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Abstract

This is the first of a series of detailed papers on string amplitudes with highly
excited strings (HES). In the present paper we construct a generating function for
string amplitudes with generic HES vertex operators using a fixed-loop momentum
formalism. We generalise the proof of the chiral splitting theorem of D’Hoker
and Phong to string amplitudes with arbitrary HES vertex operators (with generic
KK and winding charges, polarisation tensors and oscillators) in general toroidal
compactifications E = RD−1,1×TDcr−D (with generic constant Kähler and complex
structure target space moduli, background Kaluza-Klein (KK) gauge fields and
torsion). We adopt a novel approach that does not rely on a “reverse engineering”
method to make explicit the loop momenta, thus avoiding a certain ambiguity
pointed out in a recent paper by Sen, while also keeping the genus of the worldsheet
generic. This approach will also be useful in discussions of quantum gravity and in
particular in relation to black holes in string theory, non-locality and breakdown of
local effective field theory, as well as in discussions of cosmic superstrings and their
phenomenological relevance. We also discuss the manifestation of wave/particle (or
rather wave/string) duality in string theory.
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1 Introduction

Highly excited strings (HES) are responsible for numerous miraculous properties of

string perturbation theory, they play a central role in ensuring the absence of ultraviolet

(UV) divergences and are a crucial ingredient in regarding string theory as a theory of

quantum gravity. A fundamental driving force underlying much of the recent flourish of

interest [1–18] is that a detailed and careful study of HES (in addition possibly to branes and

other solitons in string theory) will likely reveal previously unforeseen features of quantum

gravity. For example, in reference to quantum black holes (BH), both in terms of microstates

out of which the black hole interior is constructed [19–23] (usually with some additional

ingredients), and in terms of (possibly non-local) structure at the black hole horizon due to

string effects [5, 6, 9–12,18], building on earlier ideas [19,24–33], with possible implications

for the black hole information paradox. See [34] for a recent review of various traditional

ideas in this direction.

Contrary to field theoretic intuition, it has also recently been shown [35] that in semi-

realistic heterotic string compactifications with spontaneously broken supersymmetry and

exponentially small values for the cosmological constant, the global structure (or “shape”)

of the effective potential (around certain self-dual points in moduli space, corresponding

to extrema of the effective potential) is strongly influenced by contributions from massive

string modes (as well as non-level matched string states), thus further highlighting the

importance of the HES contributions even in low energy effective field theories.

On a parallel note, highly excited strings may have also been produced in the early

universe [36–42], possibly during one or more symmetry-breaking phase transitions [37,43–

45] (but see also [46]), providing an observational signature for superstrings [40, 42,47, 48].
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In this context HES are referred to as cosmic superstrings, and if produced they can have

a wide variety of signatures, most notably gravitational wave signatures [49, 50], including

gravitational wave bursts produced from cusps and kinks [51–56], covering a wide frequency

range that can be probed by pulsar timing arrays, ground-based interferometers (such as

LIGO) and the much anticipated eLISA [49, 50], to mention a handful. In addition, even

though the Planck satellite has placed strong constraints from the temperature data of

the cosmic microwave background (CMB), the CMB still offers observational prospects

via polarisation and non-Gaussianity [48], see also [40,42] and references therein for a more

complete list of observational signals. One major uncertainty [42] is the eventual destination

of the energy of a string network, gravitational and possibly massive radiation (and the

associated backreaction) which is believed to play a major role in determining the average

size of the produced string loops. Furthermore, incorporating backreaction in theoretical

predictions for gravitational wave bursts from individual loops is still an unresolved issue

that is suspected may play a major role in their observational prospects.

Partly motivated by the above developments, let us now zoom in further on HES in

the context of string perturbation theory in particular. From this viewpoint, the first step

will be to set-up an efficient construction that will directly yield string amplitudes in the

presence of HES vertex operators, a complete set of which (in a coherent state basis) was

first constructed in [57, 58]. In [56] we used these vertex operators to compute decay rates

and power associated to massless radiation, while also making contact with low energy

effective theory (in a certain IR limit). The tools we have constructed are powerful enough

to capture a wide range of phenomena, including, e.g., radiative backreaction corrections

to the classical gravitational wave results [51–56], cross sections and decay rates associated

to HES, including loop corrections, etc. The current document is the first of a series of

technical papers on string amplitudes with HES [59–63].

A fundamental tool that we make use of is the chiral splitting theorem of D’Hoker and

Phong [64], whereby string amplitudes at fixed-loop momenta chirally factorise.1 We will

make use of and generalise this framework in a number of ways, but to motivate further

our approach in this document let us begin with some introductory technical comments.

In a series of recent papers [65–72] Sen and collaborators have revisited various aspects

of superstring theory (unitarity of string amplitudes, mass and wavefunction renormalisa-

tion [67, 71, 72], perturbation theory around dynamically shifted string vacua [70], offshell

string amplitudes [73], Wick rotations and analytic continuations [65–67], one-particle ir-

1This chiral factorisation is closely related to that of the classical theory [51,56], and hence making use
of the chiral splitting theorem immediately draws the string perturbation theory approach closer to the
classical effective theory while retaining the full set of stringy corrections.
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reducible (1PI) quantum effective actions, etc.). In a very careful and complete study [65]

Pius and Sen derived Cutkosky rules for superstring field theory amplitudes to all orders

in perturbation theory by providing a prescription for taking integration contours of loop

energies in the complex plane (which would naively otherwise yield divergent results for the

corresponding S-matrix elements). In [66] Sen then showed that this prescription of intro-

ducing loop momenta and appropriately deforming the integration contours is equivalent

to that of Berera [74] and Witten [75], (see also [76–80] and in particular [81] for related

discussions on analyticity of string amplitudes), in the worldsheet approach to superstring

theory to all orders in perturbation theory. In the approach of Witten [75] one is to deform

the integration cycles over moduli space of punctured Riemann surfaces into a complexified

moduli space, and this establishes consistency of the former fixed-loop momenta approach

with S-matrix unitarity. Sen then recently also discussed [67] an application of the fixed-

loop momenta approach, building on earlier work [71, 72] and in particular [65], namely

mass renormalisation of unstable massive string states (where a naive computation yields

divergent results for the two-point one-loop amplitude), explaining how to obtain finite

results that are consistent with unitarity. The basic reason for the aforementioned diver-

gences are ultimately due to the fact that the analogue of the ‘iε’ prescription of quantum

field theory is somewhat subtle in string theory [75] because string amplitudes are most

naturally defined in Euclidean space where they are real [81]. Therefore, e.g., potential

imaginary parts (that are required by unitarity) in Lorentzian signature string amplitudes

show up as divergences in the corresponding Euclidean space amplitudes. Motivated by

string field theory, Sen [66] and Pius and Sen [65] have provided a well-defined prescription

for dealing with such analytic continuations by reformulating string amplitudes in terms of

fixed-loop momenta and deforming their integration cycles into the complex plane following

a specific prescription (whereby loop energy contours are pinned down at ±i∞ following a

non-trivial but well-defined path in between, leading to Lorentzian signature amplitudes).

Drawing from analogies with string field theory [65], the introduction of fixed-loop

momenta is central to Sen’s analytic continuation approach to string amplitudes (which

are traditionally given as integrals over moduli space, in the “Schwinger parametrisation”

with implicitly integrated loop momenta). Fixed-loop momenta amplitudes have a long

history in string theory that dates back to the old dual models, see e.g. [82] and references

therein, but it was not until Dijkgraaf, E. Verlinde and H. Verlinde [83] (building on [84])

that fixed-loop momenta appeared in the path integral formulation of string theory, where

various interesting properties were also noted, one such property being that (taking into

account also the Belavin-Knizhnik theorem [85]) bosonic amplitudes with tachyonic external

vertex operators in simple toroidal compactifications chirally factorise. This observation
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was later explored in a much more complete manner and in the full superstring context by

D’Hoker and Phong [64] (although even here the explicit results were derived for massless

external states, and also non-compact flat spacetime). This study led to a chiral splitting

theorem: when string amplitudes are written in terms of integrals over loop momenta2

and fermion zero modes (when present), the corresponding integrands chirally factorise (in

terms of their supermoduli, abelian differentials, worldsheet coordinates of vertex operators,

polarisation tensors and momenta).

One thing we would like to highlight is that in the approach of D’Hoker and Phong [64]

and Sen [67], the fixed-loop momenta amplitudes are constructed by a “reverse engineer-

ing” method, whereby string amplitudes are computed using the conventional approach [86],

and it is only at a later stage of the computation (after integrating out the path integral

fields and hence obtaining the “Schwinger form” of amplitudes) that it is noted that ex-

plicit string amplitudes under consideration can be written as integrals over loop momenta.

Unfortunately, such an approach is almost hopeless when considering amplitudes with ar-

bitrarily massive HES vertex operators, because the fixed-loop momenta amplitudes will

typically have quite a complicated form that one is to somehow guess, hence the name ‘re-

verse engineering’ mentioned above. (A systematic approach to “guessing” the correct loop

momentum integrand given the Schwinger parametrisation was given by Sen at one-string

loop in [67], but this is somewhat tedious and messy and requires a case-by-case study.)

D’Hoker and Phong [64] made fundamental further progress by making the remarkable ob-

servation that the correct fixed-loop momenta result can be obtained directly from the path

integral if the path integral fields of vertex operators,3 xM(z, z̄), are replaced by (anti-)chiral

fields xM+ (z) (and xM− (z̄)) as appropriate for left- and right-moving degrees of freedom, while

inserting exponential factors:4

e
iQI ·

∮
BI

∂x+ , e
iQ̄I ·

∮
BI

∂̄x− ,

into the integrands, where QIM , Q̄IM are loop momenta spanning all (non-compact in their

derivation) spacetime directions, the (anti-)chiral effective fields, x±, being defined by stan-

dard Wick contractions using ‘chiral propagators’:

〈xM+ (z)xN+ (w)〉+ = −α
′

2
GMN lnE(z, w), 〈xM− (z̄)xN− (w̄)〉− = −α

′

2
GMN ln Ē(z̄, w̄).

2In particular, AI -cycle loop momenta, with I = 1, . . . , g, with g labelling the genus of the Riemann
surface and {AI , BI} a canonical intersection basis for the homology cycles.

3This is the prescription for bosonic fields; the corresponding correlation functions for worldsheet
fermions are (up to zero modes) already chirally split, as are the corresponding (Grassmann-even and
odd) ghost insertions and supermoduli [64].

4Our worldsheet conventions are presented in Appendix A.1.
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Given that these effective rules were derived explicitly by making use of the ‘reverse engi-

neering’ method, it is important to show that the prescription for the effective rules does

not depend on it.5

Of course, one expects the chiral splitting theorem to also hold for generic vertex opera-

tors and in generic toroidally compactified string theories, but as the derivation of D’Hoker

and Phong [64] was carried out explicitly in non-compact Minkowski (or Euclidean) space-

time (and in [83,90] in the context on Z2 orbifold compactifications) and for massless vertex

operator insertions it would be desirable to discuss amplitudes with generic vertex opera-

tors more explicitly.6 Furthermore, it would be desirable to adopt an approach that does

not rely on the reverse engineering method outlined above, and hence show in particular

that the potential ambiguities discussed by Sen [67] are absent for generic vertex operators

when using the effective chiral splitting rules of D’Hoker and Phong. The ambiguity we are

referring to is the following. In [67] Sen has shown that the same Schwinger parameter rep-

resentation of a given string amplitude (which arises directly from the usual path integral

formulation of string theory) can be represented in more than one way from a fixed-loop

momenta representation, see the discussion associated to equation (2.17) in [67] and also

the footnote below (3.20) there, leading one to question whether this reverse engineering

method that has been adopted to-date could potentially be ambiguous for generic vertex

operators. Sen then went on to argue that this ambiguity will actually not be visible in

the result for the full amplitude after having integrated out the loop momenta using the

prescription for avoiding singularities [65] in the loop momenta integrations.

Although this is a very important step forward (given in particular the subtleties of

the loop momentum contour integrations in Lorentzian-signature target spacetimes), there

are situations where it is not desirable to integrate out the loop momenta completely, and

identify the loop momentum integrand with a physical observable. This at first sight may

seem unphysical, not least because the integrand of the loop momentum integrals are not

modular invariant (defining loop momenta requires specifying a homology basis [89], which

transforms non-trivially under the mapping class group), but nevertheless there do exist

physical observables that are sensitive to this integrand. Put simply, strings in loops can go

onshell and can therefore also appear in the detector of a given observer. Their momenta can

5Here E(z, w) is the usual (worldsheet moduli dependent) prime form of Fay [87,88] (that has a compact
representation in terms of Riemann theta functions, their derivatives and abelian differentials [88]). E(z, w),
although multiple-valued [89], generalises the notion of distance, z − w, on C to arbitrary genus Riemann
surfaces, having the unique property that it vanishes only at z = w as E(z, w) ' z − w +O((z − w)3).

6For instance, in D’Hoker and Phong’s approach it is not obvious (and in fact it is a highly non-trivial
statement) that shifting the target space embedding of the string (in both the action and vertex operators)
by instanton or soliton contributions (that would be present in compactified spacetimes) would yield a
similar result with appropriately identified loop momenta.
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thus be measured, and so it does make sense to consider the integrands of loop momentum

integrands of string amplitudes as being physical. One can also make this argument by

appealing to the optical theorem and unitarity. A good example is the following.

Consider the power emitted from a massive string per unit solid angle. Here we imagine

a generic highly excited string that is unstable and emitting radiation while it decays,

usually anisotropically, with massless radiation often being the dominant decay channel.

We place a detector far from the interaction region and measure the power absorbed by the

detector as a function of energy or frequency of the radiation, and so extract a spectrum

which will contain information about the radiating string state (allowing one in principle to

reconstruct the quantum numbers of the decaying string). The orientation of the emitting

string can also be determined in this manner, due to the anisotropy of the decay; this

is particularly relevant for gravitational wave emission from strings with cusps where the

associated burst of radiation is highly anisotropic, and this ultimately provides one of

the strongest signals in cosmic string phenomenology; this has a long history, see [51–55]

for an effective theory computation and [56] for a corresponding analytical string theory

computation, the two being in precise agreement when backreaction is neglected and one is

confined to low energies.7 The observable in this thought experiment can, e.g., be extracted

from the imaginary part of the two-point (say one-loop at weak coupling) amplitude at

fixed-loop momenta, ImMT 2(Ozz̄,Ozz̄;P), with two vertex operator insertions (related by

Euclidean conjugation, more about which will be discussed in a sequel [59]). In particular,

for D non-compact dimensions, the power associated to decay products of momentum Pµ,

centred around some arbitrary spatial direction P̂, can be extracted from [56]:8

dP

dΩSD−2

=
1

(2π)D
2πα′

L

∫
dP0P0|P|D−2d|P| ImMT 2(Ozz̄,Ozz̄;P), (1.1)

where it is seen that the loop momenta, Pµ, actually get identified with the momentum

of the decay products, some of which end up in the detector, as alluded to above. Here

L is the length [59] and L
2πα′

the corresponding mass of the emitting string whose vertex

operator, Ozz̄, is normalised by the leading singularity in the OPE:9 Ozz̄Oz′z̄′ ' g2
D/|z−z′|4.

7There are a number of other approaches in the literature to decay rate computations of highly excited
strings, but these typically rely on numerical approximations or saddle-point evaluations of integrated-loop
momentum two-point one-loop amplitudes (but also tree-level amplitudes), in order to obtain order of
magnitude estimates, and they also consider leading Regge trajectory states only, see [78,79,91] and more
recently [80,92,93] and [94–97], and also [98] for a review on string decay.

8For this computation choosing the correct contour for the P0 integral is crucial and has been discussed
very carefully and clearly for generic loop amplitudes in [65,67].

9Newton’s constant, GD, is related to the gravitational coupling, κD, via κ2
D = 8πGD. In D = 4,

κ−1
4 = 2.4× 1018GeV is the reduced Planck mass. Note that gD = κD/(2π).
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An ‘overline’ represents taking the Euclidean adjoint, see [86, 99] and in particular [59] for

a refined discussion of this notion (in the presence of compact dimensions where there

are some additional phases that are absent in [86, 99]), and we have decomposed the loop

momentum integral as follows, dDPµ = dP0d|P| |P|D−2dΩSD−2
. Extracting the imaginary

part will give rise (according to the Cutkosky rules [65]) to two delta functions, one of which

places the emitted radiation onshell, and the second delta function quantises the spectrum

of decay products (in the case of massless radiation), leading to integer-valued energies,

P0 = ωn, of the form:

ωn =
4πn

L
, with n = 1, 2, . . . ,

and n is summed over (subject to energy conservation), as expected, e.g., for gravitational

waves from strings. This procedure was first carried out by the present authors in [56],

where a brief summary of our results can be found, as well as the effective low energy

theory that reproduces them. Clearly, if we want to extract information about the energy-

dependence of the emitted radiation we do not want to perform the sum over n. If we were

to integrate out the loop momentum completely the ωn dependence of the power would be

lost. We compute observables in explicitly in follow-up articles [61, 62], but the purpose of

the discussion in this paragraph is to show that it is sometimes desirable to not integrate

out the loop momenta completely, and that this is of interest even in calculations of physical

observables. Therefore, the resolution of the aforementioned ambiguity of Sen [67] is not

totally satisfactory (because it relies on the assumption that it is of interest to integrate out

loop momenta completely). Summarising, it would be desirable to adopt an approach that

does not rely on the reverse engineering derivation of D’Hoker and Phong [64] and that of

Sen [67] and show explicitly how to resolve this potential ambiguity observed by Sen in his

study of two-point amplitudes of massive strings.

In this article we resolve this particular ambiguity completely10, for completely generic

vertex operator insertions (with arbitrary winding and KK charges), and for generic toroidally

compactified backgrounds (with generic constant Kähler and complex structure target space

moduli, background KK gauge fields and torsion), and to any finite order in the string loop

expansion. Therefore, our derivation applies to all closed string amplitudes in target space-

times RD−1,1×TDcr−D. We focus on the bosonic string for simplicity (or the bosonic sector of

the superstring, the conclusions being independent of the chiral splitting statements given

that up to fermion zero modes the fermionic contribution is already chirally factorised, as

are the ghost contributions).

10There remain field redefinition ambiguities familiar already from the string field theory context, see
Sec. 4 in [67], and the authors are greatful to Ashoke Sen for extensive discussions on this.

8



Specifically, our approach will be to drop the ‘reverse engineering’ approach of D’Hoker

and Phong [64] and Sen [67] altogether, and to rather construct the fixed-loop momentum

representations directly and explicitly, starting from a generic worldsheet path integral,

leaving no room for ambiguities. This will be achieved by inserting momentum-conserving

delta functions into the worldsheet path integral that explicitly determine the loop mo-

mentum contribution associated to AI-cycle strings in the loops, as shown in the second

equality in (3.14) below. These loop momenta constitute an independent set and their pres-

ence are also a fundamental ingredient in obtaining a handle on the energies and momenta

that contribute to loop corrections, thus for example bridging the gap between Wilson’s

approach to quantum field theory [100, 101], see e.g. [102], and an analogous approach in

string theory (although we will not explore this connection further here), and Wilson’s ap-

proach adapted to string field theory has recently been discussed by Sen in [68]. Unless one

wants to work directly with string field theory or in the old operator approach, instead of

adopting the first-quantised covariant path integral formalism that we consider here, string

amplitudes with fixed-loop momenta is the closest one can get to the corresponding field

theory amplitudes without considering explicit pant decompositions and degenerations of

the worldsheet.

Fixed-loop momenta amplitudes are, arguably, one of the most natural approaches to

(at least closed) perturbative string amplitude computations. First and foremost, it is

considerably easier to write down amplitudes at fixed-loop momenta than it is to adopt

the traditional approach [86] and write down the corresponding integrated loop momenta

amplitudes directly – a fact that is certainly not widely appreciated in the literature. This is

largely due to the chiral splitting theorem of D’Hoker and Phong [64]; recall that correlation

functions for the worldsheet fields are carried out using the chiral propagators exhibited

above (analogous relations for the fermionic sector or in terms of superfields can be found

in [64]), where also zero mode subtractions are absent (it is useful to compare with the

non-chiral genus-g propagator (3.54)). Secondly, it is (apparently [56, 61, 62]) considerably

easier (from a technical point of view) to analytically compute explicit amplitudes in the

chiral fixed-loop momenta formalism than it is to extract the corresponding integrated

loop momenta expressions, as we briefly summarised in [56]. The physical reason is that

in the integrated loop momenta approach one is automatically resumming all momentum

contributions inside loops (so that it is difficult to take a low energy limit as loop energies

are already integrated out), and as a result one ends up having to resort to saddle-point

approximations or numerical methods in order to extract some physics or even order of

magnitude estimates [78–80, 91–97], whereas in the fixed-loop momenta approach (after

adopting a coherent vertex operator basis for external states [56–58], see in particular [59] for

9



a recent analysis), things tend to resum into, e.g., Bessel functions, exponentials and related

special functions [56]. As the latter have been studied by mathematicians for centuries, with

various of their properties examined in detail (such as asymptotic expansions, series and

integral representations, etc.), this provides a useful and novel working handle on generic

string amplitudes.

Amplitudes with HES should be expected to reproduce various classical or effective field

theory results in certain limits (with non-local stringy sources), and adopting the correct

toolset is absolutely fundamental to exposing this simple structure, while also providing

an explicit approach to computing various stringy and quantum corrections which may

or may not be large compared to the effective description – the effective approach and

its link to string amplitudes with HES vertex operators will be presented in [63], where

again the basic connection to the effective theory was presented in [56], building on an

earlier conjecture by Dabholkar, Gibbons, Harvey and Ruiz [103, 104], see also [105] for a

very insightful complementary decription. The emphasis on the naturalness of adopting a

coherent vertex operator basis in particular when discussing amplitudes with HES will be

explained in sequels in much greater detail [59–62]. The present contribution will not rely

on any particular vertex operator basis, and also (with a bit a care and tweaking [73], see

also [99, 106]) will apply to offshell as well as onshell string amplitudes.

Let us also re-emphasise that our initial focus will be on bosonic string theory in this

series of papers, because as string amplitudes with coherent vertex operators is a novel

and unexplored area of research it will be easiest to first focus on the bosonic string and

understand that case well before moving on to the much more interesting but also more

involved superstring framework. The bosonic string already contains most of the non-

trivial features associated to HES and will provide the basic physics, with the additional

complications associated to [64, 73, 89, 107–112] supermoduli space, gauge fixing, picture

changing, etc., of the superstring providing a sharpening of the bosonic string results (by

eliminating a tachyon, introducing supersymmetry to stabilise the vacuum and eliminate

massless tadpoles, etc.), but it will not change much of the essential physics picture.

Finally, for the more philosophically-minded readers, we will also discuss how wave/-

particle duality (or rather wave/string duality) manifests itself in string theory. We will

discuss a simple example (the standard one-loop vacuum amplitude) and then generalise

the argument to all string amplitudes at any string loop order. The resulting picture is

rather simple, but we are not aware of it having been discussed before in the literature.

The result is that fixed-loop momenta amplitudes can be thought of as corresponding to a

wave picture, whereas the corresponding integrated-loop momenta amplitudes provide the

corresponding string picture. There are four natural representations for string amplitudes
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in toroidally compactified spacetimes, corresponding to the fact that loop momenta in the

compact or non-compact dimensions can be either integrated or fixed, so there are four

possibilities. The intuitive statement, as we shall explain, is roughly that summing over

all trajectories of a loop of string in (say) a compact target space, including the number

of times a closed string can traverse the compact space is equivalent to summing over all

frequencies of a standing wave in a “box”, thus making wave/string duality manifest. This

therefore provides a physical interpretation of the standard Poisson resummation in string

partition functions (for the compact dimensions), and there is an analogous statement in

the non-compact dimensions.

