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Abstract—A wave finite element (WFE) and finite element
(FE) based computational method is presented by which the
dispersion properties as well as the wave interaction coefficients
for one-dimensional structural system can be predicted. The
structural system is discretized as a system comprising a number
of waveguides connected by a coupling joint. Uniform nodes
are ensured at the interfaces of the coupling element with
each waveguide. Then, equilibrium and continuity conditions are
enforced at the interfaces. Wave propagation properties of each
waveguide are calculated using the WFE method and the coupling
element is modelled using the FE method. The scattering of waves
through the coupling element, on which damage is modelled, is
determined by coupling the FE and WFE models. Furthermore,
the central aim is to evaluate the effect of pressurization on the
wave dispersion and scattering characteristics of the prestressed
structural system compared to that which is not prestressed.
Numerical case studies are exhibited for two waveguides coupled
through a coupling joint.
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cients.

I. INTRODUCTION

Composite structures are increasingly used in modern

aerospace and automobile industries due to their well-known

benefits. However, they exhibit a wide range of structural

failure modes for which the structures has to be frequently and

thoroughly inspected in order to ensure continuous structural

integrity. Aeronautical industry lost approximately 27% of an

average modern aircraft’s lifecycle cost [1] on inspection and

repair.

Implementing a suitable modelling technique is as important

as selecting an appropriate NDE method for SHM. The Finite

Element (FE) method [2] is one of the most common ones

employed to analyse the dynamic behaviour of structures.

The Wave Finite Element (WFE) method was introduced in

[3] to facilitate the post-processing of the eigenvalue problem

solutions. The method has been successfully implemented in

1-D [3], [4] and 2-D [5], [6] wave propagation analyses.

The method has recently found applications in predicting the

vibroacoustic and dynamic performance of composite panels

and shells [7], [5], [8], [9] , with pressurized shells [10],

[11], cylindrical pipes [12] and complex periodic structures

[13], [14], [15] being investigated. The variability of acoustic

transmission through layered structures [16], [17], as well

as wave steering effects in anisotropic composites [18] have

been modelled through the same methodology. The same FE

based approach was employed to compute the reflection and

transmission coefficients of waves impinging on linear joints

in [4], point and finite joints [19] as well as curved [20] and

stiffened [21] panels .

In this work, the effect of structural prestressing on wave

propagation properties and wave interaction characteristics of

composite structure is presented. Wave propagation properties

of the prestressed structure is computed through one dimen-

sional WFE approach. The structure can be of arbitrary com-

plexity, layering and material characteristics as FE modelling

is employed. The structure is discretised as system of two

or more waveguides connected together by a joint (otherwise

known as the coupling element). The WFE calculated wave

propagation properties within the structural waveguides is

coupled to the FE modelling of the coupling element. Both

the non prestressed and prestressed scenarios are considered.

The paper is organised as follows: Section II presents the

formulation of the WFE method for predicting the wave

propagation properties. Section III presents wave interaction

with structural damage and the computation of the interac-

tion characteristics. Section IV presents example case studies

along with the numerical results. Finally, conclusions on the

presented work are presented in Section V.

II. WAVE PROPAGATION IN A PRESTRESSED STRUCTURE

BY THE WFE METHOD

A. Prestressing

Internal pressurisation of the structure is considered. The

stress stiffening effect as a result of the pressurisation is

accounted for by augmenting a prestress stiffness matrix, Kp,

to the conventional stiffness matrix, K0, of the system. Kp is

dependent on the geometry, displacement field and the state of

stress of the structural element [22]. For a 3-D element, which

is considered in this work, the pre-stress stiffness matrix is

given as [23]

Kp =

∫∫∫

S⊤

g SmSg dxdy dz (1)

where Sg is the shape function derivative matrix, Sm is the

Cauchy stress tensor and [•]
⊤

is a transpose. Hence, the total

stiffness matrix of the prestressed system is given as

K = K0 +Kp (2)

B. Wave propagation in arbitrary layered structure by a WFE

method

Elastic wave propagation along the x direction of an arbiy-

trary layered structural waveguide (Fig. 1) is considered. The
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Fig. 1. WFE modelled waveguide with the left and right side nodes qL, qR

bullet marked. The range of interior nodes qI also illustrated

problem is solved using the WFE method (coupling FE to the

periodic structure theory) as in [3].

