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Abstract

In this paper we consider estimating the innovation variance function when the conditional

mean model is characterized by a structural break autoregressive model, which exhibits

multiple unit root, explosive and stationary collapse segments, allowing for behaviour of-

ten seen in financial data where bubble and crash episodes are present. Estimating the

variance function normally proceeds in two steps: estimating the conditional mean model,

then using the residuals to estimate the variance function. In this paper, a nonparametric

approach is proposed to estimate the complicated parametric conditional mean model in

the first step. The approach turns out to provide a convenient solution to the problem and

achieve robustness to any structural break features in the conditional mean model without

the need of estimating them parametrically. In the second step, kernel-smoothed squares of

the truncated first step residuals are shown to consistently estimate the variance function.

In Monte Carlo simulations, we show that our proposed method performs very well in the

presence of explosive and stationary collapse segments compared to the popular rolling stan-

dard deviation estimator that is commonly used in economics and finance. As an empirical

illustration of our new approach, we apply the volatility estimator to recent Bitcoin data.
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ments; nonparametric variance function estimation; truncation.
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1 Introduction

In this paper, we consider estimating the variance function of the error in a Structural Break

Autoregressive (SBAR) model, which allows for changes between unit root, explosive and sta-

tionary collapse behaviour in a time series. Recent progress in the literature on bubble testing

(e.g. Phillips et al. (2011, 2015), among others) has provided convincing evidence for the ex-

istence of such behaviour in economic data during periods of economic exuberance and crises.

The model we consider is of the following form:

yt =

J∑
j=1

{1 +ρ∗j1I([τ∗j1T ] < t 6 [τ∗j2T ]) +ρ∗j2I([τ∗j2T ] < t 6 [τ∗j3T ])}yt−1 +ut, t = 2, . . . , T (1)

where ut = σtεt with εt a white noise error term with zero mean and unit variance, and we

assume y1 = Op(1). Here, I(.) denotes the indicator function and [.] denotes the integer part.

Our focus is then on the estimation of σ2t , which represents the variance of the SBAR error

ut at time t. The model in (1) has J episodes and we assume 0 < τ∗11 < τ∗12 < τ∗13 < τ∗21 <

... < τ∗J3 < 1. Within each episode j, yt starts as a unit root process (a standard model for

financial asset prices), but is subject to an explosive segment with parameter φj1 := 1 + ρ∗j1

(with ρ∗j1 > 0) that begins after time [τ∗j1T ] and terminates at time [τ∗j2T ], with a stationary

collapse segment with parameter φj2 := 1 + ρ∗j2 (with ρ∗j2 < 0) running through to time [τ∗j3T ].

After time [τ∗j3T ], the process returns to a unit root. The model also admits the possibility

of no stationary collapse upon termination of an explosive segment, with the process returning

directly to unit root behaviour if ρ∗j2 = 0. The number of episodes J , the locations of the break

points τ∗11, τ
∗
12, τ

∗
13, τ

∗
21, ..., τ∗J3, and the associated AR offset parameters ρ∗11, ρ

∗
12, ρ

∗
21, ρ

∗
22, ...,

ρ∗J1, ρ
∗
J2, are all assumed unknown. When J = 1, the model is an extension of Phillips et al.

(2011)’s instant crash, one episode bubble model to allow for a stationary crash segment; when

J > 1, the model is an extension of Phillips et al. (2015)’s multiple episodes bubble model with

instant crash to allow for stationary crash segments.

Estimation of the error variance function σ2t relies on obtaining suitable prior estimates

of the ut. In each episode, the AR coefficients take a piecewise constant structure in each

segment, with the majority of segments being nonstationary, either containing a unit root or

being explosive. One approach would be to consider extending existing parametric estimation

methods for the SBAR model along the lines of, inter alia, Davis et al. (2006), Chan et al.

