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Abstract Certain macroscopic similarities of the nail and hair elongation mecha-
nisms enable the mass-growth activity that takes place within a straight hair folli-
cle to be modelled through a suitable extension of a relevant small-strain pseudo-
elasticity model of human nail growth [5]. Basic differences which are taken into
consideration are the facts that straight hair (i) resembles the form of a cylindrical
rod, rather than a plate, while (ii) its material constitution seems microscopically
transversely isotropic, rather than isotropic. A complete analytical solution of the
obtained governing differential equations is detailed for the case that incompressible
mass-growth conditions prevail within the hair matrix. In addition to estimating dis-
placement and stress distributions that develop within the growing matrix, and the
resulting hair elongation, that solution enables prediction of a clinically observed
zone of hair-fibre hardening that lies between the matrix soft tissue and the hard
keratinous hair shaft. It also predicts that the longitudinal dimension of the hair ma-
trix and that of the hair-fibre hardening zone depend on the material properties of the
soft tissue of the follicle. Consideration of more advanced micro- or macro-scopic
features of the hair follicle, such as layered structure or curved form, can be handled
mathematically in a similar manner at the expense of analytical simplicity.
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1 Introduction

The growth and elongation mechanism of straight hair (e.g., [2]) presents consid-
erable similarities with, but also differences from its human nail counterpart (e.g.,
[1, 5]). Nails and hair grow, for instance, at slow rates but, while geometrical fea-
tures of a human nail resemble closely those of assembled flat plates [1], a straight
hair specimen is more naturally thought of as an assembly of consecutively bonded
cylindrical rods. Like the human nail specimen considered in [5], a specimen of
a straight hair follicle (Figure 1) may accordingly be modelled as an assembly of
structural components bonded together in series (Figure 2).

In either model, the first of the assembled structural components represents soft,
proliferating, living tissue. That part of the implied structural assembly is distin-
guished by the customary term matrix. Cell differentiation and other germinal activ-
ity that take place in it are restricted within certain bounds. Strain levels remain thus
necessarily small within the growing matrix which, by increasing its mass, forces the
whole assembly to elongate by essentially pushing forward the last structural com-
ponent. The latter is made of hard, keratinous, dead tissue and is unable to grow,
but keeps elongating in an unbounded manner due to the aforementioned matrix ac-
tivity. Those macroscopic similarities of the nail and hair elongation mechanisms
suggest that the mass-growth activity that takes place within a straight hair follicle
may become understood through a suitable extension of the existing elastic model
of nail growth [5].

A relatively simple such extension begins here with the observation that, apart
from the aforementioned macroscopic structural differences of nail and hair growth,
a number of additional differences exist at some lower or microscopic scale. Some
of those differences are mentioned in what follows with the help of Figure 1, though
others are not considered for immediate implementation into the present, essentially
pioneering attempt of hair growth modelling.

A principal such difference emerges by observing the electron micrograph of
hair cross-section depicted in Figure 6 of [2]. This reveals the contents of kera-
tinised cortical cells consisting of cylindrically-shaped closely-packed intermediate
filaments embedded in protein matrix. The fact that those filaments are normal to the
hair cross-section suggests that, although a single hair is essentially a single slender
fibre, its material is itself fibre-reinforced. This observation is taken into consider-
ation by the present hair growth model, which postulates that the unit normal to
the hair cross-section defines a preferred material direction. Unlike its nail growth
counterpart where the nail matrix is considered isotropic [5], the present model thus
postulates that the hair matrix is made of transversely isotropic material.

Constitutive equations that account for small strain mass-growth of transversely
isotropic elastic materials are accordingly derived in Section 2, which also sum-
marises the set of basic governing equations involved in the present model. Section
3 introduces next the main features of the hair follicle as well as the manner in
which the present mathematical model takes them into consideration. Particular at-
tention is given to the mass-growth activity of the matrix before the critical time
that triggers the mechanism of hair elongation is reached. That mechanism and the
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criterion that sets it off are then discussed in section 4. In a particular example ap-
plication, Section 5 details a complete relevant analytical solution that is valid when
incompressible mass-growth conditions prevails in the hair matrix. Section 6 out-
lines basic conclusions that stem from this study, including the observation that the
longitudinal dimensions of the matrix and the hardening zone of hair-fibre depicted
in Figure 1 seem to be closely dependent on the material properties of the soft tissue
of the follicle.

