
Accepted Manuscript

The virtues of idleness: A decidable fragment of resource agent logic

Natasha Alechina, Nils Bulling, Brian Logan, Hoang Nga Nguyen

PII: S0004-3702(17)30001-2
DOI: http://dx.doi.org/10.1016/j.artint.2016.12.005
Reference: ARTINT 2990

To appear in: Artificial Intelligence

Received date: 26 April 2016
Revised date: 13 December 2016
Accepted date: 30 December 2016

Please cite this article in press as: N. Alechina et al., The virtues of idleness: A decidable fragment of resource agent logic, Artif. Intell.
(2017), http://dx.doi.org/10.1016/j.artint.2016.12.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing
this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is
published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.artint.2016.12.005

The Virtues of Idleness: A Decidable Fragment of Resource Agent Logic1

Natasha Alechinaa, Nils Bullingb, Brian Logana, Hoang Nga Nguyenc
2

aSchool of Computer Science, University of Nottingham, UK3
bDelft University of Technology, The Netherlands4

cCentre for Mobility and Transport, Coventry University, UK5

Abstract6

Alternating Time Temporal Logic (ATL) is widely used for the verification of multi-agent systems. We consider
Resource Agent Logic (RAL), which extends ATL to allow the verification of properties of systems where agents act
under resource constraints. The model checking problem for RAL with unbounded production and consumption of
resources is known to be undecidable. We review existing (un)decidability results for fragments of RAL, tighten some
existing undecidability results, and identify several aspects which affect decidability of model checking. One of these
aspects is the availability of a ‘do nothing’, or idle action, which does not produce or consume resources. Analysis of
undecidability results allows us to identify a significant new fragment of RAL for which model checking is decidable.

Keywords: strategy logics, resource constraints, model checking7

1. Introduction8

Many problems in AI and multi-agent systems research are most naturally formulated in terms of the abilities of9

a group or coalition of agents. For example, a group of agents may be able to cooperate to achieve an outcome which10

cannot be achieved by any agent in the group acting individually. In many cases, whether the outcome can be achieved11

depends critically on the resources available to the agents. Money is an obvious example, but there are many kinds12

of resources that may be produced or consumed by the actions of agents. For example, whether a team of agents13

can cooperate to extinguish a fire may depend on the amount of fuel and water they have available. Several logics for14

reasoning about coalitional ability under resource bounds have been proposed in the literature [1, 2, 3, 4, 5, 6, 7]. These15

resource logics allow us to express properties such as: ‘a coalition of agents A has a strategy (a choice of actions)16

requiring no more than b resources, such that whatever the actions by the agents outside the coalition, any evolution17

of the system generated by the strategy satisfies some temporal property’. Using model checking techniques we can18

then verify that a given coalition has a strategy requiring less than b resources to enforce an outcome, whatever the19

other agents in the system (or the environment) do. The ability to verify such properties can be useful when designing20

or developing a resource-constrained multi-agent system.21

Unfortunately, the model checking problem for many resource logics where actions can produce resources is22

undecidable [2, 5]. Recently, however, it was shown that some resource logics where actions can produce resources23

have a decidable model checking problem [6, 7, 8]1. In this paper, we investigate the reasons for the decidability24

or undecidability of the model checking problem for resource logics. Different syntactic and semantic choices give25

different variants of resource logics. Some of these choices are known to affect the decidability of the model checking26

problem. In particular, the decidability result in [6] was proven in the presence of two major restrictions, called,27

in the terminology of [2], resource flat and proponent restricted. The former assumes that agents are always re-28

equipped with fresh resources when they reconsider their strategies; the latter assumes that only the proponents act29

under resource bounds (i.e., agents outside the coalition are not resource bounded). In addition to these restrictions,30

Email addresses: nza@cs.nott.ac.uk (Natasha Alechina), n.bulling@tudelft.nl (Nils Bulling), bsl@cs.nott.ac.uk (Brian
Logan), hoang.nguyen@coventry.ac.uk (Hoang Nga Nguyen)

1A preliminary version of [8] is available as a technical report [9].

Preprint submitted to Artificial Intelligence January 3, 2017

another choice in the semantics is relevant for the decidability result in [6]. This choice, which is also related to the1

finitary and infinitary semantics of [2], stipulates that, in every model, agents always have a choice of doing nothing2

(executing an idle action) that produces and consumes no resources. Having an idle action makes model checking3

easier: intuitively, its availability ensures that in order to determine whether a coalition can enforce a φ-state after4

finitely many steps and within a given resource bound, we only need to find a finite strategy to enforce φ under the5

given resource bound, and after φ is achieved, the agents can always choose the idle action forever, which does not6

increase the ‘cost’ of the strategy. The presence of an idle action in the logic also guarantees some attractive formal7

properties. For example, as stated in [3], it ensures coalition monotonicity: if a coalition A can ensure a property under8

resource bound b, then any larger coalition can also ensure this property under the same resource bound (intuitively,9

the extra agents can always perform idle).10

In this paper, we investigate the effects of various semantic choices, such as the availability of an idle action, on11

the decidability of the model checking problem for resource logics. First we show that both the resource-flat and the12

proponent-restricted fragments of resource agent logic remain undecidable in the presence of idle actions. We then13

identify and motivate a significant, non resource-flat fragment that has a decidable model checking property in the14

presence of idle actions, and is not decidable otherwise. It follows that idle actions can make a difference for the15

decidability of model checking with respect to the semantics we consider.16

The new fragment, which we call pprRAL, allows us to express statements about the existence of nested strategies17

for a coalition of agents given some initial allocation of resources. Unlike the resource-flat fragment considered in18

[6], where for each new strategy agents are re-equipped with a fresh set of resources, pprRAL allows us to express19

properties such as ‘given their initial battery charge, rescue robots A can safely get to a position from which they20

can perform rescue while in visual contact with the base’. There are two nested strategies implicit in this property:21

first, the robots should be able to reach some position (not necessarily maintaining visual contact with the base), and22

second, from this position, the agents should be able to perform rescue while in visual contact with the base. The first23

strategy (getting into position) will require certain resources (in this case battery charge), and the amount of resources24

required will depend on the environment. Then, with whatever resources are left, the agents need a strategy to perform25

the rescue. In this example, the model checking problem essentially corresponds to finding two nested conditional26

resource-constrained plans, see e.g., [10]. The plans are nested because it is impossible to decouple the second plan27

(for rescue) from the results of the first plan (getting into position), since we do not know the resource availability for28

the initial state of the second plan; the resource availability in that state is determined by resource consumption of the29

first plan. Compared to conditional planning with resources, resource logics provide an easy way to talk not just about30

reachability, but also about invariants and nested goals/strategies achieved by (potentially different) coalitions.31

This paper extends results presented in [7] in several respects, including: a more general definition of a decidable32

fragment, more elaborated intuitions regarding the (un)decidability results, detailed proofs of all theorems, and tighter33

undecidability results (in terms of the number of agents and resource types required for undecidability). The remainder34

of the paper is organised as follows. In Section 2 we briefly survey related work. In Section 3 we introduce resource35

agent logic, its models and the semantics. In Section 4, we review known decidability results for resource agent36

logic, and investigate the reasons for (un)decidability. We present new undecidability results for systems with a single37

resource type, and, based on these results, we motivate and introduce a new non resource flat fragment of RAL,38

pprRAL. In Section 5, we present our second main technical result: a decidability result for pprRAL. We conclude in39

Section 6.40

2. Related Work41

Early work on resource logics considered only the consumption of resources (i.e., no action produces resources),42

and initial results on the complexity of model checking were encouraging. One of the first logics capable of expressing43

resource requirements of agents was a version of Coalition Logic (CL)2 called Resource-Bounded Coalition Logic44

(RBCL), where actions only consume (and do not produce) resources. It was introduced in [1] with the primary45

motivation of modelling systems of resource-bounded reasoners; however the framework is sufficiently general to46

model any type of action. The model checking problem for RBCL was shown to be decidable in time polynomial47

2CL is a fragment of ATL with only the next time 〈〈A〉〉X modality, introduced in [11].

2

in the size of the transition system and of the property, and exponential in the number of resource types in [12]. A1

resource-bounded version of ATL, RB-ATL, where again actions only consume (and do not produce) resources was2

introduced in [3]. The model checking problem for this logic is also decidable in time polynomial in the size of the3

transition system and of the property, and exponential in the number of resource types [3]. (For a single resource4

type, e.g., energy, the model checking problem is no harder than for ATL.) Practical work on model checking many5

standard computer science transition systems (not multi-agent systems) with resources also falls in the category of6

consumption-only systems. For example, probabilistic model checking of systems with numerical resources as in the7

PRISM model checker [13] assumes that costs increase monotonically with time.8

However, when resource production is considered in addition to consumption, the situation changes. In a separate9

strand of work, a range of different formalisms for reasoning about resources was introduced in [14, 2], including Re-10

source Agent Logic RAL which is the main focus of this paper. In these formalisms, both consumption and production11

of resources was considered. In [2], it was shown that the model checking problem for most variants and fragments of12

RAL is undecidable. The only decidable cases considered in [2] (and the related [14]) are an extension of Computation13

Tree Logic (CTL) with resources (essentially one-agent ATL), and a version where on every path only a fixed finite14

amount of resources can be produced. The models satisfying this property were referred to as bounded in [2]. It was15

pointed out in [2] that RBCL and RB-ATL are logics over a special kind of bounded models (where no resources are16

produced at all). Other decidability results for bounded resource logics have also been reported in the literature. For17

example, in [15] a decidable logic, PRB-ATL (Priced Resource-Bounded ATL) is defined, where the total amount of18

resources in the system has a fixed bound. The model checking algorithm for PRB-ATL requires time polynomial19

in the size of the transition system, and exponential in the number of resource types and the resource bound on the20

system. In [4] an EXPTIME lower bound in the number of resource types for the PRB-ATL model checking problem21

is shown. In [16], an extension of PRB-ATL to μ-calculus is also shown to have a decidable model checking problem.22

A general logic over systems with numerical constraints, Quantitative ATL (QATL∗), was introduced in [5], and23

undecidability results for the model checking problem for QATL∗ and some of its fragments were shown. For example,24

QATL is undecidable even if no nestings of cooperation modalities are allowed. The main proposals for restoring25

decidability to the model checking problem for QATL in [5] are removing negative payoffs (similar to removing26

resource production), and introducing memoryless strategies (the latter idea is not pursued in any detail).27

This brief survey of work suggests that the boundary between decidability and undecidability for the model check-28

ing problem of resource logics is very subtle. No systematic study of the reasons for decidability and undecidability29

of this problem has been undertaken to date, and with this paper we aim to address this task. We believe a better30

understanding of the boundary between decidability and undecidability will be useful in developing new decidable31

fragments of resource logics.32

Of course, searching for decidable fragments is not the only way of addressing the undecidability of model check-33

ing for temporal logics with infinite-state transition systems (RAL can be seen as a special case of such logics).34

Another approach is to design algorithms which return definite answers where possible, and ‘unknown’ otherwise35

(see, e.g., [17, 18, 19, 20, 21]). A promising direction of future research would be to explore connections between36

the two approaches. Our work connects to many other areas of computer science, such as planning [10] and the37

verification of autonomous systems [22, 23]. The model checking problem can essentially be seen as an approach38

to computing a robust plan for a set of autonomous agents, such as robots. Techniques used in our work are related39

to many subfields of theoretical computer science. In particular, techniques developed for Petri nets, vector addition40

systems and model checking over pushdown systems (see, e.g., [24, 25]), are closely connected to the techniques we41

use in establishing our decidability and undecidability results. The existing, deep theoretical results in these areas also42

provide a starting point for establishing complexity bounds for our model checking algorithms, and ideas for restric-43

tions that give fragments with good computational properties. Finally, another branch of work on reasoning about44

resources is based on linear logic [26, 27], and related logics such as the logic of bunched implication [28, 29, 30, 31].45

In the future, it would be interesting to explore deeper connections between the resource logics considered in this46

paper, and reasoning about resources using linear logic techniques.47

3. Resource Agent Logic48

In this section we define resource agent logic (RAL) and resource-bounded models (RBMs). We essentially1

follow [2], combined with aspects from [6]. We summarise the similarities and differences between RAL and the2

3

resource logics considered in [2, 6] in more detail in Section 3.5.3

3.1. Syntax of RAL4

The logic is defined over a set of agents Agt, a set of resources types Res, and a set of propositional symbols Π.5

We denote the set of natural numbers by N, the set of natural numbers with zero by N0, the set of natural numbers6

with infinity by N
∞, and the set of natural numbers with zero and infinity by N

∞
0 . An endowment (function) η :7

Agt×Res→ N
∞
0 assigns resources to agents; ηa(r) = η(a, r) is the number of resources agent a has of resource type r.8

En denotes the set of all possible endowments. Resource types can represent, for example, money, fuel, battery power,9

etc. Special minimal and maximal endowment functions are denoted by 0̄ and ∞̄, respectively. The former expresses10

that there are no resources at all, whereas the latter equips all agents with an infinite amount of each resource type. (In11

what follows, for readability we will talk about amounts of some resource, rather than of some resource type.) The12

logic RAL is defined according to the grammar of ATL [32]. RAL-formulae are defined by:13

φ ::= p | ¬φ | φ ∧ φ | 〈〈A〉〉↓BXϕ | 〈〈A〉〉ηBXϕ | 〈〈A〉〉↓BϕUψ | 〈〈A〉〉ηBϕUψ | 〈〈A〉〉↓BGϕ | 〈〈A〉〉ηBGϕ14

where p ∈ Π is a proposition, A, B ⊆ Agt are sets of agents, and η is an endowment. We also define 〈〈A〉〉↓ and15

〈〈A〉〉η as abbreviations for 〈〈A〉〉↓A and 〈〈A〉〉ηA, respectively. The operators X, U, and G denote the standard temporal16

operators expressing that some property holds in the next point in time, until some other property holds, and now and17

always in the future, respectively. There are two types of cooperation modalities, 〈〈A〉〉↓B and 〈〈A〉〉ηB. In both types of18

cooperation modality, the actions performed by agents in A ∪ B consume and produce resources (actions by agents19

in Agt \ (A ∪ B) do not change their resource endowment). The reading of 〈〈A〉〉ηBϕ is that when agents A ∪ B have a20

resource endowment η, agents A have a strategy compatible with this endowment to enforce ϕ (whatever the agents21

in Agt \ A do, compatible with their resource constraints, if any). The evaluation of a modality 〈〈A〉〉ηB (re-)equips all22

agents with a fresh amount of resources: the current resource endowment is overwritten by endowment η. The formula23

〈〈A〉〉↓Bϕ reads similarly but the strategy must be compatible with the resources currently available to the agents. In24

both cases compatible means that the strategy can be executed given the agents’ resources. For both modalities it is25

therefore necessary to keep track of resource production and consumption during the execution of a strategy.26

3.2. Semantics of RAL27

We define the models of RAL as in [2]. Following [6] we also define a special case of these models in which all28

agents have an idle action in their repertoire which neither consumes nor produces resources.29

Definition 1 (RBM, iRBM). A resource-bounded model (RBM) is given by M = (Agt,Q,Π, π, Act, d, o, Res, t)30

where31

• Agt = {1, . . . , k}, is a non-empty set of agents;32

• Q is a non-empty set of states;33

• π : Q→ ℘(Π) is a valuation of propositions;34

• Act is a finite non-empty set of actions;35

• d : Agt × Q→ ℘(Act)\{∅} indicates the actions available to agent a ∈ Agt in state q ∈ Q;36

• o maps each state q ∈ Q and action profile α = (σ1, . . . , σk) such that σa ∈ d(a, q) for each a ∈ {1, . . . , k}, to37

another state q′ = o(q, α);38

• t : Act × Res → Z models the resources consumed and produced by actions; if t(σ, r) is positive resource r is39

produced by σ, if t(σ, r) is negative resource r is consumed by σ.40

An RBM with idle actions, iRBM for short, is an RBM M such that for all agents a and states q in M, there is an41

action σ ∈ d(a, q) with t(σ, r) = 0 for all resource types r. We refer to this action (or to one of them if there is more1

than one) as the idle action of a and denote it by idle.2

4

We will write da(q) instead of d(a, q), and use d(q) to denote the set d1(q) × . . . × dk(q) of action profiles in state3

q. Similarly, dA(q) denotes the action tuples available to A ⊆ Agt in q. For α = (σ1, . . . , σk), we use αA to denote the4

sub-tuple consisting of the actions of agents A ⊆ Agt; moreover, we write αa to refer to σa for a ∈ Agt. ActA is a set5

of tuples of actions by agents in A. We define prod(σ, r) := max{0, t(σ, r)} (resp. cons(σ, r) := |min{0, t(σ, r)}|) as the6

amount of resource r produced (resp. consumed) by action σ. Note that cons(σ, r) is a non-negative number, and for7

any action σ and a resource type r it is not possible that both prod(σ, r) and cons(σ, r) are greater than 0.8

In what follows, Qω denotes the set of all infinite sequences of elements from Q, and Q+ denotes the set of all9

finite sequences. A path λ ∈ Qω is an infinite sequence of states such that there is a transition between two adjacent10

states. A finite path is a finite segment of a path. We define λ[i] to be the (i + 1)-th state of λ, and λ[i,∞] to be the11

suffix λ[i]λ[i + 1] We denote a finite sequence λ extended by q by λq. A resource-extended path λ ∈ (Q × En)ω12

is an infinite sequence over Q × En such that the restriction to states (the first component), denoted by λ|Q, is a path13

in the underlying model. The projection of λ to the second component of each element in the sequence is denoted by14

λ|En. We call any initial (finite) suffix of a resource-extended path a finite resource extended path.15

A strategy for a coalition A ⊆ Agt is a function sA : Q+ → ActA such that sA(λq) ∈ dA(q) for λq ∈ Q+. Such a16

strategy gives rise to a set of (resource-extended) paths. A (η, sA, B)-path is a resource-extended path λ where for all17

i = 0, 1, . . . with λ[i] := (qi, η
i) there is an action profile α ∈ d(λ|Q[i]) such that:18

