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One of the main obstacles that prevents practical applications of antiferromagnets is the difficulty
of manipulating the magnetic order parameter. Recently, following the theoretical prediction [J.
Zelezny et al., PRL 113, 157201 (2014)], the electrical switching of magnetic moments in an anti-
ferromagnet has been demonstrated [P. Wadley et al., Science 351, 587 (2016)]. The switching is
due to the so-called spin-orbit torque, which has been extensively studied in ferromagnets. In this
phenomena a non-equilibrium spin-polarization exchange coupled to the ordered local moments is
induced by current, hence exerting a torque on the order parameter. Here we give a general system-
atic analysis of the symmetry of the spin-orbit torque in locally and globally non-centrosymmetric
crystals. We study when the symmetry allows for a nonzero torque, when is the torque effective,
and its dependence on the applied current direction and orientation of magnetic moments. For
comparison, we consider both antiferromagnetic and ferromagnetic orders. In two representative
model crystals we perform microscopic calculations of the spin-orbit torque to illustrate its sym-
metry properties and to highlight conditions under which the spin-orbit torque can be efficient for
manipulating antiferromagnetic moments.

I. INTRODUCTION the sensitivity to external magnetic fields means that a
FM memory can be accidentally rewritten by external
magnetic fields. AFM memory, on the other hand, is
much less sensitive to external magnetic fields. For ex-
ample, a memory based on FeRh could not be erased
by fields as high as 9 T [5]. Another advantage is that
dynamics of magnetic moments in AFMs is much faster
than in FMs. Switching of the AFM order parameter on
a ps timescale was demonstrated, e.g., in a laser-induced
heating experiment [8].

A remarkable feature of AFMs is also the wide range of
available AFM materials. This holds especially for semi-
conductors. FM semiconductors have attracted a lot of
interest in the past since they enable the combination of
spintronic and microelectronic functionalities. Yet, de-
spite intensive research, FM semiconductors remain rare
and tend to have Curie temperatures too low for practical
applications. AFM semiconductors on the other hand are
more common and tend to have magnetic order persisting
above room temperature [3, 9-11]. Materials that com-

Antiferromagnets (AFMs) have so far found little ap-
plications as active components of devices primarily due
to their lack of net magnetization. With the develop-
ment of spintronics, however, the net magnetization that
couples strongly to the magnetic field becomes less im-
portant. In the latest generation of magnetic random
access memories (MRAMS), for example, magnetic fields
are used neither for writing nor for reading. Since AFMs
possess a long range magnetic order just like ferromag-
nets (FMs), they have been recently explored as new ma-
terials for spintronics (see Refs. [1-3] for recent reviews of
antiferromagnetic spintronics). In particular, they could
in principle be used for solid state memories in which
bits of information are represented by the direction of the
magnetic order parameter, similarly to FMs. Such mem-
ory functionalities were experimentally demonstrated in
AFM tunneling [4] and ohmic devices [5-7].

Compared to FMs, AFMs have several potential ad-
vantages. They are insensitive to large magnetic fields
and do not produce any stray fields. This makes them
more challenging from an experimental and technologi-
cal point of view, but it can also be an advantage. Stray
fields can cause problems in densely packed devices, and

bine antiferromagnetism with ferroelectricity [12] or the
parent compounds of the high T, superconductors [13]
further highlight the broad and diverse range of AFMs.
For microelectronic memory and logic applications of
AFMs, two basic functionalities have to be available: a
method for detecting and manipulating electrically the



magnetic order parameter. For readout, the anisotropic
magnitoresistance (AMR) effect [9, 10, 14] and its tun-
neling counterpart TAMR have been demonstrated [4].
While AMR is usually rather small, with typical mag-
netoresistance ratios around a few percent, a ~ 100%
TAMR has been already achieved, albeit at low temper-
atures.

Manipulating the magnetic order parameter in AFMs
by practical means has been a major challenge. AFMs
can be controlled by external magnetic fields, but this
is impractical since it typically requires very large fields.
The lowest uniform static field that can reorient an AFM
is the so-called spin-flop field, which is proportional to
v HjH,,, where H; is the inter-sublattice exchange field
and H,, is the anisotropy field. Since the exchange in-
teraction is typically much larger than the anisotropy,
the spin-flop fields are large compared to FMs. Instead,
an auxiliary exchanged-coupled FM layer is often used
[4, 9, 15], which makes manipulation possible by smaller
fields. This only works for thin AFM layers though, and
it is highly dependent on interface properties.

While FMs can be manipulated by external magnetic
fields, in microelectronic devices a direct electrical ma-
nipulation offers a more scalable approach. This is
usually achieved using the so-called spin-transfer torque
[16, 17]. This torque occurs due to the absorption of an-
gular momentum from a spin-polarized current generated
by a fixed FM polarizer. On the other hand, due to spin-
orbit coupling, a torque can be generated without the in-
jection of a spin-current from the FM polarizer [18-28].
Such torque is usually called a spin-orbit torque. In FMs
it requires a broken inversion symmetry and can there-
fore occur either in crystals with no inversion symmetry
in the unit cell or in heterostructures, where inversion
symmetry is broken structurally.

Because of the insensitivity of AFMs to external fields,
the electrical manipulation of AFMs is even more desir-
able. To manipulate a collinear AFM effectively, a stag-
gered magnetic field (i.e., a field that is opposite on the
two sublattices) is needed. In Ref. [29] it was shown that
the analogue of the FM spin-transfer torque in AFMs can
generate effective fields that are staggered. However this
requires very thin layers [30].

Ref. [31] proposed that in bulk AFMs with specific
symmetries, electrical current can create a torque by
a similar mechanism to the spin-orbit torque in FMs.
The work also showed that the effective field generating
the torque can be staggered and the corresponding non-
staggered torque can thus be effective for manipulating
AFMs. Switching of an AFM based on predictions in Ref.
[31] was recently experimentally observed in AFM CuM-
nAs [7]. This opens up a way to applications of AFMs.
The current densities needed for switching in Ref. [7]
were comparable to current densities in FM spin-torque
MRAMs.

In this manuscript we theoretically study the nature
and characteristics of spin-orbit torques in AFMs in a
systematic way. We give a general symmetry analysis

for crystals that lack inversion symmetry (globally non-
centrosymmetric crystals) as well as crystals in which the
symmetry group of at least one site in the unit cell is non-
centrosymmetric (in other words, there exists a site which
is not an inversion center). We then say that such crystals
are locally noncentrosymmetric. We consider both the
AFM and FM order. We determine when the torque can
exist, when it is effective for manipulating the magnetic
order in AFMs, and also what form the torque has. In
Ref. [31] the spin-orbit torque was calculated for two rep-
resentative tight-binding models, one describing a three-
dimensional (3D) lattice of MnyAu and the other one
representing a two-dimensional (2D) crystal with Rashba
spin-orbit coupling. MnsAu served as a model AFM
system with globally centrosymmetric and locally non-
centrosymmetric crystal structure and inversion-partner
lattice sites occupied by the two spin-sublattices. In this
model system, the so called field-like torque, driven by
a staggered, magnetization-independent current-induced
field, is effective. (Note that the relevant crystal sym-
metries of MnsAu are the same as those of the re-
cently experimentally studied CuMnAs and that the cal-
culated magnitudes of the spin-orbit torques in MnsAu
and CuMnAs are also comparable [7].) On the other
hand, the so called (anti)damping-like torque, driven by
a staggered, magnetization-dependent effective field, was
found to be the effective torque component in the 2D
AFM crystal with a global inversion asymmetry modeled
by the Rashba Hamiltonian.

Here we calculate all spin-orbit torque components in
both models which allows us to generalize the result of
Ref. [31]: All torque components driven by fields that
are an even function of the sublattice magnetization are
effective in the AFM 3D MnsAu model while torques
driven by fields that are odd in magnetization are effec-
tive in the AFM 2D Rashba model. The calculations
also reveal that the angular dependences of the current-
induced fields with respect to the applied current direc-
tion and the direction of magnetic moments are similar
in the two model systems, due to similarities in the rel-
evant symmetries of the two model crystals. Numerical
and analytical calculations of the spin-orbit torque in the
two tight-binding models are complemented by ab initio
density-functional-theory (DFT) calculations and results
for the AFM order are compared to calculations assum-
ing the FM order in the same model crystals.

Our paper is organized as follows: In Sec. II we
describe the two tight-binding models and the linear
response formalism used for calculating the spin-orbit
torque. In Sec. III we discuss the symmetry of the spin-
orbit torque and apply the general symmetry arguments
to our two models. A detailed derivation of symmetry
properties of the spin-orbit torque is given in Appendix
A. In Sec. IV we show the results of analytical and nu-
merical calculations of the spin-orbit torque in the two
models. In Sec. V we discuss the results, in particular
summarize the symmetry considerations.