The frequency dependent DSM can be partitioned with

regards to the left L, right R and internal I DoFs of the

periodic segment as
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(3)

with q and f the displacement and forcing vectors respectively.

Eq. (3) is condensed using a Guyan-type condensation tech-

nique. Assuming no external forces are applied to the segment,

then the displacement continuity and equilibrium of forces

equations at the interface of two consecutive periodic segments

are given as

qs
R = qs+1

L fsR = −fs+1
L (4)

The transfer matrix, T, which relates the displacement

and force vectors of the left and right sides of the periodic

segments is obtained as

{

qs+1
L

fs+1
L

}

= T

{

qs
L

fsL

}

(5)

where the expression of the symplectic transfer matrix is

defined as

T =

[

D11 D12

D21 D22

]

(6)

where

D11 = −(DLR −DLID
−1
II DIR)−1(DLL −DLID

−1
II DIL)

D12 = (DLR −DLID
−1
II DIR)−1

D21 = (−DRL +DRID
−1
II DIL) + (DRR +DRID

−1
II DIR)

(DLR −DLID
−1
II DIR)−1(DLL −DLID

−1
II DIL)

D22 = −(DRR +DRID
−1
II DIR)(DLR −DLID

−1
II DIR)−1

(7)

WFE model

FE model

Fig. 2. Periodic structure comprising of two waveguides and a coupling
element

Constant of propagation, λ = e−ikLx , of the waves relates

the left and right hands nodal values to each other as

qs
R = λqs

L fsR = −λfsL (8)

then the eigenproblem relation for the periodic segment can

be expressed as

λ
{

q⊤

L f⊤L
}⊤

= T
{

q⊤

L f⊤L
}⊤

(9)

whose eigenvalues λω and eigenvectors φω = λ

{

φq

φf

}

ω
solution sets provide a comprehensive description of the

propagation constants and the wave mode shapes for each of

the elastic waves propagating in the structural waveguide at a

specified angular frequency.

III. WAVE INTERACTION WITH STRUCTURAL DAMAGE

The wave interaction coefficients of coupling joint in the

prestressed waveguide structure is modelled using a hybrid

WFE/FE approach. A number of waveguides (for instance two

as in Fig. (2) are connected through a coupling joint. The

coupling joint is fully FE described and can contain damage,

geometry or material inconsistencies etc.

Once the propagation constants of each prestressed waveg-

uide have been sought as presented in Section II, each

wavemode w with w ∈ [1 · · · W ] for waveguide n with

n ∈ [1 · · · N ] in the system can be grouped as

Φ+
n,q = [φ+

q,1 · · · φ+
q,W ] Φ+

n,f = [φ+
f,1 · · · φ+

f,W ]

Φ−
n,q = [φ−

q,1 · · · φ−

q,W ] Φ−

n,f = [φ−

f,1 · · · φ−

f,W ]
(10)

The wavemodes of the entire system can be computed at

each specified angular frequency and be grouped as

Φ+
q =









Φ+
1,q 0 · · · 0

0 Φ+
2,q · · · 0

· · · · · · · · · · · ·
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(11)



with similar expressions for Φ+
f , Φ−

q and Φ−

f . The rotation

matrix Rn transforms the DoFs of each waveguide from the

local to the global coordinates of the system as

Φg,+
q = RΦ+

q (12)

with similar expressions for Φ
g,+
f , Φg,−

q and Φ
g,−
f . g denotes

the global coordinates index and R represents the rotation

matrices of the system’s waveguides, grouped in a block

diagonal matrix.

Waves of amplitudes an+ are impinging on the coupling

element from the nth waveguide. These give rise to reflected

waves of amplitudes an− with an− = cn,nan+ in the n

waveguide and transmitted waves of amplitudes ak− with

ak− = ck,nan+ in the kth waveguide, and vice versa. Hence,

the incident waves amplitudes can be related to the amplitudes

of the scattered waves (reflection and transmission) as

a− = Sa+ (13)

with a+[WN×1] the vector containing the amplitudes of the

incident waves (on the coupling joint) and a−[WN×1] the vec-

tor containing the amplitudes of the reflected and transmitted

waves.