(2014), Bai and Perron (1998), Qu and Perron (2007) and Bai and Perron (2003). However,

all these methods assume stationarity within each segment, and would need generalising to the
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nonstationary context involved in model (1). Moreover, such parametric approaches would also

necessarily involve complicated steps of model selection (using information criteria or sequential

testing) to determine the number of breaks and a follow-up estimation procedure for the timing

of the breaks. When the number of episodes J is large and unknown, developing such a proce-

dure suited for variance estimation in our SBAR model, being characterised by nonstationary

segments, is far from straightforward.

In this paper we instead pursue a nonparametric approach to estimation of the SBAR

model, in order to obtain residuals which can then be used to estimate the variance function.

Our approach does not require estimation of either the number of breaks in the SBAR structure,

or their timing, thus offering great flexibility in dealing with the conditional mean model. To be

specific, we propose use of a local least squares [LLS] estimator to estimate the AR coefficients

of the SBAR model, which we then use to obtain residuals. The resulting residuals, when

truncated and squared, are then used to obtain a consistent estimator of the variance function.

The intuition underpinning our proposed method is as follows. At any given point in time,

the LLS estimator only uses data local to that point; consequently, within the interior of a

given segment with a constant AR coefficient, a consistent estimate for the corresponding AR

coefficient (and thus the associated residuals) can be obtained. However, the problem with

LLS estimation is that it will not be consistent around the time of the structural breaks, due

to the fact that at some points the LLS estimator will necessarily use data from two different

AR regimes. Consequently, some LLS residuals can be very large in (absolute) magnitude, and

can render the subsequent variance estimation problematic. We therefore propose a truncation

mechanism to mitigate against the problematic effects of such large residuals, and use the

truncated residuals to estimate the variance function using kernel smoothing techniques. Under

suitable conditions on the truncation parameter and the bandwidths, we are able to show both

pointwise and uniform consistency of the variance function estimator.

While the bubble model we consider in (1) contains a natural ordering of regimes from unit

root to explosive to stationary to unit root, the methodology and theoretical analysis of the

paper actually applies automatically to models where the ordering of different autoregressive

episodes is arbitrary; for example, it is not necessary for our consistency results for there to be a

unit root regime prior to the first explosive regime. Our analysis also applies to the case where

multiple stationary (or explosive) segments with different AR parameters occur in sequence.

This potentially opens the way for applications of our new methodology in fields other than the

present context of bubble modelling.

Nonparametric variance function estimation in structural break models has important ap-

2



plications in a number of theoretical and methodological situations. These include, for exam-

ple, constructing tests for bubbles as considered in Kurozumi et al. (2020), and developing

heteroskedasticity-robust real-time monitoring procedures for bubbles, as considered in Astill

et al. (2020). The classical rolling standard deviation estimator used widely in macroeconomics

and finance, e.g. Officer (1973), Bittlingmayer (1998), Blanchard and Simon (2001) and Mum-

taz and Theodoridis (2017), is essentially the square root of a nonparametric variance function

estimator which does not account for structural breaks in the conditional mean model. Our

Monte Carlo simulation analysis shows that, when explosive and stationary collapse segments

exist in the data, it can provide a very imprecise estimate of the true volatility, while the method

we propose affords a convenient and superior method in such situations, with robustness to the

structural breaks in the AR coefficients.

Nonparametric volatility measures have been widely studied in the statistics and econo-

metrics literature. This includes Hall and Carroll (1989), Fan and Yao (1998) and Kristensen

(2012), among others, in a regression model context, and Xu and Phillips (2008), Beare (2018)

and Boswijk and Zu (2017) in autoregressive models. However, to the best of our knowledge, no

extant papers considering variance estimation allow for structural breaks in the AR coefficients

of the conditional mean AR model.

The structure of the paper is as follows. Section 2 presents assumptions for the model,

motivates and defines the new estimator of the variance function and shows its pointwise and

uniform consistency. Section 3 discusses how our approach can be extended to a model with a

more general SBAR(k) structure. In section 4, we study the finite sample performance of the

proposed new estimator and compare it with that of a non-truncated alternative version and

the commonly used simple rolling standard deviation estimator, using Monte Carlo simulation.

