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First-passage time problems are ubiquitous across many fields of study including transport pro-
cesses in semiconductors and biological synapses, evolutionary game theory and percolation. De-
spite their prominence, first-passage time calculations have proven to be particularly challenging.
Analytical results to date have often been obtained under strong conditions, leaving most of the
exploration of first-passage time problems to direct numerical computations. Here we present an
analytical approach that allows the derivation of first-passage time distributions for the wide class
of non-differentiable Gaussian processes. We demonstrate that the concept of sign changes natu-
rally generalises the common practice of counting crossings to determine first-passage events. Our
method works across a wide range of time-dependent boundaries and noise strengths thus alleviating
common hurdles in first-passage time calculations.

I. INTRODUCTION

A frequent question in the study of stochastic systems
is to determine when a particular event happens for the
first time. Such first-passage time (FPT) problems are
ubiquitous in the physical sciences, and applications in-
clude trapping reactions [1], earthquakes [2], goodness-of-
fit tests [3], habitat selection [4], dark matter halos [5],
decision making [6, 7], diffusion in complex environments
[8, 9] and ion channel dynamics [10–12]. For a recent re-
view on the wider applications of FPTs see [13, 14]. Al-
though the concept of FPTs is easily stated, the actual
computation poses substantial challenges. Researchers
can now draw on an extended suite of mathematical tech-
niques to evaluate FPTs, ranging from analytical descrip-
tions for special cases including asymptotic expansions to
semi-analytical approaches based on integral equations
to direct numerical simulations [15–31]. Notwithstand-
ing these practical methods, the general solution to one
of the most fundamental FPT problems is still unknown:
diffusion to an arbitrary boundary [24, 32–34]. This is
even more remarkable since diffusion processes are often
used to approximate the dynamics of more complicated
stochastic systems [16, 35].

The seminal work by Wiener and Rice [36, 37] has
been instrumental in advancing our understanding of
FPT problems. They derived a series representation of
the FPT distribution for a sufficiently smooth stationary
stochastic process through a constant boundary. A com-
mon interpretation of this smoothness condition is that
the stochastic process is differentiable in the mean-square
sense. For a stationary stochastic process, differentiabil-
ity arises from the behaviour of its covariance function at
the origin. If it is differentiable there, the process is dif-
ferentiable in the mean square sense [38]. Interestingly,
this condition is already violated for any diffusion process
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based on Brownian motion [39], most notably the ubiq-
uitous Ornstein-Uhlenbeck process (OUP) and geometric
Brownian motion.

A distinct advantage of the Wiener–Rice approach is
that it often gives rise to compact analytical expressions,
which in turn provide great insight into the stochastic
system under investigation, as e.g. illustrated in [40, 41].
In this paper, we show how the concepts that under-
lie the Wiener–Rice series can be generalised to non-
differentiable stochastic processes with arbitrary bound-
aries, thus translating the versatility and efficacy of the
Wiener–Rice approach to a much enhanced range of
physically relevant dynamics.

II. SIGN CHANGING PROBABILITIES

Consider a stationary stochastic process X(t) and a
time-dependent boundary S(t). Let N([0, t]) denote the
number of crossings of X(t) and S(t) in a fixed inter-
val [0, t]. If X(t) is differentiable, the mean number of
crossings of X(t) through S(t) in any given finite time
interval is always finite, i.e. E{N([0, t])} < ∞ [36, 37].
This entails that we can count the number of crossings,
and in particular that there is at most one crossing within
a sufficiently small time interval of length ∆. When we
introduce the new process Z(t) = X(t) − S(t), we see
that Z(t) changes sign as soon as X(t) crosses through
S(t), and hence instead of counting crossings, we could
count sign changes. If X(t) is non-differentiable, Rice’s
seminal work shows that E{N([0, t])} = ∞. While this
seems counterintuitive, infinite means are not uncommon
in physics. A prominent example are power-law proba-
bility distributions of the form p(x) ∼ x−α, α > 0 [42]
[43]. The divergence of E{N([0, t])} does not allow us to
count the number of crossings or sign changes anymore.
In particular, the divergence holds for any t > 0, so we
cannot choose an infinitesimal time interval ∆ to over-
come it. In turn, this prevents us from using the original
results by Wiener and Rice.
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Progress can be made here by a change of perspective.
We generally identify a crossing event in some interval
[t, t + ∆] with Z(t) and Z(t + ∆) having opposite signs,
i.e. we evaluate Z at the end points of the interval. For
sufficiently small ∆ and a differentiable stochastic pro-
cess, this is equivalent of a crossing anytime during the
interval and hence justifies the practice of evaluating Z
at the end points. For a non-differentiable stochastic pro-
cess, we can still evaluate Z(t) and Z(t + ∆) and check
for sign changes. The only difference is that this does
not inform us about the number of crossings, but about
the existence of at least one crossing. Given a sufficiently
small ∆, this is the key information for practical calcu-
lations. Sign changes of Z(t) and Z(t+ ∆) can therefore
be used to identify FPTs for both differentiable and non-
differentiable stochastic processes.