2 Anisotropic elastic mass-growth at small strain

When mass-growth takes place under small strain, the relevant pseudo-elasticity
type of constitutive equation [3] simplifies into the following [5]:

σi j =
ρ

2ρ0

∂W
∂ei j

+
rg

ρ0u̇k,k
Wδi j, (1)

where σi j represent the components of stress in a Cartesian co-ordinate system Oxi,
and W is the strain energy function for mass-growth. Moreover, a dot denotes dif-
ferentiation with respect to the time, t, the mass density, ρ , attains an initial value
ρ0 at t = t0, the linear strains are defined in the usual manner,

ei j =
1
2
(ui, j +u j,i), (2)

in terms of the components of the displacement vector, ui, while Latin suffices as-
sume the values 1, 2 and 3, and a comma among suffices denotes partial differen-
tiation. Finally, rg, represents the rate of mass-growth, where the suffix “g” does
not assume numerical values and is, therefore, exempted from the implied indicial
notation.

The continuity equation with growing mass,

dρ

dt
+ρ u̇i,i = rg, (3)

relates the evolution of the density with the rate of mass-growth which is perceived
as the principal cause of the observed mass-growth deformation. In the absence of
body forces, the stress components are required to satisfy the quasi-static equations
of motion, namely

σi j, j = 0. (4)

The presence of W in the second term of its-right-hand side makes it understood
that, although (1) applies to small strain deformations, this constitutive equation
is still non-linear in the strains. Although quadratic in the small strains, that term is
necessarily retained in the (1) because is divided by the rate of volumetric strain, u̇i.i,
which may be of the same order of magnitude with the linear strain components.
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In the present case of interest, where mass-growth is assumed transversely
isotropic, the x1-coordinate axis is aligned with the corresponding preferred ma-
terial direction. This co-ordinate choice leads to the following quadratic form of the
strain function W for mass-growth [6]:

W =
λ

2
e2

kk +µT ekmekm +αekke11 +
β

2
e2

11 +(µL −µT )e1kek1, (5)

where the appearing elastic moduli relate to their standard engineering counterparts
as follows (e.g., [4]:

c11 = λ +2α+β +4µL−2µT , c12 = λ +α, c22 = λ +2µT , c23 = λ , c66 = µL. (6)

By virtue of (1), (5) yields thus the small strain constitutive equation of interest
as follows:

σi j =
ρ

ρ0
{λekkδi j +2µT ei j +α(e11δi j + ekkδi1δ j1)+βe11δi1δ j1

+2(µL −µT )(ei1δ j1 +δi1e j1)}+
rg

2ρ0u̇n,n{
λ

2
e2

kk +µT ekmekm +αekke11 +
β

2
e2

11 +(µL −µT )e1kek1

}
δi j. (7)

There are particular cases of mass-growth where (7) is susceptible to further
simplification. These refer to incompressible mass-growth as well as to certain types
of slightly or moderately compressible mass-growth introduced and discussed in
[5]. While material incompressibility is associated with kinematically constrained
deformations in conventional elasticy, mass-growth incompressibility is not relevant
to kinematic constrains. Instead, it only converts (3) into the following relationships:

ρ = ρ0,
rg

ρ0u̇k,k
= 1. (8)

The second of these relationships can be integrated with respect to time, and yield

uk,k =
1
ρ0

∫ t

t0
rgdt. (9)

Moreover, it allows the quadratic strains to be considered negligible in (7), which
then reduces to its conventional linear elasticity equivalent,

σi j = λekkδi j +2µT ei j +α(e11δi j + ekkδi1δ j1)+βe11δi1δ j1

+2(µL −µT )(ei1δ j1 +δi1e j1). (10)

By inserting (10) into (4) and, where necessary, making use of (9), the following
set of displacement equations of motion is then obtained in the case of incompress-
ible mass-growth:
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µT ui, j j +(α +µL −µT )u1,1i +(µL −µT )(u1, j jδi1 +ui,11)+βu1,11δi1 =