In Sec. 2 we provide a brief overview of our results (skipping almost all of the subtle and

technical points). In Sec. 3 we derive the generating function for generic string amplitudes

in generic toroidal compactifications associated to arbitrary vertex operator insertions and

at arbitrary string loop order; this is where the majority of the work lies. The result here

is extremely simple. In Sec. 4 we discuss the string theory manifestation of wave/particle

duality of quantum mechanics, which is closely related to the presence or absence of fixed-

loop momenta (in both compact and non-compact target spacetime dimensions). Sec. 5

is a corollary of the preceding sections and completes the derivation of the D’Hoker and

Phong chiral splitting theorem for generic HES vertex operator insertions (including KK

and winding charges and general polarisation tensors and oscillators spanning all spacetime

dimensions) and generic constant target space Kähler and complex structure moduli, KK

gauge fields, as well as spacetime torsion.

2 Overview

In this section we provide a brief overview of the main results of the current document.

The main objective underlying this series of papers is to provide a working handle on

string amplitudes with HES vertex operator insertions. The first step in this direction,

which is presented here, is thus to construct a generating function, A(j), for generic string

amplitudes in generic toroidal compactifications:

E = RD−1,1 × TDcr−D (2.2)

where D denotes the number of non-compact dimensions (e.g., D = 4) and Dcr the critical

number of dimensions (e.g., Dcr = 26 or 10, in the bosonic string or superstring respec-

tively). We will consider the exact (in the fundamental string length, `s :=
√
α′) string

backgrounds where the spacetime metric, GMN , antisymmetric tensor, BMN , dilaton, Φ,
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and tachyon, U , are general (bare) constants11, subject only to the requirement that string

perturbation theory is applicable, see (3.16). The first two of these contain [113] the Kähler,

complex structure moduli and background Kaluza-Klein (KK) gauge fields associated to

the compactification (2.2), as well as torsion, Bµν , all of which will be allowed to be turned

on. In order to make contact with the NS sector of low energy supergravity, see e.g. [114],

it will sometimes be convenient to consider the parametrisation,12

GMN =

(
gµν + AaµGabA

b
ν GabA

a
µ

GabA
b
ν Gab

)
, GMN =

(
(gµν)

−1 −(gµρ)
−1Abρ

−(gνρ)
−1Aaρ (Gab)

−1 + Aaµ(gµν)
−1Abν

)
,

(2.3)

where the Aaµ are a subset of the aforementioned Kaluza-Klein gauge fields, the remaining

ones being Bµa. We always raise and lower indices with GMN , the inverse being defined by

GMNGNL = δNL .

Using the fixed-loop momenta approach of D’Hoker and Phong [64], the first goal will be

to show that generic correlation functions associated to asymptotic vertex operators with

generic instanton contributions, KK and winding charges, and generic polarisation tensors

can all be extracted from the following genus-g contribution to the generating function in

the aforementioned background:13

A(j) :=

∫
D(x, b, b̃, c, c̃)

#Cmoduli∏
j=1

|〈µj, b〉|2
#CCKVs∏
s=1

|c(ws)|2 e−I(x|j)−Igh

= iδ̄(j`s) g
2g−2
eff

∑∫
(Q,Q̄)

∣∣∣∣Zg exp

(
`2
s

4

∫
d2z

∫
d2z′

(
j +H

)
M
GMN

(
j′ +H ′

)
N

lnE(z, z′)

)∣∣∣∣2
(2.4)

where, in a canonical intersection basis [89] for the 2g homology cycles of the compact

genus-g Riemann surface, {A1, B1, . . . , Ag, Bg}, the sum/integral appearing in the second

equality is over loop momenta, QIM , Q̄
I
M , associated to AI-cycle (with I = 1, . . . , g) strings

that span the full target spacetime E , see (3.76) and (3.48). Igh is the usual b, c ghost action

(3.72), the µj are Beltrami differentials and specify a gauge slice in the space of worldsheet

metrics [89], whereas, I(x|j), encodes the standard matter contribution with a source,

I(x|j) :=
1

2πα′

∫
Σg

d2z
(
∂zx

M∂z̄x
N
(
GMN +BMN

)
+α′Rzz̄Φ + gzz̄U

)
− i
∫

Σg

d2z jMx
M , (2.5)

11Constants meaning that they are independent of worldsheet and target space embedding coordinates.

12Detailed definitions appear in the main section and Appendices.

13The first equality here is in Euclidean worldsheet and target space signature whereas the second equality
is in Lorentzian target spacetime signature and Euclidean worldsheet signature (which is always possible
at generic points in the moduli space of the Riemann surface under consideration [66,75]).
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where jM(z, z̄) is a generic source term, such that functional derivatives of A(j) with respect

to it generate all (matter) correlation functions of interest (see below). In going from the

first to the second equality in (2.4) we have inserted loop-momentum conserving delta

functions, see (3.18), expanded the embedding coordinate into a zero mode, instantons,

and quantum fluctuations,

xM = xM0 + xMcl + x̃M ,

as discussed below (3.26), before finally integrating out x0, x̃, and performing a Poisson

resummation in the instanton sector. We also keep the constant tachyon background im-

plicit throughout (this will play an explicit role in tadpole cancellation [60]). The effective

coupling appearing in (2.4) at fixed-loop momenta (in Lorentzian signature) is given by:

geff := gs

(
−DetGµνDetGab

)− 1
4
,

whereas the delta function constraint in (2.4) enforces overall charge neutrality, see (3.77).

The quantity Zg is determined entirely from the ghost contributions, see (3.71) and (3.73).

For example, at g = 1, Z1 = η(τ)−24, where η(τ) is the Dedekind eta function and τ the

complex structure modulus of the torus [86]. The prime form [89] is denoted by E(z, w),

and is the unique holomorphic function defined on a Riemann surface that has precisely

one (simple) zero, which is at z = w. Finally, HM , H̄M are operators that encode the loop

momentum (including instanton) contributions:

HM(z, z̄) := QIM

∮
BI

dwδ2(w − z)∂z, H̄M(z, z̄) := Q̄IM

∮
BI

dw̄δ2(w − z)∂z̄, (2.6)

with implicit sums over repeated indices, whereas QIM , Q̄
I
M are in turn related to the canon-

ical momentum, �I,M and winding, WM
I , via (3.24). When the indices M span TDcr−D,

QIa ≡
1

`s

(
M
′I
a +BabN

b
I +GabN

b
I

)
, Q̄Ia ≡

1

`s

(
M
′I
a +BabN

b
I −GabN

b
I

)
, (2.7)

where M
′I
a , N

a
I ∈ Z are summed over.14

When considering string amplitudes associated to HES vertex operator insertions it is

extremely useful to have the result for a generic correlation function. Denoting expectation

values by:

A(j) ≡
〈

exp
(
i

∫
d2zjMx

M(z, z̄)
)〉
, (2.8)

14In our conventions there is no notion of raising or lowering the indices I, J, . . . , whereas the location
of spacetime indices, M,N, . . . , has a precise meaning, and we always raise and lower these with the full
metric GMN .
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with A(j) defined in (2.4), we will show (using point-splitting) that generic correlation

functions chirally factorise:15

〈
D1x

N1(z1, z̄1) . . .DIxNI(zI , z̄I)D̄1x
N̄1(w1, w̄1) . . . D̄ĪxN̄Ī(wI , w̄Ī) exp

(
i

∫
d2zj · x(z, z̄)

)〉
=

= iδ̄(j`s) g
2g−2
eff

∑∫
(Q,Q̄)

Zg

〈
D1x

N1
+ (z1) . . .DIxNI+ (zI)e

i
∫
d2z(jL+H)·x+(z)

〉
+

× Z̄g

〈
D̄1x

N̄1
− (w̄1) . . . D̄Īx

N̄Ī
− (w̄Ī)e

i
∫
d2z(j̄R+H̄)·x−(z̄)

〉
−
,

(2.9)

generalising the classic result of D’Hoker and Phong [64], who showed that amplitudes

with massless vertex operators chirally split in flat non-compact backgrounds (in target

spacetimes RDcr−1,1 with GMN = ηMN and BMN = 0). In particular, we show by explicit

calculation that chiral splitting holds for generic correlation functions (of generic vertex

operators with arbitrary KK and winding charges and polarisation tensors) in constant

backgrounds, GMN , BMN , Φ and U , in generic target spacetimes RD−1,1 × TDcr−D with

generic Kähler and complex structure moduli and background gauge fields and torsion.

The {Dj, D̄j} are arbitrary worldsheet derivative operators, which, together with the jLM ,

jRM (anti-)chiral sources are (with an appropriate point-splitting procedure) read off from

the specific vertex operator insertions of interest (in their chiral representation [59]).

We want to emphasise that the left-hand side of (2.9) contains insertions of the full

path integral field, xM = xM0 + xMcl + x̃M , and its derivatives, including zero modes, in-

stantons and quantum fluctuations (with Green function (3.54)), whereas the chiral fields,

xM± , of the right-hand side are defined by their correlation functions, according to the rule

that Wick contractions are carried out using (anti-)chiral propagators, 〈xM+ (z)xN+ (w)〉+ =

−α′

2
GMN lnE(z, w), 〈xM− (z̄)xN− (w̄)〉− = −α′

2
GMN ln Ē(z̄, w̄), and do not contain zero modes

or instantons. The latter have already been taken into account in writing down (2.9).

Clearly, using the chiral representation on the right-hand side vastly simplifies computa-

15In writing down (2.9) we have taken Dcr = 26 (appropriate for the bosonic string), but in the main
text the case Dcr 6= 26 is also considered which is relevant for generalising this result to the superstring
where Dcr = 10. (In all cases we ignore the Liouville factor [64] that cancels in all critical bosonic and
superstring theories.)
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tions. The result for the chiral half on the right-hand side of (2.9) is given by,〈
D1x

N1
+ (z1) . . .DIxNI+ (zI)e

i
∫
d2z(jL+H)·x+(z)

〉
+

=

= exp

(
α′

4

∫∫
jLMG

MNj′LN lnE(z, z′) + i
πα′

2
QMI GMNΩIJQ

N
J + iπα′QMI

∫
jLM

∫ z

ωI

)
×
bI/2c∑
k=0

∑
π∈SI/∼

k∏
l=1

{
− α′

2
GNπ(2l−1)Nπ(2l)(DD lnE)π(2l−1)π(2l))

}

×
I∏

q=2k+1

{
πα′Q

Nπ(q)

I Dπ(q)

∫ zπ(q)

ωI −
α′

2
i

∫
j
Nπ(q)

L (D lnE)π(q)

}
(2.10)

where the argument in the exponential equals `2s
4

∫
d2z
∫
d2z′

(
jL +H

)
·
(
j′L +H ′

)
lnE(z, z′),

and similarly for the anti-chiral half,〈
D̄1x

N̄1
− (w̄1) . . . D̄Īx

N̄Ī
− (w̄Ī)e

i
∫
d2z(jR+H̄)·x−(z̄)

〉
−

=

= exp

(
α′

4

∫∫
jRMG

MN j̄′RN lnE(z̄, z̄′)− iπα
′

2
Q̄MI GMN Ω̄IJ Q̄

N
J − iπα′Q̄MI

∫
jRM

∫ z̄

ω̄I

)

×
bĪ/2c∑
k=0

∑
π∈SĪ/∼

k∏
l=1

{
− α′

2
GN̄π(2l−1)N̄π(2l)(D̄D̄ ln Ē)π(2l−1)π(2l))

}

×
Ī∏

q=2k+1

{
−πα′Q̄N̄π(q)

I D̄π(q)

∫ w̄π(q)

ω̄I −
α′

2
i

∫
j
N̄π(q)

R (D̄ ln Ē)π(q)

}
(2.11)

SI is the symmetric group of degree I [115], the group of all permutations of I elements, and

the equivalence relation ‘∼’ is such that πi ∼ πj with πi, πj ∈ SI when they define the same

element in (2.10), and similarly for (2.11). In the case of coherent vertex operator insertions,

as we will see in [59–61], the sum over permutations can be carried out explicitly, and the

various quantities appearing can be rewritten in terms of exponentials and special functions,

thus vastly simplifying amplitude computations compared to the traditional approach in

the literature that adopts a momentum eigenstate basis for vertex operators.

One can think of the fixed-loop momenta representation of the generating function (2.4)

as defining a Hamiltonian formulation of string theory, because the zero mode momenta

in all spacetime dimensions are manifest. Integrating out the loop momenta leads to a

Lagrangian formulation, which is the usual starting point for string amplitude computa-

tions in the path integral formalism. In addition to these two there are also two natural

hybrid formulations (also called Routhian formulations by analogy to classical mechanics)

whereby the loop momenta are manifest in the compact dimensions but integrated out

in the non-compact dimensions and vice versa. All these cases are discussed explicitly
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in Sec. 4, where it is also argued that (by direct analogy to point-particle quantum me-

chanics) the Hamiltonian formulation may be regarded as a ‘wave formulation of string

theory’, whereas the Lagrangian formulation may correspondingly be thought of as a string

formulation. The equivalence of all four formulations can thus be regarded as a stringy

manifestation of ‘wave/particle duality’ of quantum mechanics, and so by analogy we refer

to it as ‘wave/string duality’. For instance, we will argue that (2.9) may be regarded as a

string theory statement of wave/string duality, where the left-hand side is in a string picture

whereas the right-hand side is the corresponding wave picture. As one should expect (from

our experience with point-particle quantum mechanics, such as the double-slit experiment),

certain questions are more easily addressed in a wave rather than a string picture and vice

versa. We provide flesh to this claim by explicit decay rate computations (in both pictures)

whose details will be presented elsewhere [61].

3 Generating Function

The starting point is to obtain a simple expression for the generating function of interest,

A(j), that is crucial in the discussion of string amplitudes, cross sections and decay rates,

associated to generic HES vertex operator insertions. It is defined by (in Euclidean target

space and worldsheet signature):

AEucl(j) :=

∫
D(x, b, b̃, c, c̃)

#Cmoduli∏
j=1

|〈µj, b〉|2
#CCKVs∏
s=1

|c(ws)|2 e−I(x|j)−Igh , (3.12)

and we reserve the notation A(j) for the corresponding Lorentzian signature quantity, see

below. The (complex) number of moduli and conformal Killing vectors (CKV) are:

(
#Cmoduli,#CCKVs

)
=


(0, 3) for g = 0

(1, 1) for g = 1

(3g− 3, 0) for g > 1

(3.13)

The b, c are the Grassmann-odd ghosts, (c, c̃) = (cz(dz)−1, cz̄(dz̄)−1) and (b, b̃) = (bzz(dz)2, bz̄z̄(dz̄)2),

whereas the Beltrami differentials, (µj, µ̄j) = (µ z
z̄ (dz)−1dz̄, µ z̄

z dz(dz̄)−1)j, provide a parametri-

sation of the space of metrics on the Riemann surface, Σg, and define a gauge slice.16 There

are as many insertions of, |〈µj, b〉|2, as there are moduli (equivalently b zero modes), and the

pairing, 〈µj, b〉, is defined with respect to the natural inner product of the space and is in-

dependent of a metric, 〈µ, b〉 =
∫

Σ
d2z µ z

z̄ bzz, see (A.121). Similarly, in our approach it will

16Our complex tensor notation is explained in Appendix A.1.
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be convenient to have as many insertions of cc̃ as there are conformal Killing vectors (CKV)

(equivalently c zero modes) on the Riemann surface, i.e. the minimal number of allowed cc̃-

ghost zero insertions. More general ghost insertions are also of interest [73,106,107,116,117],

and it is straightforward to extend the results of this paper to include also these cases (al-

though strict chiral splitting may be lost in these more general situations). In turn, every

x(z, z̄) represents an embedding of the worldsheet into spacetime, x : Σ→ RD−1,1×TDcr−D.

In general, the (worldsheet) matter and ghost contributions factorise,

AEucl(j) = AEucl
gh AEucl

x (j),

so let us focus initially on the matter contribution,

AEucl
x (j) =

∫
Dx e−I(x|j)

=

∫
dDgPµI

∫
dDgWµ

I

∫
Dx e−I(x|j)δDg

(
PµI − P̂µI

)
δDg
(
Wµ
I − Ŵµ

I

)
,

(3.14)

with,

I(x|j) :=
1

2πα′

∫
Σg

d2z
(
∂zx

M∂z̄x
N
(
GMN +BMN

)
+ α′Rzz̄Φ + gzz̄U

)
− i
∫

Σg

d2z jMx
M .

(3.15)

The constant tachyon background term, 1
2πα′

∫
d2zgzz̄U , will be kept implicit throughout,

but it will play a role in tadpole cancellations as we will see in the context of coherent

vertex operator 2-point amplitudes in [60]. Notation-wise, it will be convenient to define

Im := I(x|0), so that the full (source-free) action reads I = Im + Igh. We now define the

various quantities appearing in (3.14) and (3.15).

The quantity jM is a (possibly physical, either real or complex, possibly local) source,

and as we also discuss below functional derivatives with respect to it (upon adopting an

appropriate point-splitting procedure) generate the correlation functions and amplitudes of

interest. The one condition it must satisfy will be:
∫
d2zjM = 0, which is usually associated

to charge and momentum conservation.

We consider the exact (in α′) string background where the spacetime metric, GMN ,

antisymmetric tensor, BMN , dilaton, Φ, and tachyon, U , are generic17 constants,

GMN =

(
Gµν Gµb

Gaν Gab

)
, BMN =

(
Bµν Bµb

Baν Bab

)
, and Φ, U = const. (3.16)

The first two of these parametrise [113] the Kähler and complex structure moduli of the

target space torus, TDcr−D (contained in Gab and Bab), as well as KK gauge fields (contained

17‘Generic’ meaning that, e.g., that the determinants of the block diagonal pieces, Gµν and Gab, are
non-vanishing.
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in Gµa and Bµa) and torsion (contained in Bµν). We work in Euclidean signature (to make

sense of the path integral over x0) and eventually analytically continue back to Lorentzian

signature.18 Modulo this comment, index contractions will henceforth be carried out using

the spacetime metric, AMBM = AMBNGMN , etc., so that we raise and lower indices with

the full metric GMN . We will state explicitly when we rotate to Lorentzian signature.

The coefficient of the constant dilaton, Φ, in the action is a topological invariant, equal

to the Euler character χ(Σg) = 2 − 2g of the Riemann surface; see (A.125) and note that

the Ricci tensor Rzz̄ is related to the Ricci scalar R(2) in (A.114). It is convenient to also

define the string coupling in the standard manner:

gs := eΦ, (3.17)

and so there is an overall factor g
−χ(Σg)
s in the generating function, i.e. AEucl(j) ∝ g

−χ(Σg)
s .

In the second equality in (3.14) we have inserted the unit operator:

1 =

∫
dDgPµI

∫
dDgWν

I δ
Dg
(
PµI − P̂µI

)
δDg
(
Wν
I − Ŵν

I

)
, (3.18)

where P̂µI is the standard momentum operator and Ŵµ
I the winding operator. For a generic

homology cycle C of the compact genus-g Riemann surface these are defined by:

P̂MC :=
1

2πα′

∮
C

(
∂xM − ∂̄xM

)
, ŴM

C :=
1

2πα′

∮
C

(
∂xM + ∂̄xM

)
. (3.19)

The operator ŴM
C [86] measures the winding of a string whose spacelike (worldsheet) dimen-

sion traverses a generic cycle C of the worldsheet. The eigenvalues WM
C will be non-vanishing

when the spacetime embedding of this string (associated to the homology cycle C of inter-

est) wraps topologically non-trivial cycles of the spacetime torus, TDcr−D. Let us also define

the chiral and anti-chiral halves, Q̂MI , ˆ̄QMI , respectively, such that:

P̂MC =
1

2

(
Q̂MC + ˆ̄QMC

)
, ŴM

C =
1

2

(
Q̂MC − ˆ̄QMC

)
, (3.20)

and so,

Q̂MC :=
1

πα′

∮
C
∂xM , ˆ̄QMC := − 1

πα′

∮
C
∂̄xM . (3.21)

Choosing a canonical intersection basis for the 2g homology cycles of the compact genus-g

Riemann surface [89], see Appendix A.1, the operators appearing in the 2Dg delta functions

18 Wick-rotating to Lorentzian signature can be achieved by replacing G
(Eucl)
MN by G

(Lor)
MN , such that

(DetGµν)Eucl = −(DetGµν)Lor. Note that (jMx
M )Eucl → (jMx

M )Lor, where G
(Eucl)
MN and G

(Lor)
MN are used

to raise and lower indices before and after this replacement respectively. Note however that one has to
be extremely careful when trying to interpret the energy integrals of the loop momenta and this has been
analysed in detail by Pius and Sen [65]; see also Witten [75] for an alternative approach.
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in (3.14) or (3.18) correspond to the specific choice of contours C = AI , with I = 1, . . . , g.

For simplicity we write P̂I ≡ P̂AI , and ŴI ≡ ŴAI . In the corresponding eigenvalues we omit

the ‘ˆ’.

We want an expression for the amplitude at fixed-loop momenta, but in the presence

of a BMN field, PM is not the physical momentum (P̂M is not the charge associated to

spacetime translations). In particular, the Noether current [86] associated to rigid spacetime

translations, xM → xM +aM of the theory (3.15), reads (with a stringy normalisation [86]),

jz,M =
i

α′
∂zx

N(GMN −BMN), jz̄,M =
i

α′
∂z̄x

N(GMN +BMN),

and so the associated conserved charge flowing through an arbitrary closed contour, C, of

the Riemann surface instead reads,

�̂C,M :=
1

2πi

∮
C

(
dzjz,M − dz̄jz̄,M

)
= GMN P̂

N
C −BMNŴ

N
C .

(3.22)

When BMN = 0 the quantity P̂MC indeed measures spacetime momentum, but in the pres-

ence of a BMN field the notion of momentum is modified, P̂MC being replaced by �̂C,M , the

two being related as in (3.22). This is much like the momentum of a particle of mass m,

namely mṙ, is replaced by mṙ + eA in the presence of a U(1) charge, e, (corresponding

to W) and associated vector potential A (corresponding to BMN). These statements hold

for a generic closed contour C, and holomorphicity allows one to continuously deform this

across the various homology cycles of the Riemann surface, or it may be taken to encircle

one or more punctures at which vertex operators are inserted. Momentum and winding

conservation is of course closely related to this notion of holomorphicity [86]. As mentioned

above, we identify the contour, C, with the AI-cycles in the above delta functions.

We are aiming for an expression for the generating function, A(j), at physical fixed-loop

momenta, and on account of the above discussion we should think of �Iµ as the physical

momentum (i.e. the momentum dumped into a detector) and so insert one more delta

function constraint into the amplitude (3.14):

1 =

∫
dDg�Iµδ

Dg
(
�Iµ −GµNP

N
I +BµNW

N
I

)
, (3.23)

before finally integrating out PµI and Wµ
I , after having evaluated the path integral over

embeddings in (3.14) at fixed loop momenta. One thing to note is that when Bµa = Gµa = 0,

then �µ = GµνPν (there will also be an independent delta function constraint δDg(Wµ
I ) as

we discuss momentarily), so when this is the case it is natural to define Pµ := �µ. In the

current document however all components of background fields will be kept generic.
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Of course, strings cannot wrap around a non-compact dimension, and so Wµ
I should

vanish identically. An important consistency check therefore will be to show that in fact:

〈δDg
(
Wµ
I − Ŵµ

I

)
. . . 〉x ≡ 〈δDg

(
Wµ
I

)
. . . 〉x.

On the other hand, winding in the compact dimensions will generically be non-trivial (see

below), and so �Iµ will also receive contributions from Wa
I when Bµa 6= 0, as can be seen

from (3.22).