II. MODELS

In some materials electrical current can induce non-
equilibrium spin-polarization due to spin-orbit coupling
[32-36]. This effect is called the inverse spin-galvanic
effect or the Edelstein effect. For the presence of non-
vanishing net spin-polarization (i.e., integrated over the
whole unit cell) a broken inversion symmetry is needed.
In FMs, due to exchange interaction between carrier
spins and magnetic moments, the current-induced spin-
polarization (CISP) will exert a torque on the magneti-
zation. This effect is the spin-orbit torque. In AFMs the
effect is similar. Since the carrier—-magnetic moment ex-
change interaction is short-range, spin-polarization gen-
erated by the electrical current on a sublattice will inter-
act primarily with the magnetic moments on that sub-
lattice. To evaluate the spin-orbit torque in AFMs we
thus have to calculate the CISP locally on each magnetic
sublattice.

Note that in the spintronics community two different
effects are termed as the spin-orbit torque. Apart from
the effect discussed here, there exists also a torque gen-
erated in heavy metal/FM heterostructures due to spin
Hall effect. Lateral electrical current generates spin cur-
rent in the perpendicular direction due to the spin Hall
effect, which flows in the FM and exerts a torque via the
spin-transfer torque mechanism. Since the heterostruc-
tures have broken inversion symmetry, the torque due to
inverse spin galvanic effect coexists with the spin Hall
torque, rendering the entire physics quite complex to an-
alyze (see for instance Ref. [37], where both mechanisms
are included). We only consider bulk systems in which
the spin Hall effect does not generate any torque.

To calculate the CISP 4S, (a denotes the sublattice)
we use the Kubo linear response formalism. We can de-
fine a response tensor y, such that 6S, = x,E, where E
is the electrical field. We assume that the only effect of
disorder is a constant band broadening I' and we consider
a weak disorder (i.e., small T'). As discussed in Ref. [28],
the tensor y, can then be expressed as a sum of three
terms

Xa = X + X6 + x40, (1)
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where n,m are band indices, 1,k and e,x denote Bloch
eigenfunctions and eigenvectors respectively, Er is the
Fermi energy, fi n the Fermi-Dirac distribution function,
v is the velocity operator, e is the (positive) elementary
charge and S, is the spin-operator projected on sublat-
tice a. Throughout this text we use a dimensionless spin-
operator, i.e., for one electron S = o, where o is a vector
of Pauli matrices. The k sums run over the first Bril-
louin zone. These equations are the same as in Ref. [28],
except we replace the spin-operator by the spin-operator
projected on a sublattice. We calculate the CISP for the
AFM spin-sublattices. However, the same formalism ap-
plies also for any sublattice in a FM or a non-magnetic

material. . is called the intraband term and Xil(a),

X{ll(b) are the interband terms. The term Y. could also
be obtained from the Boltzmann formula with constant
relaxation time (with the relaxation time 7 = h/2T). It
is diverging in the limit I' — 0, analogously to how, for
example, the conductivity diverges in a perfectly peri-
odic crystal. Thus to evaluate this term we always have

to consider some disorder, i.e., a finite I'. The term Xf}(a)

is constant in the zero I' limit, while the term szl(b) is

zero in this limit. The zero I' limit of the term le(a)
is called the intrinsic contribution since it is determined
only by the electronic structure of the crystal and not
by disorder. The intrinsic contribution has been studied
extensively in the context of the anomalous Hall effect

[38] and the spin-Hall effect [39].

We calculated the CISP for the two tight-binding mod-
els from Ref. [31]. For completeness we give here a
description of the models. The first one is a 2D tight-
binding model with Rashba spin-orbit coupling, which
simulates the structural inversion asymmetry at a sur-
face or an interface. The model was chosen as a simplest
AFM model in which the spin-orbit torque is expected.
We consider a square AFM lattice (see Fig. 1(a)), where
the d-orbital local magnetic moments are treated clas-
sically and only the conduction s electrons are treated
quantum mechanically. The Hamiltonian can be written
as

H= Z JddMi'Mj+th+ZJsti'Mi+HR-

<ij> i
()

Here the indices 7, j correspond to lattice sites; Mi, Mj
are directions of magnetic moments, Jyq and Jsq are the
exchange constants for exchange interaction between the
magnetic moments, and between the magnetic moments
and conduction electron spins, respectively. H* contains
the nearest neighbor hoppings. Hpg is the Rashba spin



FIG. 1. (Color online) Crystal structure of two model AFMs.
(a) Crystal structure of the AFM 2D Rashba model. (b)
Crystal structure of AFM MnsAu. Note that the unit cell
shown is the conventional unit cell, which is as large as the
primitive unit cell. All of the atoms with the same color are
connected by a translation and are thus equivalent.

orbit coupling, given by

(0%
Hr =5 - [(cdyeivon — el cjpant)—
7

—i(chieirs,u + e cips, ) +Hel,  (6)

where « is the Rashba parameter, a; the lattice constant,
c;-, c; are the creation and annihilation operators for elec-
tron on site j, and j 4 95, j + 6, are nearest neighbors
along the z and y directions, respectively. Ref. [31] shows
the band structure of this Hamiltonian. In all calcula-
tions we set t = 3 eV, Jyq = 1 eV, and 2%” = 0.1 eV,
where t is the hopping parameter. Unless stated other-
wise, the Fermi level is set to Ep = —2 V.

The torque is given by
T, =M, x B, (7

where M, is the magnetic moment on sublattice a and
B, is the effective current-induced field, which for this
model is given by [23]

S,
Bo = " (8)

where M, is the magnitude of magnetic moment on sub-
lattice a.

The second model describes a 3D AFM MnsAu. The
crystal structure of MnsAu is shown in Fig. 1(b). It
is a collinear high Néel temperature AFM that has re-
cently been identified as a promising material for AFM
spintronics [40-42]. We describe MnsAu by an empirical
tight-binding Slater-Koster model with s,p and d elec-
trons for each atom. We use the tight-binding parame-
ters for single-element metals from Ref. [43] as a starting
point and improve them so that the model agrees with
the DFT calculation [31]. (See Ref. [44] for details of the
method and the procedure for obtaining the tight-binding
parameters.) The DFT calculation was done using the
full-potential all-electron code Wien2k [45]. To improve

the description of the Mn d states, we used the LDA+U
method with U=4.63 eV and J=0.54 eV [46].

For the tight-binding calculations of the CISP we add
a k-independent on-site spin-orbit coupling for both Mn
and Au atoms with parameters obtained from atomistic
Hartree-Fock calculations. The tight-binding model is
not expected to be quantitatively as accurate as DFT
calculation, however, it can be used to illustrate the ori-
gin and the symmetries of the spin-orbit torque in the
AFM MnyAu crystal. A quantitative comparison to DFT
spin-orbit torque calculations is presented in Sec. V.

In the DFT calculation it is possible to evaluate the
effective field or directly the torque using the space-
dependent exchange field [21, 37]. In the case of the
tight-binding calculation, we obtain only the CISP. To
get an estimate of the effective field we can still use Eq.
(8), which corresponds to taking a spatial average of the
exchange field. In Ref. [31] the carrier-magnetic mo-
ment exchange constant was set to Jyq = 1 €V, which is
a typical value estimated for transition metals [47].

In Ref. [31], only the terms x2'“ for the 2D Rashba
model and x! for the MnyAu model were considered,
respectively. Here we take into account all three terms
for both models. Since we are primarily interested in the
small T' limit, we mostly focus on terms xZ, Xél(a), but

(b)

the term Xél is also discussed.

III. SYMMETRY CONSIDERATIONS

Symmetry is crucial for understanding when the spin-
orbit torque can exist and what form it has. In Appendix
A we give a derivation of the symmetry properties of the
tensor x,. Here we summarize the main results and apply
them to our two models. The following analysis applies
both to the effective field and the CISP because they have
the same symmetry properties. Since spin-orbit torque is
a non-equilibrium process that includes dissipation, the
tensor x, does not have a simple behavior under time-
reversal. To deal with this problem we separate the ten-
sor into a part even in magnetic moments and a part odd
in magnetic moments

Xa (M) = [xa(M]) + xa([-M])] /2, (9)
X (M)) = [xa(IM]) = xa([-M])] /2, (10)
where [M] = [M 4, Mg, ...] denotes the directions of all

magnetic moments in the magnetic unit cell. As shown
in the Appendix A it holds that

even

X' = xa +xa’ (11)
xold = x 1, (12)



In Appendix A, the following rules are derived for the
transformation of y, under symmetry operation R

XS = det(D)Dx2" D™, (13)
X2 = +det(D) D24 D (14)

where a’ is the sublattice to which the sublattice a trans-
forms under symmetry operation R and D is a matrix
representing the symmetry operation in real space as de-
fined by Eq. (A13). The plus sign in Eq. (14) corre-
sponds to a symmetry operation that does not contain
time-reversal and the minus to a symmetry operation
that contains time-reversal. These rules apply for any
form of magnetic order as well as for nonmagnetic crys-
tals. The same rules also apply for the tensor y, which
describes the net CISP.

Basic symmetry rules can be inferred from Egs. (13)
and (14). If the system has an inversion symmetry

Xa' = —Xa- (15>

If also inversion transforms the sublattice a into itself,
then there can be no CISP on the sublattice a. We there-
fore reach an important conclusion: for the existence of
the CISP (and thus also the spin-orbit torque) on sublat-
tice a, the inversion symmetry has to be locally broken,
i.e., the atomic site which forms the sublattice a must not
be an inversion center. This means that current can gen-
erate spin-polarization even in a material that has global
inversion symmetry if inversion symmetry is broken lo-
cally. However, it is also important to note that if the
inversion symmetry is locally broken, the CISP can still
vanish due to other symmetries. For example, a diamond
lattice has a global inversion symmetry, but the two dif-
ferent lattice sites in the diamond unit cell have inversion
symmetry locally broken. Without any strain, the CISP
will nevertheless vanish. However, when a uniaxial strain
is present in the diamond lattice a CISP with opposite
sign on the two different sites will appear [48].