− (λ +µT )

ρ0

∫ t

t0

∂ rg

∂xi
dt −δi1

(α +µL −µT )

ρ0

∫ t

t0

∂ rg

∂x1
dt. (11)

3 Mathematical modelling features of straight hair growth

Reference [2] bases its description of the hair follicle on a distinction between the
“germinative” cells that surround the dermal papilla in the follicle bulb (Figure 1)
and the growing activity that takes place above the bulb due to action of keratin-
associated proteins. Thus, [2] introduces a microscopic description of the “living”
part of the hair tissue that avoids deliberately the use of the relevant customary term
“matrix”. The latter term is, however, still employed here for purposes of macro-
scopic simplicity and for mathematical modelling convenience.

A plethora of additional macroscopic or microscopic composition features that
may further be associated with a hair follicle [2] imply that a straight hair specimen
may be approximated by an assembly of rods bonded in series. Figure 1 depicts, for
instance, an intermediate zone of hardening, where disulphide bonding, resorption
and dehydration make take place between the soft tissue of the matrix and the hard
tissue of the mature hair shaft. However, Figure 2 considers only a pair of straight,
circular cylindrical rods in series and, hence, disregards the slight follicle curvature
shown in Figure 1.

Nevertheless, the structural assembly depicted in Figure 2 still allows this macro-
scopic mathematical model to take into immediate consideration the principal com-
position features of straight hair, namely (i) its transversely isotropic nature, and (ii)
the fact that it is approximately divided into a living part of soft matrix tissue and
a dead part of keratinous hair shaft. The position of the specimen cross-section that
separates germinal activity from fully keratinised material, namely

x1 = `, (12)

may thus be considered either measurable and, therefore, known or a location that
needs to be determined.

As will be seen in Section 5 with an example application, the aforementioned in-
termediate zone of tissue hardening (Figure 1) may be incorporated mathematically
within either the soft hair matrix (0 ≤ x1 ≤ `) or the hard shaft tissue (` ≤ x1 ≤ L)
shown in Figure 2. Further growth and composition features may still be taken into
consideration in the future and, hence, lead to refined version(s) of the present
model. Wherever current lack of clinical evidence or information requires imple-
mentation of further assumptions, these are selected in a manner that serves mathe-
matical simplicity.

The composite circular cylindrical rod depicted in Figure 2 is thus considered as
idealisation of a straight hair specimen having, at t = t0, uniform constant length
L. The co-ordinate origin O may be placed centrally either at the bottom or at the
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top end of the follicle bulb (Figure 2). The central axis of the rod coincides with
the Ox1-axis and a generic hair cross-section is thus parallel to the Ox2x3-plane.
An arbitrary rotation of the co-ordinate plane Ox2x3 about the Ox1-axis does not
affect the mechanics of the model which thus perceives straight hair as an axially
symmetric structure.

The radius of the hair shaft is considered constant at all times and is denoted with
h` ≡ hL. This is equal to the measurable and, hence, known radius of the visible end
of the hair, so that

h
∣∣∣∣ t≥t0

x1≥`
= h0(`) = h` ≡ hL, (13)

where the known smooth function h0(x1) may be chosen to imitate the initial shape
of the boundary curve of the matrix part of the specimen. That function may accord-
ingly be defined through the initial condition

h
∣∣∣∣ t=t0

x1≤`
= h0(x1), (14)

which makes clear that, due to the germinal activity of the matrix, the radius, h,
of the shaded part of the specimen depicted in Figure 2 is considered unknown at
t > t0.

It follows that if, for simplicity, h0(x1) is assumed constant, then (13) and (14)
imply that

h0 ≡ h` ≡ hL. (15)

The convex shape of the matrix depicted in Figure 1 suggests that, if (15) is adopted,
then the shaded rod shown in Figure 2 lies within the matrix tissue and is accordingly
surrounded by matrix material at all times.

