring SNPs and a SNP of biological relevance. The 148 

highest-scoring SNP was rs887797 in the protein kinase C (PRKCA) gene: OR=2.04 (1.51-149 

2.77), p=3.76x10-6. 150 

Pathway analysis: Pathway analysis was carried out on the GWAS results using a list of 151 

genes corresponding to SNPs with p values less than p<0.0001 in the GWAS (n=62; see 152 

Table S1, Supplements). If the SNP mapped to an area within a gene, this gene was used. 153 

For intergenic SNPs the two closest flanking genes on each side were used. The results of 154 

this analysis (see Table S2, Supplements) report no significant findings after adjusting for 155 

multiple testing with a Bonferroni correction (see Table S2, Supplements). 156 

Stage 2: Replication cohorts 157 

We sought to replicate the 6 selected SNPs for their association with NP in two 158 

independent replication cohorts. The results are shown in Table 1. As shown in Table 1, 159 

two of the SNPs selected from the GWAS in stage 1 for replication analysis show 160 

significant p values and effects in the same direction in one of the replication cohorts. 161 

Stage 3: meta-analysis 162 
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We then combined discovery and replication results in a joint meta-analysis. The results 163 

can be seen in Table 1. Heterogeneity of the loci was tested using the Cochran Q test. 164 

Due to the significant heterogeneity introduced to the model by the replication data in the 165 

rs887797, rs4866176, rs7734804, rs298235 and rs12596162 meta-analyses, a Han Eskin 166 

random effects model was used to account for this (see Table 1). The additive model for 167 

the rs887797 SNP after this analysis gave a result of: OR=1.47 (95% CI 1.24-1.76), p=1.33 168 

x10-5. A recessive model for the rs887797 SNP was also used in a meta-analysis. A 169 

recessive model was used to test the nature of the effect of the risk allele, that is, to test if 170 

two copies of the risk allele were needed to increase the risk of possible NP. After Han 171 

Eskin analysis, the recessive model for rs887797 gave a result of OR=2.41 (95% CI 1.74-172 

3.34, p=1.29x10-7) (see Figure 4). 173 

After adjusting for age, sex and BMI, Han Eskin analysis of the rs887797 SNP gave values 174 

of: ORpossNP=1.44 (95% CI 1.21-1.73, p=7.13x10-5) and ORpossNP=2.33 (95% CI 1.67-3.27, 175 

p=8.67x10-7) for the additive and recessive models, respectively. Upon combining the data 176 

from the two replication cohorts used, it was found that overall this SNP was significant. 177 

The additive model for the rs887797 SNP in the Nottingham replication cohort and 178 

Rotterdam Study cohort gave OR=1.25 (95% CI 1.01-1.55), p=0.040 and the recessive 179 

model gave OR=1.75 (95% CI 1.15-2.64), p=0.008. 180 

Finally, we attempted to replicate two of the top hits from the only published GWAS on 181 

NP. These SNPs were reported to be suggestively associated with diabetic neuropathy: 182 

rs17428041 (GFRA2, OR=0.67, p=1.77x10-7) (ref. 24) and rs71647933 (ZSCAN20, 183 
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OR=2.31, p=4.88x10-7) (ref. 25). The effect of rs17428041 was not replicated in the results 184 

of our GWAS: OR=1.47, p=0.016. Similarly, after using a proxy for rs71647933 185 

(rs12565140, r2=0.947) we found no association with NP in the results of our GWAS: 186 

OR=0.71 (95% CI 0.46-1.09), p=0.12). 187 

Discussion 188 

We report that a variant in the PRKCA gene is associated with NP in people with knee pain, 189 

knee or hip OA and post-TJR. Despite not reaching genome-wide significance (GWS) the 190 

replication of effect sizes for four of these SNPs in one or both of the replication cohorts, 191 

and the improvement of the p value for one of these SNPs after meta-analysis suggest that 192 

these are true associations. The findings are also biologically plausible and supported by 193 

previously published work in the literature. We were unable to confirm the recently 194 

published association between SNPs in the GFRA2 and ZSCAN20 genes and diabetic 195 

neuropathy (ref. 24, 25). However, it should be noted that diabetic neuropathy is not 196 

necessarily the same phenotype as neuropathic pain-like joint symptoms. The definition of 197 