In the 2D Rashba model, the inversion symmetry is
broken globally due to the structural asymmetry of the
assumed layered system. In the AFM MnsAu crystal,
the inversion symmetry is broken by the magnetic order
since the inversion partner lattice sites are occupied by
Mn atoms with opposite moments. Even without mag-
netic moments, however, the inversion symmetry is lo-
cally broken for each sublattice. This can be seen in Fig.
1(b) and is discussed in more detail in Sec. V (see also
Fig. 9).

Of particular interest in the case of AFMs is to de-
termine how the CISPs on the AFM spin-sublattices are
related. This is because for the spin-orbit torque to be
efficient, the current induced effective magnetic field and
thus also the CISP have to be staggered. Since the ex-
change interaction is much larger than any field typi-
cally acting on AFMs, we assume that during any dy-
namics the two magnetic moments stay approximately
collinear (although any dynamics of the AFM order pa-

rameter induces a small magnetization). Then in the
AFM 2D Rashba model, a simultaneous translation and
time-inversion will always be a symmetry of the model
that transforms one AFM spin-sublattice into the other.
For such a symmetry operation, D = I, where [ is the
identity matrix, and therefore

G = (16)
X = —xg. (17)

This implies that the efficient torque driven by a stag-
gered field is generated by the odd component of the
response tensor.

In the MnsAu type of crystal, the AFM spin-
sublattices are not connected by translation. Instead
they are connected by inversion around the unit cell cen-
ter so that a combination of inversion and time-reversal

is a symmetry of the model. Since in this case D = —1I,
we find
X3 = XE (18)
XA = xg (19)

and now it is the even component of the response ten-
sor that generates the staggered CISP. The two models
illustrate a general phenomenology of CISPs in collinear
AFMs, in which the two AFM spin-sublattices are typi-
cally connected either by a translation or by an inversion.

By considering the magnetic space group of a given
material, one can find using the Eqgs. (13) and (14) the
most general form of the tensor y, as well as relations
between tensors y, on different sublattices. Note that
for the CISP projected on a sublattice it is not enough to
consider the point group of the crystal because then the
information on the relationship between the sublattices
would be lost. We provide a free program which outputs
the symmetry of the CISP for any type of crystal and
magnetic structure [49]. See the Appendix B for a brief
description of the code. Symmetry of the tensors, which
describe the global spin-orbit torque can be found in Ref.
[50] for every magnetic point group. These also apply for
the local spin-orbit torque, if one uses the site symmetry
group (of the site which forms the sublattice), i.e. the
group of symmetry operations of the whole crystal that
leave the sublattice invariant.

In a magnetic material, the CISP in general depends
on the direction of the magnetic moments. This is be-
cause the CISP is determined by the electronic struc-
ture and in presence of spin-orbit coupling the electronic
structure depends on the direction of magnetic moments.
Understanding this dependence is important because it
determines what kind of magnetic dynamics will the SOT
induce. Note that a CISP strongly dependent on the di-
rection of magnetic moments has been observed experi-
mentally [24]. To describe the dependence of the CISP
on the direction of magnetic moments, it is useful to ex-
pand the linear response tensor in powers of magnetic
moments. In general y, depends on the directions of



all magnetic moments in the system. We consider only
FMs and collinear two-sublattice AFMs. We again as-
sume that the magnetic moments will always stay ap-
proximately collinear. Since the intra-spin-sublattice ex-
change is typically very large, we also assume that the
magnitude of the spin-sublattice magnetic moments will
not change during dynamics. Then x, will be a function
of only the spin-axis direction . In the case of two sub-
lattice collinear AFM, n = L = L/|L|, where L is the
Néel vector: L =My — Mp. In FMs n = M/|M|. We
can then write the tensor x, in the following way, [51]

Xa,ij () = xff,)?j + X,(ll,zj,kﬁk + ng,klﬁkﬁz +... (20)
Here the Einstein summation notation is used. Note that
since 1 is a unit vector, the expansion could be done using
two variables only. We find it more practical, however,
to use all three components of n. The odd terms in the
expansion correspond to the odd part of the CISP, while
the even terms correspond to the even part.

To find the symmetry properties of the expansion
(20) we have to consider the nonmagnetic site symme-
try group. This is a group of symmetry operations of
the nonmagnetic crystal that leave the sublattice a in-
variant. (See the Appendix A for details on how to find
the symmetry properties of the expansion (20).) Since
there are only 21 nonmagnetic point groups with broken
inversion symmetry, it is feasible to calculate all allowed
leading terms of the expansion (20). This was done for
the zeroth order terms in Ref. [48] that focused on the
CISP in FMs. The zeroth order terms generate the field-
like torque. In Table I we give all allowed first order
terms and for completeness we also show the zeroth or-
der terms. The zeroth order term vanishes for several
point groups. For those we also give the second order
terms in Table II. Together the tables give the lowest
order terms for the even and odd part of the CISP in all
21 non-centrosymmetric point groups.

The tensors in Tables IIT are given in cartesian coordi-
nate systems. The cartesian systems are defined in terms
of the conventional basis vectors a, b, ¢ (see the Interna-
tional Tables for Crystallography [52]). The choice of the
cartesian system is straightforward for the orthorhom-
bic, tetragonal and cubic groups. The tensors for the
triclinic group 1 have a completely general form and the
choice of the coordinate system is thus irrelevant for this
group. For hexagonal and trigonal groups, we choose the
right-handed coordinate system that satisfies x = a/|a,
z = c¢/|c|. For the monoclinic groups we use the unique
axis b setting [52] and choose the right-handed coordinate
system that satisfies x = a/|al, y = b/|b|.

The tensors in Tables LIT apply for two-sublattice
collinear AFMs and FMs. In the case of AFMs the ex-
pansion only applies for the CISP on a sublattice and
correspondingly the site symmetry group has to be used.
In FMs, the tensors apply for the local as well as for the
net CISP. In the latter case the point group of the whole
crystal has to be used. Since the zeroth order term is

independent of magnetic moments it can be equally con-
sidered for any material, including non-collinear AFMs.
In nonmagnetic materials, there is naturally no depen-
dence on magnetic moments so the zeroth order terms
describes the CISP completely in this case.

The zeroth order terms that generate the field-like
torque are particularly important since they are often
dominant. As discussed in Ref. [48], the tensors corre-
sponding to the field-like torque are in general composed
of three distinct terms: generalized Rashba and Dressel-
haus terms and a term describing a response proportional
to the electric field. They are described by the following
tensors respectively

11 —Z21 O
X%R = |21 211 0], (21)
0 0 0
T11 z21 O
X%D =|x21 —x11 0, (22)
0 0 0
z11 0 0
XaE = O T11 0 (23)
0 0 zn
@ N N
R
[ E. |
/ / )
\
- \—— g ~ xh P
~ N

FIG. 2. (Color online) Illustration of the Rashba and Dres-
selhaus CISPs. The figures show the dependence of CISP
on the electric field direction. Adapted from [48]. (a) Gen-
eralized Rashba CISP, (b) generalized Dresselhaus CISP, (c)
Rashba CISP, (d) Dresselhaus CISP.

The generalized Rashba and Dresselhaus CISPs lie in
a plane and are only present for the current applied in
the same plane. In Egs. (21), (22), it is the zy plane, but
in general, it can be any plane. The generalized Rashba
and Dresselhaus terms differ in how the CISP depends
on the current direction, as illustrated in Figs 2(a),(b).



In the case of the Rashba CISP, when the current direc-
tion is rotated the CISP rotates in the same way, while
in the case of the Dresselhaus CISP the field rotates in
the opposite direction. They differ from the conventional
Rashba and Dresselhaus terms,

0 —T21 0

B=lzn 0 0}, (24)
0 0 0
11 0 0

xo=|[0 -2z 0], (25)
0 0 0

by a constant off-set angle between the applied current
and the CISP (see Figs. 2(c),(d)).

The Rashba term or generalized Rashba term with
nonzero xs; components occurs in polar point groups
(groups 1, 2, m, mm2, 4, 4mm, 3, 3m1, 6 and 6mm), i.e.,
in groups which allow the existence of a permanent elec-
tric dipole moment. In a polar group, there is a Rashba
term in the plane perpendicular to the electric dipole mo-
ment. The Rashba term can be written as 6S ~ D x E,
where D is the direction of the electric dipole moment.
In all polar groups except for m and 1, D is oriented
along the polar direction (a direction invariant under all
symmetry operations), which in the coordinate systems
used in Table I is always oriented along the z axis. In
group 1, D can have any direction, and in the group m,
it is oriented in the mirror plane. Polar point groups 1,
2, 4, 3 and 6 contain the generalized Rashba term (rather
than just the Rashba term), which in addition also oc-
curs in nonpolar point groups 222, 422, 312 and 622 with
x9; = 0. The CISP described by xZ in Eq. (23) oc-
curs in enantiomorphic (also called chiral) crystals (point
groups 1, 2, 222, 4, 422 3, 312, 6, 622, 23 and 432), i.e.,
crystals in which no symmetry operation contains inver-
sion. The CISP is an axial vector (even under inversion),
while the electric field is a polar vector (odd under in-
version). These two vectors can only be proportional in
the enantiomorphic crystals since in these crystals there
is no difference between an axial and polar vector. The
generalized Dresselhaus term (Eq. (22)) occurs in point
groups 1, 2, m, 222, mm2, —4 and —42m, of which the
groups 222 and —42m have just the Dresselhaus term.