The versatility of sign changes in computing FPTs is
best illustrated with cases that cannot be solved with ex-
isting analytical techniques, yet frequently occur in appli-
cations. Figure 1 shows prototypical examples to which
current approaches cannot be applied since the bound-
aries are neither convex nor concave. These boundaries
can be found in areas as diverse as neuronal dynamics
(Fig. 1a) and molecular transition theory (Fig. 1b). It
is worth pointing out that the boundary in Fig. 1a orig-
inates from transforming a FPT problem for a driven
stochastic system with constant threshold. In general,
these problems cannot be solved analytically due to the
explicit time-dependence of the stochastic dynamics [44].
However, by shifting the time-dependence to the thresh-
old as we do here, the problem becomes analytically
tractable. The example in Fig. 1b illustrates motion
in a complex energy landscape with a time-dependent
metastable state [45, 46]. While this is most reminiscent
of problems in physical chemistry, the same scenario oc-
curs in general phase space dynamics [47].

The specific FPT problem that we will investigate
is to determine when a Gaussian process X(t), whose
initial value is drawn from its stationary distribution,
crosses through S(t) from above for the first time,
i.e. we are interested in the random variable T =
inf {t > 0|X(t) ≤ S(t)} with a corresponding probability
distribution F(t). While the theory presented here is
valid for any Gaussian process, we will illustrate our re-
sults with an OUP given its prominence across so many
fields of study. The dynamics of the OUP is governed by

dX = −X − v
τ

dt+
√
DdW (t) , (1)

whereW (t) is a standard Brownian motion, v is the mean
of the OUP and τ , D > 0. The stationary variance and
correlation coefficient of the OUP are given by Dτ/2 and
exp(−|t|/τ), respectively.

To begin our analysis, we define the conditional sign
change probability p+−(t|x0) = P(Z(t) > 0, Z(t + ∆) <
0|x0), i.e. the probability of a sign change in [t, t + ∆]
given a value of X(0) = x0. Let f2(x1, x2|x0) =
P(X(t1) = x1, X(t2) = x2|X(0) = x0) denote the condi-

0 2 4 6 8 10 12 14

t

0

5

10

15

S

X
(a)

0 5 10 15 20

t

0

1

2

3

4

5

S

X(b)

FIG. 1. An OUP (solid black line) with mean v (dashed
black line) crosses through time dependent boundaries S(t)
(green dashed line). The boundaries are (a) S(t) =
−5 cos(t) exp

(
−(0.1 cos(t))2

)
+ t and (b) S(t) =

∑
n αn(2(t−

Tn))
4 exp(−2(t − Tn))H(t − Tn) with α ∈ {0.8, 0.75}, T ∈

{4, 10}. Parameter values are (a) τ = 1.0, v = 10.0, D = 2.0
and (b) τ = 2.0, v = 4.0, D = 0.2. H denotes the Heaviside
step function.

tional bivariate probability function of X(t), we see that

p+−(t|x0) =

∫ ∞
S(t)

dx1

∫ S(t+∆)

−∞
dx2 f2(x1, x2|x0) . (2)

Note that Eq. (2) is always well defined and does not
rely on whether X(t) is differentiable or not. Since X(t)
is Gaussian, f2 is Gaussian again, and the corresponding
mean and covariance matrix can be obtained in closed
form. By expanding the integrals in Eq. (2) to lowest
orders in ∆ following [48], we find

p+−(t|x0) =
1

π

√
∆/τ

2[1− ρ(t)2]
exp

[
[S(t)−m1(t)]2

2σ2
1(t)

]
, (3)

where m1(t) = v + (x0 − v)ρ(t), σ2
1(t) = σ2(1 − ρ(t)2),

and ρ(t) and σ2 denote the correlation coefficient and
the variance of X(t), respectively. Hence, p+−(t|x0) =

σ
√

∆/(πτ)f1(S(t)|x0), where f1 presents a conditional
univariate Gaussian probability function. The value of
x0 has been fixed but arbitrary so far. By integrating it
out we obtain the probability I1(t) =