Section 5 presents an empirical illustration of our volatility estimation method using Bitcoin

price data, while section 6 concludes. Proofs of the main results of the paper can be found in the

Appendix, with proofs of the technical lemmas contained in the online Supplementary Appendix.

In the remainder of the paper, we adopt the following notation:
d→ denotes convergence in

distribution,⇒ weak convergence to a stochastic process. For two sequences aT and bT , aT ∨bT

means taking the sequence with higher order.

2 Model assumptions and volatility estimator

We make the following assumptions regarding the innovation εt in model (1):

A1 E(εt|Ft−1) = 0, E(ε2t |Ft−1) = 1 with Ft the natural filtration generated by {εt}t≥1,
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suptE(|εt|p |Ft−1) <∞ almost surely for some p > 6.

Assumption A1 requires that {εt} is a conditionally homoskedastic martingale difference

sequence with absolute moments existing up to order 6. The moment condition is justifiable in

view of the recent empirical evidence in Francq and Zakoian (2020, 2021), who propose new tests

for the existence of moments of financial returns and find the existence of the sixth moment in

financial returns. Denoting σt = σ(t/T ), then σ(t/T ) represents both the conditional and the

unconditional standard deviation of the SBAR error σtεt in (1) given information up to time t−1.

The considered model therefore permits time-variation in both conditional and unconditional

variances. Although the conditional homoskedasticity assumption for the sequence {εt} rules

out GARCH effects in the standardised error, our estimator for the σ(.) function will be able to

absorb such effects (to a certain degree) in data. In some practical situations, it is certainly useful

to consider an extension to allow for GARCH effects, i.e. E(ε2t |Ft−1) = ω2
t (with identification

assumption E(ω2
t ) = 1). In view of the Cavaliere et al. (2022) recent work on heteroskedastic

fractional time series models, such an extension is possible using the relevant cumulant type

assumptions for the dependence structure in {εt} and the proof strategy therein, although we

leave consideration of such an extension for future work.

As a convention, we refer to σ(τ) as the volatility function and σ2(τ) as the variance function.

We also refer to the domain of the σ(.) function [0, 1] as a normalised time scale, while t =

1, 2, . . . , T is the observational time scale. We assume the following regarding σ(τ):

A2 σ(τ) is a non-stochastic strictly positive, Lipschitz continuous function satisfying ∞ >

σU > σ(τ) > σL > 0 for any τ ∈ [0, 1].

If the error sequence {ut} was observable, the variance function σ2(.) could be estimated by

a kernel smoothing estimator of the form

σ̂2(τ) =

T∑
i=1

wτ ,iu
2
i (2)

where wτ ,i = Kh(i/T − τ)/
∑T

i=1Kh(i/T − τ), Kh(s) = K(s/h)/h with K(.) a kernel func-

tion and h some bandwidth parameter. In practice, of course, {ut} is not observable and the

nonparametric variance estimator is typically constructed by replacing the ui in (2) with cor-

responding estimates ûi. If the dimension of the parameter space is low, it may be plausible

to develop a parametric approach to estimating the conditional mean model. However, given

the large number of unknown parameters in our mean model (1), particularly given that J is
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unknown and can be large, such an approach is unappealing. Instead we propose a nonpara-

metric LLS approach that will provide a simple and robust way of estimating the SBAR model,

despite the mean model being parametric in nature. To be specific, letting ρt generically denote

the AR offset parameter of the process at time t, we define a kernel-type LLS estimator for ρt

as

ρ̂t = arg min
ρ

T∑
i=1

Gh1((i− t)/T )(∆yi − ρyi−1)2 (3)

where Gh1(s) = G(s/h1)/h1, G(.) is a kernel function and h1 is the bandwidth parameter.

Solving analytically, we obtain for t = 1, . . . , T ,

ρ̂t =

(
T∑
i=1

Gh1((i− t)/T )y2i−1

)−1( T∑
i=1

Gh1((i− t)/T )yi−1∆yi

)
. (4)

Given ρ̂t, we define the LLS AR residuals as ût = ∆yt − ρ̂tyt−1. Substituting in the definition

that ∆yt = ρtyt−1 + ut, we have

ût − ut = −(ρ̂t − ρt)yt−1.