1. η0 = η (η describes the initial resource distribution);19

2. sA(λ|Q[0, i]) = αA (A follow their strategy);20

3. λ|Q[i + 1] = o(λ|Q[i], α) (transition according to α);21

4. for all a ∈ A ∪ B and r ∈ Res: ηi
a(r) ≥ cons(αa, r) (each agent has enough resources to perform its action);22

5. for all a ∈ A ∪ B and r ∈ Res: ηi+1
a (r) = ηi

a(r) + t(αa, r) (resources are updated);23

6. for all a ∈ Agt \ (A ∪ B) and r ∈ Res: ηi+1
a (r) = ηi

a(r) (the resources of agents not in A ∪ B do not change).24

The (η, B)-outcome of a strategy sA in q, out(q, η, sA, B), is defined as the set of all (η, sA, B)-paths starting in q. Truth25

is defined over an RBM M, a state q ∈ QM, and an endowment η.26

The semantics is given by the satisfaction relation |= where the cases for propositions, negation and conjunction27

are standard and omitted:28

M, q, η |= 〈〈A〉〉↓Bϕ iff there is a strategy sA for A such that for all λ ∈ out(q, η, sA, B),M, λ, η |= ϕ29

M, q, η |= 〈〈A〉〉ζBϕ iff there is a strategy sA for A such that for all λ ∈ out(q, ζ, sA, B),M, λ, ζ |= ϕ30

M, λ, η |= Xϕ iffM, λ|Q[1], λ|En[1] |= ϕ31

M, λ, η |= ϕUψ iff there exists i with i ≥ 0 andM, λ|Q[i], λ|En[i] |= ψ and for all j with 0 ≤ j < i,M, λ|Q[j], λ|En[j] |= ϕ32

M, λ, η |= Gϕ iff for all i ≥ 0,M, λ|Q[i], λ|En[i] |= ϕ33

The model checking problem for RAL is stated as follows: does M, q, η |= ϕ hold? When the context is clear, we34

simply write q, η |= ϕ; if ϕ is only a propositional formula, we sometimes also omit η.35

Observe that the standard ATL modalities 〈〈A〉〉 can be defined as 〈〈A〉〉∞̄
Agt

, so the logic is a proper extension of ATL.36

Remark 1 (Infinitary and finitary semantics). We refer to the semantics introduced above as infinitary semantics.37

In [2] the main semantics also allows for finite (maximal) paths. We refer to that semantics as finitary semantics. We38

note that both semantics coincide over iRBMs, as it is always possible to extend a path using idle actions.39

3.3. The Syntactic Fragments rfRAL, prRAL and rfprRAL40

Following [2] we define three fragments of RAL. The resource-flat fragment, rfRAL, only allows cooperation41

modalities of type 〈〈A〉〉ηB: agents are always (re-)equipped with a fresh set of resources whenever they re-consider their42

strategies. The proponent-restricted fragment, prRAL, only allows cooperation modalities of types 〈〈A〉〉↓ and 〈〈A〉〉η:43

only the proponents are resource bounded. The fragment combining both restrictions (resource-flat and proponent-44

restricted) is denoted by rfprRAL.45

5

3.4. Running example46

We introduce a simple running example to illustrate the syntax and semantics of RAL and its fragments. The1

example represents interactions between two agents: a robot (agent 1) and its environment (agent 2). We consider2

only one resource type, energy. The robot needs to move into a position where it is capable of sending information to3

the base regularly and is also able to charge its battery. Both moving and the communication action require energy,4

and the charging action produces energy. We denote ‘being in a suitable position to send information to the base’ by5

p. The environment can make moving more or less difficult for the agent. We model this by giving the environment an6

‘obstruct’ action which has the effect of requiring the agent to execute two move actions instead of one (and hence to7

spend more energy) in order to get into position; for the sake of the example, obstructing requires energy. The initial8

state is q0 where the agent can move and the environment can obstruct, and both also can do nothing. If the agent9

moves and the environment idles, then the system reaches a state q1 where p holds and the agent can loop forever10

between q1 and q3 (which also satisfies p) sending data and charging. If the agent does nothing upon reaching the11

position, it returns to the initial state (under the influence of gravity, for example). If in q0 the environment obstructs12

the agent, the systems reaches a state q2 where the agent can execute the move action again to reach q1. To keep the13

example simple, we assume that in all states apart from q0 the environment can only idle.14

Formally, we have a resource-bounded modelM = (Agt,Q,Π, π, Act, d, o,Res, t) where15

• Agt = {1, 2}16

• Q = {q0, q1, q2, q3}17

• Π = {p}18

• π(q0) = π(q2) = ∅, π(q1) = π(q3) = {p}19

• Act = {idle,move, send, charge, obstruct}20

• Actions available to the robot: d(1, q0) = {idle,move}, d(1, q1) = {idle, send}, d(1, q2) = {idle,move}, d(1, q3) =21

{idle, charge}. Actions available to the environment: d(2, q0) = {idle, obstruct}, d(2, q1) = d(2, q2) = d(2, q3) =22

{idle}.23

• The transition function is as follows:24

Transitions from q0 Transitions from q1 Transitions from q2 Transitions from q3

o(q0, (idle, idle)) = q0 o(q1, (idle, idle)) = q0 o(q2, (idle, idle)) = q2 o(q3, (idle, idle)) = q0
o(q0, (move, idle)) = q1 o(q1, (send, idle)) = q3 o(q2, (move, idle)) = q1 o(q3, (charge, idle)) = q1
o(q0, (move, obstruct)) = q2
o(q0, (idle, obstruct)) = q0

25

• Res = {energy}26

• t(idle, energy) = 0, t(move, energy) = −2, t(send, energy) = −1, t(charge, energy) = 1, t(obstruct, energy) =27

−1.28

The model is shown in Figure 1.29

Here are some example RAL properties which hold in the model:30

• If both agents are resource-bounded, and the initial allocation of resources is 3 units of energy for the robot
and 0 units for the environment, then the robot has a strategy to reach a state from where with the remaining
resources it can maintain the invariant p. We represent an endowment η that assigns 3 units of energy to agent
1 and 0 units to agent 2 by 1:3, 2:0:

〈〈1〉〉1:3,2:0
{1,2} �U〈〈1〉〉↓{1,2}Gp

In fact, with environment unable to obstruct, the robot is guaranteed to reach q1 in one step:

〈〈1〉〉1:3,2:0
{1,2} X〈〈1〉〉↓{1,2}Gp

This property belongs to full RAL: it is not in rfRAL since it uses ↓ in 〈〈1〉〉↓{1,2}G, nor in prRAL since it restricts31

the resources of the opponent agent 2.32

6

q3

q0

p

q2

(idle, idle)

(idle, idle)

(id
le
,id
le

)
q1

(idle, obstruct)

(m
ove,id

le)

(mo
ve,
idle

)

(move,obstruct)

(send,idle)

(charge,idle)

(idl
e, i
dle

)

p

Figure 1: State transition system.

• When both agents are resource bounded, and the environment is restricted to 0 units of energy, then with 2 units
of energy, the agent can reach the state where it can maintain the invariant with 1 unit of energy:

〈〈1〉〉1:2,2:0
{1,2} �U〈〈1〉〉1:1,2:0

{1,2} Gp

This property belongs to the resource-flat fragment, since the second strategy for the invariant uses a fresh33

resource allocation.1

• If only the robot is resource-bounded, and the initial allocation of resources is 5 units of energy for the robot
and 0 units for the environment, then the robot has a strategy to reach a state from where with the remaining
resources it can maintain the invariant p. The strategy is to execute the move action until the state q1 is reached;
in the worst case this would require 4 units of energy (since the environment is not resource-bounded, its
initial allocation does not matter and it can perform the obstruct action). Then with at least one unit of energy
remaining, the agent can enter the loop between q1 and q3:

〈〈1〉〉1:5,2:0
{1} �U〈〈1〉〉↓{1}Gp

This property does not belong to rfRAL but it does belong to prRAL. It can be written without the argument for
the set of resource-bounded agents:

〈〈1〉〉1:5,2:0�U〈〈1〉〉↓Gp

In fact, this property belongs to the fragment with a decidable model checking problem, pprRAL (positive2

fragment of prRAL).3

• If only the robot is resource-bounded, then with initial allocation of 4 units of energy, it can reach a state where
with one unit of energy it can maintain the invariant:

〈〈1〉〉1:4,2:0�U〈〈1〉〉1:1,2:0Gp

This property belongs to rfprRAL.4

7

3.5. Similarities and Differences5

We conclude this section with a discussion of similarities and differences between the variant of RAL presented1

here and the original resource agent logics of [2] and the logic of [6]. In the interests of readability, we refer to the2

setting of [2] by S 1, and to that of [6] by S 2.3

The language of RAL as given above is almost identical to the setting of S 1, except that we do not allow the release4

operator.3 Setting S 2 essentially corresponds to the resource-flat and proponent-restricted fragment of RAL. RBMs5

serve as models of S 1, where S 2 uses iRBMs. There are also differences in how the production and consumption6

of resources are handled. In S 2 the resources of a coalition of agents are combined before the resource requirements7

of actions are evaluated. A shortage of resources of one agent can thus be balanced by surplus resources of another8

agent in the coalition. The implicit assumption is that agents in the proponent coalition share their resources. It is9

not necessary to decide how to divide any resources produced, as the coalition sticks together throughout the relevant10

part of the evaluation of the current formula. When a new cooperation modality is encountered, all agents are re-11

equipped with a new endowment. This is a property of the resource-flat and proponent restricted fragment of the12

logic. This approach cannot be used if the restriction of resource-flatness or proponent restrictiveness is dropped.13

First, a coalition may split-up in a nested modality in which agents are not re-equipped with new resources. In this14

case it is important to know how many resources each individual agent has. A similar difficulty arises if an agent in15

the proponent coalition becomes an opponent in a nested cooperation modality. If the logic is not proponent restricted16

it is necessary to know how many resources this agent possesses. In S 1 this issue is addressed by introducing shares.17

A share models how many resources an individual agents contributes to the pool of resources needed to execute the18

joint action, and also the amount of resources each agent receives when resources are produced. This can be seen as19

a binding agreement about the resource distribution. Again, the underlying assumption is that agents in the proponent20

and opponent coalitions share their resources within the coalition.21

As we consider a non resource-flat variant of RAL here, the approach of S 2 is not sufficient, whereas the approach22

of S 1 complicates the presentation. We therefore adopt a less involved formalisation for ease of readability: resources23

cannot be shared within a coalition and each agent is entirely responsible for its own resource balance. Thus, at24

each moment agents have a clearly defined resource endowment. Finally, most results of S 1 are given in terms of the25

finitary semantics whereas we require that paths are always infinite (cf. Remark 1).26

4. The Quest for Decidability27

If unbounded production of resources is allowed, the model checking problem for many resource logics is unde-28

cidable. In particular, most fragments of the resource agent logic considered in [2, 5] are undecidable. The case of the29

resource-flat, proponent-restricted fragment remained open in [2], but was shown to be decidable in [6, 8] (see also30

[9]):31

Observation 1. rfprRAL is decidable over iRBMs.32

A natural question arises: can we extend decidability to more expressive fragments? Which restrictions are essen-33

tial for decidability, and which can be relaxed?34

The result above relies on three restrictions on RAL: (1) the availability of an idle action; (2) resource flatness, that35

is, each nested quantifier has a fresh endowment; and (3) proponent restriction, that is, there are no resource bounds36

on the opponents. It turns out that all three restrictions are essential for the decidability of rfprRAL, as we explain37

below.38

It follows from [2] that the availability of an idle action is essential for the decidability of rfprRAL:39

Observation 2. rfprRAL is undecidable over RBMs.40

However, the availability of an idle action on its own is not sufficient for decidability. Replacing RBMs with41

iRBMs does not always make the model checking problem decidable.42

3In S 1 the release operator is used to show the undecidability of model checking resource-bounded agents using memoryless strategies. As we
focus on perfect-recall strategies in this paper, we do not need the extra expressivity provided by the release operator.

8

In this section we present the main idea underlying the undecidability proofs of model checking RAL from [2]43

and investigate the reasons for the (un)decidability. We show that the model checking problem for RAL, i.e., the logic1

without any additional restrictions, remains undecidable over iRBMs (see Theorem 1 below). This result also holds2

for both the proponent-restricted fragment and the resource-flat fragment. For these fragments we also investigate3

the effect of the number of agents and resource types on the undecidability. The results of [2, 7] depend on the4

availability of two resource types. Here we show that undecidability holds even if each agent has only a single5

resource type available. In this case, however, additional agents are required for undecidability; more precisely, one6

or two additional agents are required depending on the setting. We also show that in the case of prRAL over iRBMs,7

although the model checking problem remains undecidable, the formula expressing an undecidable problem in the8

logic is more complex than the formula required for rfRAL. This suggests the idea of a syntactic restriction of prRAL9

which does not allow expression of the undecidable property. We end this section by motivating a new fragment of10

RAL, the positive proponent restricted fragment, pprRAL. This fragment is more expressive than that introduced in11

[7], in that the formula ϕ1 on the left-hand-side of ϕ1Uϕ2 is not constrained to be purely propositional. In Section 512

we show that the model checking problem for pprRAL is decidable over iRBMs.13

For all the results below, the undecidability of the model checking problem is shown by a reduction of the halting14

problem for two-counter machines (also called Minsky machines, see [33] for details). A two-counter machine (TCM)15

is essentially a pushdown automaton with two stacks. The stacks are represented as two counters over natural numbers.16

Each of the counters (1 and 2) can be incremented, decremented (if non-zero), and tested for zero. In [33] it is shown17

that these machines are expressively equivalent to Turing machines. As a consequence the halting problem of two-18

counter machines is undecidable as well. For this paper we only need to consider TCMs with empty inputs; therefore,19

we only introduce this special type of TCMs.20

Definition 2 (Empty-band two-counter machine (cf. [33]), empty-band). An empty band TCMA is given by (S , sinit, S f ,21

Δ) where S is a finite set of states, sinit ∈ S is the initial state, S f ⊆ S is a set of final states, and Δ ⊆ (S × {0, 1}2) ×22

(S × {−1, 0, 1}2) is the transition relation such that if ((s, E1, E2), (s′,C1,C2)) ∈ Δ and Ei = 0 then Ci � −1 for23

i = 1, 2 (to ensure that an empty counter is not decremented). In the following we sometimes use infix notation and24

write (s, E1, E2)Δ(s′,C1,C2) instead of ((s, E1, E2), (s′,C1,C2)) ∈ Δ. We call ((s, E1, E2), (s′,C1,C2)) a transition if25

(s, E1, E2)Δ(s′,C1,C2) and denote a typical transition by τ.26

As we focus on empty-band TCMs, we often simply say automaton or machine to refer to such a TCM. A TCM27

can be considered as a transition system equipped with two counters that influence the transitions. Each transition28

step of the automaton depends on whether the counters are zero or non-zero, and in each step the counters can be29

incremented or decremented. It is important to emphasise that a TCM cannot access the specific value of the counters.30

In the following let τ = ((s, E1, E2), (s′,C1,C2)) be a transition. Here, Ei = 1 (resp. = 0) represents that counter31

i is non-zero (resp. zero), and Ck = 1 (resp. = −1) denotes that counter i is incremented (resp. decremented) by 1.32

A value Ck = 0 indicates that counter k is left unchanged. The transition encodes that in state s the automaton can33

change its state to s′ provided that the first (resp. second) counter meets condition E1 (resp. E2). The value of counter34

k changes according to Ck for k = 1, 2. For example, the transition ((s, 1, 0), (s′,−1, 1)) is enabled if the current state35

is s, counter 1 is non-zero, and counter 2 is zero. If the transition is enabled and taken, the state changes to s′, counter36

1 is decremented and counter 2 is incremented by 1.37

The general mode of operation is as for pushdown automata. In particular, a configuration is a triple (s, v1, v2) ∈38

S ×N2
0 describing the current state (s), the value of counter 1 (v1) and of counter 2 (v2). AnA-computation ρ (or simply39

computation if the two-counter machine is clear from context) is a sequence of subsequent configurations resulting40

from transitions according to Δ, such that the first state is sinit. An accepting computation is a finite computation41

ρ = (si, vi
1, v

i
2)i=1,...,l where the last state sl ∈ S f is a final state. We use ρi = ((si, E

i
1, E

i
2), (si+1,C

i
1,C

i
2)) to denote the42

transition that leads from the ith configuration (si, v
i
1, v

i
2) to the (i + 1)th configuration (si+1, v

i+1
1 , v

i+1
2) for i < l. Note43

that we have that vi+1
k
= vi

k
+Ci

k
for k = 1, 2.44

Finally, we say that a transition τ = ((s, E1, E2), (s′,C1,C2)) is enabled in a configuration (s, v1, v2) if the value vk45

of counter k satisfies condition Ek ∈ {0, 1} for k ∈ {1, 2} (with the obvious meaning of being zero or non-zero), i.e.46

vk > 0 iff Ek = 1. If an enabled transition τ is taken the automaton changes its control state from s to s′, and counter i47

is updated by adding Ci ∈ {−1, 0,+1}. The automaton halts on empty input iff there is an accepting computation.448

4We only require that there is an accepting computation; in particular, there could be other (infinite) non-accepting computations of the automa-

9

4.1. Undecidability of rfRAL and prRAL with Two Resources Types over iRBMs49

In this section we essentially extend the undecidability results of [2] to iRBMs. We first give a generic construction1

of an iRBM MA1 for a two-counter machine A which is used to show that model checking rfRAL and prRAL are2

undecidable over iRBMs (Theorems 1 and 2). The key is provided by the Simulation Lemma 1.3

4.1.1. Encoding of Two-Counter Machines4

In [2] it was shown that model checking formulae of the form 〈〈1〉〉0̄
Agt

F halt is undecidable over RBMs, where5

halt is an arbitrary proposition encoding that the TCM halts. In the following we show that this result carries over to6

iRBMs. Before we give the formal definitions and proof we present the basic idea underlying the reductions of [2]7

regarding RBMs.5 The key idea is to encode the transition table of the automaton as an RBM, where the two counters8

are simulated by two resource types R1 and R2. We give a reduction for both one and two agents. First, we describe9

the variant with two agents. In this variant, agent 1 is the simulator and agent 2 is the spoiler. Essentially, the role of10

agent 1 is to select transitions τ of the automaton, while the role of agent 2 is to ensure that only enabled transitions11

are selected by agent 1. As an illustration, let us consider a single transition τ = ((s, E1, E2), (s′,C1,C2)). The model12

has different types of states, including automaton states S . In states s ∈ S the simulator agent 1 can execute an action13