The nonmagnetic symmetry group of the magnetic
sites in both the 3D MnsAu and the 2D Rashba model
is 4mm, which has a Rashba zeroth order CISP of the
form z x E. Another example of an AFM with Rashba

zeroth order CISP is CuMnAs [7]. Dresselhaus zeroth or-
der CISPs have been previously observed in FMs GaM-
nAs [24, 25] and NiMnSb [48] (global point group —42m).
AFM CuMnSb, in which the Mn atomic sites have sym-
metry group —42m [53], is another example for which we
expect the Dresselhaus zeroth order CISP, according to
our symmetry analysis.

The first order term for the 4mm point group can be
written in the following way

XV = X1 + Xo + X3, (26)
where
~L. 0 0
X,=C| o —i.o0], (27)
L, L, O
0O 0 O
Xo=Cy [0 0 0], (28)
Lo L, 0
00 C3L,
Xs={00 CsL, (29)
00 C4L,

Note that in the 2D Rashba model the current cannot
flow in the z direction, so the third column has no phys-
ical meaning in this case. The contribution to the CISP
generated by the tensor X; can be constructed from the
polar direction of the group 4mm: L x (z x E). The con-
tribution to the CISP coming from the tensor X, can be
written as (L - E| )z, where E is the in-plane (the plane
here refers to the xy plane) component of the electric
field.

Finally we note the connection of our general symme-
try analysis of the CISP to the discussion in Ref. [54],
where Rashba and Dresselhaus-like spin-orbit coupling
effects in locally non-centrosymmetric crystals were stud-
ied on the level of equilibrium electronic structure. The
local inversion symmetry breaking induces a local band
splittings, i.e. splittings that become apparent when the
band structure is projected on sublattices. The local
spin-orbit torque discussed here can be thought of as
a consequence of the local band splittings, similarly to
how global Rashba or Dresselhaus spin-orbit torques are
caused by Rashba or Dresselhaus spin-splittings in the
full (unprojected) band structure.

Crystal system Point group X(O)

(1)

X
T11 Ti2 13 NeT111 + NyT112 + NT113 NeTi21 + NyT122 + NeT123 NeT131 + NyT132 + N2T133
triclinic 1 T21 T22 X23 NgT211 + NyT212 + N2T213 NgT221 + NyTo22 + N2T223 NeT231 + NyT2ze + N2T233
T31 T32 T33 Ngp®311 + NyT312 + N2T313 NapX321 + NyT322 + N2T323 Napx331 + NyT332 + N2T333
11 0 x13 Ny T1 NzT13 + N2T12 Ny T3
monoclinic 2 0 z22 O NaTs + NxTe Ny T11 NeTyg + Nox7
31 0 w33 Ny T10 NpTg + N, Tg Ay o
0 z12 O NeT12 + N2T9 Ny T14 NeT13 + N T8
m 21 0 ma3 Ty T3 Ngx11 + NzT10 Ty Ty
0 xz32 O Nex7 + NoTe Ny Ts Nex1 + Noxo



orthorhombic 222

mm2

tetragonal 4

422

4mm

-42m

-4m2

trigonal 3

312

321

3ml

31m

hexagonal 6

622

6mm

-6m2

-62m

cubic 23

432

-43m

Tr11 0 0
0 22 0
0 0 33

0 12 0
21 0
0 0
z11 —z21 O
T21  T11 0

0 0 33

11 221 0O

x21 —z11 0
0 0

r11 0 0
0 z11 O
0 0 33

—xT21 0

21 0
0 0

r11 0
0 —T11 0
0 0

0 21 0
21 0
0 0
z11 —x21 0O
T21  T11 0

0 0 r33

r11 0 0
0 r11 0
0 0 r33

xr11 0 0
0 11 0
0 0 r33
0 —xI21 0

21 0
0 0
0 —xT21 0

21 0
0 0

z11 —z21 0
z21 z11 O
0 0 r33
000
000
000

11 0 0
0 Xy 0
0 0 r33
0 —xT21 0

21 0
0 0

000
000
000
000
000
000

r11 0 0
0 Xy 0
0 0 r11

r11 0 0
0 Xy 0
0 0 r11

000
000
000

0
N2T1
fLy:E;;
MNzTq
0
N3
N=T6
NzT2
ﬁz$4
M. T
N, &
N3

g T2
Nz T7 + NyTo + N, T8
NgTa — NyxT7 + Nox3
flzl’s — ﬁyw4
ﬁyzg
Ngx3 + N2y
—MNyT1
Ny T3
—ﬁy.’/vg, + 'sz$4
—ﬁya:l
fLy.’E4 + flz£5
Ny Ta
’fly_v(l:g
Agpx3 + 225
—ﬁy$3
MNgpXq
Ny T
ﬁzwz

NzTs MNyTq
0 NeTe
ﬁng 0
0 ’fLIIG
’FLZI5 ’fLyI7
NyTa NoT1
77"\1,21’2 ’fLIZE5 7’fLyI7
N2 Te NzX7 + Ny s

— ﬁyaf)g Nexs + ﬁy:c4

N:T1
—ﬁzZ5

’ﬁ,zﬂh

T Ta + ﬁyme
NgpZTe — NyT4q

z
0 Mg X
ﬁx$1 0
0 N1
szI4 ﬁyml
ﬁyxg ﬁzzz
ﬁz$3 ’flyxg
0 ﬁmaf,‘z
’flm.'l,‘l 0
0 Ny Ty
—N,T3 —NyTy
—ﬁywz 0

ﬁmmz - ﬁyz7 — ’fLZ:Eg
—MNaX7 — NyTo + NoT8

ﬁxme - TALymg
NgpTg + NyTe

fl,_vil?4 + ’ﬁyﬂi{, ﬁzwl
’fL$Z3 — ’fLZZE4 —ﬁyZQ
—ﬁyxg fLTQfQ
ﬁmwl 0
—’fLyrg — szI4 —’fLyIQ
—NgT3 Ny T2
ﬁza;l 0
ﬁxr4 flm.’I,‘z
—NyTq + NoTs NyTo
ﬁng ﬁzwl
—fy T3 Mg X
—NeT3 + N,Ts ﬁyz1
’fLya:4 ’szajz
—TN, T2 NgTs — NyT7
N,Te N T7 + ﬁylf,

Mgy — ﬁng Nexs + ﬁyw4

ﬁmarl + ﬁyﬂfz
’ﬁmwz - ﬁywl

'flmxz - ﬁyl‘l
—ﬁmazl — ﬁng 0

0
0 —flzxg —ﬁy"/ﬂg
ﬁzwe, 0 ’ﬁzwz
77ALyCEl ﬁwwl 0
N,Tg 0 Mg X
0 ﬁzw4 ﬁya:l
’flzxg ’ﬂyl‘g ﬁz:m
ﬁyml ﬁmazl 0
ﬁwwl 7ﬁya:1 0
0 0 0
ﬁmml —ﬁywl 0
7ﬁya:1 7ﬁxa:‘1 0
0 0 0
0 ’flzwg ﬁyivl
’szl’l 0 ’szrg
’fbyibg ﬁzzl 0
0 —fzzwl ’ﬁy(ljl
N,Tq 0 —NgpT1
—NyT1 NgT1 0
0 ﬁzwl ﬁya:l
’szl’l 0 ’szIl
ﬁyibl ’FL.,::El 0

TABLE I: Zeroth and first order terms in the expansion (20) for the point groups

with broken inversion symmetry. The tensors X(l) have the spin-axis direction

included: x

(1)

ij

1) -~
= ng,)k"k'

The x parameters can be chosen arbitrarily for each

tensor. Note that the groups —42m and —4m2, 312 and 321, 3m1l and 31m, and
—6m2 and —62m are equivalent and differ only by a coordinate transformation. For
completeness we also give the tensors for the equivalent groups.




(2)

point group X
Nz (RpTs + MyTa) Nz (RpTs — NyTs) A2 2T + 2R Ry To — A2z
o - S N 5
-6 Ry (RpTa — ny:cr) —; (Rpxs + Ayxa) M, T0 — 2Nz My T2 — Ry To
~2 o 52 52 v
Nyxy + 2NNy x3 — nyzl Nyx3 — 2NgNyT1 — N yT3 0
PN PPN o £ 2
NgNT1 —RyN.xT1 Ty (R — Ny
-6m2 —NyN.T1 — NN, T —2N Ny T2
~2 ~2 PO
T3 ("1 — ny) —20 Ny T3 0
NyN.T1 Ny, T1 27y Ny T2
P PN 52 52
-62m zNzT1 —NyNzT1 T2 (nT - ny)
PN A2 ~2
21 Moy T3 T3 (nz — ny) 0
2 ~ N
ny, + Mg My T1 —NgNzT1
~ ~2 ~2 PN
-43m — gy ( - z) Ty T2 T1

TABLE II: Second order terms in the expansion (20) for the point groups which
have no zeroth order term allowed by symmetry. The x parameters can be chosen

arbitrarily for each tensor.