This implies that the magnitude of the error arising from using ût instead of ut depends on

both the error of the LLS estimator ρ̂t − ρt and the magnitude of the yt process at time t− 1.

LLS estimation is normally used to estimate time-varying parameters that evolve smoothly,

whereas here we use it to estimate piecewise constant parameters, where the process can be

allowed to have nonstationary and explosive segments. In our context, using the LLS estimator

has the advantage of rendering model identification and break point estimation unnecessary, but

a problem remains in that it may not be efficacious in time periods around the break points.

Intuitively, the LLS estimator should be consistent in the interior of a given segment, where

the AR coefficient is constant. However, in the neighbourhoods on both sides of the regime

change points (both of size h1), consistency may not hold. In such cases, given that ût − ut =

−(ρ̂t − ρt)yt−1, this discrepancy could be very large (in absolute value) when the level of yt−1

is very high. If such ûi were used in place of ui in (2), a non-negligible error in this second step

variance estimator may result.1

To deal with this issue, we propose using truncation-based residuals ûtI(|ût| < ψT ) in place of

ui in (2), where ψT is a truncation parameter which slowly diverges to infinity. The idea is that,

in the interior of a given segment, since ρ̂t is consistent, ûi = ui−(ρ̂i−ρi)yi−1 will differ from ui by

1In fact, it is clear from the later theoretical analysis of Theorems 1 and 2 that, under the conditions stated
for these theorems, a variance estimator simply using the residuals ûi will be diverging and inconsisent.
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only an op(1) term, hence ûi will be Op(1), and the truncation will not be operative as ψT →∞.

On the other hand, in the neighbourhoods of the break points, truncating |ûi| residuals that

are larger than ψT to 0 will ensure that the truncated residuals have a magnitude controlled by

ψT . Because inconsistent estimation of ρ̂t can only occur for shrinking neighbourhoods of size

h1, careful selection of the order of the truncation parameter ψT and the kernel bandwidths

ensures that consistency of the variance estimator can be established.

Our variance function estimator takes the following form, for 0 ≤ τ ≤ 1:

σ̂2(τ) =

T∑
i=1

wτ ,iû
2
i I(|ûi| < ψT ) (5)

where wτ ,i = Kh2(i/T − τ)/
∑T

i=1Kh2(i/T − τ), Kh2(s) = K(s/h2)/h2, and K(.) is a kernel

function and h2 the associated bandwidth parameter. In this definition of the estimator, the

squared residuals at the truncated points are replaced by zeros. As pointed out by a referee, this

may induce a finite sample downward bias in the estimated variance. Alternatively, these trun-

cated “observations” can be treated as missing data, without altering the asymptotic properties

of the variance estimator. The appropriate modification would then be to define the weight as

wτ ,i =
Kh2(i/T − τ)∑T

i=1Kh2(i/T − τ)I(|ûi| < ψT )
. (6)

We found the finite sample performance of the estimator in (6) to be markedly superior. There-

fore, in our Monte Carlo simulations and empirical analysis, the weight definition in (6) is used

throughout.

Next we study the asymptotic properties of the truncation-based kernel smoothing estimator

for the variance function. We make the following additional assumptions:

B1 G(.) is strictly positive on [−1, 1], and 0 <
∫ 1
−1G(u)du = γ <∞.

B2 h1 → 0 as T →∞ with

log(T )

T
1− 4

p−1h
1− 2

p−1

1

→ 0 (7)

with p > 6 as specified in Assumption A1.

C1 K(.) is a bounded non-negative function defined on the real line, Lipschitz continuous, and

satisfies
∫∞
−∞K(u)du = 1 and

∫∞
−∞ |K(u)u|du <∞.

C2 As T →∞, ψT →∞.

C3 As T →∞, h2 → 0. Defining a = h1/h2, a satisfies aψ4
T → 0.
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The following theorem details the large sample properties of the volatility function estimator

σ̂2(τ):

Theorem 1. Under conditions A1-A2, B1-B2, C1-C3, then for all τ ∈ [0, 1],

σ̂2(τ)− σ2(τ) = op(1).