∫∞
0
p+−(t|x)p(x)dx
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FIG. 2. Crossing probability I1(t) for the two cases shown in
Fig. 1 obtained from MC simulations (green circles) and from
Eq. (4) (black dashed line).

for a sign change in the interval [t, t+∆]. Since both p(x)
and p+−(t|x) are Gaussian, the integral can be performed
analytically, and we arrive at

I1(t) =

√
∆

8π2τ
exp[e(t)](1 + erf[f(t)]) , (4)

where 2e(t) = ω(t)2σ2
1(t) − (S(t) − v)2/σ2

1(t), f(t) =

(v−ω(t)σ2
1(t))/

√
2σ2

1(t) and ω(t) = ρ(t)(v−S(t))/σ2
1(t).

We compare the analytical expression for I1 with di-
rect Monte-Carlo (MC) simulations in Fig. 2 for the two
choices of S(t) shown in Fig. 1. The agreement is ex-
cellent, capturing the multimodal character of the cross-
ing probability induced by the non-monotonicity of S(t)
and spanning more than three orders of magnitude, with
probabilities reaching values smaller than 10−5.

III. FPT PROBABILITIES

From a conceptual point of view, I1(t) corresponds to
the first term J1(t) of the FPT expansion derived by
Wiener and Rice. Their original results for the full FPT
distribution F(t) that measures crossings in the interval
[t, t+ ∆] can be expressed as

F(t) =

∞∑
n=0

(−1)n

n!
Jn+1(t) , (5)
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FIG. 3. FPT probability F(t) corresponding to Fig. 1a (a,b)
and Fig. 1b (c,d) obtained from MC simulations (solid grey
line), Eq. 4 (dashed green line) and Eq. 9 (green circles).

where Jn(t) =
∑∞
k=n qk(t)(k − 1)!/(k − n)! and qn(t)

denotes the probability of n crossings during the time
[0, t + ∆] including one in [t, t + ∆]. Therefore, J1(t) =∑∞
k=1 qk(t) represents the probability of a crossing in

[t, t + ∆] irrespective of how many other crossings have
occurred prior to t. In comparison, I1(t) measures the
probability of a sign change in [t, t+ ∆] regardless of the
behaviour of X(t) before t. Therefore, we expect I1(t)
to constitute a first order approximation G1(t) of F(t):
F(t) ≈ G1(t) = I1(t). This is confirmed in Fig. 3.

For ease of comparison, we provide separate panels
for the first two peaks of the FPT distribution for both
boundaries shown in Fig. 1. For all cases G1(t) lays
on top of MC results and only starts to overestimate
F(t) for times very close and larger than the local max-
imum of the FPT distribution. This is analogous to the
Wiener–Rice expansion. For later times, it becomes more
likely that the detected sign changes are not the first
ones and hence do not constitute a FPT. We therefore
count too many trajectories in G1(t). To alleviate this
problem, we need to subtract the probability for the tra-
jectories that we falsely included in G1(t). The leading
correction term to G1(t) accounts for all trajectories that
have sign changes in [t, t + ∆] and [s, s + ∆] for s < t
[40]. Let p+−+−(s, t|x0) = P(X(s) > S(s), X(s + ∆) <
S(s + ∆);X(t) > S(t), X(t + ∆) < S(t + ∆)|x0) denote
the probability for sign changes in two disjunct intervals,
then

p+−+−(s, t|x0) =∫ ∞
S(t)

dx3

∫ S(t)+∆

−∞
dx4f2(x3, x4|x0)p+−(s|x0, x3, x4) , (6)

where p+−(s|x0, x3, x4) is defined analogously to Eq. (2),
the only difference being that here we condition on three
instead of one value of X(t). By expanding Eq. (6) to
lowest order in ∆ and using Eq. (3), we find

p+−+−(s, t|x0) = σ2 ∆

πτ
f2(S(t), S(s)|x0) . (7)
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FIG. 4. Crossing probability for two disjunct intervals I2(s, t)
for the two cases shown in Fig. 1 for a fixed time t indicated
by the solid vertical black line at t = 3.1 (a) and t = 5.75
(b) obtained from MC simulations (green circles) and Eq. (8)
(black line).