E1E2 followed by an action s′C1C2
E1E2

. Both actions together simulate the selection of τ. The first action, E1E2, is used14

to select and to (partially) check whether a transition of the TCM is enabled. That is, if Ei = 1, agent 1 must have15

a resource of type Ri to execute the action. After executing E1E2 the model enters a test state sE1E2. The purpose16

of the test state is to check whether a transition with Ei = 0 was selected by agent 1 only if counter i was indeed17

zero. That is, the test state ensures that the simulation is sound. Note that, in general, nothing prevents agent 1 from18

executing such an action if it has resources available. The problem is that it is not possible to test for zero directly19

in the model.6 The workaround proposed in [2] is to use the spoiler agent 2 to encode the “zero test”. In a test state20

sE1E2, agent 2 must not be able to reach the fail state q f . Reaching the fail state is only possible if resources are21

available in cases where there should not be any. This is encoded in the model by test actions testi with i ∈ {1, 2}.22

For example, if counter 1 should be empty, E1 = 0, the action test1 can only be executed if resources of type 1 are23

available. That is, the executability of the action indicates a flawed simulation. To work correctly, this requires that24

agent 2 correctly mirrors agent 1’s resource balance, i.e. agent 2 also simulates the counter values. This is achieved25

by essentially making the model turn-based, in the sense that agent 2 frequently has no alternatives: once agent 1 has26

executed an action s′C1C2
E1E2

to update the counter values, an intermediate state s′C1C2 is introduced in which agent 227

has a single choice with the same effect on its resource balance as agent 1’s previous action.7 Based on this idea, it28

is shown in [2] (using the finitary semantics) that the TCM A halts on the empty input if, and only if, the formula29

〈〈1〉〉0̄{1,2}F halt holds in the corresponding model. The state corresponding to the automaton’s accepting state is labelled30

halt.31

In extending the reduction to iRBMs, the main difficulty is correctly mirroring agent 1’s resources by agent 2 in32

the presence of idle actions. It is no longer possible to give agent 2 only a single action to execute; an action with no33

costs must also be available. We extend the construction outlined above accordingly. The key idea is that executing34

the idle action does not help agent 2 spoil the execution. The next definition formalises an appropriate encoding to35

work over iRBMs.36

Definition 3 (MA1). Let A = (S , sinit, S f ,Δ) be an empty-band TCM. From A we construct the iRBM MA1 =37

({1, 2},Q,Π, π, Act, d, o, {R1,R2}, t) with38

1. Q = S ∪ Q1 ∪ Q2 ∪ {q f , qh, q�} where Q1 = {sE1E2 | s ∈ S , E1, E2 ∈ {0, 1}} and Q2 = {sC1C2 | s ∈ S ,C1,C2 ∈39

{−1, 0, 1}}. State q f (resp. qh and q�) is called a fail state (resp. auxiliary halting state and loop state).40

2. The set Act of actions is defined as follows. For each transition ((s, E1, E2), (s′,C1,C2)) of A the set contains41

actions E1E2, s′C1C2
E1E2

, and s′C1C2. Additionally, there are the idle action idle and test actions testi for i ∈ {1, 2}.42

ton due to non-determinism.
5No complete, formal proofs are given in [2], only proof sketches.
6Testing for zero is a delicate property, the satisfaction of which seems crucial for the undecidability of other formalisms, such as Petri nets [34].
7We note that we need the underscore in order to make the two types of states syntactically different. Otherwise, in case C1 = E1, C2 = E2 and

s = s′, we could not have two ‘copies’ of a state.

10

3. The action availability is defined according to Δ. For agent 1 we have:

E1E2 ∈ d1(s) iff there is a transition ((s, E1, E2), (s′,C1,C2)) ∈ Δ
idle ∈ d1(q) for all q ∈ Q

s′C1C2
E1E2

∈ d1(sE1E2) iff ((s, E1, E2), (s′,C1,C2)) ∈ Δ

and for agent 2:

idle ∈ d2(q) for all q ∈ Q

s′C1C2 ∈ d2(s′C1C2) for all s′C1C2 ∈ Q2

testi ∈ d2(sE1E2) iff Ei = 0 with i ∈ {1, 2}
4. The set of propositions is defined by Π = {halt, fail}. All states in {qh} ∪ S f are labelled with halt and q f is43

labelled with fail.1

5. The transition function is defined as follows:2

o(s, (E1E2, idle)) = sE1E2

o(s, (idle, idle)) = o(sE1E2, (idle, idle)) = q�
o(q�, (idle, idle)) = q�

o(sE1E2, (s′C1C2
E1E2
, idle)) = s′C1C2

o(sE1E2, (�, testi)) = o(q f , (idle, idle)) = q f

o(s′C1C2, (idle, s′C1C2)) = s′

o(s′C1C2, (idle, idle)) = o(qh, (idle, idle)) = qh

where � represents any action available to the respective agent in that state.3

6. The actions’ resource consumption/production is defined by function t where i, r ∈ {1, 2}:4

t(E1E2,Rr) = −Er

t(idle,Rr) = 0
t(sC1C2

E1E2
,Rr) = Cr + Er

t(sC1C2,Rr) = Cr

t(testi,Rr) =

⎧⎪⎪⎨⎪⎪⎩−1 if i = r

0 else

Let us consider a TCMA = (S , sinit, S f ,Δ). The construction of the modelMA1 is sketched in Figure 2 (left), and5

the encoding of a single transition τ = ((s, E1, E2), (s′,C1,C2)) is illustrated in Figure 2 (right). As explained above,6

the action E1E2 consumes −Er resources of Rr for r = 1, 2. This simulates that only enabled transitions τ can be7

taken. If Er = 1 then the action E1E2 can only be taken if resources Rr ≥ 1. Actions of type sC1C2
E1E2 consume/produce8

Cr+Er units of resource Rr, r = 1, 2. The component Cr simulates the decrement and increment of counter r where Er9

corrects the possible (temporary) subtraction from the previous action E1E2. The necessary information to select the10

correct action is stored in the state sE1E2. Clearly, actions can only be performed if sufficient resources are available.11

The difficulty is to ensure that actions E1E2 with some Er = 0 are only performed if the counter r is actually 0; that12

is, if no resources of type Rr are available. For this purpose, test actions testr that cost −1 units of resource Rr for13

r ∈ {1, 2}, are introduced. Such an action testr can only be performed in states sE1E2 if Er = 0, and it always leads to14

the fail state q f . Now, in a state sE1E2 with some element equal to 0, say E1 = 0, E2 = 1, (representing that counter15

1 should be zero and 2 should be non-zero) the action test1 can be used to verify whether the currently available16

resources model the counter correctly: if q f is reachable, resources of type R1 are available, although this should not17

be the case according to E1.18

11

sE1E2s s′s′C1C2 s′E1E2 s′′C1C2 s′′
halt

sE1E2s s′(E1E2, idle)

halt

(s′C1C2

E1E2
, idle) (idle, s′C1C2)

(idle,idle)(idle,idle)

qhqh
fail

qfqf

(idle,idle)(idle,idle)

s′C1C2

(idle,idle)

(�
,t

es
t i
)

q�

encoding of a single transition of the automatonencoding of the full TCM

(idle,idle)(idle,idle)

Figure 2: The left figure schematically shows an abstraction of the encoding of the automaton MA1 for Δ =

{((s, E1, E2), (s′,C1,C2)), ((s, E1, E2), (s′′,C1,C2)), ((s′, E1, E2), (s′′,C1,C2))}. The right figure shows an excerpt of the encoding
of a transition (s, E1, E2)Δ(s′,C1,C2) using two resource types and two agents.

4.1.2. Properties of the Encoding: The Simulation Lemma19

In the following, we state properties of the encoding, and prove a simulation lemma which relates runs of the1

two-counter machine with paths in the model. First, we make a straightforward observation:2

Observation 3. The modelMA1 is an iRBM.3

We define the concept of a computation pre-encoding. This is a finite path in the model which will later be shown4

to encode a partial computation of the automaton.5

Definition 4 (Computation pre-encoding of MA1). Let A be an empty-band TCM. A finite resource-extended path6

λ ∈ (Q × En)+ inMA1 is called anA-computation pre-encoding ofMA1 if it satisfies the following properties:7

1. η(1,Rr) = η(2,Rr) where λ[0] = (q, η) for r ∈ {1, 2}; and8

2. λ|Q = (si(siEi
1Ei

2)(si+1Ci
1Ci

2))i=1,...,k sk+1 or λ|Q = s1.9

An A-computation pre-encoding of MA1 is called accepting if its final state sk+1 is an accepting state of the TCM,10

sk+1 ∈ S f , or if λ|Q = s1 ∈ S f . In the following we shall often omit “ofMA1 ”.11

The first requirement states that the endowments of both agents must be the same in the initial state. The second12

requirement expresses that a fail, auxiliary halting, or loop state must never be visited, and the path ends in a state13

that is also a state ofA; moreover, it specifies the order in which states in the model are visited. The latter is inherent14

in the construction of the model. The next proposition states that, on a computation pre-encoding, agent 2 correctly15

mirrors the resources of agent 1 whenever a state in the model, representing a state of the TCM, is visited.16

Proposition 1. LetA be an empty-band TCM and λ = (qi, ηi)i=1,...,3(k−1)+1 be anA-computation pre-encoding.17

(a) We have that η3(k−1)+1(1,Rr) = η3(k−1)+1(2,Rr) for r = 1, 2.18

(b) If λ ◦ (sE1E2, η)(s′C1C2, η
′) is a partial resource-extended path, then λ ◦ (sE1E2, η)(s′C1C2, η

′)(s′, η′′) is a19

partial resource-extended path with a uniquely defined endowment η′′.20

(c) If λ[i] = (qi, ηi) = (sE1E2, η
i) with Er = 0, then (ηi(1,Rr) = 0 if, and only if, ηi(2,Rr) = 0), where r ∈ {1, 2}.21

The proof is given in Appendix A.1. Part (a) expresses that the resource endowments of agents 1 and 2 are identical22

whenever a state q corresponding to an automaton state s is reached. Part (b) says that agent 2 always has enough23

resources in states of type s′C1C2 to mirror the action executed by agent 1 one step before. Finally, in (c) the crucial24

observation is made that in the test states sE1E2 with Er = 0 for r ∈ {1, 2}, both agents both have either no resources25

of Rr available, or they both have resources of Rr available. This ensures that the test actions are correctly executed.26

The next definition relates a computation pre-encoding to the computations of the automaton it simulates. This27

means that essentially the same automaton states are visited, and the resources of agent 1 correctly simulate the counter28

values.29

12

Definition 5 (Simulation,A-computation encoding). We say that theA-computation pre-encoding λ = (qi, ηi)i=1,...,3(k−1)+1,30

k ∈ N, simulates the computation ρ iff the following holds:1

1. ρ has length k;2

2. for every i ∈ {1, . . . , k} if ρ[i] = (s, v1, v2) then λ[3(i − 1) + 1] = (s, η) with η(1,Rr) = vr for r ∈ {1, 2}; and3

3. for any configuration λ[i] = (sE1E2, η) on λ with Er = 0, r ∈ {1, 2}, it holds that η(1,Rr) = 0.4

AnA-computation pre-encoding is called anA-computation encoding inMA1 if it simulates some computation ofA.5

Consequently, anA-computation encoding inMA1 is called accepting if it simulates an accepting computation ofA.6

The following lemma is the key step in our reduction. It specifies that the computation pre-encodings do exactly7

characterise the computations of the automaton. In other words, the behaviour of the automaton is exactly captured8

by the computation pre-encoding in the constructed iRBM. This lemma concludes the construction of MA1 and the9

analysis of its structural properties.10

Lemma 1 (Simulation Lemma for MA1). There is a bijection fA between computations of A and A-computation11

encodings of MA1 such that fA(ρ) simulates the computation ρ. In particular, if ρ is an accepting computation then12

fA(ρ) is also accepting.13

The proof is given in Appendix A.1.14

4.1.3. Resource-Flat Fragment with Two Resource Types15

We first show that proponent restrictedness is essential for decidability over iRBMs, by showing that resource16

flatness is not sufficient, and rfRAL is undecidable over iRBMs. In [2] it was shown that model checking formulae of17

type 〈〈1〉〉0̄
Agt

F halt is undecidable over RBMs. The decidability of this fragment was open over iRBMs. In Theorem 1,18

we show that undecidability continues to hold. The proof adapts the approach of [2] to work over iRBMs.19

As in [2] we show that the empty-band TCMA halts iffMA1 , qinit, 0̄ |= 〈〈1〉〉0̄{1,2}F halt. By Lemma 1 this is equivalent20

to showing that there is an acceptingA-computation encoding iffMA1 , qinit, 0̄ |= 〈〈1〉〉0̄{1,2}F halt.21

Consider the encoding of (s, E1, E2)Δ(s′,C1,C2) shown in Figure 2. First, we observe that executing an idle action22

is not helpful for agent 1 in states s and sE1E2; neither is it helpful for agent 2 to idle in a state s′C1C2. If agent 123

executes idle in states s or sE1E2, this would yield the state q f or q� which cannot help to make the formula true; on24

the contrary, if the formula is not already true, these states make it false. Similarly, if agent 2 executes idle in s′C1C2,25

the formula would be true when state qh is reached. As we are looking for a winning strategy for agent 1 against26

all strategies of agent 2, we can neglect the cases where either agent executes an idle action in the aforementioned27

states. As a result, we only need to consider paths that have the structure of A-computation pre-encodings. The28

second agent is needed to ensure that agent 1 chooses actions that yield an A-computation encoding, i.e. that the29

selection of actions simulates a possible behaviour of the automaton. By construction, agent 2 only has a choice in30

states sE1E2 and s′C1C2. In the former state the agent can execute a test action if sufficient resources are available.31

In the latter, it could idle—as discussed above, an action the agent should not execute. As a consequence, in states32

of type s′C1C2, agent 2 should essentially only perform the action s′C1C2 ensuring that the agent’s resources mirror33

agent 1’s resources (cf. Proposition 1). This essentially ensures condition 3 of Definition 5 (simulation). Formally, we34

have:35

Lemma 2. The empty-band TCMA halts iffMA1 , sinit, 0̄ |= 〈〈1〉〉0̄{1,2}F halt.36

We briefly sketch the main idea of the proof below; the full proof is given in Appendix A.1:37

• Suppose that A halts. Then, agent 1 simulates the transitions of the machine’s accepting run. Due to the38

simulation, agent 2 will never be able to enforce the fail state q f . Moreover, either agent 2’s resources correctly39

mirror agent 1’s resources, or agent 2 performs the idle action. In both cases, either an accepting state or the40

auxiliary halting state qh, both labelled halt, are reached. The formula is true.41

• Let the formula be true. Agent 1 must have a strategy that guarantees reaching a state labelled halt against42

all strategies of agent 2, including agent 2’s strategy in which agent 2 never performs the idle action. This43

strategy of agent 2 correctly mirrors agent 1’s resources and ensures that agent 1’s strategy only selects enabled44

transitions. Thus, the strategy of agent 1 yields aA-computation encoding.45

13

sE1E2s s′

fail
qfqf

s′C1C2

q�

encoding of a single transition of the automaton

E1E2

idle

idle

idle

s′C1C2

E1E2

idle

test i

Figure 3: Excerpt of model M̂A1 : encoding of a transition (s, E1, E2)Δ(s′,C1,C2) using two resource types and one agent.