Before embarking on the evaluation of the path integral it will be important to make

two final remarks. Even though the quantity �M is the physical momentum, the quantities

that appear most naturally in loop amplitudes will actually be QM , Q̄M , and these are also

the quantities that enter the mass formulas and vertex operators. It will be useful for later

reference to have at hand an expression for the latter in terms of �̂M and ŴM ,

Q̂MC = GMN �̂C,N +GMNBNKŴ
K
C + ŴM

C
ˆ̄QMC = GMN �̂C,N +GMNBNKŴ

K
C − ŴM

C ,
(3.24)

and these follow from the above expressions by trivial rearrangement. That chiral and

anti-chiral vertex operator momenta are actually constructed out of eigenvalues of Q̂MC , ˆ̄QMC
is clear from the definitions in (3.21); for example, Q̂MC e

ik·x+(z)+ik̄·x−(z̄) = kMeik·x+(z)+ik̄·x−(z̄),

etc., where the (anti-)chiral fields x+(z), (x−(z̄)) are related to the full path integral field

x(z, z̄) by a very subtle and indirect (yet remarkable) relation that we derive below, see

(5.100), and as is well-known it is not correct to identify x(z, z̄) with x+(z) + x−(z̄) in

general, although this may sometimes be justified.19 We then choose the contour C to

encircle the vertex operator (with any other features or insertions outside the contour),

use holomorphicity to shrink the contour, in which case only the leading singular piece

〈xM+ (z)xN+ (w)〉+
∣∣
z→w = −α′

2
GMN ln(z − w) contributes, and similarly for the anti-chiral

sector of vertex operators.

Because it is �̂M that generates spacetime translations, the usual argument concerning

single-valuedness of the wavefunction [86] implies that eigenvalues of �̂M must be discrete.

To make this statement sharp, note that we absorb all Kähler and complex structure moduli

19Suffice it to say here that (as mentioned in the Overview section) x(z, z̄) contains zero modes, instanton
contributions and quantum fluctuations, x(z, z̄) = x0 + xcl(z) + xcl(z̄) + x̃(z, z̄), whereas the chiral fields
x+(z), x−(z̄) are defined (for any genus g = 0, 1, . . . ) by their correlation functions, 〈xM+ (z)xN+ (w)〉+ =

−α
′

2 G
MN lnE(z, w) and 〈xM− (z̄)xN− (w̄)〉− = −α

′

2 G
MN ln Ē(z̄, w̄) (and 〈xM+ (z)xN− (w̄)〉 = 0) with E(z, w)

Fay’s prime form, and do not contain zero modes or instanton contributions. This observation is closely
related to the observation of D’Hoker and Phong [64] that fixing the loop momenta in all spacetime directions
leads to chirally factorised amplitudes. The map between the two (anti-)chiral and full path integral fields
is given in (5.100) for generic constant backgrounds, GMN , BMN and Φ.
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into the background fields, GMN , BMN . This allows us to compactify the xa on a (Dcr−D)-

dimensional hypercube, such that for any a spanning TDcr−D, we make the identification:

xa ∼ xa + 2π`s,

with `s =
√
α′ the string length. (In this approach the actual compactification radius is

determined by the moduli in Gab, Bab, and it is not `s as one might naively conclude.)

Then, under a lattice translation xa → xa + 2π`s, the equation ei(2π`s)�̂a = 1 (for every a

spanning TDcr−D) should hold as an operator statement in the string Hilbert space, so that

its eigenvalues must be quantised in units of 1/`s:

�a = Ma/`s, with Ma ∈ Z, (a spans TDcr−D). (3.25)

The position of the indices is important; recall that we generically raise and lower spacetime

indices with GMN , and we do not assume Gµa = 0 (or Bµa = 0) in this document.

We are now ready to evaluate the matter generating function (3.14) in target spacetimes

of the form RD−1,1 × TDcr−D for generic constant backgrounds (3.16). We expand around

classical instanton solutions, xMcl , defined to solve the classical equation of motion of I(x|j),
see (3.27),

xM = xM0 + xMcl + x̃M , (3.26)

where we denote quantum fluctuations by x̃M and have also extracted out a constant zero

mode xM0 . Before inserting this into the action (3.15), and then into the path integral

(3.14), let us determine the classical instanton solution. There are various subtleties (as

well as new features) that are not discussed in the standard literature, so we will be fairly

explicit.

Note primarily that xcl encodes the information that closed cycles on the worldsheet

may wrap around non-trivial cycles of the torus TDcr−D. As discussed above, all Kähler and

complex structure moduli will be absorbed into GMN , BMN , and so we are free to normalise

the xacl such that xacl ∼ xacl + 2π`s, for all a spanning TDcr−D. The quantity xMcl by definition

satisfies the classical equations of motion20 of (3.15),

∂z∂z̄x
M
cl ≡ −πiα′GMNjN , (3.27)

and is transverse to the constant zero mode, xM0 . First consider the case jM = 0, the case of

interest always being
∫
d2zjM = 0, that ensures overall charge neutrality (this is enforced

20Note that the constant BMN does not contribute to the classical equations of motion, and neither does
it enter the worldsheet energy-momentum tensor, and so the Virasoro constraints are as in the non-compact
theory with the replacement ηMN → GMN .
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upon us by the zero mode integrals21). The solution that describes the soliton contribution

of interest can be expanded in a complete basis, ωI , ω̄I , as follows:

xMcl =


γMI

∫ z

℘

ωI + γ̄MI

∫ z̄

℘̄

ω̄I if M spans TDcr−D

0 if M spans RD,
(3.28)

where ℘, ℘̄ ∈ Σg denote an arbitrary reference point on which amplitudes do not depend

(see below), the ωI = ωI(z)dz, (with I = 1, . . . , g and an implicit sum over repeated

indices) denote a basis for the g abelian holomorphic differentials associated to a compact

genus-g Riemann surface, normalised by their AI-cycles,
∮
AI
ωJ = δIJ , and similarly for

ω̄I = ω̄I(z̄)dz̄, namely
∮
AI
ω̄J = δIJ . The existence of the ωI , ω̄I is guaranteed by the Atiyah-

Singer-Riemann-Roch index theorem, see (A.124) and the discussion following (A.126).

Working with a canonical intersection basis (A.126) we denote the corresponding period

matrix by ΩIJ , defined by
∮
BI
ωJ = ΩIJ ,

∮
BI
ω̄J = Ω̄IJ . The quantities γMI , γ̄

M
I in (3.28)

read:
γMI = −iπ(ImΩ)−1

IJ (MM
J − Ω̄JLN

M
L )`s,

γ̄MI = iπ(ImΩ)−1
IJ (MM

J − ΩJLN
M
L )`s,

(3.29)

where {NM
I ,M

M
I } ∈ Z (see Appendix A.1 for a more explicit overview of conventions).

In order to arrive at (3.28) and (3.29), note that in toroidal compactifications as we go

around an AI- or BI-cycle of the worldsheet, the spacetime embedding should return to

itself up to an integer multiple of 2π`s,∮
AI

dxacl = 2πNa
I `s,

∮
BI

dxacl = 2πMa
I `s, (3.30)

where we write d = dz∂z + dz̄∂z̄ for total differentials in the (z, z̄) coordinate system, with

z̄∗ = z. We solve these constraints by expanding in a complete basis, ∂xacl =
∑

I γ
a
IωI ,

∂̄xacl =
∑

I γ̄
a
I ω̄I , and then the γaI , γ̄

a
I are determined immediately from (3.30), (A.127) and

(A.128), leading to (3.29). As a consistency check, notice that under AI-cycle translations22

z → z+AI , (3.28) implies that xacl → xacl +2πNa
I `s (with xµcl invariant), where we have used

21It is sometimes of interest to relax momentum conservation either at an intermediate stage in a cal-
culation (see [118] and recently emphasised in [119], as a means of regularisation while preserving onshell
conditions), or relax momentum conservation all together (which is of interest for perturbation theory on
non-trivial backgrounds), so we try to state explicitly throughout where momentum conservation is assumed
so as to allow for appropriate generalisations.

22We are being a little bit sloppy here. The coordinate z should really be thought of as the image z(℘)
of a point ℘ ∈ Σg under the Jacobi (or Abel) map, I : ℘ → z(℘) =

( ∫ ℘
℘0
ω1, . . . ,

∫ ℘
℘0
ωg

)
, with ℘0 some

(universal) reference point on which physical observables do not depend. In particular, by transport z
around a cycle AI we mean z(℘)→ z(℘+ AI), and similarly for the B-cycles. The vector z is an element
of the complex torus J(Σg) ≡ Ch/(Zh + ΩZh).
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(A.127), and similarly for translations around B-cycles, under z → z + BI on account of

(A.128) we have xacl → xacl+2πMa
I `s. Given the identification xa ∼ xa+2π`s, the embedding

of the worldsheet into spacetime is single-valued under z → z + AI and z → z +BI .

Now let us turn on a general source term, jM(z, z̄), subject to
∫
d2zjM(z, z̄) = 0, and

consider the set of solutions to (3.27). Making use of the defining equation for the Green

function transverse to zero modes, see Appendices A.2 and A.1, (we have factored out the

zero mode xM0 as displayed in (3.26)),

∂z∂z̄G(z, w) = −πα′δ2(z − w) +
πα′gzz̄∫

Σg
d2z
√
g
,

the soliton solution of interest that solves the full equation of motion (3.27) can now be

seen to take the form:

xMcl (z, z̄) =


γMI

∫ z

℘

ωI + γ̄MI

∫ z̄

℘̄

ω̄I + i

∫
d2wGMNjN(w, w̄)G(w, z) if M spans TDcr−D

i
∫
d2wGMNjN(w, w̄)G(w, z) if M spans RD,

(3.31)

with γMI , γ̄
M
I as displayed above.23 This satisfies all the monodromy requirements, given

that (in addition to the above observations concerning the j = 0 piece) the Green function

is by construction periodic under translations z → z + AI and z → z + BI (see Appendix

A.2).

For a given source term, jM(z, z̄), the set of topologically distinct classical solutions is

still classified by the set of integers in γMI , γ̄
M
I , (i.e. the topological winding numbers asso-

ciated to AI and BI cycles wrapping TDcr−D) as in (3.28). Secondly, the theory is Gaussian

and so on account of the decomposition (3.26) we are free to absorb the j-dependent terms

in (3.31) into a redefinition of the fluctuations, x̃M(z, z̄), without affecting the background

around which we are expanding. (We will give this last comment more flesh at the end of

this section, where we will derive the effect of this shift in the final answer for the generating

function.)24 This amounts to the simultaneous shifts xcl → ycl and x̃→ y, with:

yMcl (z, z̄) := xMcl (z, z̄)− i
∫
d2wGMNjN(w, w̄)G(z, w) (3.32a)

yM(z, z̄) := x̃M(z, z̄) + i

∫
d2wGMNjN(w, w̄)G(z, w), (3.32b)

23In principle we could add to xMcl (z, z̄) arbitrary well-behaved functions f(aI
∫ z
ωI)+ f̄(āI

∫ z̄
ω̄I) subject

to (3.30), but the aforementioned choice (which will be referred to as the ‘basic’ one below) will be sufficient
for our purposes.

24This would not generically be the case in the context of non-linear sigma model background field
perturbation theory (in α′), where such shifts can take us to a new vacuum that is physically distinct from
the previous one (within perturbation theory).
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where note that ycl + y = xcl + x̃. In particular, yMcl (z, z̄) is identified with (3.28) and

yM(z, z̄) is the new quantum field. Given that such a shift (3.32b), being field-independent,

will certainly leave the path integral measure invariant, the quantity (3.28), equivalently

yMcl , can be taken to be the complete set of the basic classical solutions.

We next substitute:

xM = xM0 + yMcl + yM (3.33)

into the full action (3.15), without dropping any boundary terms, so that on account of

(3.32) and (3.31) we can recast the result into the form:

I(x0 + ycl + y|j) =
1

2πα′

∫
Σg

d2z ∂zy
M∂z̄y

N
(
GMN +BMN

)
− i
∫

Σg

d2z jMy
M − i

∫
Σg

d2z jMx
M
0

+ γaI

( 1

πα′
Im ΩIJ

(
Gab +Bab

))
γ̄bJ − iΦI

aγ
a
I − iΦ̄I

aγ̄
a
I + χΦ,

(3.34)

where we have defined (note that dz ∧ dz = 0):

ΦI
a :=

∫
Σg

d2z ja

∫ z

ωI −
1

2πα′

∫
Σg

ωI ∧ dyN(GNa −BNa)

Φ̄I
a :=

∫
Σg

d2z ja

∫ z̄

ω̄I +
1

2πα′

∫
Σg

ω̄I ∧ dyN(GNa +BNa).

(3.35)

Let us now return to the full path integral over matter fields (3.14). It is neces-

sary to integrate out the zero modes, xM0 , first, because this leads to constraints that

will be enforced when integrating out yM and yMcl .25 We expand xM0 + yM(z, z̄) in a

complete orthonormal basis {φα} as follows,
∑

α∈ZA
M
α φα(z, z̄), with canonical normal-

isation
∫
d2z
√
gφα(z, z̄)φβ(z, z̄) = δαβ, with φα(z, z̄) an eigenfunction of the Laplacian,

∆(0)φα = ω2
αφα, and ω2

0 := 0 defining the constant zero mode, x0 = A0φ0. The natural

measure is then, Dx = “dDcrx0Dy
∑

ycl
” =

∏
α∈Z

(
dDcrAα

√
DetGMN

)∑
ycl

, and we factor

out the zero modes, dDcrx0 = dDcrA0

√
DetGMN , with Dy =

∏
α6=0

(
dDcrAα

√
DetGMN

)
a

remaining fluctuation contribution and a sum over topologically distinct classical instanton

contributions,
∑

ycl
. The zero mode integral then factorises into a piece associated to RD

and one associated to TDcr−D:

Ψ0
Eucl :=

∫
dDcrA0

√
DetGMN e

i
∫
j·A0 φ0 g−χs

= (2π)DδD(∫ jµ) (2π`s)
Dcr−DδDcr−D

(∫ ja),0

√
DetGMN

(∫
d2z
√
g
)Dcr/2

g−χs ,

(3.36)

25Not integrating out the zero modes, xM0 , at this stage of the calculation is certainly interesting, as it
is relevant for string scattering in curved backgrounds (in a background field expansion sense) for strings
whose spatial extent is smaller than any background curvature scale, and we hope to return to this point
in the future.
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and for convenience we have also included the dilaton contribution in the definition of

Ψ0
Eucl. The d-dimensional Kronecker delta is denoted by δd(·),0, and δd(·) is a d-dimensional

Dirac delta function (whose argument has indices “downstairs”26), that arise from TDcr−D

and RD respectively. The identifications xa ∼ xa + 2π`s lead to the factor (2π`s)
Dcr−D.

Rotating back to Lorentzian signature target spacetime amounts to replacing (GMN)Eucl by

(GMN)Mink (and hence (DetGMN)Eucl by (DetGMN)Mink = −(−DetGMN)Mink), so that the

right-hand side of (3.36) in Lorentzian target space signature reads:

Ψ0
Mink := i(2π)DδD(∫ jµ) (2π`s)

Dcr−DδDcr−D
(∫ ja),0

√
−DetGMN

(∫
d2z
√
g
)Dcr/2

g−χs , (3.37)

the branch of the square root being convention-dependent (our choice is in agreement with

Polchinski [86]). Note that the source (Dirac and Kronecker) delta functions enforce charge

neutrality for the asymptotic states,
∫
d2zjM(z, z̄) = 0 for all M spanning RD−1,1×TDcr−D.

Having determined the zero mode contribution, let us turn our attention to the y-

dependent pieces, starting from the y-dependent integrals in (3.35). It is sometimes conve-

nient to write the holomorphic one forms, ωI , ω̄I , in terms of the Abel map gI , ḡI :

ωI = dgI , ω̄I = dḡI , with gI(z) =

∫ z

℘

ωI , ḡI(z̄) =

∫ z̄

℘̄

ω̄I .

On the cut Riemann surface [88], see Fig. 1, the gI , ḡI are single-valued and gI(℘) = ḡI(℘̄) =

0 for an arbitrary point ℘, ℘̄ on the surface. The above definition makes manifest the fact

that the j-independent integrals in (3.35) are integrals of exact forms,

FI :=

∫
Σg

ωI ∧ dy =

∫
Σg

d
(
gI ∧ dy

)
, F̄I :=

∫
Σg

ω̄I ∧ dy =

∫
Σg

d
(
ḡI ∧ dy

)
. (3.38)

We might therefore be tempted to drop these integrals, given that the integration domain

is a compact Riemann surface, but the integrand has non-trivial monodromies around AI

and BI cycles, and there is also the possibility of dy contributing poles that may lead to a

non-vanishing result, see e.g. [88] (p. 150) and also Appendix A of [120]. Given that y is a

quantum field, what we need to check is whether FI , F̄I contribute to correlation functions.

That is, if we can show that (when
∫
d2zjM(z, z̄) = 0):〈

FM
I F̄N

J

〉
=
〈
FM
I FN

J

〉
= 0,

〈∫
jMy

M FN
I

〉
= 0, (3.39)

26When Gµa = 0, we can raise indices in the Dirac delta function using the following rule: δD(Cµ) =
1

detGµν
δD(Cµ), with Cµ = GµνC

ν , assuming detGµν is positive definite. Note also that dDCµ =

detGµνd
DCµ, by which we mean dDCµ = dC0 ∧ dC1 ∧ . . . . We do not assume Gµa = 0 in this sec-

tion however.
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Figure 1: Pictorial representation of a genus-2 Riemann surface, Σ2, (on the left) and
the corresponding cut surface, Σ̃2, (on the right), obtained from the former by smoothly
(isotopically in Σ̃2) dragging all cycles associated to the canonical intersection basis of the
homology group so that they meet at a point (an 8-point vertex, see the first image), and
subsequently “deleting” these homology lines from the surface. This leads to the cut Riemann
surface, Σ̃2, which has a boundary, ∂Σ̃2, on which functions are single-valued. The point p
indicates a point at which the integrand (3.41) is singular and the disc D of infinitesimal
radius ε is defined to be centred at p (denoted by local coordinates w, w̄ in the text) with
boundary ∂D. A similar picture is to be understood for any genus g ≥ 1 surface where the
resulting cut surface is a 4g polygon.

and similar expressions with F̄I replacing FI , then (given the theory is free) the following

equality holds (correlators being with respect to the y path integral),〈
ei

∫
jMy

M

eCINF
N
I eC̄IN F̄

N
I

〉
=
〈
ei

∫
jMy

M
〉
, when

∫
d2zjM(z, z̄) = 0, (3.40)

for any set of constants27 CIN , C̄IN , and we can effectively set FI = F̄I = 0 from the outset.

That (3.39) holds is indeed the case, but because the reasoning is somewhat subtle we will be

explicit. Considering first 〈FIF̄J〉 and 〈FIFJ〉, we make use of the explicit expression for the

propagator, 〈yM(z, z̄)yN(w, w̄)〉 = GMNG(z, w), see (3.54), the Riemann bilinear identity,∫
Σg
ωI ∧ ω̄J = −2i(ImΩ)IJ , and the monodromy properties of the prime form [64, 87, 88],

see also Appendix A.1:∮
BI

dz∂z∂w lnE(z, w) = 2πi ωI(w),

∮
AI

dz∂z∂w lnE(z, w) = 0.

It is straightforward to then show that the following contractions of FI , F̄I vanish identically:〈
F̄IF̄J

〉
=
〈
FIFJ

〉
=
〈
FIF̄J

〉
= 0.

The remaining correlators we need to compute in order to establish (3.40) are 〈
∫
jMy

M F̄N
J 〉

and 〈
∫
jMy

M FN
I 〉. Given that

∫
jM = 0, all we need to check is that the correlator

27The case of interest above being: CIN = − i
2πα′ (GNa −BNa)γaI and C̄IN = i

2πα′ (GNa +BNa)γ̄aI .
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〈y(w, w̄)FI〉 is w, w̄-independent (and similarly for the anti-chiral sector) – that is, the

w or w̄ derivative of this correlator must vanish. Therefore, carrying out the contraction

using the full propagator, it suffices to check that the integrals:

∂w̄

∫
Σg

d
(
gI ∧ dG

)
= ∂w̄

∫
∂Σg

(
gI ∧ dG

)
=

∫
∂Σg

dz̄gI(z)∂z̄∂w̄G(z, w)

(3.41)

vanish, and similar expressions with ḡI replacing gI , and also ∂w replacing ∂w̄; four integrals

in total, but two are related by complex conjugation. Here dG ≡ dG(z, w), d = dz∂z+dz̄∂z̄,

and G(z, w) is the full propagator on the genus-g surface. For these boundary integrals one

may consider the polygon representation of the cut surface, Σ̃g, see Fig. 1, cut out small

discs (D) of infinitesimal radius |ε| centred around the pole that comes from dG(z, w) for

z → w, and write the integral over the full cut surface as an integral over Σ̃g −D plus an

integral over D. Both of these can be written as boundary integrals using Stoke’s theorem

with ∂Σ̃g =
∑g

I=1(AI +BI + A−1
I +B−1

I ), and a careful consideration of each of the terms

that arise (along the lines of Mumford [88] or Lugo and Russo [120], although in the present

context the integrand contains both meromorphic and anti-meromorphic quantities), after

various cancellations, leads to the vanishing of the correlator in question,〈∫
jMy

M FN
I

〉
= 0, when

∫
d2zjM(z, z̄) = 0.

Therefore, repeating the argument for F̄N
I as well the naive assumption that we can set

FI = F̄I = 0 is, effectively, correct. Note that on Σ̃g − D, ∂z∂w̄ ln |E(z, w)|2 = 0, whereas

on D, ∂z∂w̄ ln |E(z, w)|2 = −2πδ2(z − w). We also use the fact that gI is on A−1
J the same

as gI on AJ plus
∮
BJ
ωI = ΩIJ , and that gI is on B−1

J the same as gI on BJ plus
∮
A−1
J
ωI =

−
∮
AJ
ωI = −δIJ , see Fig. 1, and similarly for the remaining terms in the integrand.

Having established (3.40), from (3.34), (3.35) and (3.36) we learn that the decomposition

x = x0 + ycl + y factorises the action into three distinct pieces, and substituting these into

(3.14), leads to:

Ax(j) = Ψ0
EuclΨ

cl
EuclΨ

q
Eucl

= Ψ0
Eucl

(∑
ycl

e−I(ycl|j)
)(∫

Dy e−I(y|j)
)

= Ψ0
Eucl

(∑
ycl

e−I(ycl|j)
)(∫

dDgPµI

∫
dDgWµ

I

∫
Dy e−I(y|j)δDg

(
PµI − P̂µI

)
δDg
(
Wµ
I − Ŵµ

I

))
,

(3.42)
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where Ψcl
Eucl and Ψq

Eucl are to be identified with the second and third parentheses respectively

in the second or third lines, and we have defined:

I(ycl|j) = γaI

( 1

πα′
Im ΩIJ

(
Gab +Bab

))
γ̄bJ − iΦI

aγ
a
I − iΦ̄I

aγ̄
a
I

I(y|j) =
1

2πα′

∫
Σg

d2z ∂zy
M∂z̄y

N
(
GMN +BMN

)
− i
∫

Σg

d2z jMy
M ,

(3.43)

with the understanding that, according to the above discussion, the ΦI
a, Φ̄I

a in (3.35) reduce

to (generalising the definition to generic spacetime components for later convenience):

ΦI
M :=

∫
Σg

d2z jM

∫ z

ωI and Φ̄I
M :=

∫
Σg

d2z jM

∫ z̄

ω̄I . (3.44)

We next evaluate each of the two remaining factors, Ψcl
Eucl and Ψq

Eucl, below in the generic

case where all components of the source jM are potentially non-vanishing (or possibly

physical). This latter point will ensure that we can extract amplitudes from Ax(j) by

functional differentiation with respect to the source j associated to S-matrix elements whose

asymptotic states have generic Neveu-Schwarz (NS) charges: we allow for vertex operators

whose polarisation tensors and momenta potentially span the full space RD−1,1×TDcr−D or

any subspace of interest, with generic KK and winding charges.