Since p+−+− is a Gaussian, we can again integrate out
the dependence on x0 to obtain the probability I2(s, t) =∫∞

0
p+−+−(s, t|x)p(x)dx for sign changes in two disjunct

intervals [s, s+ ∆] and [t, t+ ∆] in closed form

I2(s, t) = σ2 ∆

4π2τ

exp[E(s, t)](1 + erf[F (s, t)]

G(s, t))
. (8)

We provide details for E(s, t), F (s, t) and G(s, t) in
the Appendix. Note the structural similarity between
Eqs. (4) and (8). In Fig. 4 we plot I2(s, t) as a func-
tion of s for fixed values of t. There is almost no dif-
ference between the analytical expression and direct MC
simulations, with the agreement ranging over three or-
ders of magnitude in Fig. 4b. For a first-passage event
at time t, second crossings can happen at any moment
s < t. Therefore, we obtain the second order approxima-
tion G2(t) of F(t) by summing I2(s, t) over all possible
values of s that are commensurate with ∆ and subtract
this probability from G1(t):

G2(t) = I1(t)−
∑
n

I2(n∆, t) , (9)

where we respect the strict inequality n∆ < t. Fig-
ure 3 shows that G2(t) provides a significantly improved
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FIG. 5. (a,b) An OUP (solid black line) with mean v
(dashed black line) crosses through a time dependent bound-
ary S(t) = −40 cos(t) exp

(
−(4 cos(t))2

)
+ 1.5t (green dashed

line). Parameter values are τ = 0.2, v = 7 and (a) D = 2.0,
(b) D = 10. (c,d) FPT probabilities F(t) corresponding to
(a) and (b) obtained from MC simulations (solid grey line),
Eq. 4 (dashed green line) and Eq. 9 (green circles).

approximation of F(t) as compared with G1(t). Note
that G2(t) generally captures the rising phase of the
FPT distribution very well, even including the max-
imum in Fig. 3b. This behaviour is consistent with
other, although technically more limited, series expan-
sions [49, 50]. While G1(t) tends to overestimate F(t),
G2(t) underestimates the true FPT statistics when it de-
viates at larger times. This is expected since we subtract
too many trajectories in the computation of G2(t) [40],
and can be remedied by including higher order terms in
our expansion.

A particularly useful property of our approach is that
it allows for explorations beyond the small noise limit.
Figure 5 shows results when the noise strength D is in-
creased by a factor of 5 above an already moderate noise
level. As expected, the FPT distributions shift to smaller
times for stronger noise, but the the agreement between
numerics and analytics persists.

For the computation of I1(t) and I2(s, t) we integrated
out the dependence on the initial values of the OUP. This
could be done analytically since the OUP was initially
Gaussian distributed. As the theory stands it can equally
well deal with highly skewed initial distributions or sharp
initial values as e.g. used in [51]. As an illustration of this
point, we chose x0 ∈ [v+2, v+2.1], which corresponds to
a strongly localised initial distribution. Figure 6 shows
results for I1(t) and F(t). For the analytical results, we
used p(x0) = δ(v + 2 − x0) due to the narrow support
of the distribution of x0. We observe reasonably good
agreement between numerical and analytical results. Im-
portantly, the theory is able to capture the small peak in
the FPT distribution just before t = 2. The main reason
for the difference between the analytical and numerical
results lies in the MC error. Indeed, the discrepancy
between the analytical and numerical value for I1(t) in
Fig. 6a at times t ≈ 2 and t ≈ 14 decreases with more
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FIG. 6. (a) I1(t) obtained from MC simulations (green
circles) and Eq. 4 (red dashed line). (b) FPT distribu-
tion obtained from MC simulations (grey lines) and using
for p(x0) = δ(v + 2 − x0)(red). The boundary is given by
S(t) = −40 cos(t) exp

(
−(4 cos(t))2

)
+ 1.5t, and the parame-

ter values of the OUP are τ = 10.0, v = 10.0, D = 2.0.

MC realisations and hence is not a systematic error of
the approach.

IV. DISCUSSION AND CONCLUSION

In the present work, we have derived an analyti-
cal approach to FPT calculations for stationary non-
differentiable Gaussian processes. Using the concept of
sign changes, the results presented here overcome the of-
ten strong limitations of existing analytical techniques,
such as convexity of the boundary, time scale separa-
tions or crossings being rare [24, 37, 49, 52], and al-
low us to construct high-fidelity approximations of the
full FPT statistics, which are notoriously hard to com-
pute. Our approach is based on the ideas of Wiener
and Rice to appropriately count random trajectories and
thus demonstrates that their seminal concept for differ-
entiable Gaussian processes can be generalised to non-
differentiable stochastic processes. Given that the com-
putation of G2(t) is entirely based on the evaluation and
summation of Gaussian distributions, it is numerically
fast and allows us to accurately describe events even
when they occur with low probability, for which MC sim-

ulation are numerically expensive. While we illustrated
our approach with the OUP, it works for any Gaussian
process since equations (3) and (6) do not assume a spe-
cific form of the correlation coefficient ρ(t). What the
time-dependence of ρ(t) determines is the scaling of I1(t)
and I2(s, t) with ∆. Interestingly, for the OUP with
ρ(t) ∼ exp(−|t|), we find I1(t) ∼

√
∆ when t > ∆/2, a

condition that is almost always satisfied due to the small-
ness of ∆. By changing the correlation coefficient such
that the stochastic process becomes differentiable, e.g.
the widely used ρ(t) ∼ exp(−t2), we recover the original
findings by Wiener and Rice [48].