That is, σ̂2(τ) is pointwise consistent for σ2(τ) for all τ ∈ [0, 1).

In the next theorem, we show that the pointwise consistency result can be strengthened to

a uniform consistency result, under a stronger bandwidth condition on h2:

Theorem 2. Under the conditions of Theorem 1, if in addition log(T )/(T
1− 4

ph2)→ 0, we have

sup
τ∈[0,1]

∣∣σ̂2(τ)− σ2(τ)
∣∣ = op(1).

Note that in Assumption B1 we impose G(.) to be a two-sided kernel which is strictly

positive over [−1, 1]. For the result in Theorem 2, this is a requirement and hence a one-

sided kernel is not permitted. Examples of a kernel for G(.) that satisfies the requirements of

Assumption B1 are the uniform kernel G(u) = I(−1 6 u 6 1) and the truncated Gaussian

kernel G(u) = (2π)−1/2 exp(−u2/2)I(−1 6 u 6 1). In Assumption B2, (7) indicates the trade-

off between the moment condition and the bandwidth restriction. If we take the smallest

integer satisfying the p > 6 condition, i.e. p = 7, (7) becomes equivalent to Th21 → ∞ up to

a logarithmic term. When εt is Gaussian so p can be arbitrarily large, (7) would be close to

the commonly-used assumption Th1 → ∞. Assumptions on the second step kernel K(.) are

standard. The classical Gaussian kernel K(u) = (2π)−1/2 exp(−u2/2) satisfies the conditions

for K(.) in Assumption C1. Assumption C2 only requires that ψT diverges, but technically

Assumptions B2 and C3 also imply that ψT cannot diverge too fast, because h1 → 0 cannot be

too fast (Assumptions B2 and C3), and h1 = o(h1/h2) (Assumption C3). A slowly diverging

logarithmic rate for the truncation level ψT will satisfy Assumptions C2 and C3. For example,

when ψT = O(log(T )), and the rate difference a between h1 and h2 is some polynomial rate T−δ,

δ > 0, both Assumptions C2 and C3 will be satisfied. For the condition log(T )/(T
1− 4

ph2)→ 0,

when p = 7, it becomes equivalent to Th
7/3
2 →∞ up to a logarithmic term; when εt is Gaussian

and p can be arbitrarily large, it becomes Th2 → ∞ (up to a logarithmic term). Although

the bandwidth conditions for h1 and h2 appear complicated, the conditions Th31 → ∞ and

Th32 → ∞ would be sufficient for all possible values of p, and these are comparable with those

in Fan and Yao (1998).
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2.1 Bandwidth and truncation level selection

For given choices of G(.) and K(.), the associated bandwidths h1 and h2 can be selected to

optimise the performance of the estimators. The bandwidths can be subjectively tuned to

trade off the bias and variance of the nonparametric estimates, or chosen by data to minimise

some criteria that are related to the prediction/estimation error. Here we outline a data-driven

approach to choosing the bandwidths.

We propose using the so-called “leave-one-out” cross-validation (CV) method to select h1 and

h2. To ensure the selected h1 and h2 satisfy the multiple bandwidth conditions (i.e. Assumptions

B2 and C3, and potentially the extra condition for h2 in Theorem 2), we follow the approach

proposed in Patilea and Raissi (2012, 2014) to select h1 and h2 with suitable pre-specified rates.

To be specific, we first set h1 = b1κ1,T and h2 = b2κ2,T , with κ1,T and κ2,T chosen to be functions

of T that satisfy the required rate conditions, and then use the leave-one-out CV method to

select the constants b1 and b2 by optimizing the constants over fixed sets.

For the first step bandwidth h1 = b1κ1,T , the CV criterion is defined as

CV1(b1) =
1

T

T∑
t=1

(∆yt − ρ̂t,−yt−1)2

where ρ̂t,− is the LLS estimator leaving out the observation at time t. The CV bandwidth is

then selected by minimizing the CV criterion across b1 ∈ B1 := [bmin1 , bmax1 ]:

h1 = κ1,T · arg min
b1∈B1

CV1(h).