Let us now consider the classical instanton contributions,

Ψcl
Eucl :=

∑
{Na

I ,M
a
I }∈Z

exp

{
− γaI

( 1

πα′
Im ΩIJ

(
Gab +Bab

))
γ̄bJ + iΦI

aγ
a
I + iΦ̄I

aγ̄
a
I

}
, (3.45)

with γaI , γ̄aI given explicitly in (3.29). To make the loop momenta in the compact dimensions

manifest it is desirable to perform a Poisson resummation on the integers {Ma
I } appearing

in γaI , γ̄aI , the particular identity of interest being (when the matrix AabIJ is not necessarily

diagonal in ‘ab’ or ‘IJ ’),∑
{Ma

I }∈Z

e−πM
α
I A

IJ
abM

b
J+2πBIaM

a
I =

∑
{M ′Ia}∈Z

det−1/2
(
DetAIJab

)
e−π(M ′Ia−iBIa)(A−1)abIJ (M ′Jb−iBJb ),

with ‘Det’ with respect to the ‘ab’ indices and ‘det’ with respect to ‘IJ ’. (This can be

thought of as a first step towards a Hamiltonian formulation of string theory as opposed

to a Lagrangian formulation, because this Poissson resummation makes the compact loop

momenta manifest, see below.) The invertible (g × g, real and symmetric) matrices of

interest are AIJab = Gab(ImΩ)−1
IJ , and the complex vectors BI

a = (2ImΩ)−1
IJ

[
ΩJKN

b
K(Gba −

Bba) + Ω̄JKN
b
K(Gba +Bba) + `s

(
ΦJ
a − Φ̄J

a

)]
. Note that

(Gab)
−1 = Gab −Gaµ(Gµν)−1Gνb, (3.46)
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which follows from the defining relations GMNGNL ≡ δML and (Gab)
−1Gbc ≡ δac . After a

certain amount of algebra we learn that:

Ψcl
Eucl =

∑
{Na

I ,M
′I
a }∈Z

(DetGab)
− g

2

(
det ImΩIJ

)Dcr−D
2

× exp

(
i
πα′

2
QIa(Gab)

−1ΩIJQ
J
b + iπα′QIa(Gab)

−1ΦI
b

)
× exp

(
− iπα

′

2
Q̄Ia(Gab)

−1Ω̄IJ Q̄
J
b − iπα′Q̄Ia(Gab)

−1Φ̄I
b

)
× exp

(
i
πα′

2

(
ΦI
a − Φ̄I

a

)
(Gab)

−1
(
ΩIJ − Ω̄IJ

)−1(
ΦJ
b − Φ̄J

b

))
.

(3.47)

The (non-chirally split) exponent in the last factor in (3.47) is closely related to the zero

mode of the multi-loop propagator, see below.28 We have defined the quantities:

QIa :=
1

`s

(
M
′I
a +BabN

b
I +GabN

b
I

)
, Q̄Ia :=

1

`s

(
M
′I
a +BabN

b
I −GabN

b
I

)
, (3.48)

where the indices a, b span TDcr−D. Given our discussion leading to (3.24), these are inter-

preted as (anti-)chiral momenta, related to momentum and winding operators as in (3.20).

The correspondence with (3.25) is clear, implying that the first terms in (3.48), namely

M
′I
a /`s, should be identified with eigenvalues of �̂a,AI , whereas from (3.48), (3.30) and

(3.19) we see that Na
I /`s is precisely the expected AI-cycle eigenvalue of the winding op-

erator, Ŵ a
I , as always paying careful attention to the location of spacetime indices. (The

Poisson resummation maps integers M b
I to a new dual set of integers M ′

b
I .)

We next consider the fluctuations in (3.42) (still working in Euclidean target space and

worldsheet signature),

Ψq
Eucl :=

∫
dPµI

∫
dWµ

I

∫
Dy e−I(y|j)δDg

(
PµI − P̂µI

)
δDg
(
Wµ
I − Ŵµ

I

)
, (3.49)

To evaluate (3.49) for arbitrary sources we break the calculation down into 4 steps:

(i) introduce integral representations for each of the 2Dg delta functions, δ(a) =
∫
dλ eiλa;

(ii) integrate out yM in resulting expression;

(iii) evaluate resulting AI-cycle contour integrals, see (3.19);

(iv) integrate out the λ, in resulting expression.

28We often use the convention that under complex conjugation one is to take (in addition to z → z̄,
ωI → ω̄I , ΩIJ → Ω̄IJ) Q → Q̄ and ja → ja (independently of whether jM or Q is real or complex), as this

allows us to rewrite the two exponents in the second line of (3.47) as
∣∣ exp(. . . )

∣∣2.
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Step (i), introducing an integral representation for the delta functions, leads to:∫
Dy e−I(y|j)δDg

(
PµI − P̂µI

)
δDg
(
Wµ
I − Ŵµ

I

)
=

∫
dDgλIµe

iλIµP
µ
I

∫
dDgλ̄Iµ e

iλ̄IµW
µ
I

∫
Dy e−I(y|B+j)

(3.50)

where we made use of (3.19) in order to define the quantity BM = (Bµ, Ba) with:

Bµ(z, z̄) := − 1

2πα′
(
λIµ + λ̄Iµ

) ∮
AI

duδ2(u− z)∂z +
1

2πα′
(
λIµ − λ̄Iµ

) ∮
AI

dūδ2(u− z)∂z̄,

(3.51)

and Ba(z, z̄) := 0 when µ spans RD and a spans TDcr−D respectively, and there is an implicit

sum over repeated indices I, with I = 1, . . . , g. (Note that Ba vanishes because the delta

functions are associated to the non-compact dimensions; the corresponding momentum and

winding in the compact dimensions has already been fixed by the Poisson resummation.)

There are two slightly subtle points that go into deriving the equality (3.50). The first

concerns an apparent interchange of the orders of integration: for some generic homology

cycle, C, we have been somewhat cavalier in going from the first to the second equality in:∮
C
du∂ux =

∮
C
du
(∫

d2zδ2(z − u)∂ux
)

=

∫
d2z
(∮
C
duδ2(z − u)∂ux

)
,

(3.52)

without discussing the issue of absolute convergence. However, the key word in the above

statement is the word ‘apparent’, because in evaluating these integrals (after integrating out

x) it will always be understood that we first carry out the area integrals and subsequently the

contour integrals. The second subtlety is potentially more serious, namely a real interchange

in the order of integration:
∫
Dy
∫
dDgλ(. . . ) =

∫
dDgλ

∫
Dy(. . . ). This interchange is

potentially subtle (given that, e.g., we have not addressed the issue of absolute convergence

of the y integral), but will nevertheless proceed in this manner and rest assured on the fact

that our result for Ax(j) will be consistent (in certain limiting cases) with the result of

D’Hoker and Phong [64] who proceed without introducing such delta function insertions,

and so this procedure is not expected to introduce any spurious terms.

Step (ii), integrating out yM in (3.50), is carried out by writing QM := BM + jM

and making use of the mode expansion depicted above (3.36). Zeta function regular-

isation (to show that
∏

α>0 c = 1√
c
) is used to rewrite the measure as follows, Dy =

Det−1/2GMN

(∏
α 6=0 d

DcrAα
)
, and a standard calculation [86] then leads to:∫

Dy e−I(y|Q) =
(
4π2α′det′∆(0)

)−Dcr/2
e−

1
2

∫
d2z

∫
d2z′QM (z,z̄)GMNQN (z′,z̄′)G(z,z′). (3.53)

Note that the determinant, Det−1/2GMN , crucially, has cancelled out of (3.53). Here

∆(0) = − 1√
g
∂α
√
ggαβ∂β is the standard Laplacian (which in the z, z̄ coordinates reduces to
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−2gzz̄∂z∂z̄), the prime on the determinant indicates that ∆(0) acts in the space orthogonal to

zero modes. The (multi-loop) propagator, G(z, w) :=
∑

α 6=0
2πα′

ω2
α
φα(z, z̄)φα(w, w̄), and sat-

isfies ∆(0)G(z, w) = 2πα′√
g
δ2(z−w)− 2πα′∫

Σg
d2z
√
g
, with the completeness relation 1√

g
δ2(z−w) =∑

α∈Z φα(z, z̄)φα(w, w̄); see also Appendix A.2. For example, for compact genus-g Riemann

surfaces (the case of interest in the current document) we can take [84],

G(z, z′) = −α
′

2
ln |E(z, z′)|2 + πα′ Im

z′∫
z

ωI (ImΩ)−1
IJ Im

z′∫
z

ωJ . (3.54)

The zero mode piece appearing here is the main obstruction to chiral splitting in amplitudes.

Fixing the loop momenta [64] removes these zero mode contributions from correlation func-

tions, thus significantly facilitating amplitude computations as we shall see, especially in

the context of highly excited strings.

Step (iii), the evaluation of the AI-cycle contour integrals is carried out by noting

that in the exponent in (3.53) there arise the terms: e−
1
2

∫ ∫
QMG

MNQ′NG which when ex-

panded (on account of Ba = 0) read e−
1
2

∫ ∫
BµGµνB′νGe−

∫ ∫
(jµGµν+jaGaν)B′νGe−

1
2

∫ ∫
jMG

MN j′NG,

and from the definition of Bµ therefore, we must interpret the quantities
∮
AI
dz∂zG(z, z′),

and
∮
AI
dz̄∂z̄G(z, z′), and various related combinations – these are the contour integrals

referred to in item (iii) above. According to (A.143), the prime form is periodic around

the AI-cycles, ∮
AI

dz ∂z lnE(z, w) = 0,

and therefore the sole contribution will come from zero modes, see (A.146). (If we had

instead fixed the B-cycle momenta, or a linear combination of A- and B-cycle momenta,

the non-zero mode components would also contribute, and we would have to add additional

pieces to the propagator.29) Analytically continuing z, z̄ to independent variables, a short

calculation30 using the defining relations for the holomorphic differentials,
∮
AI
ωJ = δIJ and∮

AI
ω̄J = δIJ , yields,

1

πα′

∮
AI

dz∂zG(z, z′) = −1

4
(ImΩ)−1

II + i(ImΩ)−1
IJ Im

∫ z′

℘

ωJ

1

πα′

∮
AI

dz̄∂z̄G(z, z′) = −1

4
(ImΩ)−1

II − i(ImΩ)−1
IJ Im

∫ z′

℘

ωJ ,

(3.55)

with ℘ ∈ Σg a reference point on which amplitudes do not depend. This step is somewhat

naive (due to the continuation of z, z̄ to independent variables), but it gives the correct

29DPS thanks Eric D’Hoker for a discussion on this point.

30Here we write Im
∫ w
z
ωI = 1

2i (
∫ w
z
ωI −

∫ w̄
z̄
ω̄I) and then express

∫ ℘+AI
z

ωJ as
∫ ℘
z
ωJ +

∮
AI
ωJ for some

reference point ℘ ∈ Σg, and similarly for the antiholomorphic sector.
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answer. One of the relevant integrals for the second (for M = µ) and third (for M = a)

terms in the above exponential is then,

−
∫
d2z

∫
d2z′

(
jµ(z, z̄)Gµν + ja(z, z̄)Gaν

)
Bν(z

′, z̄′)G(z, z′)

= iλIµ(ImΩ)−1
IJ

∫
d2z
(
Gµνjν(z, z̄) +Gµaja(z, z̄)

)
Im

∫ z

p

ωJ + . . . ,
(3.56)

where the dots denote the contribution coming from the terms −1
4
(ImΩ)II in (3.55), which

do not contribute because
∫
d2zjM(z, z̄) = 0, see (3.36). Notice we are not assuming

the cross terms, Gµa, vanish. Furthermore, the difference in sign in the chiral and anti-

chiral halves in the second terms of the right-hand sides on (3.55) is crucial: it implies

that the λ̄-dependent terms in (3.51) precisely cancel out (on account of the constraint∫
d2zjM(z, z̄) = 0).

Finally, there is an integral that is quadratic in Bµ(z, z̄). This is equivalent to (3.56)

(up to a factor of two) but with BM(z, z̄) replacing jM(z, z̄),

−1

2

∫
d2z

∫
d2z′Bµ(z, z̄)GµνBν(z

′, z̄′)G(z, z′) = −1

2
λIµ

( Gµν

2πα′
(
ImΩ

)−1

IJ

)
λJν . (3.57)

Also here the λ̄ terms cancel out and do not appear on the right-hand side, here because

of the equality
∮
AI
ωJ =

∮
AI
ω̄J . Gathering the above results, making explicit use of the

propagator (3.54) and writing the result in terms of ΦI
a, Φ̄

I
a as defined in (3.44), we learn

that the exponent in (3.53), namely e−
1
2

∫
d2z

∫
d2z′QM (z,z̄)GMNQN (z′,z̄′)G(z,z′), is precisely equal

to:

e
α′
4

∫
d2z

∫
d2z′jM (z,z̄)GMN jN (z′,z̄′) ln |E(z,z′)|2e−i

πα′
2

(ΦIM−Φ̄IM )GMN (ΩIJ−Ω̄IJ )−1(ΦJN−Φ̄JN )

× e−
1
2
λIµ

(
Gµν

2πα′ (ImΩ)−1
IJ

)
λJνeiλIµ

[
(ΩIJ−Ω̄IJ )−1GµM (ΦJM−Φ̄JM )

] (3.58)

Substituting this into (3.53), which is in turn substituted back into (3.50), we obtain the

following expression for the delta function expectation values in the presence of a source:∫
Dy e−I(y|j)δDg

(
PµI − P̂µI

)
δDg
(
Wµ
I − Ŵµ

I

)
=

=
(
4π2α′det′∆(0)

)−Dcr/2
e
α′
4

∫∫
jMG

MN j′N ln |E(z,z′)|2e−i
πα′
2

(ΦIM−Φ̄IM )GMN (ΩIJ−Ω̄IJ )−1(ΦJN−Φ̄JN )

×
∫
dDgλ̄Iµ e

iλ̄IµW
µ
I

∫
dDgλIµ e

− 1
2
λIµ

(
Gµν

2πα′ (ImΩ)−1
IJ

)
λJνeiλIµ

[
PµI+(ΩIJ−Ω̄IJ )−1GµM (ΦJM−Φ̄JM )

]
.

(3.59)

Step (iv) of the computation is to carry out the remaining integrations over the λIµ,
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λ̄Iµ in (3.59).31 After some trivial rearrangement,∫
Dy e−I(y|j)δDg

(
PµI − P̂µI

)
δDg
(
Wµ
I − Ŵµ

I

)
=

= (2π`s)
Dg−Dcr

(
det′∆(0)

)−Dcr/2
Det−g/2Gµν detD/2(ImΩIJ)δDg

(
Wµ
I

)
× e

α′
4

∫∫
jMG

MN j′N lnE(z,z′)ei
πα′
2

PµI (Gµν)−1ΩIJPνJ+iπα′PµI (Gµν)−1GνNΦIN

× e
α′
4

∫∫
jMG

MN j′N ln Ē(z̄,z̄′)e−i
πα′
2

PµI (Gµν)−1Ω̄IJPνJ−iπα
′PµI (Gµν)−1GνN Φ̄IN

× e−i
πα′
2

(ΦIM−Φ̄IM )
[
GMN−GMµ(Gµν)−1GνN

]
(ΩIJ−Ω̄IJ )−1(ΦJN−Φ̄JN )

(3.61)

where we note that the λ̄ integrals lead to the delta function constraint δDg
(
Wµ
I

)
, which

on account of (3.20) allows us to identify PµI with QµI or Q̄µI , given that in the absence of

winding all these are equivalent.

The second and third lines of the RHS in (3.61) are chirally split, whereas the last line is

not. (The non-chirally split terms in the first line will cancel when ghost contributions are

included.) The term in the last line will ultimately cancel a similar quantity that arose from

the instanton contribution, Ψcl
Eucl, see the last line in (3.47), but to make this cancellation

manifest let us consider the quantity:

GMN −GMµ(Gµν)−1GνN

in (3.61). When M and/or N span RD this quantity vanishes, given that by definition

(Gµν)−1Gνρ ≡ δρµ. Therefore, only if both M and N span TDcr−D will the non-chirally split

term in the last line of (3.61) contribute. That is,

e−i
πα′
2

(ΦIM−Φ̄IM )
[
GMN−GMµ(Gµν)−1GνN

]
(ΩIJ−Ω̄IJ )−1(ΦJN−Φ̄JN )

= e−i
πα′
2

(ΦIa−Φ̄Ia)
[
Gab−Gaµ(Gµν)−1Gνb

]
(ΩIJ−Ω̄IJ )−1(ΦJb−Φ̄Jb ).

(3.62)

But according to (3.46) the quantity in the brackets, Gab − Gaµ(Gµν)−1Gνb, is precisely

(Gab)
−1, and so the non-chirally split factor (3.62) is also equal to:

e−i
πα′
2

(ΦIa−Φ̄Ia)(Gab)
−1(ΩIJ−Ω̄IJ )−1(ΦJb−Φ̄Jb ).

This exponent is (up to a crucial minus sign) identical to that in the last line of (3.47), im-

plying that in the product Ψcl
EuclΨ

q
Eucl the non-chirally split exponential will cancel out

31Defining AµνIJ := Gµν

2πα′

(
ImΩ

)−1

IJ
and GµI := PµI + (ΩIJ − Ω̄IJ)−1GµM (ΦJM − Φ̄JM ), the following integral

is required:(∏
I,µ

∫ ∞
−∞

dλIµ

)
exp

{
− 1

2
λIµAµνIJλIν + iGµI λIµ

}
= det−1/2

(
Det

AµνIJ
2π

)
exp

{
− 1

2
GµI (A−1)IJµνG

ν
J

}
.

(3.60)
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of the full generating function, AEucl
x (j) = Ψ0

EuclΨ
cl
EuclΨ

q
Eucl. This generalises a similar

observation by D’Hoker and Phong [64] (in the context of a RDcr target spacetime with

GMN = δMN and BMN = 0 string backgrounds) to completely generic constant string

backgrounds GMN , BMN and Φ in RD × TDcr−D.

The full result for the quantum fluctuations reads, on account of (3.61) and (3.49) and

the above discussion,

Ψq
Eucl = (2π`s)

Dg−Dcr
(
det′∆(0)

)−Dcr/2
Det−g/2Gµν detD/2(ImΩIJ)

∫
dDgWµIδDg

(
Wµ
I

) ∫
dDgPµI

× exp

(
α′

4

∫ ∫
jMG

MNj′N lnE(z, z′) + i
πα′

2
PµI (Gµν)−1ΩIJP

ν
J + iπα′PµI (Gµν)−1GνNΦI

N

)
× exp

(
α′

4

∫ ∫
jMG

MNj′N ln Ē(z̄, z̄′)− iπα
′

2
PµI (Gµν)−1Ω̄IJP

ν
J − iπα′P

µ
I (Gµν)−1GνN Φ̄I

N

)
× exp

(
− iπα

′

2
(ΦI

a − Φ̄I
a)(Gab)

−1(ΩIJ − Ω̄IJ)−1(ΦJ
b − Φ̄J

b )

)
(3.63)

Let us now gather all the results for the various terms appearing in (3.42), starting from

the chirally split exponentials in Ψq
Eucl in (3.63) and Ψcl

Eucl in (3.47). It is straightforward

to show (using GMNGNL = δML , (Gab)
−1Gbc ≡ δac and (Gµν)−1Gνσ ≡ δσµ , always raising and

lowering indices with GMN , and taking into account the delta function constraint, δDg(Wµ
I ),

in Ψq
Eucl which enforces Pµ = Qµ = Q̄µ) that:

QIMG
MNΩIJQ

J
N = QIa(Gab)

−1ΩIJQ
J
b + PµI (Gµν)−1ΩIJP

ν
J

QIMG
MNΦI

N = QIa(Gab)
−1ΦI

b + PµI (Gµν)−1GνNΦI
N ,

(3.64)

with similar relations for the anti-chiral sector with the replacements (Q,Ω,Φ)→ (Q̄, Ω̄, Φ̄).

Taking (3.64) into account, the full result for the matter contribution to the generating

function, AEucl
x (j) = Ψ0

EuclΨ
cl
EuclΨ

q
Eucl, from (3.36), (3.47) and (3.63) reads:

AEucl
x (j) = δD(`s ∫ jµ) δDcr−D

(`s ∫ ja),0

(
gs
(
DetGµνDetGab

)− 1
4

)2g−2( det′∆(0)

det(ImΩIJ)
∫

Σg
d2z
√
g

)−Dcr
2

×
∑∫

(Q,Q̄)

∣∣∣∣ exp

(
α′

4

∫∫
jMG

MNj′N lnE(z, z′) + i
πα′

2
QMI GMNΩIJQ

N
J + iπα′QMI

∫
jM

∫ z

ωI

)∣∣∣∣2
(3.65)

where we used (3.44) and took into account that δD(`s ∫ jµ) 1
DetGµν

= δD(`s ∫ jµ) (given that

although we raise indices with the full metric, GMN , we also have
∫
ja = 0 implying that

effectively GµM
∫
jM = Gµν

∫
jν). The (dimensionless) sum/integral over (Q, Q̄) should be

understood as an integral over non-compact momenta, PµI (with QµI = Q̄µI ), and a sum over
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compact momenta, QIa, Q̄Ia, defined in (3.48),

∑∫
(Q,Q̄)

:= `D g
s

∫
dDgQµI

∑
{Na

I ,M
′I
a }∈Z

= `D g
s

∫
dDgPµI d

DgWµ
I δ

Dg(Wµ
I )
∑

{Na
I ,M

′I
a }∈Z

(3.66)

Clearly, from (3.65) we see that the natural expansion parameter at fixed-loop momenta

is:

geff := gs

(
DetGµνDetGab

)− 1
4
. (3.67)

The Gab and gs dependence of geff is as expected, since this combination has precisely the

form required in order for geff to be invariant under T-duality, more about which later. The

Gµν dependence is novel and deserves further elaboration; we elaborate on this below. Note

that geff is also precisely the dimensionless version of the coupling gD that appears in vertex

operators, with gD = geff`
D
2
−1

s , the metric dependence being dictated by the fact that vertex

operators are composed of (possibly linear superpositions of) momentum eigenstates with

fixed KK and winding charges and momenta.

It is natural and convenient when considering functional derivatives of AEucl
x (j) to com-

plete the square in the exponent in (3.65), and so we reach the main expression for the

matter contribution to the (dimensionless) generating function of generic fixed-loop mo-

menta amplitudes in target spacetimes RD × TDcr−D:

AEucl
x (j) = δD(`s ∫ jµ)δDcr−D

(`s ∫ ja),0 g
2g−2
eff

(
det′∆(0)

det(ImΩIJ)
∫

Σg
d2z
√
g

)−Dcr/2

×
∑∫

(Q,Q̄)

∣∣∣∣ exp

(
`2
s

4

∫
d2z

∫
d2z′

(
jM +HM

)
GMN

(
j′N +H ′N

)
lnE(z, z′)

)∣∣∣∣2, (3.68)

and we have defined:

HM(z, z̄) := QIM

∮
BI

dwδ2(w − z)∂z, H̄M(z, z̄) := Q̄IM

∮
BI

dw̄δ2(w − z)∂z̄, (3.69)

with an implicit sum over I = 1, . . . , g, and the spacetime indices M,N span the full target

space RD × TDcr−D. This is the analogue of the classic textbook formula of Polchinski

(equation (6.2.6) in [86]), generalised here to target spacetimes RD × TDcr−D with generic

Kähler and complex structure moduli (generic constant background fields GMN , BMN and

Φ), fixed-loop momenta, and genus-g > 0 worldsheets. By convention, complex conjugation

in (3.68) takes (QIM ,ΩIJ , jM , z) to (Q̄IM , Ω̄IJ , jM , z̄) (independently of whether the QIM and jM

are real or complex), and in the compact and non-compact dimensions we have, respectively,
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(3.48) and PµI = QµI = Q̄µI .32

To see that (3.68) indeed follows from (3.65), the quasi-periodicity property of the prime

form around BI cycles is useful:∮
BI

dw∂w lnE(w, z) = 2πi

∫ z

℘

ωI + . . . (3.70)

where the ‘. . . ’ denote terms that drop out of the amplitude due to the constraint
∫
jM = 0.