To illustrate the versatility of our approach, we chose
examples to which, to the best of our knowledge, current
analytical methods cannot be applied since the time de-
pendent boundaries are neither convex nor concave. It
might therefore be tempting to consider the stochastic
process Z(t) as introduced in Sec. II, which is the differ-
ence between the stochastic process X(t) and the time
dependent boundary S(t). Consequently, the FPT prob-
lem for Z(t) involves a constant boundary at 0. However,
the stochastic differential equation for Z(t) is explicitly
time-dependent, which again renders the problem ana-
lytically intractable under general conditions [44].

In the past, non-differentiable stochastic processes
have often been dealt with by transforming them into
differentiable versions via smoothing. This is usually
done by either convolving the non-differentiable stochas-
tic prcess with a kernel or by filtering the correlation
function in frequency space [53, 54]. This requires firstly
to find appropriate kernels or filters, and secondly to de-
termine a bandwidth or cut-off frequency. This is not
a trivial task, and often choices can only be justified
a posteriori. From a practical point of view, this is a
severe limitation. In contrast, the approach presented
here works directly with the original non-differentiable
stochastic process and thus avoids any of these compli-
cations.

On theoretical grounds, we expect that the dominant
contribution of I1 is in determining the rising phase of
the peaks of the FPT distribution. This is well captured
by the results shown in this study. Recently, the concept
of few encounters has been introduced [55], and it was
shown that the left part of the peaks of the FPT distri-
bution is essential. Given the compact expression for I1,
our results may prove useful in studying few encounters
in more detail.

While we have focussed on stationary stochastic pro-
cesses, an intriguing avenue for future research con-
cerns the generalisation of our findings to non-stationary
stochastic processes. The starting point is Eq. (3), but
now both the mean and the standard deviation become
time-dependent. Results analogous to Eqs. (4) and (8)
would highlight the conceptual elegance of sign changing
probabilities and moreover demonstrate that sign chang-
ing probabilities are a powerful and practical concept
for investigating FPT and general level crossing [56, 57]
problems.
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Appendix: Details for Eq. (8)

We here provide details for the sign changing prob-
ability in two disjunct intervals, Eq. (8). The func-
tions E(s, t) and F (s, t) are given by E(s, t) = A(s, t) +

B2(s, t)/Γ(s, t) and F (s, t) = B(s, t)/
√

Γ(s, t) with

A(s, t) = − v2

2σ2
− α(s, t)

2(1− ρ̃2)
,

B(s, t) =
v

σ2
− β(s, t)

2(1− ρ̃2)
,

Γ(s, t) = 2

[
1

σ2
+
γ(s, t)

1− ρ̃2

]
,

and

α(s, t) =
Ss − v(1− ρ2

s)

σ2
s

+
St − v(1− ρ2

s)

σ2
t

− 2ρ̃

σsσt
[SsSt

+Ssv(ρt − 1) + Stv(ρs − 1) + v2(1− ρt − ρs + ρsρt)] ,

β(s, t) =
2(v(1− ρs)ρs − Ssρs)

σ2
s

+
2(v(1− ρt)ρt − Stρt)

σ2
t

− 2ρ̃

σsσt
[−Ssρt − Stρs + vρt + vρs − 2vρsρt] ,

γ(s, t) =
ρ2
s

σ2
s

+
ρ2
t

σ2
t

− 2ρ̃

σsσt
ρsρt ,

while G(s, t) reads as

G(s, t) =
√

(1− ρ̃2)σ2
sσ

2
t + σ2 (ρ2

sσ
2
t + ρ2

tσ
2
s − 2ρ̃σsρsσtρt) ,

ρ̃(s, t) =
ρ(s− t)− ρ(s)ρ(t)√
1− ρ(t)2

√
1− ρ(s)2

.

For notational convenience, subscripts refer to time ar-
guments, e.g. σt = σ(t) = σ

√
1− ρ2(t) and St = S(t).
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