The second step estimation for σ̂2t involves truncation. As discussed above, setting the trun-

cation level as ψT = c log(T ), where c is a positive constant, will be a valid choice. Practically,

given that in the model (1) an initial unit root regime occurs prior to the first explosive episode,

we propose setting c to be the sample standard deviation of ∆yt in this initial sub-sample,

thereby acting as a simple measure for the average error volatility. Such a sub-sample is to be

used because when explosive behaviour is present in the data, the sample standard deviation of

∆yt across the full sample will over-state the average error volatility. The advantage of using an

average error volatility measure is that the truncation is then adapted to the (average) level of

volatility in the specific dataset under study. In practical applications, although the onset of the

initial putative explosive regime is unknown, it is usually straightforward to informally identify

a sub-period of the data that is free of explosive behaviour. Denoting this average volatility

estimate as σ̆, the truncation level is then set as ψT = σ̆ log(T ). Following truncation of the ût
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series, leave-one-out cross-validation is then used to select the bandwidth h2, which is defined

as

h2 = κ2,T · arg min
b2∈B2

T∑
t=1

(û2t I(|ût| < ψT )− σ̂2t,−)2

where B2 := [bmin2 , bmax2 ] and σ̂2t,− denotes the variance estimator defined in (5) using observa-

tions excluding the squared truncated residuals û2t I(|ûi| < ψT ).

Notice that in our model specifications, second order dependence of the εt sequence is

unspecified and it is possible that Cov(ε2t , ε
2
s) 6= 0. In practical applications, it is also the case

that nontrivial dependence may exist in the squared residuals used in the second step estimator.

Consequently, leave-one-out CV may not be the best choice for bandwidth selection in this case,

given the findings of Chu and Marron (1991), and an alternative possibility would be to leave

more observations out in computing the CV criterion function, i.e. using leave-p-out CV with

p > 1.

3 Allowing for serial correlation in the errors of the SBAR

model

Our variance function estimator can also be applied to an SBAR model which allows for higher

order serial correlation in the errors. A (k + 1)th order SBAR variant of our model can be

obtained by augmenting (1) with lagged differences of ∆yt in each of the segments involved.

Specifically:

yt =

J∑
j=1

[{1 + ρ∗j1I([τ∗j1T ] < t 6 [τ∗j2T ]) + ρ∗j2I([τ∗j2T ] < t 6 [τ∗j3T ])}yt−1 (8)

+{δ111∆yt−1 + · · ·+ δ11k∆yt−k}I(t 6 [τ∗11T ])

+{δj21∆yt−1 + · · ·+ δj2k∆yt−k}I([τ∗j1T ] < t 6 [τ∗j2T ])

+{δj31∆yt−1 + · · ·+ δj3k∆yt−k}I([τ∗j2T ] < t 6 [τ∗j3T ])

+{δj41∆yt−1 + · · ·+ δj4k∆yt−k}I([τ∗j3T ] < t 6 [τ∗j+1,1T ])] + ut

where τ∗J+1,1 = 1. Note that this model allows the lagged difference coefficients to be different

across the four segments in each episode j, as well as across j. In this model, our LLS estimator

can be applied analogously to estimate all the coefficients in this (k+ 1)th order SBAR model,
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simply by augmenting the LLS regression equation appropriately, i.e. replacing ρ̂t in (3) with

{ρ̂t, δ̂1, ..., δ̂k} = arg min
{ρt,δ1,...,δk}

T∑
i=1

Gh1((i− t)/T )(∆yi − ρyi−1 − δ1∆yt−1 − · · · − δk∆yt−k)2

which again has an analytical solution, a vector analogue of (4). The residuals from such LLS

estimation can then be truncated and used to estimate the σ(.) function as in the simpler case of

the previous section. This extension further highlights the benefit of using a LLS nonparametric

approach, as opposed to a high dimensional parametric estimation of (8).