Similarly, amplitudes do not depend on the lower limit, ℘, of the integral on the right-hand

side. Note also that the amplitude (3.68) is symmetric under H → −H, and that the various

factors of 2π in (3.37) and (3.61) have cancelled out of the final result. It is apparently

natural to write the result (for the fixed-loop momenta generating function) in terms of the

string length:

`s :=
√
α′

in (3.68).

To complete the story we now include the ghost contribution, Agh, to extract the full

generating function, AEucl(j) = AghAEucl
x (j). At this point the ghost insertions can be

completely general, but we restrict here to the minimal number of ghost insertions that

lead to a non-vanishing result,

Agh =

∫
D(b, b̃, c, c̃)

#Cmoduli∏
j=1

|〈µj, b〉|2
#CCKVs∏
s=1

|c(ws)|2 e−Igh , (3.71)

with,

Igh =
1

2π

∫
Σg

d2z
√
g
(
b∇z

(−1)c+ b̃∇z̄
(1)c̃
)
. (3.72)

Agh has been well-studied for arbitrary genus [84,89] and we have nothing new to add here,

so we will be brief. Suffice it to say that the operator-product expansions (OPE’s) (5.107)

imply Agh has various obvious zeros and poles due to the explicit b, c insertions. In addition,

viewed as a function of, say, w1, it has g additional zeros that are determined uniquely by

the Jacobi inversion theorem [84], while the related Riemann vanishing theorem [89] further

ensures that Agh can be expressed entirely in terms of Riemann theta functions and related

32The result (3.68) is consistent with the chiral splitting theorem of D’Hoker and Phong [64] and re-
produces the tachyon n-point amplitude of [83] in Dcr = 26 when: j(z, z̄) =

∑
i

(
kL,i

∫ zi
℘
duδ2(u −

z)∂z + kR,i

∫ z̄i
℘̄
dūδ2(u − z)∂z̄

)
, for vertex operators with total momentum ki = 1

2 (kL + kR)i and wind-

ing wi = 1
2 (kL − kR)i, and (℘, ℘̄) a universal generic point on the worldsheet on which amplitudes do

not depend due to momentum conservation,
∑
i ki = 0 that in turn arises from the delta-function con-

straint. When the external states have zero winding, wi = 0, with w = 1
2 (kL − kR), the source reduces to

j(z, z̄) =
∑
i δ

2(zi − z)ki.

36



quantities, allowing it to be evaluated explicitly [84,85,89]; see also [121] for a pedagogical

account. What we will make use of here is the following generic result (when g > 0):33

Agh =

(
det′∆(0)

det ImΩIJ

∫
Σg
d2z
√
g

)13

|Zg|2. (3.73)

As above, a prime on determinants always signifies that it is to be computed in the space

transverse to zero modes of the associated operator. That Agh chirally factorises up to the

term in the parenthesis (and a Liouville factor that we are suppressing) is well understood

and holds for arbitrary genus g. The quantity Zg is in turn a certain combination of modular

functions. For example, at genus g = 1, it may be written in terms of the Dedekind eta

function,

Z1 = η(τ)−24 (g = 1),

with τ = τ1 + iτ2 the complex structure modulus of the torus [86]. The quantity in the

parenthesis can also be expressed in terms of modular functions [84, 89], but in fact the

above form will be more useful in what follows, because it precisely cancels a similar factor

from the matter sector in the critical dimension at fixed internal loop momenta, as we will

elaborate on explicitly next.

Let us now collect all the pieces and write down an expression for the full (g > 0)

generating function (3.12) for closed string scattering in target spacetimes RD×TDcr−D with

generic Kähler and complex structure moduli, background KK gauge fields and torsion, see

(3.16), on account of the ghost (3.73) and matter contribution (3.68),

AEucl(j) = δD(`s ∫ jµ) δDcr−D
(`s ∫ ja),0

(
gs
(
DetGµνDetGab

)− 1
4

)2g−2( det′∆(0)

det(ImΩIJ)
∫

Σg
d2z
√
g

)(26−Dcr)/2

× `Dg
s

∫
dDgQµI

∑
{Na

I ,M
′I
a }∈Z

∣∣∣∣Zg exp

(
`2
s

4

∫
d2z

∫
d2z′

(
jM +HM

)
GMN

(
j′N +H ′N

)
lnE(z, z′)

)∣∣∣∣2
(3.74)

Notice that the loop momenta contribution, HM , H̄M , is nothing but an operator shift in

jM .

In the critical dimension of bosonic string theory, Dcr = 26, the non-chirally split terms

cancel out completely, and (unless we include a fermionic sector to extend this result to

the superstring) this is precisely where this computation is valid. In non-critical bosonic

string theory, where Dcr 6= 26, there is an additional Liouville factor that contributes to

restore Weyl invariance. In what follows we focus on Dcr = 26, but we emphasise that the

33We are neglecting the contribution of the Liouville factor that will always cancel in the final answer for
the full amplitude in the critical dimension.
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above expression for AEucl(j) holds true also for the superstring when Dcr = 10 and the

sources jM are shifted by worldsheet fermions [64]. The superstring will be discussed in

detail elsewhere.

Wick-rotatingAEucl(j) to Lorentzian target space signature34, and denoting the resulting

object by A(j), we can then very concisely write the full result for the generating function

as follows:

A(j) = iδ̄(j`s) g
2g−2
eff

∑∫
(Q,Q̄)

∣∣∣∣Zg exp

(
`2
s

4

∫
d2z

∫
d2z′

(
j +H

)
·
(
j′ +H ′

)
lnE(z, z′)

)∣∣∣∣2

(3.75)

The (dimensionless) sum/integral over (Q, Q̄) should be understood as an integral over

the non-compact momenta, PµI (with QµI = Q̄µI ), and a sum over the compact momenta,

QIa, Q̄Ia, which lie on the genus-g torus lattice, Γg
Dcr−D,Dcr−D, and are labelled by integers

{M ′I
a, N

a
I } ∈ Z, where a spans TDcr−D and I = 1, . . . , g,∑∫

(Q,Q̄)

:= `D g
s i−g

∫
dDgQµI

∑
{Na

I ,M
′I
a }∈Z

= `D g
s i−g

∫
dDgPµI d

DgWIµδDg(WIµ)
∑

{Na
I ,M

′I
a }∈Z

, (3.76)

and (for transparency of exposition) have also defined the following dimensionless combi-

nation of Dirac and Kronecker delta functions:

δ̄(j`s) := δD(∫ jµ`s)δDcr−D
(∫ ja`s),0 (3.77)

with the property δ̄(j`s) = `−Ds δ̄(j). It is customary for S-matrix calculations, see (5.113),

to work in terms of the dimensionful delta function δ̄(j) = (2π)Dδ̄(j), i.e.,

δ̄(j) := (2π)DδD(∫ jµ)δDcr−D
(∫ ja`s),0. (3.78)

It should also be understood that all implicit spacetime index contractions in (3.75) are

carried out with the full metric GMN , which now has Lorentzian signature, and that the

34As discussed above, Wick rotating back to Lorentzian target spacetime signature can be achieved
by replacing GEucl

µν → GMink
µν and

√
DetGµνEucl → i

√
−DetGµνMink (the branch of the square root being

convention-dependent). This is equivalent to starting from a Euclidean signature generating function and
then interpreting all spacetime contractions as being with respect to a Lorentzian signature metric, GMink

µν ,

while rotating the coupling (g2
eff)Eucl → −i(g2

eff)Mink, leaving other quantities unchanged, with (geff)Mink

positive definite as defined in (3.79). This approach leads to an overall factor of i1−g, with the i displayed
explicitly in (3.75) and the i−g absorbed into (3.76). Upon rotating to Lorentzian signature, the contours
of energy loop integrals are to be interpreted as in [65–67].
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T-duality invariant geff is defined in terms of this:

geff := gs

(
−DetGµνDetGab

)− 1
4

(3.79)

The above holds for arbitrary constant backgrounds, GMN , BMN , but a standard example

is the following (torsion-free) background:

GMN =

(
ηµν 0
0 Gab

)
, Gab =

(R1/`s)
2 0

. . .

0 (RDcr−D/`s)
2

 , and BMN = 0,

(3.80)

where now geff = gs (DetGab)
− 1

4 = gs
∏

a(`s/R
a)

1
2 , and T-dualising along one compact

dimension of radius R1 [86]:

R1

`s
→ `s

R1
, Φ→ Φ + ln

( `s
R1

)
, (3.81)

leaves geff invariant; recall from (3.17) that gs = eΦ. A full discussion of T-duality for

generic correlation functions is outside the scope of the current document. There are nu-

merous discussions of T-duality from a worldsheet perspective; a recent exposition that is

particularly transparent and relevant for constant backgrounds GMN , BMN , and Φ is [122].

The full generating function is explicitly dimensionless, as it should be. Vertex operators

should of course also then be dimensionless in order to lead to a dimensionless S matrix

whose modulus-square yields a probability. This is indeed the case when kinematic factors

for each of the vertex operators are included, 1/
√

2k0VD−1, (with VD−1 = (2π)D−1δD−1(0)

the formal volume of non-compact space that always cancels out of observables (precisely

as in standard field theory [123]) and k0 the expectation value of the energy of the vertex

operator) whose mass dimension precisely cancels that of the string coupling gD ≡ geff`
D
2
−1

s .

(A nice way of tracing back the origin of these factors was presented in [58].) As in field the-

ory, these kinematic factors will not appear in the (Lorentz-invariant) invariant amplitudes,

Mfi(1, 2, . . . ).

We would like to end this subsection by briefly returning to the discussion associated

to the shift of quantum fluctuations (3.32) that subtracts the source dependent piece from

the classical solitons (3.31). We stated there that (being a field redefinition) such a shift

will not affect amplitudes or the generating function. The manner in which this invariance

manifests itself is quite interesting, so we will discuss it briefly. Suppose that instead of

computing quantum fluctuations around the soliton solution ycl we computed quantum

fluctuations around the original soliton solution,

xMcl (z, z̄) = yMcl (z, z̄) + i

∫
d2wGMNjN(w, w̄)G(z, w).
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By explicit computation one can show that the effect of the new source-dependent shift in

the classical soliton sector, i
∫
d2wGMNjN(w, w̄)G(z, w), is to undo the chiral splitting in

the sense that the exponential,(
α′

4

∫∫
jMG

MNj′N lnE(z, z′) + i
πα′

2
QMI GMNΩIJQ

N
J + iπα′QMI

∫
jM

∫ z

ωI

)
+ c.c.,

in (3.65) or (3.75) would get replaced by:

− 1

2

∫∫
jMG

MNj′N

(
− α′

2
ln |E(z, z′)|2 + πα′ Im

z′∫
z

ωI (ImΩ)−1
IJ Im

z′∫
z

ωJ

)
+ i

πα′

2
QMI GMNΩIJQ

N
J − i

πα′

2
Q̄MI GMN Ω̄IJ Q̄

N
J ,

where the term in the parenthesis in the latter expression is precisely the propagator for the

full non-chirally split quantum fluctuations (3.54). A further integral over the non-compact

loop momenta produces the standard [86] non-chirally split generating function. Given that

integrating out the loop momenta does of course leave the generating function invariant, it

follows that the field redefinition (3.32) also leaves the amplitudes invariant. That is, doing

perturbation theory around either of the soliton solutions (3.31) or (3.32) leads to identical

results, thus justifying our original claim.

4 Wave/String Duality

In this subsection we discuss the sense in which wave/particle duality of point-particle

quantum mechanics arises in string theory. The analogous relation in string theory will

be referred to as wave/string duality, because in string perturbation theory the notion of

particle is replaced by the notion of string. In passing we will also elaborate on some aspects

of target space effective actions.

The generating function (3.75) is given in the fixed-loop momenta representation, in

both compact and non-compact sectors, associated to TDcr−C and RD−1,1 respectively, for

generic constant Kähler moduli, complex structure moduli, background KK gauge fields and

torsion. It is also useful to display the analogous expressions for integrated loop momenta.

There are four natural possibilities:

(loop momenta in RD−1,1, loop momenta in TDcr−D) = (F,F), (F, I), (I,F) and (I, I),

where35 I=‘integrated’ and F=‘fixed’. The associated generating functions are all equal as

35‘Integrated’ here means that the associated loop momenta have been integrated out, whereas ‘fixed’
means that the loop momenta appear explicitly in the integrand/summand.
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they are related by Fourier transforms (for the non-compact sector) and Poisson resumma-

tions (for the compact sector),

A(j)(F,F) = A(j)(F,I) = A(j)(I,F) = A(j)(I,I). (4.82)

We will now argue that the displayed equalities (4.82) may be regarded as a stringy manifes-

tation of wave/string duality, generalising the well-known wave/particle duality of quantum

mechanics; a principle that applies to all scattering amplitudes in string theory, to all orders

in perturbation theory. In this language the correspondences are:

‘F’ =̂ wave picture, and ‘I’ =̂ string picture.

In the above discussion A(j) corresponds to a (wave, wave) formulation of the generating

function, A(j) = A(j)(F,F), but considering also the other three pictures provides some

additional insight.

The (string, string) generating function, A(j)(I,I), is the formulation that naturally

arises out of the Lagrangian formulation of string theory, which is the usual starting point

for string calculations in the path integral language [86]. Here one (generically) sums over

all string trajectories for some fixed set of boundary conditions and asymptotic states, so

it is natural to associate this with a string picture (analogous to a particle picture in the

Feynman formulation of quantum mechanics where one sums over all trajectories of one or

more particles given a set of boundary conditions). A good example that provides some

further insight arises from considering the one-loop partition function in the Lagrangian

formulation. Let us in particular focus on the compact dimensions, there being analogous

statements in the non-compact dimensions. This contains the instanton action associated

to classical trajectories (3.28). Setting Na
I = 0, one can compute the associated momentum

of an AI-cycle string using (3.19), and hence notice that the winding number Ma
I that one is

summing over, see (3.29) and (3.30), may be interpreted as the number of times an AI-cycle

closed string traverses a compact dimension of size 2πR in worldsheet time interval Im Ω11

(more precisely in the analytically continued worldsheet real time interval −iIm Ω11, recall

the worldsheet theory is in Euclidean signature).

Let us now think about the corresponding interpretation in the (wave, wave) picture

where the relevant quantity isA(j)(F,F). This is closely related to a Hamiltonian formulation

of string theory, given that all (independent) loop momenta in this formulation are explicit.

Considering again the one-loop partition function referred to above, A(j)(F,F) is obtained

from A(j)(I,I) by performing a Poisson resummation in the compact dimensions with a

momentum-conserving delta function insertion in the non-compact dimensions. The Poisson

resummation maps the aforementioned integer Ma
I to a new integer M ′I

a (for every I, a)
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whose interpretation is now the mode number associated to a wave in a periodic box of

dimension 2πR. So summing over the number of times, Ma
I , a loop of string travels around

a compact dimension of size 2πR can be equivalently written as a sum over mode numbers,

M ′I
a, of a standing wave in a box of size 2πR, hence making wave/string duality completely

manifest. T-duality and modular invariance provide alternative geometrical pictures (all of

which are physically equivalent).

The remaining two (hybrid) cases, A(j)(F,I) and A(j)(I,F) may be thought of as Routhi-

ans (analogous to the Routhians of classical mechanics) given that they correspond to a

Hamiltonian formulation in the non-compact and compact dimensions respectively, with a

Lagrangian formulation in the remaining dimensions.

In examining further these four pictures let us primarily zoom in on the Gµν depen-

dence in the effective coupling (3.67). The quantity DetGµν is present in geff because the

associated generating function (3.65), being in the (F,F) picture, has fixed non-compact

loop momenta. To see that this enters in precisely the expected manner it proves useful to

consider the usual dimensional reduction on RD×TDcr−D of the NS-NS sector of low energy

supergravity, see e.g. [114,124]. The relevant metric decomposition that leads to a natural

expression for the dimensionally reduced target space effective action is:

GMN =

(
gµν + AaµGabA

b
ν GabA

a
µ

GabA
b
ν Gab

)
, GMN =

(
(gµν)

−1 −(gµρ)
−1Abρ

−(gνρ)
−1Aaρ (Gab)

−1 + Aaµ(gµν)
−1Abν

)
,

(4.83)

where the Aaµ are Kaluza-Klein gauge fields. It is useful to compare with (3.16). The

usefulness of this parametrisation is that:

(DetGµν)−1 = Det gµν , DetGMN = Det gµν DetGab.

We are free to define what we mean by gµν , and it is consistent [114] to simply define

gµν := (gµν)
−1. (Note however that generically Gab 6= (Gab)

−1, because Gab is the ab

component of GMN that is completely fixed by the defining relation GMNGNL = δML .) We

can then rewrite the following term in (3.74) in terms of gµν ,

δD(`s ∫ jµ)
(
gs
(
DetGµνDetGab

)− 1
4

)2g−2
∫
dDgPµI (. . . ) =

= δD(`s ∫ jµ)
√

Det gµν

g∏
I=1

(∫
dDPµI

√
Det gµν

)
e(2g−2)ΦD (. . . ),

(4.84)

where following standard practice we have defined a dimensionally-reduced dilaton:

ΦD := Φ− 1
4

ln DetGab (4.85)
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Fourier transforming the depicted delta function in (4.84) and the integrand of the g AI-

cycle loop momentum integrals leads to factors:

g∏
I=0

(∫
dDxI

√
Det gµν

)
e(2g−2)ΦD , (4.86)

which is clearly a collection of natural position space measures with a dilaton dependence

that is precisely that expected from low energy supergravity [114], whose tree-level in gs

contribution contains the universal factor:∫
dDxI

√
Det gµν e

−2ΦD(. . . ).

For the reader that is trying to make contact with the quantum effective action of

quantum field theory [125] note that the momenta of strings propagating through the

various isotopically (in Σg) distinct cycles of the underlying genus-g Riemann surface with

n external vertex operators (equalling [73] 3g − 3 + 2n in number) are completely fixed

by momentum conservation once the AI-cycle loop momenta and the n vertex operator

momenta are fixed (as we have done above). When the remaining internal momenta become

manifest there will be additional Fourier transforms leading to additional xI integrals. For

example, consider the case of 3-point interaction vertices, associated to degeneration limits

of the underlying Riemann surface so that a decomposition into pant diagrams [73] becomes

natural. Then, the number of topologically distinct Feynman diagrams for fixed loop order,

g, and fixed number of external vertex operators, n, in the presence 3-point interaction

vertices (the number of internal vertices) equals the number of distinct pant decompositions

of the Riemann surface. The total number of pants, 2g−2+n, in either one of the complete

set of pant decompositions in turn equals the number of vertices in the corresponding low

energy field theory, and hence also equals the number of position space integrals (as one

expects from a perturbative expansion of the field theory path integral [125]). Hence there

will be a universal factor in this particular degeneration:

2g−2+n∏
α=1

(∫
dDxα

√
Det gµν

)
e(2g−2)ΦD , (4.87)

g + 1 integrals of which are manifest from the derived explicit factor (4.86) above, while

the remaining g + n− 3 integrals are not manifest in the above decomposition because we

have only fixed the independent (in particular AI-cycle) loop momenta (and implicitly the

vertex operator momenta). This is a well-known peculiarity of string theory [81], in that

it is not so natural to exhibit all intermediate propagators in a string theory amplitude

until we reach a field theory limit. The remaining internal momenta are nevertheless all
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fixed by momentum conservation and so can be made explicit by introducing momentum

conserving delta functions for a given pant decomposition. From standard field theory and

Feynman diagram topology considerations Fourier transforming the resulting momentum

integrands must lead precisely to an overall factor (4.87), thus making the quantum effec-

tive action and corresponding field theory limit manifest. Clearly, the g = 0 terms all have

one overall factor
∫
dDxI

√
Det gµνe

−2ΦD , as one expects for the classical contribution to

the effective action, with higher loop orders introducing additional integrals. The overall

measure (4.86) is the closest one can get to obtaining an expression resembling the stan-

dard renormalised quantum effective action, Γ(φ), of quantum field theory (the Legendre

transform, −Γ(φ) +
∫
Jφ = W (J), of the renormalised generating function of correlation

functions, W (J), with φ the renormalised fields under consideration) without considering

explicit pant decompositions or degenerations. A much more complete discussion on some

of these aspects can be found in [73].

From these considerations it is clear that the DetGµν dependence in (3.74) is completely

natural and necessary in order to make contact with quantum field theory considerations.

Given that the DetGµν dependence is (according to the above discussion) associated to the

explicit presence of internal non-compact loop momenta, PµI , we can remove it by integrating

them out. Returning to the original parametrisation of the metric (3.16), on account of

(3.66), (3.64), δD(∫ jµ) = δD(∫ jµ) 1
DetGµν

(recall that
∫
ja = 0 and that in Euclidean space

Gµν is positive definite), and a slight variation of the Gaussian integral (3.60) we obtain

the (string, wave) (or (I, F)) representation,36

AEucl
x (j)(I,F) = (2π)DδD(∫ jµ)δDcr−D

(`s ∫ ja),0

1√
DetGµν

(
gs
(
DetGab

)− 1
4

)2g−2

×
(

det′∆(0)

det(ImΩIJ)
∫

Σg
d2z
√
g

)−Dcr
2

(4πα′det ImΩIJ)−D/2 exp

(
− 1

2

∫∫
jMG

MNj′NG(z, z′)

)
×
∑

{Na
I ,M

′I
a }∈Z

∣∣∣eiπα′2
QIa(Gab)

−1ΩIJQJb +iπα′QIa(Gab)
−1ΦIb

∣∣∣2eiπα′2
(Φ−Φ̄)Ia(Gab)

−1(Ω−Ω̄)−1
IJ (Φ−Φ̄)Jb

(4.89)

where G(z, z′) denotes the full Green function (3.54). We have presented the result for the

matter contribution for clarity, the full generating function, AEucl(j)(I,F), being obtained by

multiplying the right-hand side of (4.89) by the ghost contribution (3.73). (In reconstructing

the worldsheet Green function we have made use of the constraint
∫
d2zjM = 0.) It is seen

36The following relations (and analogous expressions obtained by interchanges (µ, ν)↔ (a, b)) are useful:

(DetGµν)−1 = DetGMN (DetGab)
−1, DetGMN = Det(Gµν −GµaG−1

ab Gbν) DetGab,

(Gab)−1 = Gab −GaµG−1
µνGνb, (Gab)

−1 = Gab −Gaµ(Gµν)−1Gνb.
(4.88)
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that the effective coupling in this representation is gs
(
DetGab

)− 1
4 , as one expects from

Kaluza-Klein reduction of low energy supergravity [114,124] on RD × TDcr−D.