The hair matrix operates within physical boundaries which do not have reasons
to expand substantially. This restriction on the magnitude of the matrix deformation,
also observed in nail growth, supports the postulate that the “push forward” mech-
anism that causes hair elongation is activated periodically, at specific critical time
instances. At such a critical instant, t = tcr > t0, the strain accumulated within the
grown matrix enables the relevant stress state to reach a critical intensity level that
(i) negates the resultant frictions met at the lateral supports of the hair shaft, and,
hence, (ii) pushes the latter forward in the x1direction. During that bouncing matrix
action, newly grown material passes through the transitional cross-section (12) and
is incorporated into the keratinised hair shaft, which is thus elongated accordingly.

When combined with the fact that hair growth is slow, these observations and
postulates suggest that the small strain framework outlined in the preceding sec-
tion is suitable for modelling hair matrix mass-growth, as long as the manner in
which the rate of mass-growth, rg, influences the continuity equation (3) is rea-
sonably accounted for. In this context, reference [2] makes clear that the follicle
bulb is a stronger mass producer than the upper matrix part that involves action
of keratin-associated proteins. Moreover, the follicle shape (Figure 1) suggests that
mass-growth decreases with distance, at least outside the bulb. New mass produc-



ON ELASTIC GROWTH MODELLING OF STRAIGHT HAIR 7

tion within the matrix seems thus certainly dependent on x1 and, possibly, on time.
This may also depend on xα , where Greek indices take values 2 and 3 only. How-
ever, the small radius of the hair cross-section enables the possible dependence of
rg on xα to be ignored, thus suggesting that

rg = rg(x1, t), (16)

represents a set of reasonable form choices for the mass-growth rate of the hair
matrix.

Because the dead part of the hair tissue is a natural continuation of its living
matrix counterpart, its material may naturally be considered as approximately elas-
tic, homogeneous and transversely isotropic. However, its considerably enhanced
hardness suggests that values of Young’s moduli within the shaft are much higher
to those met in its neighbouring soft matrix tissue. That substantial hardness differ-
ence can then be taken to the limit, where the mature hair shaft is approximated by
a rigid body which, at t < tcr, remains completely unaffected from pressures and
tractions developing within the growing matrix. Such a rigid body role of the hair
shaft prevents longitudinal expansion of the matrix across the transitional plane (12)
before t = tcr, and leads to the displacement boundary condition

u1

∣∣∣∣ x1=`
t<tcr

= 0. (17)

Axial symmetry allows attention to be restricted only on the upper half (xα ≥ 0)
of the Ox1xα -plane, and its combination with the concept of continuous deforma-
tions requires that

uα |xα=0 = 0. (18)

at all times. Finally, validity of (13) and (14) necessitates imposition of the ”corner”
displacement condition

uα

∣∣∣∣ x1=`
xα=h`

= 0. (19)

The manner in which the matrix tissue operates on the transition plane (12) is
practically unknown and, hence, precise specification of further boundary conditions
on x1 = `, at t < tcr, can only be a matter of speculation. In the same context, precise
specification of further boundary conditions that may apply on the lateral (xα = h)
or the bottom (x1 = 0) boundaries of the matrix part of the specimen (Figure 2) is
not possible at this stage. As is also detailed in [5], these may instead be specified in
some a-posteriori manner, after a suitable potential solution of a relevant boundary
value problem is sought and found.
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4 The hair elongation criterion

The resultant longitudinal force, f cr
1 , that the critical stress state is expected to negate

at tcr is considered known or measurable. This is principally due to frictions acting
on the lateral boundaries of the hair shaft and may accordingly be determined with
use of mechanics rules/principles or experimental measurements which are inde-
pendent of the matrix mass-growth process.

Potential availability of f cr
1 implies that the following condition holds true at all

times on the tissue transitional plane (12):

σ11

∣∣∣∣ x1=`
t≤tcr

≤
f cr
1

πh2
`

. (20)

This holds in the form of an equation, namely

σ
cr
11 ≡ σ11

∣∣∣∣ x1=`
t=tcr

=
f cr
1

πh2
`

, (21)

only at t = tcr, when it dismisses and replaces the boundary condition (17).
Thus, at t = tcr, the matrix tissue releases the elastic energy stored in it during

mass-growth and bounces into a new equilibrium state. The volume of the hair ma-
trix that crosses the transition plane (12) is thus relevant to the non-zero value that
the displacement components u1 attains at t = tcr on x1 = `. That volume of newly
grown mass is then incorporated into the hard hair tissue, and enables the hair shaft
to elongate, while the stress state relaxes within the matrix and returns to their initial
levels measured at t0.