The previous lemma immediately yields the following theorem which concludes our study of rfRAL with two46

resource types.1

Theorem 1. Model checking rfRAL over the class of iRBMs is undecidable, even for two agents and two resource2

types.3

4.1.4. The Proponent Restricted Fragment with Two Resource Types4

Theorem 1 shows that the restriction of resource-flatness is not enough to obtain a decidable model checking5

property. In this section, we consider the proponent-restricted fragment. We show that proponent-restrictedness6

on its own is also not sufficient for decidability, and prRAL is undecidable over iRBMs. We do this by adapting7

the undecidability proof of [2] for prRAL to work over iRBMs. This is a negative result. However, in contrast8

to Theorem 1, the formula used in the reduction is more complex. This leaves room for restrictions on the temporal9

structure of prRAL. Indeed, this is the motivation for the decidable fragment of prRAL that we introduce in Section 4.3.10

The proof of the undecidability result for prRAL over RBMs of [2] essentially follows an encoding similar to11

the one shown in Figure 3. However, in contrast to the previous encoding, the second agent is removed, and agent12

1 itself is used to perform the zero test. This requires a slightly more sophisticated formula. First, we show a13

reduction with respect to our original, two-player model MA1 : the automaton A halts if, and only if, MA1 , qinit, 0̄ |=14

〈〈1, 2〉〉0̄((¬〈〈1, 2〉〉↓X fail)U halt). The main idea is that in test state sE1E2, agents {1, 2} must not be able to reach the15

fail state q f , which is expressed by ¬〈〈{1, 2}〉〉↓X fail. The next lemma follows essentially as a Corollary of [2], by16

adding idle loops to the construction. However, for uniformity, we base the proof on the modelMA1 .17

Lemma 3. The empty-band TCMA halts iffMA1 , qinit, 0̄ |= 〈〈1, 2〉〉0̄((¬〈〈1, 2〉〉↓X fail)U halt).18

Proof. The proof is analogous to the one given for Lemma 2. For the direction “⇒” it is sufficient to observe that19

the only states from which the fail state q f can be reached within one step are of the form sE1E2 with Er = 0 for20

r ∈ {1, 2}. Thus, the strategy profile (s1, s2), where s1 is the strategy of agent 1 as defined in Lemma 2 and s221

is an arbitrary strategy for agent 2, witnesses the truth of the formula. The other direction is done analogously to22

Lemma 2.23

In the formula used in the reduction of Lemma 3, 〈〈1, 2〉〉0̄((¬〈〈1, 2〉〉↓X fail)U halt), the two agents 1 and 2 always24

act as a team; there is no opponent. Thus, the two agents can be merged into a single agent. The next result makes25

this observation precise.26

Theorem 2. Model checking prRAL over the class of iRBMs is undecidable, even in the case of a single agent and27

two resource types.28

Proof. We modify the modelMA1 = ({1, 2},Q,Π, π, Act, d, o, {R1,R2}, t) to a model M̂A1 = ({1},Q\{qh},Π, π̂, Âct, d̂, ô,29

{R1, R2}, t̂). We remove the auxiliary halting state as it must not be reached by the proponent agent 1. Essentially, we30

merge the two agents into one. The encoding of a single automaton transition is shown in Figure 3. We define d̂1(q) as31

14

sE1E2s s′

halt
qhqh

fail
qfqf

s′C1C2

q�

encoding of a single transition of the automaton

(E1E2, E1E2, i, i)
(s

′C1C2

E1E2
, s

′C1C2

E1E2
, i, i) (i, i, s′C1C2, s

′C1C2)

(�, �, test1, �)
(�, �, �, test2)

invalid
profiles

invalid
profiles

invalid
profiles

(i, �, i, i)(�, i, i, i)

(i, i, �, i)

(i, i, i, �)

(�, i, i, i) (i, �, i, i)

(�, i, i, i)

(i, �, i, i)

(i, i, i, i)

Figure 4: Excerpt of modelMA2 . Encoding of a transition (s, E1, E2)Δ(s′,C1,C2) using only one resource type and four agents. In
the figure, we use i to refer to the idle action idle.

d1(q) where we additionally require that testi ∈ d̂1(sE1E2) iff Ei = 0; agent 1 can now make all decisions. The action32

set Âct equals Act but all actions of type sC1C2 are removed. The transition function ô is obtained from o:1

ô(s, E1E2) = sE1E2

ô(s, idle) = ô(sE1E2, idle) = q�
ô(q�, idle) = q�

ô(sE1E2, s
′C1C2
E1E2

) = sC1C2

ô(sE1E2, testi) = ô(q f , idle) = q f

ô(s′C1C2, idle) = s′

The cost function t̂ and the labelling function π̂ are defined as before restricted to the new action set.2

Now, it is easy to see that each resource-extended path λ = (qi, ηi)i∈N in MA1 that does not visit state qh cor-3

responds to a path λ = (qi, η̂i)i∈N in M̂A1 with η̂i(1,Rr) = ηi(1,Rr). By Proposition 1(c), the zero-test in the test4

states can equivalently be defined with respect to agent 1’s resource endowment. It is immediate that MA1 , qinit, 0̄ |=5

〈〈1, 2〉〉0̄((¬〈〈1, 2〉〉↓X fail)U halt) if, and only if, M̂A1 , qinit, 0̄ |= 〈〈1〉〉0̄((¬〈〈1〉〉↓X fail)U halt).6

Remark 2. We note that we can further simplify model M̂A1 . For example, states of type s′C1C2 are not needed.7

Keeping them, however, allows us to reuse the previous notation and thus simplifies the presentation.8

4.2. Undecidability of prRAL and rfRAL with One Resource Type over iRBMs9

The reductions presented in the previous section use two resource types to simulate the two counters of the two-10

counter machine. In this section we show that the model checking problem for prRAL and rfRAL remain undecidable11

even if each agent has only one resource type available. This shows that proponent restriction and resource flatness12

are essential even with one resource type. Settings restricted to a single resource type are an important special case,13

as having only one resource type available might be expected to make model checking less complex. For example,14

with one resource type, the complexity of RB±ATL goes from EXPSPACE-hard to PSPACE-complete [8, 9]. The15

reductions in the case of one resource type are more complex. Specifically, the number of agents doubles: instead of16

one agent in the proponent-restricted setting, we need two; and instead of two agents in the resource-flat setting, we17

need four.18

4.2.1. Encoding Two-Counter Machines19

The encoding of the TCM is very similar to the encoding presented in Section 4.1.1. The key difference is that20

we can no longer use a single action to update both resource types at the same time. The actions must be split into21

two. Instead of an action E1E2, we introduce two actions E1E2 and E1E2, where the first and second action are22

controlled by the first and second agent, respectively, and change the agent’s single resource type according to E1 and23

15

E2, respectively. Similarly, actions of type sE1E2
C1C2

are split into s
E1E2

C1C2
and s

E1E2
C1C2

. The underscore indicates which parts24

of the action should be used to update the resources of the agent executing the action.1

The technical presentation requires a little more notation. The decomposition ensures that the agents coordinate2

their actions so that the action tuples consisting of the actions of the first and second agent have a counterpart in the3

TCM. This is best illustrated by an example. Suppose the automaton contains the transitions ((s, 0, 1), (s′, 1, 1)) and4

((s, 1, 0), (s′, 1, 1)), and that these are the only two transitions which should be enabled in state s. In the new encoding,5

agent 1 would have the actions 01, 10, and idle in its repertoire at state s. Similarly, agent 2 has actions 01, 10, and6

idle available at state s. As both agents are autonomous decision makers they are free to choose actions independently.7

Hence, the action profile (01, 10) may result from their action selection. Clearly, this is an undesirable action tuple,8

as it does not correspond to any transition of the automaton. We need to ensure that such action profiles never yield a9

behaviour which encodes an accepting run of the automaton. Therefore, the model is constructed in such a way that10

invalid action profiles result in the loop state q�.11

With this change, the other parts of the previous encoding can be used with only minor modifications. Agents12

{1, 2} are used to simulate the behaviour of the automaton, and agents {3, 4} play the role of the spoiler agents who13

ensure that the simulation is sound. Thus, the coalition {3, 4} is used to encode the zero-test. This requires that agent14

3 mirrors the resources of agent 1, and agent 4 the resources of agent 2. The new encoding of a transition is illustrated15

in Figure 4, and the formal definition of the model is given in Appendix A.2 (Definition 7) .16

4.2.2. Properties of the Encoding: The Simulation Lemma17

Analogously to Section 4.1.2, we present a simulation lemma. We also need to introduce computation pre-18

encodings etc. with respect to MA2 . For the sake of readability, we mostly refrain from giving formal definitions,19

and focus on the key modifications. An A-computation pre-encoding of MA2 is defined as for MA1 , but the initial20

condition is changed to η(a,R) = η(b,R) for agents (a, b) ∈ {(1, 3), (2, 4)} where R refers to the single resource type.21

(In the following we use a and b to denote the agents, where b simulates the resources of a.) That is, the initial22

endowment for agents 1 and 3, as well as for agents 2 and 4 must be identical. With this notion we can also prove23

basic properties analogously to Proposition 1. The new version of Proposition 1 reads as follows:24

(a) We have that η3(k−1)+1(a,R) = η3(k−1)+1(b,R) for (a, b) ∈ {(1, 3), (2, 4)}.25

(b) If λ ◦ (sE1E2, η)(s′C1C2, η
′) is a resource-extended path, then λ ◦ (sE1E2, η)(s′C1C2, η

′)(s′, η′′) is a resource-26

extended path with a uniquely defined endowment η′′.27

(c) If λ[i] = (qi, ηi) = (sE1E2, η
i) with Ea = 0, then (ηi(a,R) = 0 if and only if ηi(b,R) = 0), where (a, b) ∈28

{(1, 3), (2, 4)}29

(b) remains unchanged, and expresses that agents 3 and 4 correctly mirror the resources of agents 1 and 2, respectively.30

We introduce the revised notion of simulation. We say that the A-computation pre-encoding λ = (qi, ηi)i∈{1,...,3(k−1)+1}31

ofMA2 , k ∈ N, simulates theA-computation ρ (wrt. MA2) if the following holds:32

1. ρ has length k;33

2. for every i ∈ {1, . . . , k} if ρ[i] = (s, v1, v2) then λ[3(i − 1) + 1] = (s, η) with η(1,R) = v1 and η(2,R) = v2; and34

3. for any configuration λ[i] = (sE1E2, η) on λ with Er = 0, r ∈ {1, 2}, it holds that η(r,R) = 0.35

Note that counters now refer to the unique resource type of different agents, rather than to different resource types of36

a single agent.37

Analogously to Lemma 1 we can prove the following adapted simulation lemma.38

Lemma 4 (Simulation Lemma for MA2). There is a bijection fA between computations of A and A-computation39

encodings of MA2 such that fA(ρ) simulates the computation ρ. In particular, if ρ is an accepting computation then40

fA(ρ) is also accepting.41

16

4.2.3. Resource-Flat Fragment with One Resource Type42

In this section we prove undecidability of rfRAL with only one resource type. We proceed analogously to Sec-1

tion 4.1.3. We show that the empty-band TCM A halts if, and only if, MA2 , sinit, 0̄ |= 〈〈1, 2〉〉0̄{1,2,3,4}F halt. Again, we2

observe that for any encoding of a transition (s, E1, E2)Δ(s′,C1,C2) shown in Figure 4, agents 1 and 2 (resp. 3 and 4)3

have no incentive to idle in states s and sE1E2 (resp. in state s′C1C2). Instead of looking for a winning strategy for {1}4

we look for a winning strategy for {1, 2}. The key idea is that the coalition behaves in such a way that their combined5

action corresponds to the action selection of {1} in Section 4.1.3. Given the reformulation of properties above, we can6

make the following observations:7

• IfA halts, then coalition {1, 2} simulates the transitions of the machine’s accepting run. Due to the simulation,8

coalition {3, 4} will never be able to enforce the fail state q f . Moreover, either agent b’s resources correctly9

mirror agent a’s resources, or agent b performs the idle action for (a, b) ∈ {(1, 3), (2, 4)}. In both cases, either an10

accepting state or the auxiliary halting state qh, both labelled halt, are reached. The formula is true.11

• Let the formula be true. Coalition {1, 2}must have a strategy that guarantees reaching a state labelled halt against12

all strategies of {3, 4}, including the collective strategy of {3, 4} in which an idle action is never performed in13

states of type s′C1C2. This strategy of agent b correctly mirrors agent a’s resources and ensures that agent14

a’s strategy only selects enabled transitions, (a, b) ∈ {(1, 3), (2, 4)}. Thus, the strategy of {1, 2} yields an A-15

computation encoding. By Simulation Lemma 4 the TCM has an accepting run and halts.16

Formally, we capture the previous discussion in the following Lemma and Theorem.17

Lemma 5. The empty-band TCMA halts iffMA2 , sinit, 0̄ |= 〈〈1, 2〉〉0̄{1,2,3,4}F halt.18

Theorem 3. Model checking rfRAL over the class of iRBMs is undecidable, even in the case of a single resource type19

and four agents.20

The proofs of Lemma 5 and Theorem 3 are analogous to those of Lemma 2 and Theorem 1, respectively.21

4.2.4. The Proponent Restricted Fragment with One Resource Type22

Finally, we consider the proponent-restricted fragment. Again, the line of argument is analogous to the one23

followed in Section 4.1.4, but there is one caveat when it comes to merging the agents. We first state the analogue of24

Lemma 3.25

Lemma 6. The empty-band TCMA halts iffMA2 , qinit, 0̄ |= 〈〈1, 2, 3, 4〉〉0̄((¬〈〈1, 2, 3, 4〉〉↓X fail)U halt).26

Next, we observe that the agents {1, 2, 3, 4} act as a team. Thus, we can consider their decision making as the27

decision making of a single “merged” agent. However, in contrast to the setting of Section 4.1.4, we cannot explicitly28

model this by a single agent as there is only one resource type. Thus, we merge agents {1, 3} and agents {2, 4} into two29

distinct agents. The resulting model M̂A2 is illustrated in Figure 5.30

Theorem 4. Model checking prRAL over the class of iRBMs is undecidable, even in the case of a single resource31

type and two agents.32

The proof is given in Appendix A.2.33

4.3. The Positive Proponent-Restricted Fragment of RAL34

Following the observation made in the previous sections about the proponent-restricted variants of RAL (cf. The-35

orems 2 and 4) we define a proponent-restricted but not resource-flat fragment of RAL, pprRAL, that has a decidable36

model checking property over iRBMs. We first define the positive fragment of RAL as the set of all RAL-formulae37

where no cooperation modality is under the scope of a negation symbol.38

Definition 6 (The fragment pprRAL). The logic pprRAL is defined as the proponent-restricted and positive fragment39

of RAL.840

8A more restricted version of pprRAL was introduced in [7], where in addition the formula ϕ1 on the left-hand-side of ϕ1Uϕ2 is constrained to
be propositional.

17

sE1E2s s′

fail
qfqf

s′C1C2

q�

encoding of a single transition of the automaton

invalid
profiles

invalid
profiles

invalid
profiles

(E1E2, E1E2) (s
′C1C2

E1E2
, s

′C1C2

E1E2
) (i, i)

(test1, �)

(�, test2)

(i, �)

(�, i)

(i, �) (�, i)(i, �) (�, i)

(i, i)

Figure 5: Excerpt of model M̂A2 . Encoding of a transition (s, E1, E2)Δ(s′,C1,C2) using only one resource type and two agents.
Again, we denote the idle action idle by i.

As noted in the introduction, the pprRAL-fragment allows us to express properties of coalitions of agents which41

re-consider their strategies without being re-equipped with fresh resources. For example, we can formalise the prop-1

erty “given their initial battery charge, rescue robots A can safely get to a position from which they can perform2

rescue while in visual contact with the base” as: 〈〈A〉〉ηinit (safe U(〈〈A〉〉↓(visual U rescue))). Intuitively, this reflects the3

constraint that the robots cannot recharge their batteries after reaching the position where they can perform rescue4

while in visual contact with the base. This is expressible in pprRAL but not in rfRAL. Another example is the formula5

〈〈1, 2〉〉ηinit F(rob∧〈〈1〉〉↓F escape), expressing that the coalition {1, 2} can cooperate to eventually rob a bank, following6

which agent 1 has a strategy to escape on its own using only its remaining resources.7

Before we show the decidability of pprRAL over iRBMs in the next section, we make the following observation8

which follows from [2, Theorem 6]:9

Observation 4. Model checking pprRAL over RBMs is undecidable.10

To give a flavour of the basic idea of the undecidability proof, let us consider Figure 2. We have to modify the11

construction in such a way that, in test states sE1E2, the opponent can always execute a test action corresponding to a12

counter that should be zero, after which a new state is reached in which the proponent has to execute a specific action.13

In a sense the opponent can challenge the proponent to execute this specific action. Now, there are two options. First,14

the proponent has not sufficient resources to execute the action, which means that the counter is simulated correctly.15

In that case the history leading to the current state is disregarded as it cannot be extended to a resource-extended path16

(recall that such paths have to be infinite). Second, the proponent can execute the action. This would result in a new17

fail state labelled with a specific proposition, say error, indicating that the reduction is flawed. Then, the simulation18

is continued by connecting the fail state with the state s′C1C2 which would have been reached if the opponent had19

not executed the test action. Given this modification, we can show formally that M, qinit, 0̄ |= 〈〈1〉〉0̄(¬error)U halt iff20

the automatonA halts on the empty input, whereM is a modified version ofMA2 essentially along the lines sketched21

above (in particular, all idle actions are removed).22

It is important to note that in the presence of idle actions, this reduction no longer works, as the proponent always23

has a choice. Even in the case where the proponent has no resources left, the computation of the system can always be24

extended to be infinite, either by visiting the fail state, or by looping in some state. As a consequence, a halting state25

may never be reached. This implies that the opponent has too much power, and can always spoil the simulation by26

performing a test action in cases where the simulation is sound and no resources are available. That there is no way27

to save the reduction is shown by the decidability result we present in the next section.28

5. Model-Checking pprRAL over iRBMs29

In this section we prove that the model checking problem for the fragment pprRAL over iRBMs is decidable. We30

first present the model checking algorithm for pprRAL over iRBMs, and then prove termination and correctness of31

the algorithm in Lemmas 7 and 8, respectively.32

18

5.1. Model Checking Algorithm for pprRAL33

The model checking algorithm for pprRAL over iRBMs takes as input a modelM, formula φ, and initial endow-1

ment η, and labels the set of states [φ]η
M

, where [φ]η
M
= {q |M, q, η |= φ} is the set of states satisfying φ (see Algorithm2

1).93

Algorithm 1 Labelling φ

1: procedure label(M, φ, η)
2: for φ′ ∈ Sub(φ) do
3: [φ′]η

M
← atl-label(M, φ′)

4: [φ]η
M
← { q | q ∈ Q ∧ strategy(node0(q, η, η, prop(φ)), φ)}

Given φ, we produce the set of subformulae of φ, Sub(φ), in the usual way, except that 〈〈A〉〉↓ and 〈〈A〉〉ζ modalities4

are replaced by standard ATL modalities 〈〈A〉〉. Sub(φ) is ordered in increasing order of complexity. For a formula5

φ′ ∈ Sub(φ), we will write s |= φ′ to indicate that state s has been labelled by φ′. Note that if a state s is not annotated6

with the standard ATL modality 〈〈A〉〉, then it cannot satisfy 〈〈A〉〉↓ or 〈〈A〉〉ζ . Algorithm 1 simply labels states with7

the subformulae of φ using the standard ATL labelling algorithm [32] (lines 2–3). It then calls the function strategy8

to label states with φ (line 4). prop is a function that returns either the proponents A ⊆ Agt if φ is of the form9

〈〈A〉〉∗Xψ, 〈〈A〉〉∗ψ1Uψ2, 〈〈A〉〉∗Gψ where ∗ is either ↓ or an endowment, or Agt otherwise. The function node0 initialises10

the root node for the function strategy and is explained below.10
11

Algorithm 2 Strategy

1: function strategy(n, φ)
2: case φ = p ∈ Π
3: return s(n) |= φ
4: case φ = ¬p where p ∈ Π
5: return s(n) �|= φ
6: case φ = ψ1 ∧ ψ2
7: return strategy(node0(s(n), e(n), v(n), c(n)), ψ1) ∧ strategy(node0(s(n), e(n), v(n), c(n)), ψ2)
8: case φ = ψ1 ∨ ψ2
9: return strategy(node0(s(n), e(n), v(n), c(n)), ψ1) ∨ strategy(node0(s(n), e(n), v(n), c(n)), ψ2)

10: case φ = 〈〈A〉〉↓Xψ
11: return x-strategy(node0(s(n), e(n), v(n), A), φ)
12: case φ = 〈〈A〉〉ζXψ
13: return x-strategy(node0(s(n), ζ, ζ, A), φ)
14: case φ = 〈〈A〉〉↓ψ1Uψ2
15: return u-strategy(node0(s(n), e(n), v(n), A), φ)
16: case φ = 〈〈A〉〉ζψ1Uψ2
17: return u-strategy(node0(s(n), ζ, ζ, A), φ)
18: case φ = 〈〈A〉〉↓Gψ
19: return g-strategy(node0(s(n), e(n), v(n), A), φ)
20: case φ = 〈〈A〉〉ζGψ
21: return g-strategy(node0(s(n), ζ, ζ, A), φ)

The function strategy is shown in Algorithm 2 and proceeds by depth-first and-or search. That is, we examine12

each path in the search space in turn, as in standard depth-first search, but treat nodes corresponding to a particular13

9The model checking algorithm for pprRAL is a slightly modified version of the algorithm given in [7]. In particular, Algorithm 4 incorporates
an extra call to strategy to allow arbitrary positive formulae on the left of U. Other changes simply clarify the presentation and/or correct minor
bugs in the algorithm given in [7].