4 Monte Carlo simulation

In this section, we use Monte Carlo simulation to compare the performance of our truncation-

based variance estimator σ̂2t with two related estimators across a number of different specifi-

cations for the volatility and explosive episodes. The first estimator we compare with is the

square of the classical rolling standard deviation estimator, which essentially applies the usual

sample variance formula to ∆yt over rolling windows; we denote this estimator by σ̂2t,rw. The

second estimator used for comparison is our two-step estimator but without truncation (which

we denote by σ̂2t,nt); this is included to demonstrate the effect of truncation in our proposed

estimation procedure.

We use the uniform kernel over [−1, 1] for both the first step kernel function G(.) and

the second step kernel function K(.). This choice of kernel functions is comparable with the

rolling estimator, which applies equal weights to squared demeaned returns in a fixed window.

The bandwidths used in this simulation study are h1 = T−1/3/log(T ) and h2 = T−1/4; it is

straightforward to confirm that these bandwidths satisfy the imposed bandwidth conditions.

We set the truncation level according to ψT = σ̆ log(T ) with σ̆ calculated using the standard

deviation of ∆yt over the first 10% of the sample. The same bandwidth h2 is then also used for

the rolling estimator. We use 1000 Monte Carlo replications in all the simulations.

For simplicity, we simulate the DGP (1) with J = 1, so we suppress the dependence on

j in the notation of this section. We use T = 200, 500, 1000, y1 = 5, εt ∼ NIID(0, 1), and

ρ∗1 = {0, 0.02, 0.04, 0.06} for the explosive parameter magnitudes, along with ρ∗2 = −ρ∗1, such

that the stationary collapse offset is of the same magnitude as the explosive offset. We consider

the break timings (τ∗1, τ
∗
2, τ
∗
3) = {(0.3, 0.7, 0.8),(0.4, 0.6, 0.7)}. In each case we consider the

following volatility specifications for σ(τ), setting σ∗ = 0.03:

(a) Constant volatility: σ(τ) = σ∗ ∀τ .
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(b) Early smooth upward shift: σ(τ) = σ∗ + 2σ∗ 1
1+exp{−20(τ−0.3)} .

(c) Mid-sample smooth upward shift: σ(τ) = σ∗ + 2σ∗ 1
1+exp{−20(τ−0.5)} .

(d) Late smooth upward shift: σ(τ) = σ∗ + 2σ∗ 1
1+exp{−20(τ−0.8)} .

(e) Double smooth shift: σ(τ) = σ∗ + 2σ∗ 1
1+exp{−20(τ−0.3)} − 2σ∗ 1

1+exp{−20(τ−0.7)} .

(f) Upward trend: σ(τ) = σ∗ + 2σ∗τ .

In cases (b) to (d), the volatility undergoes a (logistic) smooth transition from σ∗ to 3σ∗ at

different points in time. In case (e), the volatility transitions from σ∗ to 3σ∗ early in the sample

before returning to σ∗ at a later point in the sample period.

We compare the performance of σ̂2t , σ̂
2
t,rw and σ̂2t,nt using two measures: Root Mean In-

tegrated Squared Error (RMISE) and Mean Integrated Absolute Percentage Error (MIAPE).

Specifically, and with a slight abuse of notation, letting σ̂2(τ) denote an arbitrary estimator for

σ2(τ), these measures are defined as follows:

RMISE =

√
E

∫ 1

0
(σ̂(τ)− σ(τ))2dτ ,

MIAPE = E

∫ 1

0

∣∣∣∣ σ̂(τ)− σ(τ)

σ(τ)

∣∣∣∣dτ .
The integration and the expectation above cannot be evaluated exactly, so in our simulations

the integrals are approximated by T discretised points, with the expectations based on the

means across replications.