Equation (21) is thus perceived as the hair elongation criterion. The resulting
elongation of the hair specimen (Figure 2) is calculated by averaging over the tran-
sitional plane (12) the matrix longitudinal displacement, u1, estimated at t = tcr on
that plane. The total hair length is thus increased at tcr and becomes

L̂ = L+
2
h`

∫ h

0
u1

∣∣∣∣ x1=`
t=tcr

dx2. (22)

The outlined hair elongation process is then set to repeat itself indefinitely, after L
and tcr are replaced by L̂ and t0, respectively.

The outlined concept of periodically accumulated small strain enables the matrix
part of the hair specimen to be considered un-deformed and unstressed in its initial
configuration, leading thus naturally to the initial conditions

u|t=t0 = 0, σ |t=t0 = 0. (23)

Moreover, the notation employed in (17) and (21) implies that u1 suffers a spatial
jump discontinuity at tcr.

However, uniqueness of linear elasticity solutions suggests that the analysis out-
lined in the preceding sections is unable to predict another displacement field, say
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û 6= u|t=tcr , (24)

which, for an explicitly given form of the mass-growth rate (16), (i) matches pre-
cisely the stress field implied in (20) and, at the same time, (ii) violates the alter-
native boundary condition (17). It follows that description of the implied matrix
bouncing effect should involve additional considerations that include some concept
of approximation. The example application discussed in the subsequent section clar-
ifies further this issue. This also elucidates the manner in which the intermediate
zone of hardening shown in Figure 1 is mathematically incorporated within either
the soft hair matrix (0 ≤ x1 ≤ `) or the hard hair shaft tissue (`≤ x1 ≤ L) shown in
Figure 2.

5 Application: Example of incompressible mass-growth of
straight hair

The simple mathematical choice

rg = g(1− x1/ ˆ̀)(t0/t), g << ρ0/t0, ` < ˆ̀< L (25)

of the mass-growth rate of the hair matrix is consistent with (16) as well as with the
observations that matrix growth is intense near, but declining away from the bulb of
the hair follicle specimen shown in Figure 2.

While the role of the constant g is evident in (25), the constant parameter ˆ̀ is
perceived as a characteristic longitudinal length that marks the end of the zone of
hair fibre hardening shown in Figure 1. Strict combination of (25c) with the nomen-
clature of Figure 2 may imply that the hardening zone is regarded as the initial part
of the hard hair tissue. However, by replacing ` with ˆ̀ everywhere in Figure 2, that
zone of hair hardening is seen to represent the ending part of the soft matrix tis-
sue. Either or both of ` and ˆ̀ are accordingly considered as length parameters that
need to be determined, while their precise physical significance within the follicle
is currently considered as an issue of secondary mathematical importance.

By inserting (25) into (9), one thus obtains

uk,k =
gt0
ρ0

(1− x1/ ˆ̀) ln(t/t0). (26)

This shows that, while the rate of mass-growth decreases with time, the volumetric
strain increases continually and, hence, enables the volume of soft tissue to increase
in time.
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5.1 The pre-critical stage of matrix mass-growth: t < tcr

Introduction of (25) into the Navier-type equations of motion (11) yields the partial
differential equations

µ̂Lu1,11 +µLu1.ββ =
λ̂gt0
ˆ̀ρ0

ln(t/t0), (27)

µLuα,11 +µT uα,ββ =−(α +µL −µT )u1,1α , (28)

which are to be solved for the three unknown displacement components u1 and uα

in an essentially consecutive manner. Here, use is made of the following effective
elastic moduli:

λ̂ = λ +α +µL = c12 + c66, (29)

µ̂L = α +β +3µL −2µT = c11 − c12 − c66. (30)