10Note that we do not label states with subformulae of φ involving 〈〈A〉〉↓ or 〈〈A〉〉ζ modalities as in [6].

19

choice of action by A as and-nodes, i.e., all branches corresponding to this choice must return true for the choice14

to be part of a successful strategy. The function strategy processes each coalition modality in turn, starting from1

the outermost modality. The logical connectives are standard, and simply call strategy on the subformulae. Each2

temporal operator is handled by a separate function: x-strategy for Xψ, u-strategy for ψ1Uψ2, and g-strategy for3

Gψ, and are explained below. We record information about the state of the search in a search tree of nodes. A node4

is a structure which consists of a state of M, the resources available to all the agents in that state, and a finite path5

of nodes leading to this node from the root node. Edges in the search tree correspond to joint actions by all agents.6

Note that the resources available to the agents in a state on a path constrain the edges from the corresponding node7

to be those action profiles αA where for all proponent agents a, (cons(αa, r))r∈Res is less than or equal to the available8

resources of agent a. We compare vectors of resources in the usual way; for example, ζa ≥ (cons(αa, r))r∈Res stands9

for ζa(r) ≥ cons(αa, r) for all resources r. For an action profile αA of A ⊆ Agt, we write cons(α) to refer to the tuple10

((cons(αa))r∈Res)a∈A. For each node n in the tree, we have a function s(n) which returns its state, p(n) which returns11

the sequence of nodes on the path to n, e(n) which returns an endowment specifying the resource availability for all12

agents as a result of following p(n), v(n) which returns the resources potentially available to the agents as a result13

of traversing cycles on p(n) additional times,11 and c(n) which returns the current set of proponents. The function14

node0(s, η, η′, A) returns the root node, i.e., a node n0 such that s(n0) = s, p(n0) = [] (empty list), e(n0) = η, v(n0) = η′,15

and c(n0) = A ⊆ Agt is the current set of proponents. The function node(n, s′, α, A) returns a node n′ where s(n′) = s′,16

p(n′) = [p(n) · n], c(n′) = A = c(n),17

ea(n′) =
{

ea(n) if a � A

ea(n)+prod(α)−cons(α) if a ∈ A

and18

va(n′) =
{

va(n) if a � A

va(n)+prod(α)−cons(α) if a ∈ A

where vectors are added and subtracted as usual unless their components are not integers. For technical reasons, we19

introduce an extra value for an agent’s resource endowment, arb, which denotes an arbitrary finite value; for any20

m ∈ Z, m < arb. arb cannot be incremented or decremented: arb + m = arb and arb − m = arb. Above, e(n)(a, r) is21

used to keep track of the ‘real’ cost of the loops and does not contain arb values, while v(n)(a, r) = arb indicates that22

the path p(n) contains a productive loop, which can be traversed multiple times to generate an arbitrary finite amount23

of resource r for agent a. Intuitively, arb represents an arbitrary finite number; hence, having arb resources allows the24

agent to execute any action as well as any finite number of loop traversals, but does not allow the agent to traverse a25

loop infinitely many times.26

Algorithm 3 X-strategy (both types of modalities)

1: function x-strategy(n, 〈〈A〉〉∗Xψ)
2: if s(n) �|= atl(〈〈A〉〉∗Xψ) then
3: return false

4: ActA← {α′ ∈ dA(s(n)) | cons(α′) ≤ vA(n)}
5: for α′ ∈ ActA do
6: ActAgt ← {α ∈ d(s(n)) | αA = α

′}
7: strat ← true

8: for α ∈ ActAgt do
9: s′ ← o(s(n), α)

10: strat ← strat ∧ strategy(node(n, s′, α, A), ψ)
11: if strat then
12: return true

13: return false

11A cycle on p(n) is a subsequence of p(n) with start and end nodes sharing the same state.

20

The function x-strategy for formulae of types 〈〈A〉〉↓Xψ and 〈〈A〉〉ζXψ is shown in Algorithm 3 and is straightfor-27

ward. After checking if the search should be terminated with false because the ATL version of the formula is false1

(lines 2–3),12 we simply check if there is an action of A that is possible given the current endowment (line 4), and2

where in all outcome states A has a strategy to enforce ψ (lines 5–12). atl(φ) is a function that returns the formula3

where each 〈〈A〉〉↓ and 〈〈A〉〉ζ in φ is replaced by 〈〈A〉〉.4

The function u-strategy for formulae of types 〈〈A〉〉↓ψ1Uψ2 and 〈〈A〉〉ζψ1Uψ2 is shown in Algorithm 4. First u-5

strategy checks whether the search should be terminated with false because either the ATL version of the formula is6

false (lines 2–3), or the current path ends in an unproductive loop (lines 4–5). We then check the path for a productive7

loop, and update v(n) if we find one (lines 6–7). If the ATL version of ψ2 is true, we try to find a strategy to enforce8

ψ2 from s(n), and, if we are successful, u-strategy returns true (lines 8–9). We then check if the endowment in n9

is insufficient to enforce ψ1, and terminate the search with false if it is not (lines 10–11). (This check is required as10

only the ATL version of the formula is checked at lines 2–3.) Otherwise the search continues, as the node where11

strategy(n, ψ2) returns true may be found later on the path. Each action available at s(n) is considered in turn (lines12

12–20). For each action α′ ∈ ActA, we check whether a recursive call of the algorithm returns true in all outcome13

states s′ of α′ (i.e., α′ is part of a successful strategy). If such an α′ is found, the algorithm returns true. Otherwise14

the algorithm returns false. Note that we never traverse a productive loop more than twice: if an arbitrary amount of15

the resource(s) produced by the loop is insufficient to enforce ψ2 (and hence return true), at the beginning of the third16

traversal the search will be terminated with false at the test for an unproductive loop (since the second traversal of the17

loop did not result in a change in the endowment).18

The function g-strategy for formulae of types 〈〈A〉〉↓Gφ and 〈〈A〉〉ζGφ is shown in Algorithm 5. Again we check19

if the search should be terminated with false, either because the standard ATL modality does not hold (lines 2–3), or20

because the current path terminates in a resource consuming cycle (lines 4–7). The first check is for cycles where21

at least one resource is consumed and no resources are produced (lines 4–5). The second check is for cycles which22

both produce and consume resources (so the previous test does not apply), and where we have already shown we23

can produce an arbitrary amount of the resource being consumed (lines 6–7). As any arbitrary amount of resource24

is insufficient to maintain such a loop indefinitely, we terminate the search with false. We then check the path for a25

productive loop, and update v(n) if we find one (lines 8–9). Note that, to enforce an invariant, only a path ending in a26

nondecreasing loop (as opposed to a productive loop) is required. However we must correctly update the endowment27

available in n in order to evaluate ψ in 〈〈A〉〉↓Gψ. We then check if the endowment in n is insufficient to enforce ψ from28

s(n), and terminate the search with false if it is not (lines 10–11). If the current path terminates in a nondecreasing29

loop, we return true (lines 12–13): ψ is enforceable from each of the states on the path, and the loop can be traversed30

indefinitely. Otherwise we continue the search for a nondecreasing loop (lines 14–22).31

To illustrate the execution of the algorithm, we revisit the running example from Section 3.4 and consider the
property

〈〈1〉〉1:5,2:0 �U〈〈1〉〉↓Gp

We skip the ATL labelling step and consider the initial call to

u-strategy(node0(q0, (1 :5, 2:0), (1 :5, 2:0), {1}), 〈〈1〉〉1:5,2:0�U〈〈1〉〉↓Gp)

where n0 = node0(q0, (1 :5, 2:0), (1 :5, 2:0), {1}). For n0, no cases of Algorithm 4 are applicable until line 12. ActA32

(actions of agent 1 for which the resource consumption is less than v1(n0), i.e., less than 5) consists of idle and move ac-33

tions. Let us trace the algorithm calls for idle first. There are two joint actions we need to consider (line 14): (idle, idle)34

and (idle, obstruct). In both cases the result will be the same, the next call to u-strategy(n, 〈〈1〉〉1:5,2:0�U〈〈1〉〉↓Gp),35

where n is the successor node by the joint action, will return false on line 4. This is because n will have the same state36

(q0, since o(q0, (idle, idle)) = o(q0, (idle, obstruct)) = q0) and v1(n) = v1(n0) (resources available to agent 1 have not37

changed since idle costs nothing). Let us consider the choice of σ = move on line 13. There are two joint actions on38

line 14, {(move, idle), (move, obstruct)}.39

First let us consider (move, idle). On line 17, s′ is q1 and node(n0, q1, (move, idle), {1}) is n1 where s(n1) = q1,40

p(n1) = [n0], e1(n1) = v1(n1) = 3 (since move actions cost 2 units of energy, agent 1’s resources are decremented)41

12Note that the checks for the ATL versions of the formula in x-strategy, u-strategy and g-strategy are only for efficiency, and are not required
for the correctness of the algorithms.

21

Algorithm 4 U-strategy (both types of modalities)

1: function u-strategy(n, 〈〈A〉〉∗ψ1Uψ2)
2: if s(n) �|= atl(〈〈A〉〉∗ψ1Uψ2) then
3: return false

4: if ∃n′ ∈ p(n) : s(n′) = s(n) ∧ vA(n′) ≥ vA(n) then
5: return false

6: for (a, r) ∈ {(a, r) ∈ A × Res | ∃n′ ∈ p(n) : s(n′) = s(n) ∧ vA(n′) ≤ vA(n) ∧ v(n′)(a, r) < v(n)(a, r)} do
7: v(n)(a, r)← arb

8: if s(n) |= atl(ψ2) ∧ strategy(n, ψ2) then
9: return true

10: if ¬ strategy(n, ψ1) then
11: return false

12: ActA← {α′ ∈ dA(s(n)) | cons(α′) ≤ vA(n)}
13: for α′ ∈ ActA do
14: ActAgt ← {α ∈ d(s(n)) | αA = α

′}
15: strat ← true

16: for α ∈ ActAgt do
17: s′ ← o(s(n), α)
18: strat ← strat ∧ u-strategy(node(n, s′, α, A), 〈〈A〉〉∗ψ1Uψ2)

19: if strat then
20: return true

21: return false

and e2(n1) = v2(n1) = 0 (agent 2’s resources do not change since it is not in the proponent coalition). When we call42

u-strategy(n1, 〈〈1〉〉1:5,2:0�U〈〈1〉〉↓Gp), the first applicable case is on line 8. The ATL version of 〈〈1〉〉↓Gp is true, and1

in fact g-strategy(n1, 〈〈1〉〉↓Gp) returns true. (We will show this after we finish tracing the calls to u-strategy.) So on2

line 8 the call to u-strategy(n1, 〈〈1〉〉1:5,2:0�U〈〈1〉〉↓Gp) returns true. Let us consider (move, obstruct). On line 17, s′ is3

q2 and node(n0, q2, (move, obstruct), {1}) is n2 where s(n2) = q2, p(n2) = [n0], e1(n2) = v1(n2) = 3 (since move actions4

cost 2 units of energy, agent 1’s resources are decremented) and e2(n2) = v2(n2) = 0 (agent 2’s resources do not change5

since it is not in the proponent coalition). When we call u-strategy(n2, 〈〈1〉〉1:5,2:0 �U〈〈1〉〉↓Gp), the if statement on6

line 8 is not applicable since the invariant formula is not true in q2. We continue to line 12 and collect all actions by7

agent 1 with resource consumptions of at most v1(n2). Such actions are idle and move. We skip the case of idle, as8

it is identical to choosing idle in n0. Let us consider move. The only joint action possible if agent 1 choses move is9

(move, idle), since in q2, agent 2 has only the idle action. On line 17, s′ is q1 and node(n2, q1, (move, idle), {1}) is n310

where s(n3) = q1, p(n3) = [n0, n2], e1(n3) = v1(n3) = 1 (since move actions costs 2 units of energy, agent 1’s resources11

are decremented) and e2(n3) = v2(n3) = 0 (agent 2’s resources do not change since it is not in the proponent coalition).12

When we call u-strategy(n3, 〈〈1〉〉1:5,2:0�U〈〈1〉〉↓Gp), the call to g-strategy(n3, 〈〈1〉〉↓Gp) returns true (which will be13

shown next), and hence all calls to u-strategy from n0 for the joint actions extending move return true.14

Now we show that g-strategy(n3, 〈〈1〉〉↓Gp) returns true (the case of g-strategy(n1, 〈〈1〉〉↓Gp) is similar but easier,15

since agent 1 in n1 has a greater resource availability). None of the cases in Algorithm 5 before line 14 are applicable.16

Here, the available actions are idle and send (the agent still has one unit of energy left). If we try idle, then the next17

call to the algorithm will return false on line 2 since idle will bring us back to q0 which does not satisfy the ATL18

version of the formula 〈〈1〉〉↓Gp. If we select send, then in the resulting node n4 the applicable actions are idle and19

charge; the choice of idle will again lead to failure, but by selecting charge we reach n5 where the state is q1 again20

(so s(n5) = s(n3)), and e1(n5) = e1(n3), so the algorithm returns true on line 13.21

5.2. Correctness of the Model Checking Algorithm22

In this section we show that the algorithm always terminates (Lemma 7) and that it gives the correct answer23

(Lemma 8). Together, the two lemmas give the proof of the main result:24

22

Algorithm 5 G-strategy (both types of modalities)

1: function g-strategy(n, 〈〈A〉〉∗Gψ)
2: if s(n) �|= atl(〈〈A〉〉∗Gψ) then
3: return false

4: if ∃n′ ∈ p(n) : s(n′) = s(n) ∧ eA(n′) ≥ eA(n) ∧
(∃a ∈ A, r ∈ Res : e(n′)(a, r) > e(n)(a, r)) then

5: return false

6: if ∃n′ ∈ p(n) : s(n′) = s(n) ∧
∀a ∈ A ∀r ∈ Res : (v(n′)(a, r) = v(n)(a, r) = arb ∨ e(n′)(a, r) = e(n)(a, r)) ∧
∃a ∈ A ∃r ∈ Res : e(n′)(a, r) > e(n)(a, r) then

7: return false

8: for (a, r) ∈ {(a, r) ∈ A × Res | ∃n′ ∈ p(n) : s(n′) = s(n) ∧ vA(n′) ≤ vA(n) ∧ v(n′)(a, r) < v(n)(a, r)} do
9: v(n)(a, r)← arb

10: if ¬ strategy(n, ψ) then
11: return false

12: if ∃n′ ∈ p(n) : s(n′) = s(n) ∧ eA(n′) ≤ eA(n) then
13: return true

14: ActA← {α′ ∈ dA(s(n)) | cons(α′) ≤ vA(n)}
15: for α′ ∈ ActA do
16: ActAgt ← {α ∈ d(s(n)) | αA = α

′}
17: strat ← true

18: for α ∈ ActAgt do
19: s′ ← o(s(n), α)
20: strat ← strat ∧ g-strategy(node(n, s′, α, A), 〈〈A〉〉∗Gψ)

21: if strat then
22: return true

23: return false

23

Theorem 5. The model checking problem for pprRAL over iRBMs is decidable.25

Proof. Follows from Lemma 7 and Lemma 8 below.1

Lemma 7. Algorithm 2 terminates.2

Proof. The proof is by induction on the length of the formula. Calls for propositional formulae clearly terminate.3

For the inductive step, we need to show that a call for any connective terminates provided calls for lower complexity4

formulae terminate. Conjunction and disjunction are obvious. x-strategy makes a recursive call to determine if there5

is a strategy for a smaller complexity formula after one step. The only non-trivial cases are u-strategy and g-strategy.6

Let us consider termination of u-strategy first. We need to show that there cannot be an infinite sequence of7

recursive calls to u-strategy(node(n, s′, α, A), 〈〈A〉〉∗ψ1Uψ2) (see line 18 of Algorithm 4). Such an infinite sequence8

would imply that the search is stuck in an infinite loop and hence encounters the same state infinitely often. There are9

three types of loops to consider: (1) a consuming or neutral loop (where for all proponent agents and all resources,10

the amount of each resource stays the same or decreases); (2) a productive loop (where for all proponent agents and11

all resources, the amount of each resource stays at least the same and increases for at least one agent and resource12

type) and (3) mixed (for some agents and resource types, resource availability increases and for some it goes down).13

Clearly the search will terminate in case (1) because of the loop check on line 4. Note that we compare v rather than e14

endowments because we do not want to keep looping after discovering a way to earn arb resources. If the agents are15

in a productive loop (case (2)), eventually all increasing resources are set to arb in line 7, and v stops changing, hence16

we fall back to case (1) and terminate due to the check on line 4. Finally, consider a case of a mixed loop (case (3)).17