The corresponding generating function in the (wave, string) (or (F, I)) picture is sim-

ilarly obtained from (3.36), (3.63) and (3.45),

Ax(j)(F,I) = δD(`s ∫ jµ) δDcr−D
(∫ ja),0 VC

(
gs
(
DetGµν

)− 1
4

)2g−2

×
( det′∆(0)

det ImΩIJ

∫
d2z
√
g

)−Dcr/2

(4π2α′det ImΩIJ)−(Dcr−D)/2

×
∑

{Na
I ,M

a
I }∈Z

exp

{
− γaI

( 1

πα′
Im ΩIJ

(
Gab +Bab

))
γ̄bJ + iΦI

aγ
a
I + iΦ̄I

aγ̄
a
I

}
× `Dg

s

∫
dDgPµI

∣∣∣eα′4 ∫∫
jMG

MN j′N lnE(z,z′)+iπα
′

2
PµI (Gµν)−1ΩIJPνJ+iπα′PµI (Gµν)−1GνNΦIN

∣∣∣2
× exp

(
− iπα

′

2
(ΦI

a − Φ̄I
a)(Gab)

−1(ΩIJ − Ω̄IJ)−1(ΦJ
b − Φ̄J

b )
)

(4.90)

where we have defined the compactification volume:

VC := (2π`s)
Dcr−D

√
DetGab,

whereas for the (string, string) picture generating function (i.e. (I, I)) we may consider

(4.89), and perform a (or more precisely undo the) Poisson resummation in the com-

pact dimensions. This will also remove the Gab determinant from the effective coupling,

gs
(
DetGab

)− 1
4 . Making further use of the relations for determinants (4.88) in the footnote

and taking (3.47) into account we obtain the (string, string) (or (I, I)) picture represen-

tation,

AEucl
x (j)(I,I) = (2π)DδD(∫ jµ) δDcr−D

(`s ∫ ja),0

√
DetGMN(2π`s)

Dcr−D g2g−2
s

×
∑

{Na
I ,M

a
I }∈Z

exp

{
− γaI

( 1

πα′
Im ΩIJ

(
Gab +Bab

))
γ̄bJ + iΦI

aγ
a
I + iΦ̄I

aγ̄
a
I

}

×
(

4π2α′det′∆(0)∫
Σg
d2z
√
g

)−Dcr
2

exp

(
− 1

2

∫
d2z

∫
d2z′jM(z, z̄)GMNjN(z′, z̄′)G(z, z′)

)
,

(4.91)

This expression (4.91) is in precise agreement with more standard expressions [64,86] when

the target space metric associated to RD × TDcr−D is parametrised as in (4.83). Note

that when this is the case,
√

DetGMN(2π`s)
Dcr−D =

√
Det gµν VC . Using zeta function

regularisation to place the explicit factor 4π2α′ in (4.91) inside the determinant, analytically

continuing to Lorentzian signature, where
√

Det gµν → i
√
−Det gµν , and when D = Dcr we

clearly reproduce Polchinski’s expression for the generating function [86] (equation (6.2.6)
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there), thus providing a non-trivial check of the normalisation and of the various factors

present.

It is important to mention that when g = 1 the above expressions for the generating

function assume there is at least one vertex operator insertion. Let us briefly discuss the

vacuum amplitude which (although standard) is the one example where this is not the case.

In the absence of vertex operators and for g > 1 integrating over moduli gives the

vacuum amplitude, usually denoted by Zg,

Zg =

∫
Fg

dMgA(0), (g > 1)

= −i
∫
dDx0

√
−Det gµν Λg

D,

(4.92)

because in this case there are no CKV’s; see (5.109) for the definition of dMg. The genus

g cosmological constant, Λg
D, is defined by:

Λg
D := −e−χ(Σg)Φ VC

∫
Fg

dMg

(
4π2α′det ImΩIJ

)−13|Zg|2Ψcl|j=0

= −e−χ(Σg)ΦD

∫
Fg

dMg

(
4π2α′ det ImΩIJ

)−D/2 ∑
{Na

I ,M
′I
a }∈Z

∣∣∣Zge
iπα
′

2
QIa(Gab)

−1ΩIJQJb

∣∣∣2. (4.93)

The first equality is in the (I, I) picture when the instanton contribution, Ψcl|j=0, is identi-

fied with (3.45) evaluated at ΦI
a = Φ̄I

a = 0, whereas the second is in the (I, F) picture. For

g = 1 however, where ΩIJ → τ = τ1 + iτ2, we should include a further factor of 2τ2 in the

denominator in the absence of vertex operators to obtain the vacuum amplitude [86],

Z1 =

∫
F1

dM1

2τ2

A(0), (g = 1)

= −i
∫
dDx0

√
−Det gµν Λg=1

D ,

(4.94)

with the genus-1 dimensionally reduced cosmological constant,

Λg=1
D := −VC

∫
F1

d2τ

4τ2

(4π2α′τ2)−13|η(τ)|−48Ψcl|j=0

= −
∫

F1

d2τ

4τ2

(
4π2α′ τ2

)−D/2|η(τ)|−48
∑

{Na,M ′a}∈Z

∣∣∣eiπα′2
Qa(Gab)

−1τQb
∣∣∣2. (4.95)

For all amplitudes with at least one vertex operator insertion there is no additional factor

of 2τ2 in the denominator. The moduli space measure dM1 = 1
2
d2τ (the additional factor

of 1/2 here being due to the remaining Z2 isometry, see Appendix B). We have taken into

account that
∫
T 2 d

2z = 2τ2 and made use of the presence of one CKV in order to write
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all vertex operators in the integrated picture, and then set the number of vertex operators

to zero, i.e.
∏n

γ=1

∫
d2zγVzγ z̄γ → 1. Furthermore, we have defined

∫
dDx0 := (2π)DδD(0),

with37 δD(0) = δD(jµ)|jµ=0, which has dimensions of LD. The above expression for the

vacuum amplitude is in precise agreement with standard conventions [86, 126] and serves

as a non-trivial check of the normalisation of A(j) at g = 1.

We next discuss correlation functions for generic vertex operator insertions.

5 Correlation Functions

Given the result for the generating function (3.75), whose defining equation is (3.12),

let us now start to think about generic correlation functions, setting the stage in particular

for correlation functions of highly excited strings. We define:

A(j) ≡
〈

exp
(
i

∫
d2zjMx

M
)〉
, (5.96)

where note that this implicitly includes the minimum number of ghost insertions required to

make amplitudes not vanish trivially, see (3.12). To compute correlation functions of generic

operators we take functional derivatives of A(j) with respect to jM(z, z̄), and subsequently

set the source equal to the value of interest, see the footnote on p. 36. For instance, given

a set of operators {Di} (that commute with the path integral) we can extract correlation

functions from A(j) as follows:

J∏
i=1

Di
−iδ

δjMi
(zi, z̄i)

A(j) :=
〈
D1x

M1(z1, z̄1) . . . DJx
MJ (zJ , z̄J ) exp

(
i

∫
d2zjMx

M
)〉
. (5.97)

The operators {Di} may denote a set of worldsheet derivatives, e.g., {∂z, ∂2
z , ∂w, ∂z̄, ∂w̄, . . . },

or (e.g. in the case of coherent vertex operators [59]) they may be more complicated but

linear operators [60]. In order for this procedure to be useful in the case of composite

operators (where multiple Dix’s may be inserted at the same location on the worldsheet),

we use the notion of point splitting, see e.g. [91]; that is, we write a normal-ordered operator

: O1O2(z) : as O1(z1)O2(z2), calculate the correlators as specified in (5.97), subtract the

terms singular in (z2 − z1), and take the limit z1 → z, z2 → z. We refer to the latter step

as point merging.

Carrying out the functional derivatives as specified in (5.97) on account of (3.75), (3.69)

37That it is natural to identify the integral over the zero modes, xµ0 , with (2π)DδD(jµ)|jµ=0 (with indices
downstairs) follows from the integral representation of the delta function.
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and (3.70) leads to:38

〈
D1x

M1(z1, z̄1) . . . DJx
MJ (zJ , z̄J ) exp

(
i

∫
d2zjMx

M
)〉

=

= iδ̄(j`s) g
2g−2
eff

∑∫
(Q,Q̄)

∣∣∣∣Zg exp

(
`2
s

4

∫
d2z

∫
d2z′

(
j +H

)
·
(
j′ +H ′

)
lnE(z, z′)

)∣∣∣∣2

×
bJ /2c∑
k=0

∑
π∈SJ /∼

k∏
l=1

{
− α′

2
GMπ(2l−1)Mπ(2l)(DD ln |E|2)π(2l−1)π(2l))

}

×
J∏

q=2k+1

{
πα′Dπ(q)

(
Q
Mπ(q)

I

∫ zπ(q)

ωI − Q̄
Mπ(q)

I

∫ z̄π(q)

ω̄I

)
− α′

2
i

∫
jMπ(q)(D ln |E|2)π(q)

}
,

(5.98)

which on account of (3.70) may be viewed as a functional generalisation of,

(−i)J ∂J

∂yJ
e

1
2
gy2

=

bJ /2c∑
k=0

2−kJ !

k!(J − 2k)!
(−g)k(−iyg)J−2ke

1
2
gy2

.

It is also possible to show that for fixed k the number of terms that appear in the sum over

permutations in (5.98) before point merging is indeed:

2−kJ !

k!(J − 2k)!
,

as one would expect from the finite dimensional formula. The notation bJ /2c in the sum

over k indicates that the maximum value of k is the integer that saturates the inequality

k ≤ J /2. SJ is the symmetric group of degree J [115], the group of all permutations of J
elements, and the equivalence relation ‘∼’ is such that πi ∼ πj with πi, πj ∈ SJ when they

define the same element in (5.98).

The point merging procedure will give rise to contact terms, i.e. terms that only con-

tribute when two or more vertex operators are coincident, e.g. from contractions of the

form ∂z∂w̄ ln |E(z, w)|2 = −2πδ2(z − w). Following a standard argument, in view of the

(assumed39) analyticity of string amplitudes in external momenta [81], and the fact that

38Notation-wise, (DD ln |E|2)π(2l−1)π(2l) ≡ Dπ(2l−1)Dπ(2l) ln |E(zπ(2l−1), zπ(2l))|2 and∫
jMπ(q)(D ln |E|2)π(q) ≡

∫
d2zjMπ(q)(z, z̄)Dπ(q) ln |E(zπ(q), z)|2.

39It is not obvious whether analyticity in external momenta is present for generic amplitudes [81], and
one needs to check this on a case by case basis. In fact, the tachyon and massless tadpoles often cause
trouble [81] in searching for absolute convergence in bosonic string amplitudes, and we one has to adopt
a certain prescription in order to extract physical observables. In addition, certain degeneration limits
of the worldsheet moduli can lead to trouble when one or more internal lines are forced to be onshell
by momentum conservation (such as the separating degeneration of a two-loop two-point amplitude with

48



the amplitude always contains a factor of the form

∏
i<j

|E(zi, zj)|α
′ki·kj ,

it follows that such terms will not contribute even after the vertex operator positions have

been integrated over, and will thus be set to zero [64].40

A very important implication of this latter observation is that of all the permutations

that we are to sum over in (5.98), the only ones that will give a non-zero contribution will

be those that respect chiral splitting. That is, we can partition the full set of operators

{Di} and spacetime indices {Mi} into chiral and anti-chiral pieces,

{D1, . . . , DJ } = {D1, . . . ,DI , D̄1, . . . , D̄Ī}

{M1, . . . ,MJ } = {N1, . . . , NI , N̄1, . . . , N̄Ī}, with J = I + Ī,
(5.99)

and then (denoting the worldsheet coordinates where the chiral and anti-chiral operators

are inserted by {zj, z̄j} and {wj, w̄j} respectively) a careful consideration of the single sum

over k in (5.98) shows that it factorises into two independent sums. In turn, these two

independent sums can be extracted from two completely independent correlation functions

one vertex operator on either component, or tadpole degeneration limits). These cases require particular
care [73,99,106,116], such as an offshell description [73], vertex operators in a larger Hilbert space than the
conformally invariant one [73, 99, 106, 116], and one must introduce a local coordinate dependence [73, 99]
(i.e. abandon conformal invariance) that cancels [73] (see also [71, 72]) out of observables. The matter
contribution to the generating function introduced here is still applicable in such cases, but one typically
needs to consider more general ghost insertions than the minimal number. In this document we assume
a region does exist in the complex momentum plane (or complex ‘Mandelstam variables’, or appropriate
generalisations thereof for n-point amplitudes) of absolute convergence, and physical amplitudes are then
obtained by analytic continuation from this region. In sequels [60,61] tachyon divergences will be carefully
identified and some (in particular tadpoles) will be absorbed by background shifts and others dropped by
brute force.

40We mention the argument for completeness. Notice that the exponent of |E(zi, zj)| can always be
made positive by analytic continuation and that when two vertex insertion points come close together,
E(zi, zj) ' zi − zj . Therefore, given that (symbolically)

∫
d2z|w− z|ki·kjδ2(w− z) = 0 when Re ki · kj > 0

it follows from a famous theorem of complex analysis that the entire expression will vanish for all kj .
In amplitudes involving coherent vertex operators one also encounters exponentials of contact terms, and
so one also needs to consider multiple delta functions. Similar reasoning to the above leads also to the
vanishing of multiple delta functions, e.g.

∫
d2z|w − z|ki·kjδ2(w − z)δ2(w − z) = 0. To see this write

this expression as limε→0

∫
d2z|w − z + ε|ki·kjδ2(w − z)δ2(w − z + ε). Performing the z integration leads

to limε→0 |ε|ki·kjδ2(ε), which vanishes for the following two reasons: the integral
∫
d2ε|ε|ki·kjδ2(ε) = 0

and the corresponding integrand is non-negative – therefore, the integrand must vanish. Extending this
reasoning to three or more delta function insertions implies that (unless the momenta under consideration
are constrained to vanish identically by momentum conservation, such as in the case of tadpoles) contact
terms do not contribute to the amplitudes and will be dropped.
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as follows:〈
D1x

N1(z1, z̄1) . . .DIxNI(zI , z̄I)D̄1x
N̄1(w1, w̄1) . . . D̄ĪxN̄Ī(wI , w̄Ī) exp

(
i

∫
d2zj · x(z, z̄)

)〉
=

= iδ̄(j`s) g
2g−2
eff

∑∫
(Q,Q̄)

Zg

〈
D1x

N1
+ (z1) . . .DIxNI+ (zI)e

i
∫
d2z(jL+H)·x+(z)

〉
+

× Z̄g

〈
D̄1x

N̄1
− (w̄1) . . . D̄Īx

N̄Ī
− (w̄Ī)e

i
∫
d2z(j̄R+H̄)·x−(z̄)

〉
−
,

(5.100)

where j = jL = jR was assumed in the above derivation – we will discuss the extension

to jL 6= jR momentarily. We want to emphasise that on the left-hand side the xN(z, z̄) =

xN0 + yNcl (z, z̄) + yN(z, z̄) appearing contain the zero modes, instanton contributions and

quantum fluctuations. Recall the analysis following (3.33). On the right-hand side however,

a chiral and anti-chiral field appears, xN+ (z) and xN− (w̄) respectively, which does not contain

any zero mode or instanton contributions. These zero mode and instanton contributions

are rather contained in δ̄(j`s) and H, H̄ respectively. The relevant correlators on the right-

hand side of (5.100) are defined with respect to the “chiral propagators” [64], which unlike

the full propagator G(z, w) have [87,88] non-trivial monodromies around BI cycles but not

around AI cycles, see (A.143),

〈xM+ (z)xN+ (w)〉+ = −α
′

2
GMN lnE(z, w), 〈xM− (z̄)xN− (w̄)〉− = −α

′

2
GMN ln Ē(z̄, w̄) .

(5.101)

Note that the non-chirally split contribution in the full propagator (A.145) precisely cancels

out when all loop momenta (in both compact and non-compact dimensions) are made

manifest.

The chiral correlator in (5.100) reads explicitly:

〈
D1x

N1
+ (z1) . . .DIxNI+ (zI)e

i
∫
d2z(jL+H)·x+(z)

〉
+

=

= exp

(
α′

4

∫∫
jLMG

MNj′LN lnE(z, z′) + i
πα′

2
QMI GMNΩIJQ

N
J + iπα′QMI

∫
jLM

∫ z

ωI

)
×
bI/2c∑
k=0

∑
π∈SJ /∼

k∏
l=1

{
− α′

2
GNπ(2l−1)Nπ(2l)(DD lnE)π(2l−1)π(2l))

}

×
I∏

q=2k+1

{
πα′Q

Nπ(q)

I Dπ(q)

∫ zπ(q)

ωI −
α′

2
i

∫
j
Nπ(q)

L (D lnE)π(q)

}
(5.102)

where the argument in the exponential equals `2s
4

∫
d2z
∫
d2z′

(
jL +H

)
·
(
j′L +H ′

)
lnE(z, z′),
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and similarly for the anti-chiral half,〈
D̄1x

N̄1
− (w̄1) . . . D̄Īx

N̄Ī
− (w̄Ī)e

i
∫
d2z(jR+H̄)·x−(z̄)

〉
−

=

= exp

(
α′

4

∫∫
jRMG

MN j̄′RN lnE(z̄, z̄′)− iπα
′

2
Q̄MI GMN Ω̄IJ Q̄

N
J − iπα′Q̄MI

∫
jRM

∫ z̄

ω̄I

)

×
bĪ/2c∑
k=0

∑
π∈SJ /∼

k∏
l=1

{
− α′

2
GN̄π(2l−1)N̄π(2l)(D̄D̄ ln Ē)π(2l−1)π(2l))

}

×
Ī∏

q=2k+1

{
−πα′Q̄N̄π(q)

I D̄π(q)

∫ w̄π(q)

ω̄I −
α′

2
i

∫
j
N̄π(q)

R (D̄ ln Ē)π(q)

}
(5.103)

As mentioned above, in the derivation of (5.100) we assumed j = jL = jR, but in fact

using the (anti-)chiral representation of amplitudes enables one to consider more general

insertions for which asymptotic vertex operators can have non-trivial winding. That is,

using the chirally split generating function it is almost obvious how to insert vertex operators

of the form:

f(∂x+, ∂
2x+, . . . )f̄(∂̄x−, ∂̄

2x−, . . . )e
ikMxM+ (z)eik̄Mx

M
− (z̄), (5.104)

with kM 6= k̄M , simply by taking jL on the right-hand side of (5.100) to be independent of

jR. The corresponding insertion on the left-hand side of (5.100) however is not so obvious,

given that here vertex operators associated to (5.104) should be functionals of the full path

integral field, xM(z, z̄). When kM = k̄M , it is clear that to every vertex operator insertion

(5.104) on the right-hand side is associated a vertex operator insertion,

f(∂x, ∂2x, . . . )f̄(∂̄x, ∂̄2x, . . . )ei
1
2

(kM+k̄M )xM (z,z̄), with xM = xM0 +xMcl (z, z̄)+x̃M(z, z̄),

(5.105)

on the left-hand side with total momentum 1
2
(kM + k̄M). In order to extend insertions on

the left-hand side to vertex operators with non-trivial winding where kM 6= k̄M we need

to integrate over all xM(z, z̄) with source jM(z, z̄), and constrain the integration to fields

with non-trivial winding. This may be achieved [83] by a jL-, jR-dependent shift in the

classical instanton solutions xMcl (z, z̄) of (3.28). Therefore, with this shift vertex operators

of the form (5.105) remain valid insertions even in the presence of non-trivial winding. We

will not work out the details of this procedure here as there exists a simpler approach. In

particular, we will instead enforce chiral splitting of the source, the prescription being the

following.41

Suppose we consider an amplitude with n vertex operator insertions, each of which (in

the chiral representation (5.104)) carries an exponential of the form: eik
γ ·x+(zγ)eik̄

γ ·x−(z̄γ),

41The authors would like to thank Joe Polchinski for suggesting this alternative procedure.
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with γ = 1, . . . , n, in addition to some polynomial of derivatives of x+(z) and x−(z̄). (More

generally, every vertex operator will be a superposition of such momentum eigenstates, as

is the case for coherent vertex operators for instance.) The statement is that insertions

with exponentials of the form:

n∏
γ=1

eik
γ ·x+(zγ)eik̄

γ ·x−(z̄γ),

on the right-hand side of (5.100) (with kγM 6= k̄γM generically) correspond to evaluating the

source on the left-hand side of (5.100) at:

jM(z, z̄) = jLM(z, z̄) + jRM(z, z̄)

=
n∑
γ=1

kγM

∫ zγ

℘

duδ2(u− z)∂z +
n∑
γ=1

k̄γM

∫ z̄γ

℘̄

dūδ2(u− z)∂z̄,
(5.106)

so that with this choice of source there exists the correspondence:

ei
∫
d2zj(z,z̄)·x(z,z̄) =̂

n∏
γ=1

eik
γ ·x+(zγ)eik̄

γ ·x−(z̄γ),

even though on the left-hand side the embedding field, x(z, z̄), contains (potentially) also

instanton or soliton contributions whereas the right-hand side does not. So the prescription

is to consider jM(z, z̄) on the left-hand side as an operator and act with the derivatives,

∂z, ∂z̄, of (5.106) before carrying out the line integrals. Using the representation for the

source (5.106) makes is obvious that we can simply substitute (5.106) into the right-hand

side of the j = jL = jR expression (5.100), and then the operator nature of the decompo-

sition (5.106) will ensure that only jL appears in chiral terms and jR in anti-chiral terms,

and so we can legitimately extend the result (5.100) to the case where j 6= jL 6= jR. This is

the desired result.

Having understood how to insert vertex operators with non-trivial winding using either

the chiral fixed-loop momenta or the non-chiral integrated-loop momenta representation, a

crucial remark is that making use of ‘chiral vertex operators’ (5.104) that are constructed

out of x± and correspondingly the chiral fixed-loop momenta representation of amplitudes

(i.e. working in terms of the right-hand side of (5.100)) vastly simplifies computations while

preserving complete generality.

That the fixed-loop momenta generating function chirally factorises in the critical di-

mension is in line with the Belavin-Knizhnik theorem [64, 85] combined with the chiral

splitting theorem [64], although the existing proof of chiral splitting had been established

explicitly only for generic genus-g massless and exponential external physical vertex oper-

ators. Here we have extended this result to all correlation functions of operators inserted
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on generic compact Riemann surfaces. Notice also that this statement is independent of

whether the vertex operator insertions are onshell, and given that correlation functions of

generic ghost insertions factorise in the same way as above, where Zg (Z̄g) may be replaced

by more general superpositions of (anti-)chiral ghost correlators, we have shown that generic

offshell amplitudes [73] also respect chiral splitting.

It is worth re-emphasising that (5.100) is truly a remarkable statement, and it is due

to this relation that it is justified to use vertex operators that are constructed out of the

chiral fields x+(z), x−(z̄) (and also cz(z), c̃z̄(z̄) and bzz(z), b̃z̄z̄(z̄)). To compute any string

amplitude, for the matter sector we can use either vertex operators constructed out of the

full path integral fields, x(z, z̄), or the (anti-)chiral fields, x+(z), x−(z̄), and this choice

depends on whether we want to extract correlation functions using the left-hand side of

(5.100) or the right-hand side respectively. However, the natural representation for vertex

operators that arises from the operator-state correspondence is in terms of the (anti-)chiral

fields. Notice that we have not appealed to any onshell condition in order to split the field

in the path integral x(z, z̄) into chiral and anti-chiral pieces, x+(z), x−(z̄). The best way to

think of the latter is as fields that arise effectively after properly taking into account all zero

mode contributions (and instantons if they are present) associated to the full field x(z, z̄).42

The above analysis makes it completely manifest when this is justified and why: fixing

the loop momenta (in both compact and non-compact dimensions) is the key to realising

these statements. Another point to emphasise is that when vertex operators have winding

charges, KK charges and/or polarisations in compact directions we need not expand the

fields x+(z), x−(z̄) that vertex operators are constructed out of around zero mode or classical

instanton contributions, and in addition the simple correlators,

bzz(z) cz
′
(z′) ∼ 1

z − z′
, bzz(z) bz′z′(z

′) ∼ O(z − z′), cz(z) cz
′
(z′) ∼ O(z − z′)

b̃z̄z̄(z̄) b̃z̄′z̄′(z̄
′) ∼ 1

z̄ − z̄′
, b̃z̄z̄(z̄) b̃z̄′z̄′(z̄

′) ∼ O(z̄ − z̄′), c̃z̄(z̄) c̃z̄
′
(z̄′) ∼ O(z̄ − z̄′)

xM+ (z)xN+ (z′) ∼ −α
′

2
GMN ln(z − z′), xM− (z̄)xN− (z̄′) ∼ −α

′

2
GMN ln(z̄ − z̄′).

(5.107)

are exact in the limit z → z′ and should be used to carry out the operator product expan-

sions that map states to vertex operators – this will be discussed in more detail in [59].