IV. LINEAR RESPONSE THEORY

A. Analytical calculations

The CISP in the AFM 2D Rashba model can be calcu-
lated analytically when magnetic moments are oriented
close to the out-of-plane (z) direction and when the Fermi
level is close to the bottom or the top of the bands so
that only k points close to the I' point matter for the
torque calculation. Here we describe the main aspects of
the derivation, for more details see Appendix C. To the
second order in k the Hamiltonian (5) can be expressed
as

H =7y — aké - wiy + JogL - 67, (30)
where v, = taf (k* — (2/a)?), p is a unit vector
perpendicular to the k vector, expressed as pu =
(sin g, — cos @, 0), where ¢ is defined by k =
k(cos g, sin g, 0). & and 7 are Pauli matrices with &/2
representing the carrier spin degree of freedom and 7 the
AFM spin-sublattice degree of freedom of carriers.

The unperturbed retarded Green’s function, defined as

GE = (e — H+i0")"1, reads
A 1 1
po Loy 1L 31)
45}, o1 €— €5+ 10T

[Sk +5((6 - 1) = JeaTy(6 - L x )

1

+
€s,

+(Wete + Jea(6 - L)7)(Sk + sak)

_SJsd(i‘ . [J/)(de(é' ' ]A—-‘)%l - ’ka—z + Oék‘(& ) ,u’)%z)):| 5

(77 + sJ2 + akSk) (6 - p) 7y

where ¢, ;, denotes the band structure given by

€5 = n\/’yi + Js2d + a2k2 + 2sak Sy, (32)

Sk = \/7,3 + J2,(1 — sin® @sin® (¢r, — 9)).

Indices s, 7 refer to the spin chirality (s = +1) and to the
electron/hole bands (n = +1). In the limit of vanishing
@, both spin chiralities become degenerate. The angles
0, ¢ are spherical coordinates of the vector L. In order
to get an analytically tractable expression for the CISP,
we express in the following the Green’s function in term
of the projection operator A, , = [s,n)(s,n| such that

6% = Zs,'r] ‘Asxﬂ/(e — € + ZO+)

We evaluate the intraband term using the expression
(2), which applies for small I'. For the interband term

(33)

we take the I —> 0 limit in which the term xa( )5 is zero

and the term x4+ is constant. The CISP can then be
written as

glntra _2I‘V ZRe{Tr v-E)A,0.A]}(ex, — €r),
(34)
h R (fk v fk V’)
glnter _ €/ Z ImTr[(v-E)A, 0. A, ]} ————=5
v 14 _ , 2
4 v#v’ k (ekﬂj o )
(35)
where v = s,n for conciseness. We also set o, =

o (1 +¢7,)/2, which defines the spin density operator on
the spin-sublattice A (¢=+1) and B (¢=-1). Since Egs.
(34) and (35) involve angular averaging over ¢y, it is con-
venient to evaluate the spin density in the limit 6 < 1
(i.e. L = z). In this case, the energy dispersion becomes

isotropic €, = n(\/7: + J2 + sak).

As shown in Appendix C, by taking the small o limit
and replacing the discrete summation in Eqgs. (34) and
(35) with continuous integration (3", — V [ d*k/47?),



one obtains in the linear order in «

J2 €
ghtra _ M4 L ol g0 % ¢E
STh2T + €z 2 _ J2 (2 x eE),

F sd
(36)
ghater — _ ma.]sg S (L x (z x E)).
Amh?ed. NZa=
(37)

where we defined €y = ta?k?. These formulae hold for
€r, Jsd > akp > T (kp is the Fermi wave vector). Note
that to derive these formulae we have negletected the ver-
tex corrections in order to obtain a tractable analytical
result. Such corrections will be considered in a future
work. As predicted from symmetry considerations in the
previous section, the intraband contribution produces an
effective field along the vector z x E, i.e. independent of
the magnetic moments direction, while the (intrinsic) in-
terband contribution results in a staggered effective field
along the vector ¢L x (z x E) that depends on the direc-
tion of magnetic moments and has opposite sign on the
two spin-sublattices. These results are the AFM coun-
terparts to the formulae obtained in the case of a FM 2D
Rashba model [28] and demonstrate that the torque en-
abling efficient electrical manipulation of the AFM order
arises in this model from the odd interband contribution
to the CISP which has a finite value in the I' — 0 limit,
i.e., it is intrinsic in nature.

B. Numerical calculations

In this section we show results of numerical calcula-
tions of the CISP in the two models described in Section
II. The intraband term yZ for MnyAu and the interband
term Xél(a) for the 2D model were already presented in
Ref. [31]. Here we calculate also the interband term for
MnsAu and the intraband term for the 2D model. We
are primarily interested in the small I limit. For zero I'
(® Vanishes. This is illustrated in
Fig. 3. Fig. 3(a) shows the terms 2@ and &™) as a

g g Xa Xa
function of I for MnsAu for magnetic moments oriented
along the [110] direction. Fig. 3(b) shows the same cal-
culation for the 2D model. In both cases as I' goes to
zero, the term Xél(b) goes to zero, while the term Xél(a)
becomes constant. In the following we choose I' so that
the term Xél(b) is small and the term xél(a) is close to
its zero I' limit. We use I" & 0.0013 eV in MnsAu and
I' =0.01 eV in the 2D model.

As discussed in the symmetry analysis in Sec. III, the
part of CISP that is even under timer reversal is in the
2D model the same on the two AFM spin-sublattices,
while the odd part of the CISP is opposite. Conversely
in MnsAu, the even CISP is opposite and the odd CISP is
the same. This is a key result since it shows that in both

models the effective current-induced field has a staggered

the interband term X(ILI
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FIG. 3. (Color online) I-dependence of terms x!1(®), x!I(®

in the two models for magnetic moments oriented along the
[110] direction. Components that are not shown are zero or
related to those shown by symmetry. The results are scaled to
make the comparison between the two tight-binding models
easier. (a) MnzAu, (b) the 2D model.

component and can therefore switch the AFM moments
efficiently. In the following, we focus on the dependence
of the CISP on the direction of magnetic moments. Since
in our model systems the CISP is always either exactly
the same or opposite on the two sublattices, we show
results for one sublattice only.

We normalize all CISPs by current density calculated
using the linear response theory formula analogous to (2).
Since both the intraband term and the conductivity scale
as 1/T', the normalized intraband term is independent of
I'. For small T', the normalized term XCILI(Q) scales as T
We also normalize the CISP by the ground-state spin-
polarization (on each sublattice). When this quantity is
multiplied by Jsqa/pp we get directly the effective field.

The results for the intraband term for one sublat-
tice are shown in Fig. 4. For comparison we present
the results for MnsAu and the 2D model side by
side. Figs. 4(a),(c) show results for MnyAu, while Figs.
4(b),(d) show the 2D model. In Figs. 4(a),(b) the mag-
netic moments were rotated from the [100] direction to
the [-100] direction through the [010] direction (the mo-
ments lie in-plane). In Figs. 4(c),(d) the magnetic mo-
ments were rotated from [00-1] direction to the [001] di-
rection through the [100] direction (the moments lie out-
of-plane). Only results for current along x and y direc-
tions are shown. For MnsAu, there can also be current
along the z direction, but we found that the CISPs for
such a current are at least 2 orders of magnitude smaller
than for the in-plane current. Note that the CISP for cur-
rent in the z direction is in general allowed by symmetry
and only vanishes at certain high symmetry directions
of magnetic moments. On one sublattice, the two mod-
els give qualitatively similar results. In both cases the
CISP is not strongly dependent on the direction of mag-
netic moments and the dominant component is always
in-plane and perpendicular to the current. The CISP
and thus also the effective current-induced field are ap-
proximately aligned along the vector z x E.

Since the torque is a cross product of the effective field
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FIG. 4. (Color online) Calculations of the intraband term

X%. Only results for one sublattice are shown. Plots show
the intraband CISP normalized by the equilibrium spin-
polarization per 10” Acm ™2 current density. (a) Mn2Au and
in-plane rotation of magnetic moments [31], (b) 2D model,
in-plane rotation, (c) MnzAu, out-of-plane rotation [31], (d)
2D model, out-of-plane rotation.

and the magnetic moment, only the component of the
effective field which is perpendicular to the magnetic
moment is relevant. In our models the effective field
is proportional to the CISP so the same holds for the
CISP. When the perpendicular component of the intra-
band CISP for MnsAu is plotted, a peculiar feature is dis-
covered. While the total CISP differs from the expression
z x E significantly, the perpendicular part is very close
to the perpendicular part of z x E. This is already man-
ifested in Fig. 4(c), where the longitudinal component of
the CISP is zero due to symmetry for current along the
x direction. To illustrate this feature we plot the mag-
nitude of the perpendicular part of the intraband CISP
for the in-plane rotation of the moments in Fig. 5(a).
In gray, the perpendicular component of the expression
z x E is plotted. All directions of magnetic moments dis-
cussed so far, lied in high symmetry planes. To confirm
that this feature is not due to some particular symmetry,
but rather a general feature of the model, we also rotated
the moments along a non-symmetrical path. As shown
in Fig. 5(b) this rotation shows the same behavior.