Here we have two sub-cases: (3a) when for at least one agent and resource pair, (a, r), the loop decreases the value of18

e(n)(a, r), v(n)(a, r) � arb; and (3b) when for all such pairs where resources are consumed, v(n)(a, r) = arb. In case19

(3a) termination is trivial since the actions which constitute the loop will not be possible after the required resources20

are consumed. In case (3b) the ‘decreasing’ resources are all arb, so the same actions are still available. However, we21

assumed that in (3b) for all other pairs (a, r) resources grow (so v(n)(a, r) is eventually set to arb) or stay the same.22

After all growing resources are set to arb, there is no further change and the search will terminate in the loop check23

on line 4. This concludes the proof that u-strategy terminates.24

Let us consider g-strategy. Again we need to show that there cannot be an infinite sequence of recursive calls to25

g-strategy(node(n, s′, α, A), 〈〈A〉〉∗Gψ) (line 20 of Algorithm 5). Again such a sequence would need to involve a loop26

and there are three cases to consider: (1) an increasing or neutral loop (for all agents and resource types, endowments27

e increase or remain the same); (2) a decreasing loop (also for endowments e); and (3) a mixed loop. In case (1) we28

terminate on lines 12-13; in case (2) we terminate on lines 4-5. Case (3) again has two subcases: (3a) and (3b). The29

reasoning is the same as in the case for u-strategy; case (3a) is straightforward, case (3b) is covered by the check on30

lines 6-7.31

Given v : Agt × Res → N
∞
0 ∪ {arb}, the set of endowments compatible with v is defined as compatible(v) = {e :32

Agt × Res → N
∞
0 | ∀a ∈ Agt, r ∈ Res : v(a, r) = arb ∨ e(a, r) = v(a, r)}, i.e., all individual endowments of e for each33

agent and resource agree with v whenever v(a, r) � arb.34

Lemma 8. Algorithm 2 is correct, that is, strategy(n, φ) returns true iff ∃ e′ ∈ compatible(v(n)) : s(n), e′ |= φ.35

The proof is given in Appendix B.36

6. Discussion37

Over the last few years, logics for reasoning about strategic, resource-bounded agents and models have become a38

popular research topic, e.g. [1, 3, 6, 2, 14, 15, 4, 5], and, given current trends in the development of intelligent systems39

(e.g., driverless cars, unmanned vehicles, autonomous robots), the formal verification of resource-bounded systems40

will become even more important in the near future. Unfortunately, formal, logic-based techniques for the verification41

of resource-bounded systems are often intractable or even undecidable.42

In this paper we investigated the boundary of (un)decidable logics for verifying resource-bounded systems. We43

identified a significant fragment of Resource Agent Logic (RAL) with a decidable model checking property, and44

proved two new undecidability results. We have shown that a rather natural property of models — that agents can45

24

always decide to do nothing — can make model checking decidable. In particular, the positive proponent-restricted46

fragment of RAL that we present, pprRAL, is decidable in the presence of idle actions and undecidable without them.1

However, the availability of idle actions is not sufficient on its own to make the model checking of RAL, or even of the2

proponent-restricted fragment prRAL, decidable. We show that considering opponents acting under resource bounds3

makes model checking undecidable, as does allowing coalition modalities in the scope of negations. The summary of4

known decidability and undecidability results is presented in Table 1.5

Models
Logic RBM iRBM

RAL Undecidable [2] Undecidable (Corollary of [2])

rfRAL Undecidable [2] Undecidable for two agents and two resource types (Theorem 1)
Undecidable for four agents and one resource type (Theorem 3)

prRAL Undecidable [2]
Undecidable (Corollary of [2])
Undecidable for one agent and two resource types (Theorem 2)
Undecidable for two agents and one resource type (Theorem 4)

rfprRAL Undecidable [2] Decidable (Corollary of [6])

pprRAL
Undecidable Decidable (Theorem 5)(Corollary of [2])

Table 1: Summary of known decidability and undecidability results

Note that iRBMs are very similar to RBMs with finite semantics of [2] (see [8] and [9] for a formal statement6

of correspondence). The result presented here, together with those of [8, 9] implies that pprRAL is decidable over7

RBMs under finite semantics.8

Finally, we did not discuss the complexity of the model checking problem for pprRAL over iRBMs in this paper.9

We conjecture that it is the same as the model checking problem for RB±ATL, which was recently shown in [35] to10

be 2exptime-complete.11

Acknowledgements12

We thank the reviewers for their detailed and helpful reviews. This work was supported by the Engineering and13

Physical Sciences Research Council [grant EP/K033905/1].14

References15

[1] N. Alechina, B. Logan, H. N. Nguyen, A. Rakib, A logic for coalitions with bounded resources, in: C. Boutilier (Ed.), Proceedings of the16

Twenty First International Joint Conference on Artificial Intelligence (IJCAI 2009), Vol. 2, AAAI Press, 2009, pp. 659–664.17

[2] N. Bulling, B. Farwer, On the (un-)decidability of model checking resource-bounded agents, in: H. Coelho, R. Studer, M. Wooldridge (Eds.),18

Proceedings of the 19th European Conference on Artificial Intelligence (ECAI 2010), IOS Press, 2010, pp. 567–572.19

[3] N. Alechina, B. Logan, H. N. Nguyen, A. Rakib, Resource-bounded alternating-time temporal logic, in: W. van der Hoek, G. Kaminka,20

Y. Lespérance, M. Luck, S. Sen (Eds.), Proceedings of the Ninth International Conference on Autonomous Agents and Multiagent Systems21

(AAMAS 2010), IFAAMAS, 2010, pp. 481–488.22

[4] D. Della Monica, M. Napoli, M. Parente, Model checking coalitional games in shortage resource scenarios, in: G. Puppis, T. Villa (Eds.),23

Proceedings of the Fourth International Symposium on Games, Automata, Logics and Formal Verification (GandALF 2013), Vol. 119 of24

Electronic Proceedings in Theoretical Computer Science, 2013, pp. 240–255.25

[5] N. Bulling, V. Goranko, How to be both rich and happy: Combining quantitative and qualitative strategic reasoning about multi-player games26

(extended abstract), in: F. Mogavero, A. Murano, M. Y. Vardi (Eds.), Proceedings of the 1st International Workshop on Strategic Reasoning27

(SR 2013), Vol. 112 of Electronic Proceedings in Theoretical Computer Science, 2013, pp. 33–41.28

[6] N. Alechina, B. Logan, H. N. Nguyen, F. Raimondi, Decidable model-checking for a resource logic with production of resources, in:29

T. Schaub, G. Friedrich, B. O’Sullivan (Eds.), Proceedings of the 21st European Conference on Artificial Intelligence (ECAI-2014), IOS30

Press, 2014, pp. 9–14.31

[7] N. Alechina, N. Bulling, B. Logan, H. N. Nguyen, On the boundary of (un)decidability: Decidable model-checking for a fragment of resource32

agent logic, in: Q. Yang (Ed.), Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI 2015), AAAI Press,33

2015, pp. 1494–1501.34

[8] N. Alechina, B. Logan, H. N. Nguyen, F. Raimondi, Model-checking for resource-bounded ATL with production and consumption of re-35

sources, Journal of Computer and System Sciences(in press).36

25

[9] N. Alechina, B. Logan, H. N. Nguyen, F. Raimondi, Model-checking for Resource-Bounded ATL with production and consumption of37

resources, Tech. rep., ArXiv e-prints 1504.06766 (2015).1

[10] M. Ghallab, D. S. Nau, P. Traverso, Automated Planning: Theory and Practice, Morgan Kaufmann, 2004.2

[11] M. Pauly, A modal logic for coalitional power in games, Journal of Logic and Computation 12 (1) (2002) 149–166.3

[12] N. Alechina, B. Logan, H. N. Nguyen, A. Rakib, Logic for coalitions with bounded resources, Journal of Logic and Computation 21 (6)4

(2011) 907–937.5

[13] M. Z. Kwiatkowska, G. Norman, D. Parker, Prism 4.0: Verification of probabilistic real-time systems, in: Proceedings of the 23rd International6

Conference on Computer Aided Verification (CAV 2011), Vol. 6806 of Lecture Notes in Computer Science, Springer, 2011, pp. 585–591.7

[14] N. Bulling, B. Farwer, Expressing properties of resource-bounded systems: The logics RBTL and RBTL∗, in: Computational Logic in Multi-8

Agent Systems - 10th International Workshop, CLIMA X, Revised Selected and Invited Papers, Vol. 6214 of Lecture Notes in Computer9

Science, 2010, pp. 22–45.10

[15] D. Della Monica, M. Napoli, M. Parente, On a logic for coalitional games with priced-resource agents, Electronic Notes in Theoretical11

Computer Science 278 (2011) 215–228.12

[16] D. Della Monica, G. Lenzi, On a priced resource-bounded alternating μ-calculus, in: J. Filipe, A. L. N. Fred (Eds.), Proceedings of the 4th13

International Conference on Agents and Artificial Intelligence (ICAART 2012), SciTePress, 2012, pp. 222–227.14

[17] J. Daniel, A. Cimatti, A. Griggio, S. Tonetta, S. Mover, Infinite-state liveness-to-safety via implicit abstraction and well-founded relations, in:15

S. Chaudhuri, A. Farzan (Eds.), Proceedings of the 28th International Conference on Computer Aided Verification (CAV 2016), Vol. 9779 of16

Lecture Notes in Computer Science, Springer, 2016, pp. 271–291.17

[18] B. Cook, H. Khlaaf, N. Piterman, On automation of CTL* verification for infinite-state systems, in: D. Kroening, C. S. Pasareanu (Eds.),18

Proceedings of the 27th International Conference on Computer Aided Verification (CAV 2015), Vol. 9206 of Lecture Notes in Computer19

Science, Springer, 2015, pp. 13–29.20

[19] C. Urban, A. Miné, Proving guarantee and recurrence temporal properties by abstract interpretation, in: D. D’Souza, A. Lal, K. G. Larsen21

(Eds.), Proceedings of the 16th International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI 2015), Vol.22

8931 of Lecture Notes in Computer Science, Springer, 2014, pp. 190–208.23

[20] T. A. Beyene, M. Brockschmidt, A. Rybalchenko, CTL+FO verification as constraint solving, in: N. Rungta, O. Tkachuk (Eds.), Proceedings24

of the International Symposium on Model Checking of Software (SPIN 2014), ACM, 2014, pp. 101–104.25

[21] B. Cook, E. Koskinen, M. Y. Vardi, Temporal property verification as a program analysis task - extended version, Formal Methods in System26

Design 41 (1) (2012) 66–82.27

[22] M. Fisher, L. A. Dennis, M. P. Webster, Verifying autonomous systems, Communications of the ACM 56 (9) (2013) 84–93.28

[23] P. Kouvaros, A. Lomuscio, Parameterised verification for multi-agent systems, Artificial Intelligence 234 (2016) 152–189.29

[24] J. Esparza, Decidability and complexity of Petri net problems - an introduction, in: Lectures on Petri Nets I: Basic Models, Vol. 1491 of30

Lecture Notes in Computer Science, Springer-Verlag, 1998, pp. 374–428.31

[25] M. Blockelet, S. Schmitz, Model checking coverability graphs of vector addition systems, in: Proceedings of the 36th International Confer-32

ence on Mathematical Foundations of Computer Science, Vol. 6907 of Lecture Notes in Computer Science, Springer, 2011, pp. 108–119.33

[26] D. Porello, N. Troquard, A resource-sensitive account of the use of artifacts, in: A. L. C. Bazzan, M. N. Huhns, A. Lomuscio, P. Scerri (Eds.),34

Proceedings of the 13th International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2014), IFAAMAS/ACM, 2014,35

pp. 1549–1550.36

[27] D. Porello, N. Troquard, A resource-sensitive logic of agency, in: T. Schaub, G. Friedrich, B. O’Sullivan (Eds.), Proceedings of the 21st37

European Conference on Artificial Intelligence (ECAI 2014), IOS Press, 2014, pp. 723–728.38

[28] P. W. O’Hearn, D. J. Pym, The logic of bunched implications, Bulletin of Symbolic Logic 5 (02) (1999) 215–244.39

[29] D. J. Pym, P. W. O’Hearn, H. Yang, Possible worlds and resources: The semantics of BI, Theoretical Computer Science 315 (1) (2004)40

257–305.41

[30] J. Brotherston, C. Calcagno, Classical BI: a logic for reasoning about dualising resources, in: Z. Shao, B. C. Pierce (Eds.), Proceedings of the42

36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2009), ACM, 2009, pp. 328–339.43

[31] M. Collinson, B. Monahan, D. J. Pym, A logical and computational theory of located resource, Journal of Logic and Compututation 19 (6)44

(2009) 1207–1244.45

[32] R. Alur, T. A. Henzinger, O. Kupferman, Alternating-time temporal logic, Journal of the ACM 49 (5) (2002) 672–713.46

[33] J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, 1979.47

[34] J. L. Peterson, Petri net theory and the modeling of systems, Prentice Hall Englewood Cliffs (NJ), 1981.48

[35] N. Alechina, N. Bulling, S. Demri, B. Logan, On the complexity of resource-bounded logics, in: K. G. Larsen, I. Potapov, J. Srba (Eds.),49

Proceedings of the 10th International Workshop on Reachability Problems (RP 2016), Vol. 9899 of Lecture Notes in Computer Science,50

Springer, 2016, pp. 36–50.51

26

A. Encodings and Proofs from Section 452

A.1. Encodings and Proofs from Section 4.11

Proposition 1. LetA be an empty-band TCM and λ = (qi, ηi)i=1,...,3(k−1)+1 be anA-computation pre-encoding.2

(a) We have that η3(k−1)+1(1,Rr) = η3(k−1)+1(2,Rr) for r = 1, 2.3

(b) If λ ◦ (sE1E2, η)(s′C1C2, η
′) is a finite resource-extended path, then so is λ ◦ (sE1E2, η)(s′C1C2, η

′)(s′, η′′) for a4

uniquely defined endowment η′′.5

(c) If λ[i] = (qi, ηi) = (sE1E2, η
i) with Er = 0, then (ηi(1,Rr) = 0 if, and only if, ηi(2,Rr) = 0), for r ∈ {1, 2}.6

Proof. Let λ = (qi, ηi)i=1,...,3(k−1)+1. (a) We show this by induction on k. For k = 1 the claim follows by definition.7

Now, suppose the claim is true for all computation pre-encodings up to (and excluding) k ≥ 2. That is, it is true for8

λ = (qi, ηi)i=1,...,3(k−1)+1, which is also an A-computation pre-encoding. That is, η3(k−1)+1(1,Rr) = η3(k−1)+1(2,Rr) for9

r = 1, 2. Consider the A-computation pre-encoding (where we simply consider how λ has to be extended given the10

construction of the model)11

λ′ = (qi, ηi)i=1,...,3k+1

= λ ◦ (q3(k−1)+2, η3(k−1)+2)(q3(k−1)+3, η3(k−1)+3)(q3k+1, η3k+1)
= λ ◦ (skEk

1Ek
2, η

3(k−1)+2)(sk+1Ck
1Ck

2, η
3(k−1)+3)(sk+1, η3k+1)

Now, a simple computation, taking into consideration the structure of the model, gives: η3k+1(1,Rr) = η3(k−1)+3(1,Rr) =12

η3(k−1)+2(1,Rr)+Ck
r +Ek

r = η
3(k−1)+1(1,Rr)+Ck

r

IH
= η3(k−1)+1(2,Rr)+Ck

r = η
3(k−1)+2(2,Rr)+Ck

r = η
3(k−1)+3(2,Rr)+Ck

r =13

η3k+1(2,Rr).14

(b) We have to show that η′′(1,Rr) ≥ 0 and η′′(2,Rr) ≥ 0 for r ∈ {1, 2}. The former is clear because η′(1,Rr) ≥ 015

and the endowment for player 1 does not change in the transition from s′C1C2 to s′. For the latter, we make the16

following observation: η′′(2,Rr) = η′(2,Rr)+Cr = η
3(k−1)+1(2,Rr)+Cr where the latter equality holds as the resources17

of agent 2 do not change between the state q3(k−1)+1 and s′C1C2. Now, by (a), we have that η3(k−1)+1(2,Rr) + Cr =18

η3(k−1)+1(1,Rr) + Cr. Finally, we can compute that η3(k−1)+1(1,Rr) + Cr = η(1,Rr) + Er + Cr = η
′(1,Rr) ≥ 0 as19

λ ◦ (sE1E2, η)(s′C1C2, η
′) is a finite resource-extended path by assumption. Finally, η′′ is uniquely defined as there is20

only a unique action from s′C1C2 to s′.21

(c) Suppose a configuration (sE1E2, η
i) with Er = 0 is reached. Then, action E1E2 (resp. idle) was performed in22

λ[i−1] = (s, ηi−1) by agent 1 (resp. 2). Note that none of the actions changes the resource balance of Rr. Suppose now23

that ηi(x,Rr) = 0 for x ∈ {1, 2}. Then, also ηi−1(x,Rr) = 0 and by (a) ηi−1(3 − x,Rr) = 0. With the above observation24

we can conclude that also ηi(3 − x,Rr) = 0.25

Lemma 1 (Simulation Lemma for MA1). There is a bijection fA between computations of A and A-computation26

encodings ofMA1 in such a way that fA(ρ) simulates the computation ρ. In particular, if ρ is an accepting computation27

then fA(ρ) is also accepting.28

Proof. Let ρ = (si, vi
1, v

i
2)i=1,...,k be a finite A-computation. From ρ we inductively construct the following finite29

resource-extended path λ = λρ = (q j, η j) j=1,...,3(k−1)+1.30

(a) First, we consider the first configuration i = 1. Assume that k > 1. Let ρ1 = ((s1, E1, E2), (s2,C1,C2)). We31

define (i) q1 = s1, η1(1,Rr) = η1(2,Rr) = v1
r for r ∈ {1, 2}; (ii) q2 = s1E1E2, η2(1,Rr) = η1(1,Rr) − Er for32

r ∈ {1, 2}; and (iii) q3 = s2C1C2, η3(1,Rr) = η2(1,Rr) + Er + Cr for r ∈ {1, 2}. In the case that k = 1, we define33

q1 = s1, η1(1,Rr) = η1(2,Rr) = v1
r for r ∈ {1, 2}.34

27

(b) Inductively, we assume that the path has been constructed up to position i − 1 of computation ρ, that is up to35