The simple form of the right hand side of (27) suggests that a solution of (27) that
satisfies (26) and the boundary conditions (17), (18) and (19) can be sought in the
form of displacement representations which are at most quadratic polynomials in the
spatial co-ordinate parameters. Those representations are inserted directly into (27),
(28), (17), (18), (19) and (26) and their coefficients, which are assumed functions of
time only, are determined uniquely by making equal to zero the resulting coefficients
of same mononyms of the spatial co-ordinate parameters. This process yields the
relatively simple solution

u1 =−gt0
ρ0

(1− `/ ˆ̀)(1− x1/`)x1 ln(t/t0), (31)

uα =−gt0
ρ0

(1− `/2 ˆ̀)(1− x1/`)xα ln(t/t0), (32)

and the additional relationship

ˆ̀

`
= 1+

λ̂

2µ̂L
= 1+

c12 + c66

2(c11 − c12 − c66
). (33)

It is thus seen that, apart from (17) and (18), the displacements satisfy automati-
cally the additional boundary conditions

u1

∣∣∣∣ x1=0
t<tcr

= uα

∣∣∣∣ x1=`
t<tcr

= 0. (34)

Moreover, (33) provides a connection between the pair of length parameters ` and
ˆ̀, and the set of elastic moduli associated with the soft tissue part of the hair.

By considering for simplicity that the initial thickness of the matrix part of the
hair specimen (Figure 2) is constant, (15) enters naturally into this application and
leads to
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h(x1, t) = h`+uα |xα=h` = h`

{
1− gt0

ρ0
(1− `/2 ˆ̀)(1− x1/`) ln(t/t0)

}
. (35)

This shows that the hair matrix exerts its active mass-growth role by pushing inwards
the lateral boundary of the matrix part of the specimen. That pushing inwards trend
is decreasing in the longitudinal direction, thus enabling the corner condition (19)
and, hence, (13) to be satisfied at all times.

When combined with the left hand side of the inequality (25c), (33) requires that

µ̂L > 0, (36)

or, equivalently, that
µT < (3µL +α +β )/2. (37)

By virtue of (6), (37) may then take the alternative form

c11 > c12 + c66, (38)

which is evidently expressed in terms of three rather than four elastic moduli. It is
also noted with interest that, in the particular case of material isotropy, (38) reduces
to the well-known Poissons ratio restriction v < 1

2 .
By virtue of (33), the displacement components (31) and, therefore, the corre-

sponding strain components may be expressed in terms of the pair of effective elas-
tic moduli defined in (29). However, it is more economical for the corresponding
stress field to be expressed in terms of the engineering stiffnesses (6), namely

σ11 =
gt0
ρ0

{
2[c11(1− `/ ˆ̀)+ c12(1− `/2 ˆ̀)]

x1

`
− c11(1− `/ ˆ̀)−2c12(1− `/2 ˆ̀)

}
ln(t/t0), (39)

σ22 = σ33 =
gt0
ρ0

{
[2c12(1− `/ ˆ̀)+(c22 + c23)(1− `/2 ˆ̀)]

x1

`
− c12(1− `/ ˆ̀)

− (c22 + c23)(1− `/2 ˆ̀)
}

ln(t/t0), (40)

σ1α =−gt0c66

ρ0`
(1− `/2 ˆ̀)xα ln(t/t0), σ23 = 0. (41)

Completeness of the model and uniqueness of the obtained linear elasticity solu-
tion require (i) from the soft tissue that lies beyond the bottom boundary of the hair
specimen (x1 ≤ 0) to support on that boundary (x1 = 0) the shear stresses (41), and
(ii) from the material that lies beyond the specimen lateral boundary (|xα | ≥ h`) to
support on that boundary (|xα |= h`) the normal stresses (40) and the shear stresses

σ1α |x2=±h` =∓gt0c66h`
ρ0`

(1− `/2 ˆ̀) ln(t/t0),σ23|x2=h` = 0. (42)
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It is also noted that, regardless of the value of `/ ˆ̀< 1,σ11 is negative and, there-
fore, compressive at the bottom end (x1 = 0) of the specimen. However, σ11 be-
comes positive near the transitional plane (x1 = `) where, with use (39), is seen to
reach the maximum tensile value

σ11|x1=` =
gt0
ρ0

{c11(1− `/ ˆ̀)− c12(1− `/2 ˆ̀)} ln(t/t0)> 0. (43)

This is, therefore, compressive within the hard tissue part of the transitional plane
and, because is increasing with time, is set to reach a value which, at some t = tcr >
t0, fulfils (21) and triggers hair elongation.