Interestingly, the same holds for the longitudinal part
of the CISP, i.e., the longitudinal part of the CISP is
very close to the longitudinal part of z x E, which is also
shown in Figs. 5(a),(b). The proportionality constants
are, however, different in the two cases which is why the
total intraband CISP vector deviates from z x E. Since
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FIG. 5. (Color online) Magnitude of perpendicular and lon-
gitudinal parts of the intraband CISP in Mn2Au. Grey lines
show perpendicular and longitudinal parts of the expression
z x E. (a) In-plane rotation of magnetic moments. (b) Non-
symmetrical rotation: magnetic moments rotate along a path

given by L = (cos(y), v0.3sin(p), /0.7 sin(¢p))

only the perpendicular part is relevant for the torque,
the torque will be closely approximated by M, x (z x E).
This behavior only occurs in MnsAu. In the 2D model,
the perpendicular component of CISP is not significantly
closer to z x E than the total CISP.
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FIG. 6. (Color online) Calculations of the interband term
Xt (a). Only results for one sublattice are shown. Plots

show the interband CISP normalized by equilibrium spin-
polarization per 10° Acm™? current density. Grey lines show
a fit to the expression L x (z x E). (a) MnaAu and in-plane
rotation of magnetic moments, (b) 2D model, in-plane rota-
tion [31], (¢) MnsAu, out-of-plane rotation, (d) 2D model,
out-of-plane rotation [31].

In Fig. 6, we show results for the interband term Xél(a)

for one sublattice, organized similarly to the intraband



results in Fig. 4. The MnyAu results are in Figs. 6(a),(c)
and the 2D model results in Figs. 6(b),(d). In Figs.
6(a),(b) the CISP is plotted as a function of magnetic
moments rotating in-plane, while in Figs. 6(c),(d), the
magnetic moments are rotated out-of-plane. Again, the
two models are qualitatively similar. In this case, how-
ever, the CISP depends strongly on the direction of mag-
netic moments. We only plot the non-negligible compo-
nents of the CISP. In particular, the CISP for the current
along the z direction in MnyAu is again very small. In
both models the CISP can be closely approximated by
the lowest order term given by Eq. (26). As shown by

grey lines, the main contribution is of the form Lx (zxE),
which corresponds to the tensor X;. A deviation from
this form is mainly due to the presence of the tensor Xs.
In MnsAu also higher order terms are present, but are
less important than the lowest order terms. In Mn2Au,
the contribution from the tensor X3 is also present, but
we do not plot it since it is oriented approximately along
the direction of magnetic moments and thus does not
contribute to the torque.

In Fig. 7 we show how the CISP in the 2D model
depends on the Fermi level. The dependence of the mag-
nitude of the interband term on the Fermi level was al-
ready studied in Ref. [31]. Here we focus instead on how
the dependence of the CISP on the direction of magnetic
moments changes when the Fermi level is varied. When
the Fermi level approaches the bottom of the bands, the
intraband term becomes independent of the direction of
magnetic moments and can be described by the vector
z X E very accurately. This is illustrated in Fig. 7(a).
This behavior is expected because when the Fermi level
is close to the bottom of the bands, only small k points
matter for the calculations and as seen from Eq. (32)
the energy dispersion becomes isotropic when k is small.
Results for the interband term X(Ill(a) are shown in Fig.
7(b). For all Fermi level values, it can be described by Eq.
(26), but the ratio C'y/Cy depends strongly on the Fermi
level. For the Fermi level close to the bandgap (see Ref.
[31] for the bandstructure), C; is much larger than Cs.
When the Fermi level approaches the bottom of bands,
C5 becomes much larger than C;. The dependence of the
CISP on the direction of magnetic moments is then no
longer of the form L x (z x E). Instead, for C; << Cy,
it can be described by (i, -E})z. This is in agreement
with the analytical calculations. Eq. (37) describes the
contribution from the tensor X;. When the Fermi level
is at the bottom of bands the term given by Eq. (37) is
zero. Eq. (37) does not capture the contribution from
tensor X5 since tensor Xs is zero for L=z

Finally, we compare results for our two models with
AFM and FM order. Spin-orbit torques have been pre-
viously calculated in a FM 2D Rashba model analogous
to our AFM 2D Rashba model [20, 28, 55]. Those cal-
culations used models with a parabolic band dispersion,
which in our model corresponds to the Fermi level close to
the bottom (top) of bands. As shown in Fig. 7(a), for our
model the intraband CISP then becomes proportional to
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z X E. This is a form that the FM has when Jyq >> o
[28]. We find that the AFM has this form regardless of
Jsa/c (when the Fermi level is close to bottom of the
bands). In all calculations discussed so far a@ << Jgq.
For such a case, the FM has the intraband term of the
form M x [(z x E) x M]. This results in the same torque
as the z x E term since M X [(z x E) x M] is precisely
the component of z x E perpendicular to M. The FM
interband term Xél(a) differs from the AFM case as well.
For @ << Jyq in the FM it has the form M x (z x E),
while for the AFM the dependence is (L-E )z, as shown
in Fig. 7(b). This is a form the FM has when Jsq >> a.

The AFM model thus has many similarities with the
FM model, however, the dependence on the parameters
of the model is different. In particular, in the FM the
results depend significantly on the ratio Jyq/c, while in
the AFM this ratio does not play a large role. This is
because, in the FM, the spin-up and spin-down bands are
split by both the Rashba spin-orbit coupling and by the
exchange interaction. In the AFM on the other hand,
only the Rashba spin-orbit coupling splits the spin-up
and spin-down bands.

(@ 1 (b) os
08 |- - 06 - e
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5 04 5
g g
3 02 § 02\ _
8 8 04/
-06 |-
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FIG. 7. (Color online) The Dependence of the CISP in the
AFM 2D Rashba model on the direction of magnetic moments
for different Fermi levels. We scale results to highlight the
change in shape. Only results for current along the x direc-
tion are shown. I' = 0.0001 eV was used in this calculation.
(a) Intraband term, in-plane rotation, solid lines show the y
component, dashed lines show the z component.(b) Interband
term, out-of-plane rotation, solid lines show the z component,
dashed lines show the x component.

For comparison we also calculated the CISP in hy-
pothetical FM MnsAu. The model differs from AFM
MnsAu only in the direction of the moments; all other
parameters are the same. Both intraband and inter-
band CISPs in FM MnsAu have opposite sign on the
two inversion-partner lattice sites occupied by Mn, as
expected from symmetry considerations and confirmed
in our microscopic calculations. The intraband CISP in
the FM is very close to the AFM case both in terms of
the magnitude and the dependence on the direction of
magnetic moments, as shown in Figs. 8(a),(c). The in-
terband term is shown in Figs. 8(b),(d). It has a similar
dependence on the direction of magnetic moments, how-
ever, is an order of magnitude larger than in the AFM



MnyAu.
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FIG. 8. (Color online) Calculations of the CISP in FM MnsAu

for one inversion-partner sublattice. (a) Intraband term, in-
plane rotation of moments. (b) Interband term Y& in-
plane rotation of moments. (c¢) Intraband term, out-of-plane
rotation of moments. (d) Interband term y2'(*

rotation of moments.

, out-of-plane

V. DISCUSSION

The AFM 2D Rashba and 3D MnyAu models differ
in one key aspect. In the 2D model, the odd CISP is
staggered and the even CISP is uniform, while in MnsAu
the even CISP is staggered and the odd CISP is uni-
form. This is so because in the 2D model the AFM spin-
sublattices are connected by translation, while in MnsAu
they are connected by inversion. However, as shown in
Figs. 4 and 6, when we look at one sublattice only, the
CISP in the two models has a similar dependence on the
direction of magnetic moments and the direction of the
current. This may seem surprising since the electronic
structures of the two models are very different, includ-
ing the way spin-orbit coupling enters the band-structure
calculations.

The reason for the similarity is the same symmetry of
the magnetic sites in the two models. As discussed in
Section III, it is the site symmetry that determines the
symmetry of the CISP on a sublattice. The symmetry
group of the magnetic sites is the same in both models
and in both models the results can be quite accurately
described by lowest orders in expansion (20). Since the
site symmetry is the same, the expansions are also the
same in the two models.
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The local inversion symmetry breaking in MnsAu is
illustrated in Fig. 9. MnsAu is a layered crystal; under
inversion around one of the Mn atoms, the layers remain
the same, but the order of the layers changes. Because of
this, each sublattice has the inversion symmetry locally
broken and the inversion symmetry breaking is along the
z-axis. The inversion symmetry breaking thus resembles
that of the 2D Rashba system.