3(i − 1) + 3 on λ. Suppose i < k and let ρi = ((si, E1, E2), (si+1,C1,C2)). Again, we define (i) q3i+1 = si,1

η3i+1(1,Rr) = vi
r for r ∈ {1, 2}; (ii) q3i+2 = siE1E2, η3i+2(1,Rr) = η3i+1(1,Rr) − Er for r ∈ {1, 2}; and (iii)2

q3i+3 = si+1C1C2, η3i+3(1,Rr) = η3i+2(1,Rr) + Er + Cr for r ∈ {1, 2}. In the case that k = i, we define q3i+1 = si,3

η3i+1(1,Rr) = vi
r for r ∈ {1, 2}.4

First, we prove the following claim which is essential for the rest of the proof.5

Claim. For every i = 1, . . . , k we have that (i) si = q3(i−1)+1, (ii) vi
r = η

3(i−1)+1(1,Rr) for r ∈ {1, 2}, and if i < k, then6

(iii) q3(i−1)+2 = siEi
1Ei

2 with Ei
r = 0 for r ∈ {1, 2} implies η3(i−1)+2(1,Rr) = 0, and also (iv) vi+1

r = η3(i−1)+3(1,Rr) for7

r ∈ {1, 2}.8

Proof of claim. We prove the claim by induction on i ≤ k.9

Induction base: Let i = 1 ≤ k. We have that (i) s1 = q1 and (ii) v1
r = η

1
j (1,Rr) by construction.10

Induction step: Suppose the claim is true up to i < k. We show the case for i + 1. First, suppose that i + 1 = k.11

By induction, we have that η3(i−1)+1(1,Rr) = vi
r, η

3(i−1)+3(1,Rr) = vi+1
r , and by Proposition 1(a) η3(i−1)+1(1,Rr) =12

η3(i−1)+1(2,Rr). Thus, by Proposition 1(b) configuration q3i+1 = (si+1, η3i+1) can be reached. Moreover, the resources13

for agent 1 do not change in the step transition from q3(i−1)+3 to q3i+1, which shows that η3i+1(1,Rr) = vi+1
r .14

Now, we consider the case i + 1 < k. Cases (i) and (ii) follow completely analogously. By construction, if15

q3i+2 = si+1Ei+1
1 Ei+1

2 with Ei+1
r = 0 then ρi+1 = ((si+1, E1, E2), (si+2,C1,C2)) with Er = 0. This transition can only be16

taken by the automaton if vi+1
r = 0. Then, by (ii) η3i+1(1,Rr) = 0. Finally, action Ei+1

1 Ei+1
2 can only consume resources17

by construction of the automaton. This shows that also η3i+2(1,Rr) = 0. For (iv) we observe that η3i+2(1,Rr) =18

η3i+1(1,Rr) − Ei+1
r and thus η3i+3(1,Rr) = η3i+2(1,Rr) +Cr + Ei+1

r = η3i+1(1,Rr) +Cr
(ii)
= vi+1

r +Cr = vi+2
r .19

Using the claim we now have to show that the thus constructed sequence is indeed anA-computation pre-encoding20

(Definition 4) and that it is a simulation (Definition 5). The two conditions of Definition 4 follow immediately. Also,21

by the claim it follows that λ is indeed a path inMA1 .22

For the first condition of Definition 5, we consider two cases. If ρ = (s, v1, v2) consists of a single configuration,23

then by (a) λ = (s, η). Hence, λ has length 3 · 0 + 1. For the second case, |ρ| = k > 1, we observe that we added for24

each i < k, three states to λ (s, sE1E2, and s′C1C2), and an additional state for i = k. Thus, λ has length 3(k − 1) + 1.25

The other conditions (2) and (3) of the Definition follow from (i-iii) of the claim.26

We refer to the thus constructed path as fA(ρ). Different ρ’s yield different fA(ρ)’s. It remains to show that fA is27

surjective. For an arbitraryA-computation encoding λ, each triple of states (s)(sE1E2)(s′C1C2) on λ defines a unique28

transition τi = ((s, E1, E2), (s′,C1,C2)). Given the initial configuration (q1, η1) with η1(1,Rr) = η1(2,Rr) for r ∈ {1, 2}29

and the the sequence of the τi’s, we can compute the computation ρ. It is immediate that fA(ρ) = λ.30

31

Lemma 2. The empty-band TCMA halts iffMA1 , sinit, 0̄ |= 〈〈1〉〉0̄{1,2}F halt.32

Proof. Let the empty-band TCM A = (S , sinit, S f ,Δ) be given and MA1 be the iRBM constructed according to Defi-33

nition 3.34

“⇒” Assume that A halts and let ρ = (si, vi
1, v

i
2)i=1,...,k be a minimal length accepting run of A. By Lemma 135

(Simulation Lemma), λ = fA(ρ) = (q j, η j) j=1...3(k−1)+1 is an accepting A-computation encoding that simulates36

ρ. Each subsequent configurations (qi, ηi) and (qi+1, ηi+1), for i = 1, . . . , 3(k − 1) + 1 on λ define a unique action37

of agent 1. Let s1 be the strategy which assigns to each history q1 . . . qi this unique action of agent 1 leading to38

qi+1. The strategy assigns idle to all other histories, including λ itself. We assume that player 1 follows strategy39

s1. As λ simulates ρ, agent 2 can never perform a test action in states of type sE1E2 according to Definition 5.340

and Proposition 1(c). Thus, agent 2 can only choose between actions in states of type sC1C2, otherwise it can41

only perform a unique action (the idle action). As a consequence, the outcome set wrt. s1 contains the following42

28

paths:43

out(q1, 0̄, s1, {1, 2}) = {(q1, η1) . . . (qk, ηk)(q�, ηk+1) . . .}
∪{(q3(i−1)+1, η3(i−1)+1)

(q3(i−1)+2, η3(i−1)+2)
(q3(i−1)+3, η3(i−1)+3)i=1,..., j(qh, η

3 j+1) . . . | 1 ≤ j < k}.

All these paths contain a state labelled halt. This shows thatMA1 , sinit, 0̄ |= 〈〈1〉〉0̄{1,2}F halt.1

“⇐” Assume that MA1 , sinit, 0̄ |= 〈〈1〉〉0̄{1,2}F halt holds. Then, there is a witnessing strategy s1 of agent 1 such that for2

all λ = (qi, ηi)i∈N ∈ out(s1, 0̄, s1, {1, 2}) there is a minimal index k such that π(qk) = halt. In particular, the3

set contains a path in which the state qh is never visited. This follows from Proposition 1(b). We denote the4

prefix of this path that is cut directly after the state labelled halt by λ′. On λ′ it can never be the case that in5

a state qi = sE1E2 with Er = 0 we have that ηi(2, Er) > 0; otherwise, the outcome would also contain a path6

which loops in q f because agent 2 could perform the test action. But this would contradict s1 being a witnessing7

winning strategy. Thus, we have ηi(2, Er) = 0 and by Proposition 1(c) also ηi(1, Er) = 0, for r ∈ {1, 2}. Thus,8

by the Simulation Lemma, there is ρ with fA(ρ) = λ′ that is an accepting run of the automaton. The automaton9

halts.10

11

A.2. Encodings and Proof from Section 4.212

The formal definition of the encoding of a two counter automaton as a resource-bounded model with idle actions13

and a single resource type is given next.14

Definition 7 (MA2). Let (S , sinit, S f ,Δ) be an empty-band TCM. FromAwe construct the iRBMMA2 = ({1, 2, 3, 4},Q,Π, π,15

Act, d, o, {R}, t) where:16

1. The sets of states Q = S ∪ Q1 ∪ Q2 ∪ {q f , qh, q�} and of propositions and their valuations are defined as in17

Definition 3.18

2. The set Act is defined as follows. For each transition (s, E1, E2)Δ(s′,C1,C2) ofA the set contains actions E1E2,19

E1E2, s
′C1C2

E1E2
, s
′C1C2
E1E2

, s′C1C2, and s′C1C2. Additionally, there is an action idle and test actions testi for i ∈ {1, 2}.20

3. The action availability is defined according to Δ. For agent 1 we have:21

E1E2 ∈ d1(s) iff (s, E1, E2)Δ(s′,C1,C2) for some (s′,C1,C2)
idle ∈ d1(q) for all q ∈ Q

s
′C1C2

E1E2
∈ d1(sE1E2) iff (s, E1, E2)Δ(s′,C1,C2)

and analogously for agent 2 but E2 and C2 are underlined instead of E1 and C1, respectively. For agent 3 we22

have:23

idle ∈ d3(q) for all q ∈ Q

s′C1C2 ∈ d3(s′C1C2) for all s′C1C2 ∈ Q2

test1 ∈ d3(sE1E2) iff E1 = 0

and again analogously for agent 4 but E2 and C2 are underlined instead of E1 and C1, respectively. Moreover,24

test2 ∈ d4(sE1E2) iff E2 = 0, that is, the test action is only available if the counter which the agent is supposed25

to simulate is empty.26

29

4. We abstain from giving the transition function o and refer to Figure 4 where we call an action profile (E1E2, E
′
1E′2, idle, idle)27

invalid if (i) Ei � E′i for some i ∈ {1, 2} or (ii) if there is no transition ((s, E1, E2), (s′,C1,C2)) ∈ Δ. Similarly, we1

call an action profile (s
C1C2

E1E2
, s

C′1C′2
E′1E′2
, idle, idle) invalid in state sE1E2 if (i) Ci � C′i or Ei � E′i for some i ∈ {1, 2}2

or (ii) if there is no transition ((s, E1, E2), (s′,C1,C2)) ∈ Δ.3

5. For i ∈ {1, 2, 3, 4}, the actions’ resource consumption/production is defined by the function t:4

t(E1E2,R) = −E1

t(E1E2,R) = −E2

t(idle,R) = 0

t(s
C1C2

E1E2
,R) = C1 + E1

t(s
C1C2
E1E2
,R) = C2 + E2

t(sC1C2,R) = C1

t(sC1C2,R) = C2

t(test1,R) = −1
t(test2,R) = −1

Theorem 4. Model checking prRAL over the class of iRBMs is undecidable even in the case of single resource and5

two agents.6

Proof. We modify the modelMA2 = ({1, 2, 3, 4},Q,Π, π, Act, d, o, {R}, t) to a model M̂A2 = ({1, 2},Q\{qh},Π, π̂, Âct, d̂, ô, {R}, t̂).7

Essentially, we merge agents {1, 3} and agents {2, 4} into agent 1 and 2 in the new model, respectively. The main en-8

coding is shown in Figure 5. We define d̂i(q) as di(q) for i ∈ {1, 2} where it is additionally required that test1 ∈9

d̂1(sE1E2) iff E1 = 0, and test2 ∈ d̂2(sE1E2) iff E2 = 0; coalition {1, 2} can now make all decisions. The action set Âct10

equals Act but all actions of type sC1C2 and sC1C2are removed. The transition function ô is obtained from o:11

ô(s, (E1E2, E1E2)) = sE1E2

ô(s, (idle, �)) = q�
ô(s, (�, idle)) = q�

o(sE1E2, (idle, �)) = q�
o(sE1E2, (�, idle)) = q�

ô(q�, (idle, idle)) = q�

ô(sE1E2, (s
′C1C2

E1E2
, s
′C1C2
E1E2

)) = sC1C2

ô(sE1E2, (test1, �)) = q f

ô(sE1E2, (�, test2)) = q f

ô(q f , (idle, idle)) = q f

ô(s′C1C2, (idle, idle)) = s′

Moreover, invalid action profiles executed in states s and sE1E2 also result in the loop state q�. Here, we call an action12

profile (E1E2, E
′
1E′2) invalid if (i) Ei � E′i for some i ∈ {1, 2} or (ii) if there is no transition ((s, E1, E2), (s′,C1,C2)) ∈ Δ.13

Similarly, we call an action profile (s
C1C2

E1E2
, s

C′1C′2
E′1E′2

) invalid in state sE1E2 if (i) Ci � C′i or Ei � E′i for some i ∈ {1, 2} or14

(ii) if there is no transition ((s, E1, E2), (s′,C1,C2)) ∈ Δ.15

The cost function t̂ is defined as before restricted to the new action set. (States of type sC1C2 are only kept due16

to compatibility reasons.) As in the related case, it is easy to see that each resource-extended path λ = (qi, ηi)i∈N in17

MA2 that does not contain state qh corresponds to a path λ = (qi, η̂i)i∈N in M̂A2 with η̂i(1,R) = ηi(1,R) and η̂i(2,R) =18

ηi(2,R) for all i. By the analogue of Proposition 1(c) given in Section 4.2.2, the zero-test simulated in the test states19

30

can equivalently be defined with respect to agent 1’s and 2’s resource endowments. It holds that MA2 , qinit, 0̄ |=20

〈〈{1, 2, 3, 4}〉〉0̄((¬〈〈{1, 2, 3, 4}〉〉↓X fail)U halt) if, and only if, M̂A2 , qinit, 0̄ |= 〈〈{1, 2}〉〉0̄((¬〈〈{1, 2}〉〉↓X fail)U halt).1

B. Proof from Section 52

Lemma 8. Algorithm 2 is correct, that is, strategy(n, φ) returns true iff ∃e′ ∈ compatible(v(n)) : s(n), e′ |= φ.3

Proof. The proof is by induction on the structure of the formulae.4

Base case:5

Case φ = p for some p ∈ Π: strategy(n, p) returns true iff s(n) |= p (by lines 2-3 in Algorithm 2) iff s(n), e′ |= p for6

any e′ ∈ compatible(v(n)) (by the semantics of RAL). Obviously, compatible(v(n)) � ∅.7

Case φ = ¬p for some p ∈ Π: Similarly, strategy(n,¬p) returns true iff s(n) �|= p (by lines 4-5 in Algorithm 2) iff8

s(n), e′ �|= p for any e′ ∈ compatible(v(n)). Again, compatible(v(n)) � ∅.9

Induction step: The proof is done for each case of pprRAL formulae.10

Case φ = φ1 ∧ φ2: strategy(n, φ) returns true iff strategy(n, φ1) and strategy(n, φ2) return true (by lines 6-7), iff11

∃e′1 ∈ compatible(v(n)) : s(n), e′1 |= φ1 and ∃e′2 ∈ compatible(v(n)) : s(n), e′2 |= φ2 (by induction hypothesis), iff12

s(n), e′ |= φ1 ∧ φ2 (by the semantics of RAL) where e′ = max{e′1, e′2} ∈ compatible(v(n)) where maxV = v denotes the13

pointwise maximum from a finite set V of endowments, i.e., v(i, r) = max{e′(i, r) | e′ ∈ V} for all i ∈ Agt and r ∈ Res14

(note that this is straightforward by induction on the structure of formulae in pprRAL that s, v |= ϕ implies s, e′ |= ϕ15

for all states s and e′ ≥ v since pprRAL contains only positive formulae).16

Case φ = φ1 ∨ φ2: strategy(n, φ) returns true iff strategy(n, φ1) or strategy(n, φ2) return true (by lines 8-9), iff ∃e′1 ∈17

compatible(v(n)) : s(n), e′1 |= φ1 or ∃e′2 ∈ compatible(v(n)) : s(n), e′2 |= φ2 (by induction hypothesis) iff s(n), e′ |=18

φ1 ∨ φ2 (by the semantics of RAL) for some e′ ∈ {v1, v2} ⊆ compatible(v(n)).19

Case φ = 〈〈A〉〉↓Xψ: strategy(n, φ) returns true iff x-strategy(n′, φ) returns true (by lines 10-11) where n′ = node0(s(n),20

e(n), v(n), A), iff there exists α′ ∈ ActA (according to lines 4-5 of Algorithm 3) such that for every α ∈ ActAgt21

(line 8 of Algorithm 3) strategy(n′′, ψ) returns true where n′′ = node(n′, sα, α, A) and sα = o(s(n′), α) (recall22

that va(n′′) = va(n) − cons(αa) + prod(αa) for a ∈ A, va(n′′) = va(n) for a � A and s(n′′) = sα), iff for every23

α ∈ ActAgt, there exists vα ∈ compatible(v(n) − cons(α) + prod(α)) such that sα, vα |= ψ (by induction hypothe-24

sis), iff there exists e′ ∈ compatible(v(n) − cons(α′) + prod(α′)) such that for every α ∈ ActAgt sα, e
′ |= ψ, where25

e′ = max{vα | α ∈ ActAgt} ∈ compatible(v(n)− cons(α′)+prod(α′)), iff s, e′ + cons(α′)−prod(α′) |= 〈〈A〉〉↓Xψ where26

e′ + cons(α′) − prod(α′) ∈ compatible(v(n)).27

The case for 〈〈A〉〉ζXψ is similar to the above case, hence omitted here.28

Case φ = 〈〈A〉〉↓ψ1Uψ2: strategy(n, φ) returns true iff u-strategy(n0, φ) returns true (by lines 14-15) where n0 =29

node0(s(n), e(n), v(n), A).30

(⇒) : Let T denote the search tree rooted at n0 when u-strategy(n0, φ) returns true. For the purpose of this proof, we31

assume that each interior node n in T has an additional function a(n) which returns the action tuple of the proponent32

at s(n); and the function node(n, s, α, A) also assigns a(n) = α.33

For every leaf n of T , we have that strategy(n, ψ2) returns true according to lines 8-9 of Algorithm 4. By the34

induction hypothesis, we also have s(n), vn |= ψ2 for some vn ∈ compatible(v(n)). Similarly, for every interior node35

n of T , strategy(n, ψ1) returns true according to lines 10-11 of Algorithm 4 and, hence, s(n), vn |= ψ1 for some36

vn ∈ compatible(v(n)). We first update the value of e(n) for every node in T so that resource availability is enough to37

satisfy ψ1 at every interior node and ψ2 at every leaf node. The update is carried out from the leaves to the root of T38

as follows:39

• For a leaf n, e(n) := max{vn, e(n)};40

• For an interior node n with k children n1, . . . , nk, if e(ni) has been updated for all i ∈ {1, . . . , k}, then e(n) :=41

max{vn, e(n), e(n1) + cons(a(n)), . . . , e(nk) + cons(a(n))}.42

Let sT denote the strategy for A where for each node n ∈ T , with p(n) = n0 . . . nk, sT (s(n0) . . . s(nk)s(n)) = (a(n))A.43