The frequency dependent DSM of the FE modelled coupling

joint can be partitioned with regards to the interface i and

non-interfaces n nodes of the coupling joint with the system’s

waveguides as

[

Dii Din

Dni Dnn

]{

qJ
i

qJ
n

}

=

{

fJi
0

}

(14)

where J is the coupling joint index. using a Guyan-type

condensation for the non-interface DoF, the problem can be

expressed as

DJq
J
i = fJi (15)

with

DJ = Dii −DinD
−1
nnDni (16)

A transformation can be defined for the motion in the

waveguides between the physical domain, where the motion

is described in terms of q(t) and f(t) and the wave domain,

where the motion is described in terms of waves of amplitudes

a+ and a− travelling in the positive and negative directions

respectively as

q(t) = Φ+
q a+ +Φ−

q a−

f(t) = Φ+
f a+ +Φ−

f a−
(17)

Expressing the continuity and equilibrium equations of

the coupling joint in the wave domain, then the scattering

coefficients matrix of the joint can be expressed as

S = −[Φg,−
f −DJΦ

g,−
q ]−1[Φg,+

f −DJΦ
g,+
q ] (18)

TABLE I
MECHANICAL PROPERTIES OF MODELS MATERIALS

Material I Material II Material III Material IV

E = 68 GPa E = 54 GPa E = 70 GPa E = 210 GPa

ρ = 2700 kg/m3 ρ = 3500 kg/m3 ρ = 50 kg/m3 ρ = 7500 kg/m3

ν = 0.334 ν = 0.3 ν = 0.3 ν = 0.34
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Fig. 3. Two bars coupled through a finite joint
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Fig. 4. Dispersion curves for the bar: analytical(-), WFE(- -)

IV. NUMERICAL CASE STUDIES

Three numerical case studies are presented. The first, two

collinear bars connected through another bar of a different

material characteristics. An analytical solutions exists for the

dispersion relation and wave scattering coefficients of the

problem. The second and third case studies are monolithic

and sandwiched laminates respectively. The laminates are

considered under non-pressurised and pressurised scenarios.

The mechanical properties of the materials used in the models

are given in Table I.

A. Two Collinear bars coupled through a finite bar

Two similar and collinear long bars undergoing longitudinal

vibration is considered. A finite beam of a different material

properties is sandwiched between them as shown in Fig. (3).

Cross-sectional areas A1 = A2 = AJ = 0.003m2, lengths

L1 = L2 = 0.2m and L = 0.003m. Material I (Table I) is

used for both bars and Material IV for the coupling joint.

The results of the analytically [24] and numerically obtained

wave dispersion relation and interaction coefficients are pre-

sented in Figs. (4) and (5). Excellent agreement is observed

for the dispersion relation and reflection coefficient curves.

Correlation of the transmission coefficient results is good but

with little deviation especially at higher frequencies, which is

as a result of the FE discretisation errors.
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Fig. 5. Wave interaction coefficients for a finite joint connecting two bars: analytical(-), WFE-FE(- -)

B. Prestressed monolithic laminate

Two collinear monolithic laminates connected by a coupling

joint (another monolithic laminate) of the same cross-section

(0.01m × 0.005m) as the two laminates is considered. The

laminates are modelled using Material I (Table I). An illustra-

tion of the WFE model of each waveguide and the FE model

of the coupling joint is presented in Fig. (2). The length of

the coupling joint is 0.004m while that of each waveguide is

arbitrary, as only one periodic segment is needed for the WFE

model. Each laminate in the system is prestressed with internal

pressurisation of upto 1 GPa. Surface breaking crack of depth

20% of the total depth of the coupling joint. The damage is

located at the mid length of the coupling joint.

The dispersion relation at 100 MPa pressurisation is quite

close to that of the non-pressurised system, unlike the high

pressurised system whose dispersion relation is comparatively

different. This indicates that the applied pressurisation can

only have significant effect on the waves dispersion properties

if its magnitude is in the range of the stiffness property of the

structure.