FIG. 9. (Color online) Local inversion symmetry breaking in
MnoAu. The middle picture shows the crystal structure of
MnsAu with highlighted atomic layers. Left and right pic-
tures show inversion around Mn A and Mn B atoms (as de-
fined in Fig. 1(b)) respectively.

Despite the above similarity in the local CISP symme-
tries of the two models, the dynamics of magnetic mo-
ments will be different. This is because only the stag-
gered component of the CISP can generate an efficient
torque on an AFM. In MnsAu, the staggered component
of the CISP corresponds to the intraband term, which
results in a field-like torque. The effect of such a torque
is comparable to the effect of an external magnetic field
in a FM. In particular, the magnitude of the staggered
effective field necessary to switch the AFM moments will
be determined by the magnetic anisotropy energy bar-
rier just like in the case of a FM and a uniform external
magnetic field. In the 2D model, since the sublattices
are connected by translation, the staggered component
of the CISP is odd in magnetic moments. Therefore it
always depends strongly on the magnetic moments di-
rection and cannot be field-like. When the Fermi level is
such that the CISP has the L x (z x E) form, the cor-
responding torque acting on the AFM can be called, in
analogy with FMs, (anti)damping-like. The critical value
of the switching effective field will then depend both on
the anisotropy barrier and on the damping factor [29].

These results demonstrate the importance of symme-
try for understanding the spin-orbit torque. Symmetry
determines which component of the effective field is stag-
gered and thus also which component is efficient for ma-
nipulating the AFM order. Symmetry also governs the
dependence of the effective field on the direction of the
current and the magnetic moments. This is especially so
because we find in our two models that the effective field
can be very well described by the lowest order terms in
the expansion (20). Although this conclusion does not



have to be generally valid, it is consistent with previous
studies on different systems [7, 24, 25, 48].

We used the tight-binding models of the 3D MnsAu
and 2D Rashba AFMs to illustrate the symmetries of
CISPs and the corresponding AFM spin-orbit torques.
In remaining paragraphs we discuss the strength of the
spin-orbit torque in the MnsAu crystal. In Ref. [31],
the magnitude of the effective field driving the spin-
orbit torque in MnsAu was estimated from the tight-
binding value of the CISP by estimating the exchange
coupling strength between carrier and local moment spins
to Jsqg = 1eV. The intraband field was found to be 0.22
mT per 107 Acm™? for magnetic moments lying along
the [100] direction. For comparison, we performed ab
initio calculations based on the electronic structure ob-
tained from the DFT. The method is described in detail
in Ref. [37]. Here the spin-orbit torque is calculated di-
rectly using the exchange potential from the DFT. From
the torque the effective magnetic field is then obtained
using Eq. (7): B, = (T, x M,)/M,. This way we only
obtain the component of the effective field perpendicular
to the magnetic moments. For magnetic moments along
the [100] direction the longitudinal component of the ef-
fective field is zero. We found that the effective current
induced field in the ab initio spin-orbit torque calculation
has a magnitude 1.98 mT per 10" Acm™? [7].

The DFT value is by a factor of 8 larger than the tight-
binding value. To find out where the discrepancy orig-
inates from, we also calculated the CISP directly using
the DFT method. Then using Eq. (8) and the above
DFT torque calculation we obtain a value of the effec-
tive exchange constant Jyq = 1.2 eV. This is similar
to the estimated value of Jyq used in the tight-binding
calculation of the effective current induced field. The
difference between tight-binding and DFT calculations
is therefore primarily in the CISPs, which differ by a
factor of ~ 6. The remaining discrepancy between the
tight-binding and DFT effective fields is due to different
magnetic moments in the two approaches. These differ
because the tight-binding Hamiltonian was fitted to a
LDA+U DFT calculation, while for the torque calcula-
tion a DFT calculation without U was used. Including
the Hubbard U increases the moments by about 20%.

The DFT magnitude of the effective staggered field in
MngAu is comparable to that of the CuMnAs AFM where
current induced switching has been recently observed in
experiment [7]. Highly conductive MnsAu is therefore a
potentially favorable material for exploring and exploit-
ing current induced spin-orbit torques is AFMs.

VI. CONCLUSION

We have presented a symmetry analysis of spin-orbit
torques in AFMs and FMs and discussed in detail re-
sults obtained in two complementary model systems with
locally and globally broken inversion symmetry, respec-
tively. We have pointed out that the existence and form
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of the spin-orbit torque on the given spin-sublattice is
determined by the sublattice symmetry. We have also
shown that in AFMs, symmetry operations that connect
the two spin-sublattices determine the relation between
the spin-orbit torques on the two sublattices. Our two
models illustrate two main cases with the sublattices con-
nected either by a translation or by an inversion. Conse-
quently, in the AFM 2D Rashba model representing the
former case, the efficient component of the torque has an
antidamping character, while in AFM MnyAu represent-
ing the latter case, the efficient spin-orbit torque has a
field-like character.
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Appendix A: Symmetry of spin-orbit torque

We give here an overview of the symmetry of spin-orbit
torque. Symmetry of transport coefficients in magnetic
systems has been studied before, primarily in the context
of electrical and heat conductivity [56-59], but also for
the spin-orbit torque [50]. Here we expand the analysis
to account for sublattice projections. We use the micro-
scopic Egs. (2),(3),(4) as a starting point. Our approach
is similar to that of [57] where a more general version of
Kubo formula was used. The results do not depend on
the exact form of the formulas: it is only important that
the formulas describe linear response. Additionally, the
results apply only assuming a single-electron (i.e., non-
interacting) Hamiltonian.

As discussed in [59], there has been a considerable con-
troversy surrounding the symmetry of tensors describing
transport phenomena. The difficulty lies in understand-
ing the effect of the time-reversal symmetry operation



[59, 60]. This is because transport phenomena are non-
equilibrium processes that include dissipation. We define
a time-reversal operator as 7 = io, K, where K is the
complex conjugation. This is how the time reversal op-
erator is conventionally defined in quantum mechanics.
Note that such defined time-reversal operator reverses
direction of magnetic moments, but does not in general
reverse direction of electrical currents (see the discussion
in [60]).

Let R be a symmetry of the Hamiltonian, i.e.,

H=RHR (A1)
Symmetry operations that do not contain time-reversal
are represented by a unitary R. Symmetry operations
that contain time-reversal are represented by antiuni-
tary R since K is an antiunitary operator. If ¢, is an
eigenfunction of the Hamiltonian, then R,k is also an
eigenfunction with the same eigenvalue. Since the result
cannot depend on the choice of eigenfunctions, we can
use the transformed eigenfunctions to evaluate the CISP.
The transformed eigenfunction correspond to a different
k-point, but the sums will always run over all k-points.
The only part of the microscopic equations that depends
on the eigenfunctions are the matrix elements, the rest
depends only on the eigenvalues. Transformation of the
matrix elements depends on whether R is a unitary op-
erator or an antiunitary operator. For unitary R and an
observable A

(R A[R($mi)) = (il BT AR i), (A2)
while for antiunitary R
(R(usc) | AIR(Wie)) = (o] R AR )™ (A3)

We represent the transformation of operators S and v by
3x3 matrices D, D"

R84 iR = D50,
R™'9;R = D}ty

(A4)
(A5)

where o’ is the sublattice in which a transforms under
R. Note that the matrix D® does not depend on a. For
unitary R we find for the transformation of y,
Xa',ij = kaD;')lXa,kl-v (AG)

For antiunitary R, the various terms of (1) will trans-
form differently depending on whether they contain a real
or imaginary part of the matrix elements. To group to-
gether the terms that transform in the same way, we sep-
arate the spin-polarization into parts even and odd under

time-reversal. Since time-reversal switches the direction
of all moments, this is equivalent to

Xa' (M) = [xa(M]) + xa([-M])] /2,
Xt (M) = [xa(M]) = xa([-M])] /2,
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where [M] = [M 4, Mg, ...] denotes the directions of all

magnetic moments in the unit cell. Since both S and

. . . . . II(b
¥ anticommute with time-reversal and since x%, xa ®)

contain the real part of the matrix elements, while Xél(a)

contains the imaginary part of the matrix elements

XS = b+ x®, (A9)
X2 = X1, (A10)

We find for the transformation of each part under antiu-
nitary R

Xaoray = DiDiixa ' (Al1)
dd dd
Xg’,ij = _kaD;ng,kz' (A12)

We now show how to express the matrices D*, DV. Let D
be a 3 x 3 matrix that represents how a point transforms
under R

xg = Dx+s. (A13)
The shift s is due to translations. It is irrelevant for ma-
trices D®, DV, but the translations cannot be ignored al-
together because they influence which sublattice a trans-
forms to. Note that the time-reversal symmetry opera-
tion does not influence the matrix D either since it only
affects the magnetic moments. Thus D represents the
nonmagnetic point group.