5.2 The critical stage: t = tcr

Combination of (21) and (43) yields

tcr = t0exp
{

ρ0σ cr
11

gt0[c11(1− `/ ˆ̀)− c12(1− `/2 ˆ̀)]

}
, (44)

which, if inserted into (31), yields the limits that the displacement components ap-
proach at tcr as follows:

lim
t→tcr

u1 =−
σ cr

11

c11(1− `/ ˆ̀)− c12(1− `/2 ˆ̀)
(1− `/ ˆ̀)(1− x1/`)x1,

lim
t→tcr

uα =−
σ cr

11

c11(1− `/ ˆ̀)− c12(1− `/2 ˆ̀)
(1− `/2 ˆ̀)(1− x1/`)xα . (45)

Corresponding strain and stress distributions that develop within the matrix at tcr

can then also be obtained in terms of σ cr
11.

However, the limiting displacements (45) are unstable and cannot be maintained.
The hair matrix will instead, bounce at tcr into the anticipated alternative equilibrium
state described by some different displacement field, û. The elastic energy that the
hair matrix releases at t = tcr through that bouncing effect is

Ucr = 4
∫ `

0

∫ h(x1)

0

∫ h(x1)

0
W |t=tcr dx3dx2dx1 = 4(σ cr

11)
2Ucr

(λ ,µL,µT ,α,β ,h`, `, ˆ̀),

(46)
where the value of the matrix part of the specimen thickness, h(x1), is evaluated at
t = tcr, while (5) is used for evaluation of W . It is noted that, because the critical
stresses are proportional to σ cr

11,U
cr is necessarily proportional to (σ cr

11)
2. Hence,

Ucr may be determined analytically or numerically, as soon as the values of its
arguments become available.
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5.3 Spring-back type elongation of the hair matrix

By receiving no resistance from the hard part of the hair tissue at t = tcr, the strained
and stressed grown matrix specimen acts as an independent elastic rod of length
` that bounces instantly into an alternative, unstrained and unstressed equilibrium
state, where its radius returns back to its initial value, h`, and its length increases
due to the resulting additional displacement field, û.

In a corresponding static equilibrium situation, an initially unstressed and un-
strained elastic, circular cylindrical rod having the same geometrical and material
properties with those of the unstrained matrix part of the specimen may undergo an
analogous displacement “jump” if (i) its x1 = 0 end is restrained against translation;
(ii) its x1 = ` end is subjected to a uniform compressive stress,−σ cr

11 , that enables its
stored energy to match the Ucr-level implied in (46); and (iii) is allowed to bounce
back to its initial unstressed and unstrained state through instantaneous removal of
the externally applied compression.

The inverse, linear elasticity problem that needs then to be solved is that of uni-
axial compression of a transversely isotropic circular cylindrical rod having (i) axial
length 2`, (ii) radius and material properties identical to those of the matrix part of
the specimen, and (iii) both ends, x1 = ±`, subjected to a uniform compression,
−σ cr

11. Due to evident symmetries, the middle cross-section of that rod, placed at
x1 = 0, will undergo no axial displacement. The loading conditions applied on a
half of that rod, 0 ≤ x1 ≤ ` say, are perceived as mechanically equivalent to those
applied at t = tcr on the grown part of the matrix specimen. The attained displace-
ment distribution is accordingly considered as approximating -û very closely.

It may readily be verified that the alternative displacement field sought is

−ûi ∼=−ui|t=tcr = (−σ
cr
11)αixi, (47)

where the appearing constant coefficients are as follows:

α1 =
c22 + c23

c11(c22 + c23)−2c2
12

=
(λ +µT )

(λ +2α +β +4µL −2µT )(λ +µT )− (λ +α)2 ,

(48)

α2 = α3 =− λ +α

(λ +2α +β +4µL −2µT )(λ +µT )− (λ +α)2 . (49)

By producing a constant strain field, (47) returns

σ11 =−σ
cr
11, (50)

as the only non-zero stress component acting throughout the compressed trans-
versely anisotropic circular cylindrical rod. Hence, it satisfies exactly all associated
boundary conditions and the equilibrium equations (4).