The waves reflection coefficients of each of the propagating

waves are presented Fig. (7). The results are compared for the

non-pressurised and pressurised systems in each case. Gen-

erally, notable differences are observed in the wave reflection

characteristics of the pressurised systems compared to the non-

pressurised systems especially in the torsional wave results.

Consequently, the magnitude of wave interaction coefficients

in the pressurised system can be used to detect micro defects

which may not be easily detected without the presence of

pressurisation.

C. Prestressed composite laminate

Two collinear composite laminates connected by a coupling

joint (another composite laminate) of the same cross-section is

considered. Each periodic segment of the asymmetric compos-

ite laminate consists of a core (honeycomb foam) sandwiched

between two carbon epoxy facesheet layers. The core is

modelled using Material III (Table I) while the facesheet is

modelled using Material II. The length of the coupling joint

is 0.004m. The upper facesheet, lower facesheet and the core

of the periodic segment are 0.002m, 0.001m and 0.01m deep

respectively. 0.002m depth surface breaking crack is modelled

on the coupling joint. The damage is located at the mid length

of the joint.

The dispersion curves, of each propagating wave, for the

non-pressurised and pressurised composite laminates are pre-

sented in Fig. 8. Except for the longitudinal wave with quite

little difference, the wavenumber of the propagating waves

in the pressurised system is significantly different compared

to that of the non-pressurised system, especially within the

frequency range of [0.2 kHz, 20 kHz].

Fig. (9) presents the results, of the reflection coefficient

magnitude of each propagating waves. Comparing the results

of the non-pressurised system with that of the pressurised

system, the reflection coefficient magnitude of the y-axis

bending and the torsional waves is significantly different

especially within frequency [0.2 kHz, 20 kHz]. The torsional

wave shows highest level of difference, in the reflection

coefficient magnitude, due to the pressurisation. The difference

in the wave interaction coefficient magnitude of the pressurised

composite laminate and the non-pressurised one can be said

to be as a result of an increase in the strain energy of the

honeycomb core due to the internal pressurisation.

V. CONCLUDING REMARKS

The effect of prestressing on the wave propagation proper-

ties and the wave interaction coefficients of laminated struc-

tural systems is evaluated in this work. A comprehensive FE

based computational scheme is presented for quantifying wave

interaction effects with damage within structures of arbitrary

layering and geometric complexities. The structural system is

modelled by hybrid coupling of the WFE modelling of two

waveguides, and a FE model of a coupling element, through

which waves propagate from one waveguide to the other. The

presented methodology is evaluated by comparing its results

with the theoretically obtained results for the case of two bars

connected by a finite coupling joint.

The principal outcome of the work includes an intense wave

amplitude dependence was observed for the wave interaction
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Fig. 6. Dispersion curves for the non-pressurised (-), 100 MPa (- -) and 1 GPa (-◦) pressurised monolithic laminate

Frequency [kHz]

0 20 40 60 80 100 120

M
ag

n
it

u
d
e

0

0.02

0.04

0.06

0.08

0.1

0.12

(a) bending wave about y-axis

Frequency [kHz]

0 20 40 60 80 100 120

M
ag

n
it

u
d
e

0

0.005

0.01

0.015

0.02

(b) bending wave about z-axis

Frequency [kHz]

0 20 40 60 80 100 120

M
ag

n
it

u
d
e

0

0.02

0.04

0.06

0.08

(c) torsional wave

Frequency [kHz]

0 20 40 60 80 100 120

M
ag

n
it

u
d
e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(d) longitudinal wave

Fig. 7. Wave reflection coefficient magnitude for the 20% depth cracked coupling joint: non-pressurised (-), pressurised (- -) monolithic laminates
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Fig. 8. Dispersion curves for the non-pressurised (-) and 1 GPa pressurised (- -) composite laminates
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Fig. 9. Wave reflection coefficient magnitude for the 0.002m depth cracked coupling joint: non-pressurised (-) and pressurised (- -) composite laminates



coefficients. Significant differences are observed, for the waves

dispersion relation and wave interaction results, between the

pressurised and non-pressurised structural systems. This is

observed to be more notable if the applied pressurisation is

high enough mainly in the range of the structure’s stiffness

magnitude.
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