For unitary R

D? = det(D)D, D' =D, (A14)
and for antiunitary R
D? = —det(D)D, DY = —-D. (A15)

This is because v is a polar vector, while S is an axial
vector and both change sign under time-reversal. Then
Eq. (A6) can be rewritten as

Xa = det(D)Dy,DT (A16)

and analogously for antiunitary R
XS = det(D) D" DT, (A17)
X2t = — det(D) D24 DT, (A18)

Egs. (A16), (A17), (A18) together determine the
transformation properties of the tensor x,. They hold,
however, only in a cartesian coordinate system. This is
because the formulas (2), (3), (4) hold only in a cartesian
system. In any coordinate system, for example, the CISP
corresponding to the term x. can be written as

h N
6Sa = —% (Vnk|Sa [¥ni) (Ynk| V- E [thn)
k,n

% 8(ckn — EF) (A19)



The terms corresponding to XCILI(a)7XrILI(b) can be ex-

pressed analogously. In a non-cartesian coordinate sys-
tem, tensor y, would not satisfy 6S, = x.E since in a
non-cartesian coordinate system v-E # 0, F;. While, it is
natural to express the tensors x in a cartesian coordinate
systems, the symmetry operations are usually expressed
in the conventional coordinate systems, which for the
case of monoclinic, hexagonal and trigonal groups are not
cartesian. For completeness we provide here a general-
ization to non-cartesian systems. This can be derived by
using microscopic expression for x, valid in non-cartesian
systems, but a simpler way is to transform the linear re-
sponse tensor from a non-cartesian system to cartesian.

Let T be a coordinate transformation matrix, i.e. a
matrix such that ' = Tz, where x are coordinates in
a cartesian system and z’ are coordinates in a different,
in general non-cartesian, coordinate system. Then y, =
T~1x. T. We first consider a unitary symmetry operation
R. Using the Eq. (A16), which holds in the cartesian
system

T='x., T = det(D)DT~*x, TD"
X, = det(D)T DT\, TDTT~!

(A20)
(A21)

In a cartesian system, D has to be orthogonal, so DT =
D=1, Since D' = TDT~! and det(D’) = det(D), we find

X, = det(D D'y, D'~ . (A22)

Analogously, we find for antiunitary R
XS = det(D') D'\ D'~ (A23)
X994 = —det(D')D'x/°4 DL, (A24)

These formulas determine how x transforms in any coor-
dinate system. This result is quite general and holds for
any linear response formula. One just has to replace the
matrices D®, DY by matrices that describe transforma-
tion of the corresponding operators.

The results for cartesian coordinate systems are the
same as in Ref. [57], except that we separate the tensor
into the even and odd parts. Such separation is also
commonly done for other tensors describing transport
phenomena [56, 59]. It is quite natural since the even
and the odd parts have different properties. For exam-
ple, they have a different dependence on disorder and
cause very different magnetic dynamics.

To find out symmetry properties of the expansion
terms in (20) we have to consider the symmetry opera-
tions of the nonmagnetic crystal, since these are symme-
try operations that connect different magnetic configura-
tions of a given crystal. If R is such symmetry operation
then H([M]g) = RH([M])R~!, where [M]x denotes di-
rections of all magnetic moments transformed by R. By
using a completely similar procedure as for deriving Eq.
(A22), we can show that

Xa ([M]R) = det(D)Dxq([M])D™". (A25)
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Since the nonmagnetic symmetry operations do not con-
tain time-reversal we do not have to separate x, into the
even and odd parts. Considering that Eq. (A25) has to
hold for each expansion term in (20) we find

o = det(D)' 1Dy D5 D, T D,T XY

Xa,ij,mn... np ° " Aa,kl,op...7

(A26)

where D~7 denotes the inverse of a transpose of matrix
D. We consider here only the symmetry operations that
keep sublattice invariant. The symmetry operations that
connect the two sublattices do not give any more infor-

mation about the form of xff). The form of the expansion
(20) is thus given by the nonmagnetic local point group.
In FMs Eq. (A26) applies also for the expansion of the
net CISP, if the global point group is used instead. In
AFMs, the net tensor x transforms in general differently.
This is because a symmetry operation that transforms
one sublattice into the other can reverse the sign of the
Néel vector and this is not taken into account in Eq.
(A26). For example in MnsAu, inversion is a symmetry
of the nonmagnetic crystal. As a consequence, the net
CISP in the FM MnsAu vanishes as correctly predicted
by Eq. (A26) applied for the net CISP. In AFM MnyAu,
there is, however, a net CISP, yet Eq. (A26) is the same
as for the FM. It is straightforward to derive the ana-
logue of Eq. (A26) for net CISP in AFMs, however, in
AFMs the net CISP is not a very useful quantity. In
AFMs with more than two sublattices, spin-axis direc-
tion is not enough to describe the magnetic state of the
AFM. Then the expansion (20) should be performed in
more parameters than just n. However, if we assume that
all the other parameters are fixed during dynamics then
expansion (20) can still be used and Eq. (A26) applies.

Appendix B: The code for analyzing the symmetry

We provide a code that can analyze the symmetry of
spin-orbit torque in a given crystal structure automati-
cally [49]. It can find the symmetry restricted form of a
tensor x, and also of the expansion (20). Here, we give a
brief overview of the code. The code is written in Python
and uses a symbolic library Sympy [61]. It uses as an
input a list of symmetry operations for the given crys-
tal structure, generated by the program Findsym [62].
From these symmetry operations we first choose the ones
which form the local point group, i.e., the symmetry op-
erations that leave the selected sublattice invariant. For
each such symmetry operation we then construct a sys-
tem of linear equations (13), (14) (resp. (A26) for the
expansions) that have to hold for components of the ten-
sor. We solve this system of equation by transforming it
to the reduced row echelon form. The code can also find
relations between tensors x, projected on different sub-
lattices and between tensors y, for different equivalent
magnetic configurations.



Appendix C: Analytical Derivation of Spin-Orbit
Torques

In this section, we present the details of the derivation
of the computation of Egs. (36)-(37). As mentioned in
Section (IV A), we need to calculate the expressions

glntra _QFV ZRe{Tr v-E)A,0. A, }o(ex, — €r),
(C1)
Inter _@ o (fk,l/ - fk,u’)
S =V V;}( ImTy[(D E)AyagAy,]}i(q(,V ——
(C2)

Since evaluating the transport properties involves an an-
gular averaging over ¢y, it is convenient to rewrite the

projection operator in the form A , = A§ | +A3 ,, where

the first term is even in k, while the second term is odd
in k. Furthermore, from now on we will only focus on
the limit case of # < 1 (i.e. L &~ z) in order to get rid of
the angular dependence of the Fermi surface contained
in (x, Eq. (33). This way, the energy dispersion reduces

to €5, = n(\/7; + JZ + sak) and we find explicitly
A, = (1/4) {1 + ncos b7, + nsin by (o - IA,)%Z} , (C3)
A2, = (s/4)6 - [Cos Ot — sin 0,7, (L x 1) + nu%(}@)

where we defined cos, = i/ ’yz + de and sinf, =

Jsa/ /i + JZ. Using the definitions of Eqs. (C1)-(C2)
we notice that the heart of the physics is contained in the
trace

Tr[(o - E)A,6.AL] = (v]od[v)(V'|(6 - B)lv)  (C5)
The velocity operator © - E = 0 H - E/k reads
it - E =(2ta’k - E+ a(z x E) - 6)7,. (C6)

The trace Eq. (C5) has then two contributions that do
not vanish upon ¢g-integration,

r 2ta?
T = 2 (BT (A6 A + ASGALL(CT)
T = %Tr[(z X B) - 67,(A%6 A% + AS6 A

(C8)

After some algebra, we obtain the following expression
for the real and imaginary parts of the trace defined in
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Eq. (C5),

ReTr®" = % [2sta? cos O + a/k] cos O (k - E)p, (C9)

ta? .
I = —sc =L sin b (k- B)(L % )34, 64,

(C10)
where Eq. (C9) involves only intraband transitions
(s,m = §',n'), while Eq. (C10) involves only interband
transitions (—s,—n = s’,n’). We can now proceed with
the ¢j-integration. Since the energy ey, is isotropic
(independent on ¢y), Egs. (C9) and (C10) can be fur-
ther simplified by performing the angular integration

/dgokReTrs’" = Z—Z[Qsm%k cos Oy + a] cos O (z x E),
(C11)

t 2
/dgp;ﬁImTrS"’7 = —s7¢ 4

sin O, (L x (z X E))dg 1, 010
(C12)

Using Egs. (C1) and (C2) and noticing that d(ex s, —
er) = |2tna}k cos Oy + sa| ' 0p ks (Where kf is the solu-
tion of ex s, = €r), we obtain

z X eE

glntra _ 16T /dkk cos Qk(5k7k+ - 5’6*’65)’ (C13)

Juata} k2dk

ginter = g (Lx(zer/ 4%1
s

We consider the Fermi energy close to the top of the up-
per bands, so that the lower bands remain fully occupied

fk,s,— = 1. Furthermore, we recognize that to the linear
order in «
ki ~ kF + akf + O(a (C15)
€F
de 16)

\/ta Jd

Then, the integral in Eq. (C14) can be rewritten

k;f dek kOQ
e N 20kE —— Y (C17)
/F (O + J2)*? F O )P

Finally, we find that the current-driven spin densities
read

J?2 €
glntra _ ma 1+2 Sd P — z X eE,
8th2Tl €2 & — J2
(C18)

glnter __ madsa (1 — ‘o ) L x (z x E)(C19)

4rh2ed Ve — 2

where we defined €y = ta?k3.
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