This appears to be somewhat miraculous, but it is nevertheless true (for arbitrary-genus

string amplitudes).

These observations are of course direct generalisations of the classic result of D’Hoker

42The vertex operator construction in [59] makes full use of the (anti-)chiral fields, x+(z), x−(z̄), through-
out (as opposed to the path integral fields x(z, z̄)).
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and Phong [64], the differences being that here:

(a) we consider generic correlation functions (rather than massless asymptotic states)

associated to arbitrarily excited string vertex operators (potentially with winding

and KK charges and general polarisation tensors and oscillators);

(b) we explicitly keep a generic constant background, GMN , BMN and Φ (rather than

GMN = ηMN and BMN = 0), so that these results hold true for generic constant

target space Kähler and complex structure moduli, torsion and background gauge

fields;

(c) we consider generic target spaces RD−1,1 × TDcr−D (rather than RDcr−1,1), implying

that there are also instanton contributions (worldsheets that wrap TDcr−D) that are

absent in D = Dcr and that were hence not made manifest in [64]. The latter were

discussed in [83], building on earlier results [84], but the focus there was entirely on

exponential insertions, and also there target space moduli were fixed and background

gauge fields were absent.

(d) we derived these results directly without using the “reverse engineering” approach,

as discussed in the introduction, thus eliminating the potential ambiguity of the type

discussed by Sen [67].

Finally, for completeness let us discuss how to extract connected S-matrix elements.

Given a set of n external states described by general old covariant quantisation (OCQ)

(possibly coherent) vertex operators Vzγ z̄γ (with γ = 1, 2, . . . , n), connected (dimensionless)

S-matrix elements are extracted from (for n ≥ 2):

SCfi = δCfi +
∞∑
g=0

∫
dMg

〈
Vz1z̄1 . . . Vzn,z̄n

〉
(5.108)

Here it is implied that vertex operators are inserted at (zγ, z̄γ) in Σg (or the covering space,

Σ̃g, thereof, see e.g. Fig. 1 on p. 26), and normalised by the leading singularity of the OPE,

Vzγ z̄γ Vz′γ z̄′γ '
gD√

2k0VD−1

1

|zγ − z′γ|4
+ . . . ,

where an overline denotes taking the Euclidean adjoint [59]. It is conventional to extract

out the kinematic factors and define Vzz̄ = 1√
2k0VD−1

Ozz̄, so that invariant amplitudes,

Mfi(1, . . . , n), defined below, are most naturally written in terms of Ozz̄’s (recall the discus-

sion on p. 7). The quantity δCfi represents the interaction-free contribution to the connected

S-matrix elements, and given that SCfi only contains connected contributions δCfi should be
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non-vanishing only for n = 2 asymptotic states, because for n > 2 the interaction-free terms

cannot be connected. We have defined the measure:∫
dMg =

∫
Fg

1

Ng

#Cmoduli∏
j=1

d2τj

∫
Σg

n−#CCKVs∏
γ=1

d2zγ, (5.109)

Ng being the order of the unfixed global worldsheet diffeomorphisms [127], e.g. at g = 1

this is N1 = 2, corresponding to the fact that our gauge choice, ds2 = |dz|2, leaves z → −z
of SL(2,Z) unfixed (the space of global diffeomorphisms being SL(2,Z)/Z2), see Appendix

B for further details where also our genus-one conventions are presented.43

The full S-matrix elements, Sfi, are in turn extracted from products of these and sums

over the various partitions, as explained, e.g., in Sec. 4.3 of [128]:44

Sfi =
∑

partitions

SCf1i1
SCf2i2

. . . , (5.110)

where the sum is (according to the cluster decomposition principle) over all distinct par-

titions {〈f1|, 〈f2|, . . . } of 〈f| and over distinct partitions {|i1〉, |i2〉, . . . } of |i〉, with the

“incoming” states, |iγ〉 associated to vertex operators Vzγ z̄γ , and the “outgoing” states 〈fγ|
associated to Euclidean adjoints, Vzγ z̄γ . Our conventions are such that |Sfi|2 is interpreted

as a transition probability associated to going from |i〉 to 〈f|,

Prob(f ← i) = |Sfi|2, (5.111)

whereas S-matrix unitarity corresponds to the statements:∑
h

S†hfShi = δfi, or
∑
h

SfhS
†
ih = δfi. (5.112)

The precise interpretation of the sum over states,
∑

h, and also of the delta function, δfi,

requires specifying a basis (and for coherent vertex operators in particular an overcomplete

basis) and will be discussed elsewhere [59].

Note that (even when both ‘f’ and ‘i’ represent multi-string states) there are generi-

cally [128] also vacuum-to-vacuum contributions in this partitioning [129,130], denote these

by SC00, as well as explicit tadpole contributions, SC0i (and/or SCf0) if ‘i’ (and/or ‘f ’) are single

string states, in addition to implicit ones (that arise in various regions of the boundary of

43One may also extract the full S-matrix elements, Sfi, (as opposed to just the connected pieces, SCfi) by
including a summation over disconnected Riemann surfaces in the definition of the path integral, in which
case everything can be cast on equal footing, but this is somewhat impractical and we will not do so here.

44In the superstring (depending on the asymptotic states present) there may also be relative sign differ-
ences in the sum (5.110) due to the Grassmann nature of target space fermions.
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moduli space where internal lines are forced to lie on the mass shell) that may already be

present in SCfi. Summing over distinct partitions in (5.110) shows that the former exponenti-

ate, so there is [130] an overall factor eS
C
00 in Sfi, and this is analogous to the exponentiation

of the D-instanton amplitude in [129,130], ultimately suggesting a breakdown of the world-

sheet in that context.

For instance, generic n = 2-point S-matrix elements are of the form,

Sii = eS
C
00
(
SCii + SCi0S

C
0i

)
.

For n = 2 (and n = 3) there is therefore (up to the overall universal factor eS
C
0,0) no

distinction between the two sets of S-matrix elements, Sii and SCii , in the absence of tadpoles,

SCi0 = 0, as only connected diagrams exist, but for n > 3 there is a distinction. The tadpole

contributions, SC0i, and the vacuum-to-vacuum contribution, eS
C
00 , are pathological in the

bosonic string (due to the presence of a tachyon in the spectrum and also massless tadpoles)

and these will be absent in the superstring (when the vacuum of interest is stable under

quantum corrections).

Finally, let us also note that for momentum eigenstates and when Gµν = ηµν it is

conventional to extract out the kinematic factors and a momentum conserving delta function

and define an invariant amplitude, Mfi(1, . . . , n), as follows,

Sfi = δfi + iδ(j)
Mfi(1, . . . , n)√

2k0
1VD−1 . . . 2k0

nVD−1

, (5.113)

The argument of the delta function, e.g. δ̄(j) := (2π)DδD(∫ jµ)δDcr−D
(∫ ja`s),0, see (3.78), enforces

momentum conservation, as well as conservation of any other charges (such as KK and

winding charges) that may be present in the external states, but note that for coherent

vertex operators there will be a sum over such delta function contributions. Factorisation,

normalisation and unitarity of string amplitudes (with coherent vertex operator insertions)

and related concepts will be discussed in [60] where we focus on n = 2.

The n external states are assumed to have well-defined energy expectation values45

denoted by k0
γ, for γ = 1, . . . , n, and VD−1 := (2π)D−1δD−1(0) denotes the formal (infinite)

spatial volume of RD−1. Another point to emphasise is that (as mentioned above) the

formal volume VD−1 will always cancel out and does not appear in the observables of interest

(cross sections, decay rates, etc.), just as in field theory [123]. Finally, generically there will

be additional delta-function (or Kronecker-delta) constraints (implicit in Mfi(1, . . . , n)) in

45This is the case for coherent vertex operators as well as for mass eigenstates. Alternatively, we can
also switch to light-cone coordinates whereby the kinematic factor k0VD−1 is replaced by p+VD−1, and
that coherent vertex operators are eigenstates of P̂+ but not of P̂0, making it natural to adopt the latter
kinematic factor. More about these details will appear elsewhere [59].
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addition to that appearing explicitly in (5.113), associated to the fact that the full invariant

amplitude also contains disconnected pieces, i.e. if n > 3, depending on context, as exhibited

in (5.110).

6 Discussion

We have constructed a generating function (and associated correlation functions) for

string amplitudes in generic constant string backgrounds, GMN , BMN , Φ and U , on RD−1,1×
TDcr−D, so that also all Kähler and complex structure moduli (of the target space torus,

TDcr−D) contained in Gab, Bab, background KK gauge fields, Aaµ and Bµa, spacetime torsion,

Bµν and also spacetime metric, Gµν , are allowed to be turned on. In the process, we have

derived the chiral splitting theorem of D’Hoker and Phong [64] for string amplitudes, which

we have generalised to the aforementioned background and with arbitrarily excited string

vertex operator insertions (with generic KK and winding charges, as well as polarisation

tensors associated to generic oscillators and spacetime indices46).

Our approach differs from that of D’Hoker and Phong [64] (and also Sen [67]), in that

we did not make use of the “reverse engineering” approach (where the target spacetime

embedding fields, xM(z, z̄), are first integrated out and only at a later stage of the compu-

tation is it noted that the result can be written as an integral whose integration variables

get interpreted as AI-cycle loop momenta). As pointed out in a recent paper by Sen [67],

such a reverse engineering approach could potentially lead to ambiguities (because the same

integrated-loop momenta amplitude can be written in more than one way as an integral

over loop momenta [67]). Sen went on to explain that these ambiguities will not be visible

in the final amplitudes after integrating out the loop momenta (while adopting an appro-

priate analytic continuation for the loop momentum integral contours [65]), and that these

ambiguities are therefore immaterial. However, as discussed in the Introduction above,

it is sometimes desirable to not integrate out the loop momenta, and that this is also of

interest for the computation of some physical observables, such as the spectrum of mass-

less radiation associated to a decaying string. Therefore, the reverse engineering method

could potentially lead to ambiguous results for observables. In our approach we have re-

solved this potential ambiguity, in that we introduced loop momenta associated to AI-cycle

strings from the outset (by explicit momentum conserving delta function insertions into the

original path integral where there is no room for this ambiguity), and have thus shown that

the result of D’Hoker and Phong (that one can replace the target space fields, xM(z, z̄),

by a set of effective chiral fields, xM+ (z), xM− (z̄) for the left- and right-moving degrees of

46And hence the result also applies to generic coherent vertex operators as we explain in [59,60].
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freedom, appropriately modified so as to apply to generic backgrounds, RD−1,1 × TDcr−D,

and vertex operators) is fully justified and leads to the correct un-ambiguous result for the

fixed-loop momentum amplitudes.47

Let us now zoom in on the statement (5.100). Here it is crucial to note that the left-hand

side denotes the usual path integral over matter, xM(z, z̄), and ghost fields, b, c, whereas on

the right-hand side the matter and ghost fields have been integrated out, and the result has

been written in terms of Wick contractions of effective (anti-)chiral fields, xM+ (z), (x−(z̄)),

whose correlation functions are determined from the chiral propagators (5.101), with the

results given in (5.102) and (5.103). What we want to emphasise here is that on the left-

hand side of (5.100) the target space embedding field appearing in vertex operators and the

worldsheet action contains (generically) zero modes, instanton (or soliton) contributions,

as well as quantum fluctuations, whereas the chiral fields on the right hand side are defined

by their correlation functions, so that xM± do not contain information about zero modes

or instanton contributions. The latter have nevertheless been fully taken into account and

appear in the overall delta function and loop momenta respectively. Therefore, using the

chiral representation of amplitudes significantly simplifies amplitude computations.

Finally, we have also discussed how wave/particle (or rather wave/string) duality is

manifested in string theory, and we have shown that the fixed-loop momenta representation

can be thought of as the ‘wave picture’, the integrated loop momenta expression yielding the

‘string picture’. There are also hybrid formulations (or Routhians) whereby the compact

and non-compact dimensions are in the wave or string picture, leading to four natural

possibilities in total. In a forthcoming article [61] we will show that adopting a wave picture

leads to significant simplifications and explicit analytic results (a string picture being much

less tractable analytically).

The objective here has been to provide a working and efficient handle on computing

string amplitudes involving HES vertex operators. In [59] we construct chiral HES coherent

vertex operators (which is a very natural basis for excited strings) and discuss the notion of

Euclidean adjoint vertex operators (which refines the rule of thumb of Polchinski [86,99], a

refinement that is necessary in order for all vertex operators to have positive norm48). These

vertex operators are then [60] used to derive a generic expression for two-point amplitudes

(where we keep the genus of the worldsheet generic in order to study generic properties),

47Note that there are still expected to be field-redefinition ambiguities that one expects from insight from
string field theory, see Sec. 4 in [67]. The authors thank Ashoke Sen for an extensive discussion of this
point.

48The rule of thumb [86,99] that to obtain the Euclidean adjoint of a vertex operator one is to conjugate
all explicit factors of ‘i =

√
−1’ is not sufficient when vertex operators have winding N − N̄ ∈ 2Z + 1, in

that there are some additional phases (here N, N̄ are level numbers).
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whose imaginary part at one loop [61] yields decay rates and power emitted into massless

and massive radiation (including radiative backreaction and in particular α′ corrections),

the real part giving mass shifts (relevant for black hole physics [32]). In [62] we discuss decay

rates associated to gravitational radiation in particular and in [63] we make the connection

to low energy effective field theory.
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A Conventions

A.1 Complex Tensors and Riemann Surfaces

In this subsection we collect some useful formulas and conventions used in the main text,

on the local and global properties of compact Riemann surfaces, Σg. We will be completely

explicit, because although we largely adopt the Polchinski conventions [86], we follow the

approach of D’Hoker and Phong [89] who use slightly different conventions.

Focusing on a local patch of the worldsheet, for a given set of real coordinates (x, y) we

define a complex set (z, z̄) by z = x+ iy, z̄ = x− iy, with ∂z = 1
2
(∂x− i∂y), ∂z̄ = 1

2
(∂x+ i∂y).

We use the following convention throughout,

d2z ≡ idz ∧ dz̄ = 2dx ∧ dy,

Two-dimensional Riemannian manifolds are conformally flat, g = gzz̄(dz ⊗ dz̄ + dz̄ ⊗ dz),

see e.g. [131], and it is useful to note that
√
ggzz̄ = 1. The corresponding Ricci scalar in

our conventions (+++ in the classification of Misner, Thorne and Wheeler [132]) reads:

R(2) = gαβRαβ = 2gzz̄Rzz̄ = 2gzz̄Rα
zαz̄ = 2gzz̄Rz

zzz̄, (A.114)
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where the components of Riemann curvature tensor in terms of the Christofel symbol read,

Rα
βγδ = ∂γΓ

α
βδ − ∂δΓαβγ + ΓασγΓ

σ
βδ − ΓασδΓ

σ
βγ,

and in the above coordinate system the only non-vanishing Christofel symbols are Γzzz =

∂z ln gzz̄ and Γz̄z̄z̄ = ∂z̄ ln gzz̄,
Rz

zzz̄ = −∂z̄Γzzz
= −∂z̄∂z ln gzz̄,

(A.115)

so that:

R(2) = 2gzz̄(−∂z̄∂z ln gzz̄).

A tensor V of conformal weight (h, h̄) is of the form:

V = Vz...zz̄...z̄(dz)h(dz̄)h̄ ∈ K(h,h̄) (A.116)

so that K(h,h̄) is the space of tensors of weight (h, h̄) and spin h− h̄ = 1
2
Z. The components

of V are sometimes referred to as conformal primary operators. Examples used in the main

text are:
x(z, z̄) ∈ K(0,0)

c = cz(dz)−1 ∈ K(−1,0)

b = bzz(dz)2 ∈ K(2,0)

µ = µ z
z̄ (dz)−1dz̄ ∈ K(−1,1)

(A.117)

Define K(n,0) ≡ Kn (and K(0,n) ≡ K̄n). Using the metric gzz̄ to raise and lower indices

there is an isomorphism (n −m, 0) ∼ (n,m) ∼ (0,m − n), and one may therefore express

all tensors in terms of holomorphic indices, e.g. we write, gzz̄Vz̄ = V z, with gzz̄gzz̄ = 1.

Covariant derivatives satisfy49 ∇(n)
z : Kn → Kn+1,

∇(n)
z V = (∂z − nΓzzz)V ⊗ dz. (A.118)

It is straightforward to show, using the explicit expression for the Christoffel symbols above

(A.115), that (A.118) is equivalent to:

∇(n)
z V = gnzz̄∂z

(
g−nzz̄ V

)
⊗ dz.

In addition, there is the Cauchy-Riemann operator ∂z̄; formally ∇n
z̄ : Kn → Kn,1,

∇(n)
z̄ V = ∂z̄V ⊗ dz̄. (A.119)

49We occasionally drop the index ‘(n)’ from covariant derivatives when there is no ambiguity about the
type of tensor it acts upon.
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According to the above identification we could also have written the Cauchy-Riemann

operator as ∇z
(n) : Kn → Kn−1,

∇z
(n)V = gzz̄∂z̄V ⊗ (dz)−1. (A.120)

We shall not always display the differentials dz (dz̄) in ∇z (∇z̄) but include them in the

definitions in order to make their transformation properties clear.

The natural inner product between tensors V1,2 ∈ Kn with respect to the metric g is

〈V1, V2〉 =

∫
Σ

d2z
√
g (gzz̄)n V ∗1 V2, (A.121)

and we define the adjoint operators ∇(n)†
z and ∇z†

(n) with respect to this, 〈V1,∇(n)†
z V2〉 ≡

〈∇(n)
z V1, V2〉. When V1 = V2 we also write ‖V ‖2 = 〈V, V 〉. Using the definitions it follows

that

∇(n)†
z = −∇z

(n+1), ∇z†
(n) = −∇(n−1)

z . (A.122)

We can construct two, in general distinct, Laplacians using the differential operators (A.118)

and (A.120)

∆+
(n) = −2∇z

(n+1)∇(n)
z

∆−(n) = −2∇(n−1)
z ∇z

(n),
(A.123)

and so from [∇z,∇z̄]Vzz... = nRz
zzz̄Vzz... (for V ∈ Kn) and (A.114) it follows that ∆+

(n) −
∆−(n) = nR(2). Therefore, these two Laplacians are equal when acting on scalars (where

n = 0) or when R(2) = 0. In the former case we define ∆(0) ≡ ∆+
(0) = ∆−(0). The factor of −2

in the definitions (A.123) is conventional and is included so as to agree with the definition

of the conventional Laplacian ∆(0) = − 1√
g
∂α
√
ggαβ∂β. In particular, in the z, z̄ coordinates

∆(0) = −2gzz̄∂z∂z̄, in agreement with both ∆+
(0) and ∆−(0).

The string embedding xM(z, z̄) is a scalar from the 2-dimensional point of view. Its

derivatives are tensor fields in the sense of (A.116). In accordance with (A.118) and (A.120)

we write:

∇(0)
z x ≡ ∂zx dz ≡ ∂x, ∇(0)

z̄ x ≡ ∂z̄x dz̄ ≡ ∂̄x, and dx ≡ ∂x+ ∂̄x.

In particular, ∂x = ∂zxdz is a tensor of weight (1, 0), and using the derivatives (A.118) one

can form tensors of weight (`, 0) as follows ∇(`−1)
z . . .∇(1)

z (∂x). In practice we write this as

∇`−1
z ∂zx and may not in general (as mentioned above) display the differentials. In the main

text, the Γzzz dependence will always drop out (due to Weyl invariance) and we shall write

instead ∂lzx when there is no ambiguity, and likewise for the anti-holomorphic counterpart.
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We now move on to discuss certain global topological aspects of Riemann surfaces. A

key relation is the Atiyah-Singer-Riemann-Roch index theorem:

dimC ker∇(n)
z − dimC ker∇z

(n+1) =
1

2
(2n+ 1)χ(Σg), (A.124)

and this relates the number of zero modes of tensors in Kn, tensors in Kn+1, (for n ∈ 1
2
Z)

and the Euler characteristic, χ(Σg), of the Riemann surface. For compact Riemann surfaces

the latter reads:

χ(Σg) =
1

2π

∫
Σg

d2zRzz̄ = 2− 2g. (A.125)

Following D’Hoker and Phong [89] (see also [133]), we parametrise the genus-g compact

Riemann surface, Σg, by choosing a canonical intersection basis for the 2g homology cycles

of the associated first homology group, H1(Σg,Z) = Z2g,

#(AI , AJ) = #(BI , BJ) = 0, #(AI , BJ) = −#(BI , AJ) = δI,J , I, J = 1, . . . , g,

(A.126)

and denote the dual 2g holomorphic 1-forms by, ωI = ωI(z)dz, ω̄I = ω̄I(z̄)dz̄, whose

existence is guaranteed by the index theorem (A.124): taking n = 0 and noting that

dimC ker∇(0)
z = 1 yields the result of interest, dimC ker∇(1)

z = g. We normalise these by the

duality relation in the usual manner, ∮
AI

ωJ = δIJ , (A.127)

and define the period matrix, ΩIJ , by:∮
BI

ωJ ≡ ΩIJ . (A.128)

This has the properties ΩIJ = ΩJI , Im ΩIJ > 0, which in turn follow from the Riemann

bilinear identity, ∫
Σg

ω ∧ η =

g∑
I=1

∮
AI

ω

∮
BI

η −
∮
BI

ω

∮
AI

η, (A.129)

for any closed 1-forms ω, η (in the absence of poles [120]), a useful corollary of which is,

i

∫
Σg

ωI ∧ ω̄J = 2(ImΩ)IJ . (A.130)

The space Hg = {Ω ∈ Cg |ΩIJ = ΩJI , ImΩ > 0} is the Siegel upper half space.

Fixing the loop momenta in amplitudes breaks manifest modular invariance, but of

course integrating out the loop momenta restores it. In order to keep track of this, let us

briefly mention how modular transformations act on the various ingredients that appear in

amplitudes [84].

62



Modular transformations act on the canonical basis AI , BI as follows:

A′I = DIJAJ + CIJBJ , B′I = BIJAJ + AIJBJ . (A.131)

The primed quantities satisfy (A.126) provided the 2g× 2g matrix
(
A B
C D

)
is an element of

the symplectic (or modular) group Sp(2g,Z):(
A B
C D

)T(
0 1
−1 0

)(
A B
C D

)
=

(
0 1
−1 0

)
,

as can be explicitly verified. These transformations generate 2π twists (or Dehn twists)

around the AI and BI cycles and generate the group Diffgl(Σg) of global diffeomorphisms

that are not connected to the identity. The abelian differentials and period matrix, see

(A.127) and (A.128), in turn transform under modular transformations (A.131) according

to:
ω′I = ωJ

(
CΩ +D

)−1

JI
,

Ω′IJ =
(
AΩ +B

)
IK

(
CΩ +D

)−1

KJ
.

(A.132)

The first of these follows from requiring that
∮
AI
ωJ = δIJ remains invariant, whereas the

second follows from the first and the definition
∮
B′I
ω′J ≡ Ω′IJ , but see also [133, 134]. Note

that Ω′IJ is also an element of Hg when ΩIJ is.

Period matrices related as in (A.132) refer to the same Riemann surface, but in fact

restricting to the quotient Hg/Sp(2g,Z) is still a redundant description of the moduli space,

Fg, which is contained in Hg/Sp(2g,Z) in a rather complicated manner for generic genus

g surfaces, see e.g. [135,136] for a detailed discussion and [137] for a broader overview, and

also [89,133] for discussions with a physics-motivated approach. A detailed discussion of the

moduli space would take us far afield, but it is useful to always keep in mind the physical

picture whereby different points in Fg correspond to distinct deformations of the Riemann

surface (i.e. that cannot be undone by using a symmetry transformation, namely global and

local diffeomorphisms and Weyl transformations of Σg), whereas the boundary of moduli

space (upon compactification, Fg → F̄g) can be identified with the set of degenerations

whereby one or more isotopically distinct cycles in Σg (with cycles encircling vertex operator

insertions considered non-trivial) are shrunk to points.