NP used in these studies was partly based on use of prescription analgesic medication and 198 

partly on the results of sensory testing. However, this type of medication is commonly used 199 

even by people with no NP, including people post-TJR with no NP. In our study, a 200 

validated screening questionnaire (painDETECT) was used, the location of pain is 201 

exclusively that of the OA-affected joint and further clinical history and demographics have 202 

been collected for all participants. 203 
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The top hit from our GWAS and replication analysis maps to the PRKCA gene. This gene 204 

codes for protein kinase C alpha, a protein which has been linked with the nervous system 205 

and may contribute to central sensitisation in dorsal horn neurons (ref. 36). The PRKCA 206 

gene has also been found in the literature to be involved in long-term potentiation (LTP), a 207 

process involved in both memory and chronic pain (ref. 37). As well as this, the PRKCA 208 

gene has been implicated in related processes such as memory capacity and post-traumatic 209 

stress disorder (PTSD) (ref. 38) and genetic variation in this gene has been linked to the 210 

neural basis of episodic memory (ref. 39). Although we do not reach the p<5x10-8 threshold 211 

for GWS, we show plausible, reproducible genetic effects on NP post-TJR and after 212 

replication analysis. The National Human Genome Research Institute (NHGRI) keeps a 213 

record of all SNP-trait associations p<10-5 (ref. 40) which supports the relevance of the 214 

findings in this study and their suggestive role in NP, despite not achieving GWS.  More 215 

importantly if we combine the data from the two replication cohorts used we still achieve a 216 

significant p-value. A role for the PRKCA gene in pain has been previously reported (ref. 217 

41). The rs887797 variant identified in this paper is a variant already associated with 218 

multiple sclerosis (ref. 42). Therefore, although this association may not reach GWS it 219 

remains highly biologically plausible. 220 

In the present GWAS the intergenic rs12596162 SNP near the FOXL1 gene was associated 221 

with NP: OR=1.96 (95% CI 1.45-2.64), p=1.09x10-5. This gene codes for a 222 

forkhead/winged helix-box transcription factor (ref. 43). This gene and the rest of the FOX 223 

gene family are involved in many cellular processes (ref. 43). FOXL1 in particular was 224 
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found in one study to be involved in the Wnt/β-catenin pathway (ref. 44) which is 225 

important in the nervous system and has been implicated in NP and hip OA (ref. 45, 46). 226 

Thyroglobulin, encoded by the TG gene, is a protein necessary for normal thyroid function 227 

which has previously been related to NP and central sensitisation in the literature (ref. 47). 228 

The rs1133076 SNP mapping to this gene was suggested in this analysis to be associated 229 

with possible NP at the discovery stage with p=8.09 x10-4. However this variant did not 230 

replicate in the additional cohorts and the evidence for association with NP for this gene is 231 

very weak. 232 

The effect sizes we report here are larger than those reported in previous GWAS on pain 233 

traits such as migraine and CWP (OR=1.18 and OR=1.23, respectively) (ref. 27, 28) despite 234 

our study having a smaller sample size. The effect size for the GWAS on NP in diabetes 235 

was 2.31 for the SNP with the lowest p value, which is consistent with our finding for the 236 

rs887797 SNP in the GWAS analysis (OR=2.05, see Table 1). 237 

There are a number of limitations to this study. None of the variants identified by this study 238 

reaches GWS. This is not surprising given the small discovery and replication sample sizes 239 

available for this kind of study. A major issue with the use of GWAS is the potential for 240 

inflated associations (ref. 48). The statistical power for the rs887797 recessive model with 241 

the observed OR=2.41 was 56% for GWS. For the observed p value the statistical power 242 

was 66% given the observed minor allele frequency and the rare homozygote frequency 243 

(which is in HWE). Although the study was underpowered for GWS, the effect size is 244 

relatively large. To achieve 80% power with this effect size and the same proportion of 245 
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cases to controls we would have needed 417 cases and 1 767 controls, a 25% larger sample 246 

size,  assuming that in the additional sample the effect was the same (ref. 48). Only the 247 

most extreme p values and effect sizes are selected for further study after a GWAS (ref. 248 

49).  This is called the “winner’s curse” (ref. 49) and means that the effect size reported 249 

here is likely to be an overestimate given the small sample size used for the discovery 250 

phase, and sample sizes of at least twice those that were used are likely to be needed. 251 

Furthermore, heterogeneity between the groups used in the meta-analysis can limit the 252 

effects seen in the results though we attempted to address this by the use of a Han Eskin 253 

Random Effects analysis (ref. 34). 254 

The absence of a clinical NP diagnosis in these participants is another limitation of this 255 

study. However the results of this questionnaire have been shown to correlate with brain 256 

activity in areas associated with NP in people with NP and OA (ref. 50). 257 

In summary, this study has found biologically plausible and reproducible genetic effects 258 

when analysing possible NP in individuals with knee pain, OA and post-TJR. Replication 259 

in further cohorts could improve sample size and p values and it is hoped that this GWAS 260 

of neuropathic pain-like symptoms of the joint may encourage the collection of DNA and 261 

of painDETECT and similar instruments in other cohorts. 262 
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Figure 1: Study design 

 

 

Figure 2: QQ plot for the results of the GWAS (λ=0.99) 



25 

 

 

Figure 3: Manhattan plot showing the p value of association tests for SNPs with possible NP in 

the Illumina array GWAS. P values represent the association of the SNPs with possible NP
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Figure 4: Forest plot showing the results of an unadjusted Han Eskin analysis on the rs887797 

SNP using a recessive model 

 

 

 