The strain energy associated with (47), namely
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Ucr =
π`h2

`(c22 + c23)

c11(c22 + c23)−2c2
12
(σ cr

11)
2 =

π`h2
`(λ +µT )(σ

cr
11)

2

(λ +2α +β +4µL −2µT )(λ +µT )− (λ +α)2 ,

(51)
is required to balance its counterpart implied in (46), thus leading to

Ucr
(λ ,µL,µT ,α,β ,h`, `, ˆ̀) =

π`h2
`(λ +µT )

4(λ +2α +β +4µL −2µT )(λ +µT )− (λ +α)2 .

(52)
This equation and (33) form then a set of two simultaneous algebraic equations for
the two geometric parameters ` and ˆ̀, which can thus be determined in terms of the
elastic moduli of the transversely isotopic hair matrix and the thickness, h`, of the
hair shaft.

Alternatively, if the geometric parameters `, ˆ̀ and h` are practically measurable,
then only three of the five independent elastic moduli of the transversely isotropic
matrix material need to be determined experimentally. The remaining two unknown
elastic moduli are determined by solving simultaneously the algebraic equations
(33) and (52). The spring-back displacement field, û, is then estimated by insert-
ing into (48) the obtained values of the elastic moduli and is, thus, seen indirectly
dependent on `, ˆ̀ and h`.

When the internal energy (46) is released at t = tcr, the opposite of the displace-
ment field (47) brings the hair matrix into the aforementioned unstressed and un-
strained state. Combination of (47) and (22) yields thus the hair elongation formula
sought as follows:

L̂ = L+2α1σ
cr
11`, (53)

where α1 is given according to (48). The outlined hair elongation process is then set
to be repeated, after t0 and L are replaced by tcr and L̂, respectively.

6 Conclusions

A most interesting result stemming from the analytical solution detailed in the pre-
ceding section is that the longitudinal dimension of both the matrix part of the hair
follicle and the hardening zone of hair-fibre depicted in Figure 1 depend on the ma-
terial properties of the soft tissue of the hair follicle. What is, of course, still unclear
is whether that hardening zone of hair-fibre should be considered as the ending part
of the hair matrix or the initial part of the mature hair shaft. This, however, is an is-
sue that has to be resolved experimentally rather than mathematically. The outlined
mathematical solution predicts that indeed such a hardening zone of hair-fibre does
exist between the matrix proliferating part and the mature shaft part of a hair.

This conclusion is perceived as clear evidence of the fact that the present model
enables interpretation of the hair elongation mechanism in a mathematically reliable
and physically sound manner. Still though, more advanced features of the hair folli-
cle can be considered and implemented into the model. These include, for instance,
the layered structure of the hair follicle and/or its bent form shown in Figure 1, a
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more precise consideration of mass-growth rates, and the variable material proper-
ties that may prevail within the hardening hair-fibre zone, particularly in view of the
clear distinction made in [2] between the activity of the germinative epithelial cells
of the follicle bulb and the complex action of proteins that becomes associated with
keratin intermediate filaments during keratinisation.

Several of these advanced modelling features may be considered by increasing
the number of rods that form the structural assembly depicted in Figure 2, while
others may require from the model to consider conditions of slight or moderate
compressibility of matrix mass-growth (see also [5]). These, as well as additional
potential refinements of the present model are possible, and may be handled mathe-
matically in a similar manner at the expense of analytical convenience.
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Fig. 1 Detailed schematic representation of the hair follicle outlining various features and the
regions where main events of cell proliferation and keratinisation take place (reproduced from
page 81 of [2] by the author’s, Professor George Ernest Rogers, permission).
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Fig. 2 Geometrical representation of a straight hair specimen in the form of two consecutive cir-
cular cylinders. The shaded (bottom) and unshaded (top) parts represent soft (germinal) and hard
(keratinous) tissue material respectively.