Given any base point ℘0 we may associate to every point ℘ on Σ a complex g-component

vector z by the Jacobi map (referred to also as the Abel map):

I : ℘→ z(℘) =

(∫ ℘

℘0

ω1, . . . ,

∫ ℘

℘0

ωg

)
. (A.133)

This vector is unique up to periods (A.127), (A.128). We associate to Ω a lattice LΩ ⊂ Cg,

such that LΩ ≡ Zg + ΩZg. The vector z is an element of the complex torus J(Σ), also
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known as the Jacobian variety of Σ,

J(Σ) ≡ Cg/LΩ = Cg/(Zg + ΩZg). (A.134)

We next discuss Riemann theta functions and the prime form, both of which are fun-

damental in the construction of correlation functions on Riemann surfaces. We will again

present only the essential material required to follow the main text, given that all of this

material is very lucidly explained in [87, 88] and we refer the reader to these references for

detailed proofs; see also [84, 89] for a more concise overview. The Riemann theta function,

associated to Ω50 is then defined for (z,Ω) ∈ Cg ×Hg by,

ϑ (z,Ω) ≡
∑
n∈Zg

exp

{
2πi

(
1

2
nTΩn+ nTz

)}
. (Riemann theta function) (A.135)

We first note that ϑ (z,Ω) defines a [88] holomorphic function on Cg ×Hg. Secondly, it is

quasi-periodic (periodic up to a multiplicative factor) with respect to lattice translations,

z→ z + c, with c ∈ LΩ, and is invariant under parity z→ −z:

ϑ (z +m+ Ωn,Ω) = exp

{
2πi

(
−1

2
nTΩn− nTz

)}
ϑ (z,Ω) (translations) (A.136a)

ϑ (z,Ω) = ϑ (−z,Ω) (parity) (A.136b)

where n,m ∈ Zg. Notice that the RHS of (A.136a) is independent of m, thus implying that

the Riemann theta function is invariant under integer shifts z→ z +m.

The theta function satisfies a “heat equation”,

∂ϑ(z,Ω)

∂ΩIJ

=
1

2πi

∂2ϑ(z,Ω)

∂zI∂zJ
×
{

1 for I 6= J
1
2

" I = J
(heat equation) (A.137)

where zI , for I = 1, . . . , g, denote the components of the vector z.

We also need the notion of a Riemann theta function with (rational) characteristics, [ ab ],

defined by:

ϑ[ ab ] (z,Ω) ≡
∑
n∈Zg

exp

{
2πi

(
1

2
(n+ a)TΩ(n+ a) + (n+ a)T (z + b)

)}
, ∀ a, b ∈ Qg.

(A.138)

This is also quasiperiodic with respect to lattice translations z→ z + c, with c ∈ LΩ,

ϑ[ ab ](z +m+ Ωn,Ω) = e2πi(aTm−bTn) exp

{
2πi

(
−1

2
nTΩn− nTz

)}
ϑ[ ab ] (z,Ω) . (A.139)

50Ω need not be identified with the Riemann surface period matrix in the definition of θ(z,Ω) but we
shall do so.
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In terms of the Riemann theta function,

ϑ[ ab ] (z,Ω) = exp

{
2πi

(
1

2
aTΩa+ aT (z + b)

)}
ϑ (z + b+ Ωa,Ω) , (A.140)

and so the original theta function is just ϑ (z,Ω) = ϑ[ 0
0 ] (z,Ω). The theta function with

characteristics is invariant under parity, z → −z, provided we also take a, b → −a,−b, so

that ϑ[ ab ] (z,Ω) = ϑ[ −a−b ] (−z,Ω). This follows from (A.136b) and (A.140). In the case of

integer or half-integer characteristics, a, b ∈ (1
2
Z/Z)g, this relation simplifies further, in that

it can be either even or odd under z→ −z,

ϑ[ ab ] (−z,Ω) = (−)4aT bϑ[ ab ] (z,Ω) , ∀a, b ∈ (1
2
Z/Z)g.

By induction one can show that there are 2g−1(2g−1) choices of [ ab ] for which 4aT b ∈ 2Z−1,

and 2g−1(2g + 1) choices of [ ab ] for which 4aT b ∈ 2Z, leading to a total of 22g distinct

choices. The corresponding characteristics [ ab ] are referred to as odd or even respectively.

For example, at genus g = 1 there is 1 odd characteristic, [ 1/2
1/2 ], and 3 even characteristics,

[ 1/2
0

], [ 0
1/2 ], and [ 0

0 ].

Consider the case of odd characteristics, which is of particular relevance for our purposes,

and consider the function: f(z, w) = ϑ[ ab ]
( ∫ z

w
ω,Ω

)
. From the above, note primarily that

for odd characteristics [ ab ] it must be that f(z, w) has a single zero for z = w. In addition,

according to Riemann’s vanishing theorem [88] we know that there will be additional single

zeros for z = ri and w = ri, for i = 1, . . . , g − 1, so that when both z and w are close to

one of the ri f(z, w) will be of the form f(z, w) ' const.(z−w)(z− ri)(w− ri). Therefore,

differentiating with respect to w at w = z implies the one form, ωI(z)∂Iϑ[ ab ](0,Ω), has g−1

double zeroes for z = ri, with an analogous reasoning (upon replacing z ↔ w) implying

g − 1 double zeros at w = ri also. Therefore, taking an appropriate ratio of f(z, w) over

two square roots of these one-forms will lead to a quantity that has only one (simple) zero

at z = w, and these observations lead one to define a very useful quantity known as the

prime form [87–89].

The prime form generalises the notion of distance between two points, z − w, on C to

higher genus surfaces. In terms of the Riemann theta function it reads [87–89]:

E(z, w) =
ϑ[ ab ]

(∫ z
w
ω,Ω

)
h[ ab ](z)h[ ab ](w)

, (A.141)

where the characteristics [ ab ] are odd (although actually E(z, w) is independent of the precise

choice), and the holomorphic half-differentials, h[ ab ](z), are defined (according to the above

discussion) by:

h[ ab ](z) :=
√
ωI(z)∂Iϑ[ ab ](0,Ω),
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and correspond to a spin bundle associated to [ ab ]. The prime form is a (or rather the

components of a) holomorphic differential form of weight (−1
2
,−1

2
) on Σ̃g× Σ̃g, with Σ̃g the

universal cover of Σg. In the notation of (A.116), locally, E(z, w)dz−
1
2dw−

1
2 ∈ K(− 1

2
,0) ×

K(− 1
2
,0). Note that E(z, w) is quasi-periodic around the AI and BI cycles,

E(z + AI , w) = E(z, w), (A.142a)

E(z +BI , w) = E(z, w) exp

(
−πiΩII − 2πi

∫ z

w

ωI

)
, (A.142b)

so that when we transport z around a generic homology cycle γ = nIAI +mIBI ,

E(z + nIAI +mIBI , w) = E(z, w) exp
[
2πi
(
− 1

2
mIΩIJmJ −mI

∫ z

w

ωI

)]
, (A.143)

which is again to be understood in the sense explained in the footnote on p. 22.

The prime form in turn transforms under the modular group, Sp(2g,Z), as follows [84],

E(z, w)→ exp
(
πi

∫ z

w

ωI
(
CΩ +D

)−1

IJ
CJK

∫ z

w

ωK

)
E(z, w). (A.144)

Finally, it is useful to also have at hand Green’s (or 2-d Stoke’s) theorem,∮
∂D

A =

∫
D

dA,

which in the (z, z̄) coordinate system reads (using the above conventions, displayed explicitly

in the beginning of this section):∮
∂D

dzAz + dz̄Az̄ =

∫
D

dz ∧ dz̄
(
∂zAz̄ − ∂z̄Az

)
with the boundary integral in a counterclockwise direction if D is “inside” the contour

(i.e. with D to the left of the contour “arrow”), and Az = Ax − iAy, Az̄ = Ax + iAy.

A.2 Green Function

Our convention for the genus-g torus Green function [89] is,

∂z∂z̄G(z, w) = −πα′δ2(z − w) +
πα′gzz̄∫

Σg
d2z
√
g
, (A.145a)

∂z∂w̄G(z, w) = πα′δ2(z − w)− πα′

2
ωI(z) (ImΩ)−1

IJ ω̄J(w̄), , (A.145b)

satisfying
∫

Σg
d2z
√
g G(z, w) = 0, which is concisely expressed in terms of Fay’s prime

form [87], E(z, w), see (A.141), the period matrix ΩIJ , and abelian differentials ωI , ω̄I . For

compact and oriented genus-g Riemann surfaces [84, 89,134]:

G(z, w) = −α
′

2
ln |E(z, w)|2 + πα′ Im

w∫
z

ωI (ImΩ)−1
IJ Im

w∫
z

ωJ . (A.146)
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which, up to terms of the form f(z, z̄) + g(w, w̄) which do not contribute to amplitudes

(in spacetimes for which charge and momentum is conserved), is determined uniquely by

the requirement that it be single-valued around AI and BI cycles, and that it have the

correct singular behaviour as z → w, G(z, w) ' − ln |z − w|2 + . . . . The prime form is

quasi-periodic on Σg, see (A.143).

B The Torus, T 2

B.1 Coordinates and Moduli Space

To specify a point on the torus we need two coordinates, σ1, σ2, chosen conveniently

such that σ1 ∈ [0, 1), σ2 ∈ [0, 1), with identifications, σ1 ∼ σ1 + 1 and σ2 ∼ σ2 + 1.

Locally, we can always express the metric in the form ds2 = 2gzz̄dzdz̄, in terms of which

the Ricci scalar R(2) = −gzz̄∂z∂z̄ ln gzz̄. The uniformization theorem [89] then enables us

to choose a gauge slice that is tangent to zero curvature metrics, e.g. gzz̄ = 1/2, although

observables do not depend on this choice. As there is one (complex) conformal Killing

vector (CKV) on the torus, i.e. dimC ker∇z
(−1) = dimC ker∇(1)

z = 1, the Euler characteristic

being χ(T 2) = 0, the Atiyah-Singer-Riemann-Roch index theorem (A.124) implies there is

one (complex) modulus, dimC ker∇z
(2) = dimC ker∇(−2)

z = 1, call it τ = τ1 + iτ2. A useful

(global) coordinate system is then z = σ1 + τσ2, z̄ = σ1 + τ̄σ2, with:

ds2 = |dz|2 =
∣∣dσ1 + τdσ2

∣∣2. (B.147)

At genus one the (anti-)holomorphic abelian differentials (A.127) reduce to ω = dz, ω̄ = dz̄,

with ∮
A

dz = 1, and

∮
B

dz = τ,

so that the period matrix, Ω11, is identified with τ .

Starting from a metric (B.147), we can deform the complex structure moduli by turning

on Beltrami differentials, (µ, µ̄) = (µ z
z̄ (dz)−1dz̄, µ z̄

z dz(dz̄)−1), so that any other metric is

(up to a conformal rescalling) of the form ds̃2 = |dz + µdz̄|2. These therefore provide a

parametrisation of the space of metrics on the Riemann surface. There is a single insertion

of, |〈µ, b〉|2, in the amplitude, reflecting the presence of a single complex modulus. The

pairing, 〈µ, b〉, is defined with respect to the natural inner product of the space, see (A.121),

and is independent of a metric, 〈µ, b〉 =
∫

Σ
d2z µ z

z̄ bzz. When we compare the variation

δgz̄z̄ ≡ δτgzz̄µ
z
z̄ , with the infinitesimal deformation τ → τ + δτ of the flat metric (B.147),

we find µ z
z̄ = i/τ2.
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Figure 2: An illustration of a gauge slice in the space of worldsheet metrics. The ghost path
integral ensures that the gauge slice, parametrized by τ, τ̄ , is orthogonal to the local worldsheet
symmetries, whereas the restriction to a fundamental domain of integration, F1, ensures that we
do not integrate over worldsheet deformations that are related by global diffeomorphisms. The
gauge slice is specified by the choice of Beltrami differentials.

Most of the invariance under global diffeomorphisms (see Fig. 2), Diffgl(Σ) = SL(2,Z)/Z2,

[127], σ1 → aσ1 + bσ2, and σ2 → cσ1 + dσ2, with a, b, c, d ∈ Z and det
(
a b
c d

)
= 1, (equiv-

alently τ → dτ+b
cτ+a

), as well as the periodicities σ1 ∼ σ1 + 1, σ2 ∼ σ2 + 1 can be fixed by

restricting the integration regions, respectively, to fundamental domains,

F1 =
{
τ1, τ2

∣∣∣ − 1
2
≤ τ1 ≤ 1

2
,
√

1− τ 2
1 ≤ τ2 <∞

}
, with d2τ ≡ 2dτ1 ∧ dτ2,

Σ1 =
{
σ1, σ2

∣∣∣ 0 ≤ σ1 < 1, 0 ≤ σ2 ≤ 1
}
, with d2z = 2τ2dσ

1 ∧ dσ2.

This fixes most of the global diffeomorphisms, namely SL(2,Z), leaving a remaining Z2

isometry, z → −z, and the latter leads to the factor N1 = 2 in (5.108).

B.2 Ghost Contributions

The ghost path integral, Agh, evaluated on a genus-1 surface is a standard computation

for which we provide some details for completeness:

Agh =

∫
D(b, b̃, c, c̃)

#Cmoduli∏
j=1

|〈µj, b〉|2
#CCKVs∏
s=1

|c(ws)|2 e−Igh , (B.148)

with

Igh =
1

2π

∫
Σg

d2z
√
g
(
b∇z

(−1)c+ b̃∇z̄
(1)c̃
)
. (B.149)

Following [121], we expand b ∈ K2 and c ∈ K−1, in an orthonormal (with respect to the

natural inner products (A.121)) complex basis of eigenfunctions of ∆−(−1), ∆−(2). There exist
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two complex zero modes, call them ψ ∈ ker∇z
(−1) and φ ∈ ker∇(−2)

z , so that recalling the

discussion above (B.147),

#CCKV := dimC ker∇z
(−1)

∣∣
g=1

= 1

#Cmoduli := dimC ker∇(−2)
z

∣∣
g=1

= 1.
(B.150)

The corresponding (real, non-zero) eigenvalues, λα, and corresponding eigenfunctions turn

out to be related, ∆−(−1)Ψα = λ2
αΨα, and ∆−(2)(gzz̄)

2Φ∗α = λα(gzz̄)
2Φ∗α, where

√
2∇z

(−1)Ψα ≡
λαΦα. We thus have the orthogonal expansions, c = c0ψ+

∑
α cαΨα, b = b0φ+

∑
α bα(gzz̄)

2Φ∗α

(with Grassmann-valued coefficients c0, cα, b0, bα), so that plugging these into Agh above and

integrating out the ghosts yields:

Agh

∣∣
g=1

= det′∆−(−1)|〈µ, φ〉|
2|ψ(w)|2. (B.151)

The prime indicates omission of zero modes, and we have normalised the fields by their nat-

ural inner products (A.121), such that 〈Φα,Φβ〉 = 〈Ψα,Ψβ〉 = δα,β and 〈φ, φ〉 = 〈ψ, ψ〉 = 1.

(Note that we could have also derived the right-hand side of (B.151) directly from the decom-

position of the path integral measure associated to worldsheet metrics after decomposing it

into a gauge and a moduli contribution and reading off the appropriate Jacobian [89].) We

next evaluate (B.151) explicitly, in terms of the complex structure moduli of the worldsheet,

τ, τ̄ , see (B.147).

The b-ghost zero modes, φ = φzz(dz)2, are the (normalizable) holomorphic quadratic

differentials, and span the space orthogonal to Weyl transformations and diffeomorphisms,

the non-trivial constraint (or defining relation) being, 〈δDiff0gzz, φzz〉 ≡ 0, with δDiff0gzz =

2∇(1)
z δvz). Correspondingly, the c-ghost zero modes, ψ, are conformal Killing vectors

(CKV), and generate isometries associated to rigid shifts along the A- and B-cycles of the

torus. The choice of metric (B.147) admits one globally defined CKV and one quadratic

differential. To solve the equations, ∇z
(−1)ψ

z = 0, ∇(2)
z̄ φzz = 0, note that the only doubly pe-

riodic holomorphic functions on a torus are the constants. Thus, using the aforementioned

normalization conditions, ψ = 1√
τ2

(dz)−1, and φ = 1
2
√
τ2

(dz)2. Notice that the components

are independent of z, z̄. Above we picked a gauge slice that is parametrized by the com-

plex number τ , see p. 67, and this determined the Beltrami differential µ z
z̄ = i/τ2. Hence

|〈µ, φ〉|2 = |
∫
d2zµ z

z̄ φzz|2 = 1/τ2. The remaining quantity to evaluate in (B.151) is the

determinant of the Laplace operator.

To compute the determinant of the Laplace operator, note primarily that the various

Laplacians are equal for flat metrics, ∆(0) = ∆−(−1) = −2gzz̄∂z∂z̄ = −4∂z∂z̄. Here one starts

from a complete set of eigenfunctions, ψn,m(z, z̄), of ∆−(−1) which satisfy the torus periodici-

ties, z ∼ z+1 and z ∼ z+τ , so that: ∆−(−1)ψn,m = λn,mψn,m. If the basis vectors, ψn,m(z, z̄),
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are orthogonal, det′∆−(−1) =
∏′

n,mλn,m = (
∏

n6=0 λn,0)(
∏

m6=0 λ0,m)(
∏

n6=0

∏
m 6=0 λn,m). For

example, a complete basis that has the correct periodicities is ψn,m = e2πinσ2+2πimσ2
, with

z = σ1 + τσ2, in which case ∆(0) = − 1
τ2
|τ∂1 − ∂2|2, and λn,m =

(
2π
τ2

)2|m + τn|2. The

resulting infinite products can be determined by zeta-function regularisation (to show that∏
n>0 a = 1/

√
a for a constant a) and the product representation for the eta function [89], or

by making use of properties of the Eisenstein series [131]; the result is (up to an immaterial

constant) det′∆(0) = det′∆−(−1) = τ 2
2 |η(τ)|4. Collecting the above,

Agh

∣∣
g=1

= |η(τ)|4, (B.152)

and this is independent of w, w̄, i.e. of where we place the c, c̃ ghosts on the worldsheet.

(We are working with the critical string where the non-chiral Liouville action [84] is absent.)

This is the standard result for the ghost contribution at genus g = 1, but in the main text

we are rather interested in the quantity Z1, defined in (3.73), and so from the above, on

account of det ImΩIJ

∣∣
g=1

= τ2 and
∫

Σ1
d2z
√
g = τ2, it follows immediately that we can also

write (B.152) as follows,

Agh

∣∣
g=1

=

(
det′∆(0)

det ImΩIJ

∫
Σ1
d2z
√
g

)13∣∣η(τ)−24
∣∣2, (B.153)

allowing us to conclude that (up to an immaterial phase):

Z1 = η(τ)−24, Z̄1 = η(τ̄)−24. (B.154)

B.3 Dedekind η Function

Writing v = e2πiτ , with Imτ > 0, the Dedekind η-function is defined as:

η(τ) = v1/24
∏
n>0

(
1− vn

)
, (B.155)

with the property,

η(−1/τ) =
√
−iτη(τ).

The following explicit expansion is useful when focusing on the contribution of the lightest

decay channels to the amplitude:

η(τ)−24 = v−1
∏
n>0

(1− vn)−24

= v−1 + 24 + 324v + 3200 v2 + 25650v3 +O(v4).

(B.156)
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B.4 Jacobi Theta Functions

The Jacobi theta function is defined as [88]:

ϑ(z|τ) =
∑
n∈Z

exp
(
πin2τ + 2πinz

)
(B.157)

with τ2 = Imτ > 0. The variant ϑ1(z|τ) is of particular relevance and has the following

representations,

ϑ1(z|τ) = −
∑
n∈Z

exp
(
πi(n+ 1

2
)2τ + 2πi(n+ 1

2
)(z + 1

2
)
)
, (B.158a)

= 2
∞∑
n=0

(−)nv
1
2

(n+ 1
2

)2

sin(2n+ 1)πz (B.158b)

= 2v1/8 sin πz
∏
n>0

(
1− 2vn cos 2πz + v2n

)(
1− vn

)
(B.158c)

A useful quantity that appears in the definition of the prime form, E(z, z′), is ϑ′1(0|τ) ≡
∂zϑ1(z|τ)|z=0, an explicit expression for which follows directly from (B.158c):

ϑ′(0|τ) = 2πv1/8
∏
n>0

(1− vn)3. (B.159)

The quantity ϑ1(z|τ) is odd under parity, ϑ1(z|τ) = −ϑ1(−z|τ), and hence ϑ1(0|τ) = 0.

In fact, the zeros of ϑ1(z|τ) are located at:

z = m+ nτ ⇔ ϑ1(z|τ) = 0, with n,m ∈ Z. (B.160)

B.5 Prime Form

The one loop (genus g = 1) expression for Fay’s prime form (A.141) [87–89] is given in

terms of Jacobi theta functions,

E(z) =
ϑ1(z|τ)

ϑ′1(0|τ)
, (B.161)

with ϑ′1(0|τ) ≡ ∂zϑ1(z|τ)|z=0, see (B.158) and (B.159). Writing,

u ≡ e2πiz, and v ≡ e2πiτ ,

from (B.158c) and (B.159) it follows that an explicit product representation is,

E(z) =
sinπz

π

∏
n>0

(
1− 2vn cos 2πz + v2n

1− 2vn + v2n

)
, (B.162a)

=
1

2πi

(
u1/2 − u−1/2

)∏
n>0

(
(1− vnu)(1− vnu−1)

(1− vn)2

)
. (B.162b)
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It is clear that E(z) has a simple zero at z = 0. In fact, for generic v it follows immediately

from (B.162a) that:

2πiE(z)
∣∣
z→0
' 2πiz +

( 1

24
−
∑
n>0

vn

1− 2vn + v2n

)
(2πiz)3 +O(z5),

and, in fact, the prime form is the unique holomorphic object on a Riemann surface that

has a simple zero at z = 0 and is non-vanishing elsewhere (modulo lattice periodicities,

see below). E(z) therefore generalises the notion of distance on topologically non-trivial

Riemann surfaces. In addition, the prime form has the following monodromies,

E(z + 1) = −E(z), (B.163a)

E(z + τ) = − exp (−πiτ − 2πiz)E(z), (B.163b)

around the A and B cycles of the torus respectively.

If we exponentiate the infinite product in (B.162b), expand the resulting logarithms,

perform the geometric sums and make use of the identity (2 sin θ)2 = 2− 2 cos 2θ, we may

equivalently write:

2πiE(z) = (2i sin πz) exp

{∑
n>0

1

n

vn

1− vn
(2 sinπnz)2

}
, (B.164a)

E(z)2∂2
z lnE(z) =

{
− 1 + (2 sin πz)2

∑
n>0

2nvn

1− vn
cos 2πnz

}
exp

{∑
n>0

2

n

vn

1− vn
(2 sinπnz)2

}
,

(B.164b)

where in the second line we have exhibited another combination that appears in string

amplitudes. It is convenient to consider these expressions as a series expansion in v, which

is useful in discussing the τ2 →∞ boundary of moduli space (with σ1, σ2 generic). Defining

S(u) ≡ u1/2 − u−1/2, C(u) ≡ u1/2 + u−1/2,

2πiE(z) = S(u)− vS(u)3 − 3v2S(u)3 +O(v3) (B.165a)

E(z)2∂2
z lnE(z) = −1− v S(u)4 − 6v2S(u)4 +O(v3). (B.165b)
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