However, this strategy may not be executable from n0 if, as a result of the initial resource availability e(n0), there is44

some node n in T such that e(n)(i, r) < 0 for some resource r and agent i. Note that whenever e(n)(i, r) < 0, we have45

31

v(n)(i, r) = arb according to lines 6, 7 and 12 of Algorithm 4. If v(n0)(i, r) = arb, we can simply increase the value of46

e(n0)(i, r) to compensate for the lack of resources above. In particular, we increase e(n0)(i, r) to e(n0)(i, r) − e(n)(i, r),1

then recalculate the value of e(n′)(i, r) for every node n′ in T . Then, e(n)(i, r) becomes 0. Obviously, this step only2

removes negative values and can be repeated until no further negative values can be removed. This means for any3

e(n)(i, r) < 0 we have v(n0)(i, r) � arb. Then, there must be a loop within the path p(n) (according to lines 6-74

of Algorithm 4) that strictly increases resource r for agent i. To increase e(n)(i, r) to a positive value, we need to5

determine the number of times the loop should be performed. In particular, there must be a node n1 ∈ p(n) such that6

v(n1)(i, r) is assigned arb by the statement in lines 6-7 of Algorithm 4. Let n2 be the node n′ in line 6. We denote n17

by stopr(n) and n2 by startr(n). Let T (n̂) denote the subtree of T rooted in n̂ for every n̂ in T . For a resource r, if there8

is a node n with e(n)(i, r) < 0 for some i we extend T until e(n)(i, r) ≥ 0 by repeating the branch between startr(n)9

and endr(n) finitely many times. There are two sub-cases to consider:10

• Sub-case 1: n is the only node in T (startr(n)) with e(n)(i, r) < 0 as depicted by Figure B.6(a).11

Figure B.6: n is the only node with e(n)(i, r) < 0 in T (startr(n))

As the path from startr(n) to stopr(n) increases r for agent i by an amount of e(stopr(n))(i, r)− e(startr(n))(i, r),12

it is necessary to repeat this path � |e(n)(i,r)|
e(stopr(n))(i,r)−e(startr(n))(i,r) � times, as depicted in Figure B.6(b).13

• Sub-case 2: n is not the only node in T (startr(n)) with e(n)(i, r) < 0. Other nodes n′ are either in the subtree14

T (stopr(n)) (as depicted by Figures B.7(a)) or in the subtree of T (startr(n)) but not T (stopr(n)) (as depicted by15

Figures B.7(b)). Without loss of generality, we assume that startr(n) is the ancestor of startr(n′) for any of such16

n′.17

Again, as the path from startr(n) to endr(n) increases r for agent i by an amount of e(endr(n))(i, r)−e(startr(n))(i, r),18

it is necessary to repeat this path k = � |e(n)(i,r)|
e(endr(n))(i,r)−e(startr(n))(i,r) � times, as depicted in Figure B.8(a). Note that19

this repetition will also repeat nodes n′ which are in the subtree of T (startr(n)) but not in T (stopr(n)) and have20

e(n′)(i, r) < 0 as n′1, . . . , n
′
k

depicted in Figure B.8(b).21

Let T1 be the obtained tree. Then, the number of nodes n′′ in T1(nk−1) with e(n′′)(i, r) < 0 is strictly less than22

that in T (startr(n)). Therefore, we can reapply the above construction to obtain a tree T2 where all nodes n′′ in23

T2(nk−1) have e(n′′)(i, r) ≥ 0. These include node n′ as depicted in Figure B.8a and n′
k

as depicted in Figure B.8b.24

Then, we further apply step by step the above construction for nodes n′
k−1, . . . , n

′
1 and n′ in Figure B.8b. Finally,25

we obtain a tree T3 where all nodes n′′ have e(n′′)(i, r) ≥ 0. This construction can be repeated for other resources26

r′ � r and agents i′ � i. Finally, we obtain a tree T4 where for all nodes n in T4, e(n)(i, r) ≥ 0 for all r and i and27

sT4 is a strategy satisfying φ at s(n0) where n0 is the root of T4. In other words, we have s(n0), e(n0) |= φ where it is28

obvious that e(n0) ∈ compatible(v(n0)). Since n0 = node0(s(n), e(n), v(n), A), s(n) = s(n0) and v(n) = v(n0); therefore29

s(n), e(n0) |= φ where e(n0) ∈ compatible(v(n)).30

(⇐) : Assume that s(n), e′ |= φ for some e′ ∈ compatible(v(n)), then there exists a strategy sA such that for all31

λ ∈ out(q, e′, sA, A) : ∃ iλ ≥ 0 : λ|Q[iλ], λ|En[iλ] |= ψ2 and ∀ 0 ≤ j < iλ : λ|Q[j], λ|En[j] |= ψ1. We shall now prove32

that strategy(n, φ) returns true, i.e., equivalently u-strategy(node0(s(n), e(n), v(n), A), φ) returns true. Let T = (V, E)33

32

st
ar
t r(
n)

st
op

r(
n)

n

start
r (n')

stop
r (n')

n'

st
ar
t r(
n)

st
op

r(
n)

n

start
r (n')

stop
r (n')

n'

(a)

(b)
Figure B.7: T (startr(n)) also have n′ with e(n′)(a, r) < 0.

be the tree induced by all runs λ[0, iλ] for λ ∈ out(q, e′, sA, A), i.e., V = {λ[0, i] | λ ∈ out(q, e′, sA, A), i ≤ iλ} and34

E = {(λ[0, i], λ[0, i + 1]) | λ ∈ out(s, e′, sA, A), i < iλ}. We first attach to each node λ[0, i] of T an element v(λ[0, i])1

where2

v(λ[0, i])(a, r) =

⎧⎪⎪⎨⎪⎪⎩λ|En[i](a, r) if v(n)(a, r) � arb

arb otherwise

In the following, we show how to convert T into a search tree which shows that u-strategy(node0(s(n), e(n), v(n), A), φ)3

returns true. Note that T must be finite and each edge in E corresponds to a join action of all agents.4

Initially, let T0 = T , then Tl+1 is constructed from Tl as follows.5

Case 1a If there is a node λ[0, k] in Tl such that ∃ j < k : λ|Q[j] = λ|Q[k] ∧ v(λ[0, j]) ≥ v(λ[0, k]), then Tl+1 is6

constructed from Tl by replacing the subtree Tl(λ[j]) by Tl(λ[k]), updating the values for λ[k′]|En and v(λ[0, k′])7

for all k′ ≥ k in the subtree Tl(λ[k]) according to the values λ[j]|En and v(λ[0, j]) and the costs of actions in8

Tl(λ[k]).9

Case 1b If there is a node λ[0, k] in Tl such that ∃ j < k : λ|Q[j] = λ|Q[k] ∧ v(λ[0, j]) ≤ v(λ[0, k]) ∧ v(λ[0, j]) �10

v(λ[0, k]), then Tl+1 is constructed from Tl by replacing the value v(λ[0, k′]) for all nodes λ[0, k′] in the subtree11

Tl(λ[k]) as follows12

v(λ[0, k′])(a, r) =

⎧⎪⎪⎨⎪⎪⎩v(λ[0, k′])(a, r) if v(λ[0, j])(a, r) = v(λ[0, k])(a, r)
arb if v(λ[0, j])(a, r) < v(λ[0, k])(a, r)

Case 2 Otherwise, Tl+1 = Tl, i.e., no more change.13

The construction stops when Tl+1 = Tl. Let the resulting tree Tl+1 = T ′. For each node λ[0, i] in T ′, we define a14

node nλ[0,i] where: s(nλ[0,i]) = λ|Q[i], p(nλ[0,i]) = [λ|Q[0] · . . . · λ|Q[i − 1]], c(nλ[0,i]) = A and e(nλ[0,i]) = λ|En[i] and15

v(nλ[0,i]) = v(λ[0, i]). In the following, we show by induction on the length of T ′(λ[0, i]) that u-strategy(nλ[0,i], φ)16

returns true.17

Base case: Assume that λ[0, i] is a leaf of T ′, then it is a leaf from T . Then, the condition of the if statement in lines18

8-9 of Algorithm 4 is true, therefore, u-strategy(nλ[0,i], φ) returns true.19

Induction step: Assume that λ[0, i] is not a leaf of T ′. Then the condition of the if statement (lines 2-3) is false, since20

s(n) |= alt(φ) (where n is from the input of this Lemma). The condition of the next if statement (lines 4-5) is also21

false, since otherwise T ′ can be cut further by (Case 1a). The condition of the third or fourth if statement (lines 8-11)22

is false since otherwise λ[0, i] must have been a leaf of T ′. Therefore, the algorithm must enter the second for loop.23

33

n

stop
r (n)

n'

n
n'

n
n'

n
n'

n
n'

n
n'

n
n'

n
n'

n
n'

st
ar
t r(
n)

nk

nk-1

n2

n1

n3

(a)

st
ar
t r(
n)

st
op

r(
n)

n

start
r (n')

stop
r (n')

n'

n
n1'

n
n2'

n
n'k-1

n
nk'

nk

nk-1

n2

n1

(b)
Figure B.8: Repeating T (startr(n)).

34

For α = sA(λ|Q[0, i]) ∈ dA(λ[i]) we have that, for every s′ ∈ out(λ|Q[i], α) with n′ = node(nλ[0,i], s′, α, A), there must24

be λ′[0, i + 1] in T ′ such that n′ = nλ′[0,i+1]. By the induction hypothesis, u-strategy(nλ′[0,i+1], φ) returns true. Thus,1

u-strategy(nλ[0,i], φ) also returns true.2

Obviously, u-strategy(node0(s(n), e(n), v(n), A), φ) returns true since nλ[0] = node0(s(n), e(n), v(n), A).3

The above proof can be adapted to the case φ = 〈〈A〉〉ζψ1Uψ2 by exchanging the role of v(n) and ζ.4

Case φ = 〈〈A〉〉↓Gψ: strategy(n, φ) returns true iff g-strategy(n0, φ) returns true (by lines 18-19) where n0 = node0(s(n),5

e(n), v(n), A).6

(⇒) : Let T denote the search tree rooted at n0 when g-strategy(n0, φ) returns true.7

For every node n of T , we have that strategy(n, ψ) returns true according to lines 10-11 of Algorithm 5. By8

induction hypothesis, we also have s(n), vn |= ψ for some vn ∈ compatible(v(n)). We first update the value of e(n) for9

every node in T so that resource availability is enough to satisfy ψ at every node. The update is carried out from the10

leaves to the root of T as follows:11

• For a leaf n, e(n) := max{vn, e(n)};12

• For an interior node n with k children n1, . . . , nk, if e(ni) has been updated for all i ∈ {1, . . . , k}, then e(n) :=13

max{vn, e(n), e(n1) + cons(a(n)), . . . , e(nk) + cons(a(n))}.14

Let sT denote the strategy for A where for each node n ∈ T , with p(n) = n0 . . . nk, sT (s(n0) . . . s(nk)s(n)) = (a(n))A.15

However, this strategy may not be executable from n0 if there is some node n in T such that e(n)(i, r) < 0 for some16

resource r and agent i. We can repeat the tree expansions in the previous case to eliminate all such nodes. Let17

the obtained tree be T1. By lines 12-13, for all leaves n′ of T1, we have that there exists n′′ ∈ p(n′) such that18

eA(n′′) ≤ eA(n′). Then, we construct an infinite tree from T1 as follows:19

• Given Ti, we construct Ti+1 by replacing all leaves n′ of Ti by the tree T1(n′′).20

• T ′ = limi→∞ Ti.21

Then, the strategy sT ′ from T ′ obviously satisfies φ. In other words, we have s(n0), e(n0) |= φ where it is obvious22

that e(n0) ∈ compatible(v(n)). Again, since n0 = node0(s(n), e(n), v(n), A), s(n) = s(n0) and v(n) = v(n0); therefore23

s(n), e(n0) |= φ where e(n0) ∈ compatible(v(n)).24

(⇐) : Assume that s(n), e′ |= φ for some e′ ∈ compatible(v(n)), then there exists a strategy sA such that for all λ ∈25

out(q, e′, sA, A) and i ≥ 0 : λ|Q[i], λ|En[i] |= ψ. We shall now prove that strategy(n, φ) returns true, i.e., equivalently26

g-strategy(node0(s(n), e(n), v(n), A), φ) returns true. Let T = (V, E) be the infinite tree induced by all runs λ ∈27

out(q, e′, sA, A), i.e., V = {λ[0, i] | λ ∈ out(q, e′, sA, A), i ≥ 0} and E = {(λ[0, i], λ[0, i + 1]) | λ ∈ out(s, η, sA, A)}. We28

also attach to each node λ[0, i] of T an element v(λ[0, i]) where29

v(λ[0, i])(a, r) =

⎧⎪⎪⎨⎪⎪⎩λ|En[i](a, r) if v(n)(a, r) � arb

arb otherwise

Then, in the following, we cut T into a finite search tree which shows that g-strategy(node0(s(n), e(n), v(n), A), φ)30

returns true. Note that each edge in E corresponds to a join action of all agents. First, we repeatedly apply the31

following rule to prune the tree32

Case 3 If there is a node λ[0, k] in Tl such that ∃0 ≤ j < k : λ|Q[j] = λ|Q[k] ∧ λ|En[j] ≤ λ|En[k], then Tl+1 is33

constructed from Tl by replacing in the subtree Tl(λ[k]) by the node λ[k].34

This step must yield a finite tree T ′ since for every infinite path in the original tree, there must be a state appearing35

infinitely often and the corresponding endowments must be non-decreasing. These paths then are always cut by (Case36

3).37

Then, let T0 = T ′, then Tl+1 is constructed from Tl as follows.38

Case 4 If there is a node λ[0, k] in Tl such that ∃ j < k : λ|Q[j] = λ|Q[k] ∧ λ|En[j] ≥ λ|En[k] and λ|En[j] � λ|En[k],39

then Tl+1 is constructed from Tl by replacing the subtree Tl(λ[j]) by Tl(λ[k]), updating the values for λ[k′]|En40

and v(λ[0, k′]) for all k′ ≥ k in the subtree Tl(λ[k]) according to the values λ[j]|En and v(λ[0, j]) and the costs of41

actions in Tl(λ[k]).42

35

Case 5 If there is a node λ[0, k] in Tl such that ∃ j < k : λ|Q[j] = λ|Q[k] and (v(λ[0, j])(a, r) = v(λ[0, k])(a, r) = arb43

or λ|En[j](a, r) = λ|En[k](a, r) for all a ∈ A, r ∈ Res) and λ|En[j](a, r) > λ|En[k](a, r) for some a ∈ A, r ∈ Res,1

then Tl+1 is constructed from Tl by replacing the subtree Tl(λ[j]) by Tl(λ[k]), updating the values for λ[k′]|En2

and v(λ[0, k′]) for all k′ ≥ k in the subtree Tl(λ[k]) according to the values λ[j]|En and v(λ[0, j]) and the costs of3

actions in Tl(λ[k]).4

Case 6 If there is a node λ[0, k] in Tl such that ∃ j < k : λ|Q[j] = λ|Q[k]∧v(λ[0, j]) ≤ v(λ[0, k])∧v(λ[0, j]) � v(λ[0, k]),5

then Tl+1 is constructed from Tl by replacing the value v(λ[0, k′]) for all nodes λ[0, k′] in the subtree Tl(λ[k]) as6

follows7

v(λ[0, k′])(a, r) =

⎧⎪⎪⎨⎪⎪⎩v(λ[0, k′])(a, r) if v(λ[0, j])(a, r) = v(λ[0, k])(a, r)
arb if v(λ[0, j])(a, r) < v(λ[0, k])(a, r)

Case 7 Otherwise, Tl+1 = Tl, i.e., no more change.8

The construction stops when Tl+1 = Tl. Let the resulting tree Tl+1 = T ′′.9

For each node λ[0, i] in T ′′, we define a node nλ[0,i] where: s(nλ[0,i]) = λ|Q[i], p(nλ[0,i]) = [λ|Q[0] · . . . · λ|Q[i − 1]],10

c(nλ[0,i]) = A and e(nλ[0,i]) = λ|En[i] and v(nλ[0,i]) = v(λ[0, i]). In the following, we show by induction on the height of11

T ′′(λ[0, i]) that g-strategy(nλ[0,i], φ) returns true.12

Base case: Assume that λ[0, i] is a leaf of T ′′, then it is a leaf from T ′′ and is the result of applying Case 3. Then, the13

condition of the if statement in lines 12-13 of Algorithm 5 is true, therefore, g-strategy(nλ[0,i], φ) returns true.14

Induction step: Assume that λ[0, i] is not a leaf of T ′′. Then the condition of the if statement (lines 2-3) is false,15

since s(n) |= alt(φ) (where n is from the input of this Lemma). The condition of the next if statement (lines 4-5) is16

also false, since otherwise T ′′ can be cut further by (Case 4). The condition of the third or fourth if statement (lines17

6-7) is false since otherwise T ′′ must can be cut further by (Case 5). Therefore, the algorithm must enter the second18

for loop. For α = sA(λ|Q[0, i]) ∈ dA(λ[i]) we have that, for every s′ ∈ out(λ|Q[i], α) with n′ = node(nλ[0,i], s′, α, A),19

there must be λ′[0, i + 1] in T ′ such that n′ = nλ′[0,i+1]. By the induction hypothesis, g-strategy(nλ′[0,i+1], φ) returns20

true. Thus, g-strategy(nλ[0,i], φ) also returns true.21

Obviously, g-strategy(node0(s(n), e(n), v(n), A), φ) returns true since nλ[0] = node0(s(n), e(n), v(n), A).22

The above proof can be adapted to the case φ = 〈〈A〉〉ζGψ by exchanging the role of v(n) and ζ.23

36