We report the results for both measures in Tables 1-4 for different combinations of break

timings and error summary measures. From Tables 1-4, we observe that in the case of no

explosivity (ρ∗1 = 0), all the estimators perform similarly. In the cases where an explosive

(and stationary collapse) segment exists, the error measures for our proposed estimator σ̂2t

change relatively little as the explosive magnitude increases, while the rolling estimator σ̂2t,rw

and the “no truncation” version of our estimator σ̂2t,nt have errors that increase substantially

with both ρ∗1 = −ρ∗2 and T , with particularly high error measures observed for the large explosive

magnitude settings. As might be expected, the σ̂2t,rw estimator is overall the least accurate of the

three in the presence of an explosive segment, followed by σ̂2t,nt, while our proposed σ̂2t estimator

offers by far the best performance, with truncation clearly performing a very important role

in improving the accuracy of the variance function estimation. We also observe that the error

measures associated with σ̂2t are, without exception, monotonically decreasing in T (in contrast
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T = 200 T = 500 T = 1000

Volatility ρ∗1 = −ρ∗2 σ̂2
t σ̂2

t,nt σ̂2
t,rw σ̂2

t σ̂2
t,nt σ̂2

t,rw σ̂2
t σ̂2

t,nt σ̂2
t,rw

Model (a) 0.0000 0.0026 0.0026 0.0023 0.0018 0.0018 0.0016 0.0013 0.0013 0.0012
0.0200 0.0122 0.0617 0.1804 0.0036 0.6397 1.5687 0.0014 27.9658 61.2222
0.0400 0.0058 0.7288 1.5514 0.0035 63.3387 > 100 0.0027 > 100 > 100
0.0600 0.0075 5.0935 9.3166 0.0056 > 100 > 100 0.0045 > 100 > 100

Model (b) 0.0000 0.0178 0.0106 0.0104 0.0114 0.0073 0.0071 0.0078 0.0054 0.0053
0.0200 0.0166 0.0383 0.1459 0.0111 0.6051 1.5335 0.0079 28.1420 61.6480
0.0400 0.0177 0.6892 1.5111 0.0116 63.5299 > 100 0.0080 > 100 > 100
0.0600 0.0181 5.0623 9.2941 0.0117 > 100 > 100 0.0082 > 100 > 100

Model (c) 0.0000 0.0154 0.0093 0.0090 0.0101 0.0066 0.0065 0.0071 0.0051 0.0050
0.0200 0.0143 0.0399 0.1504 0.0103 0.6051 1.5314 0.0075 27.9413 61.2074
0.0400 0.0164 0.6924 1.5139 0.0115 63.3075 > 100 0.0082 > 100 > 100
0.0600 0.0177 5.0558 9.2788 0.0124 > 100 > 100 0.0091 > 100 > 100

Model (d) 0.0000 0.0121 0.0102 0.0098 0.0085 0.0073 0.0071 0.0063 0.0055 0.0054
0.0200 0.0115 0.0525 0.1684 0.0076 0.6278 1.5555 0.0057 27.9560 61.2113
0.0400 0.0114 0.7134 1.5359 0.0082 63.3266 > 100 0.0062 > 100 > 100
0.0600 0.0129 5.0774 9.3006 0.0093 > 100 > 100 0.0072 > 100 > 100

Model (e) 0.0000 0.0157 0.0135 0.0137 0.0107 0.0092 0.0092 0.0078 0.0068 0.0068
0.0200 0.0176 0.0537 0.1647 0.0109 0.6253 1.5553 0.0075 28.1605 61.6673
0.0400 0.0154 0.7122 1.5344 0.0102 63.5506 > 100 0.0077 > 100 > 100
0.0600 0.0150 5.0861 9.3180 0.0104 > 100 > 100 0.0079 > 100 > 100

Model (f) 0.0000 0.0095 0.0066 0.0060 0.0058 0.0045 0.0041 0.0039 0.0034 0.0031
0.0200 0.0078 0.0425 0.1543 0.0051 0.6148 1.5439 0.0039 28.1063 61.5582
0.0400 0.0095 0.6994 1.5214 0.0061 63.5088 > 100 0.0042 > 100 > 100
0.0600 0.0110 5.0682 9.2955 0.0069 > 100 > 100 0.0049 > 100 > 100

Note: σ̂2
t , σ̂2

t,nt and σ̂2
t,rw denote the truncation-based variance estimator, the estimator without truncation,

and the classical rolling window estimator, respectively.

Table 1: RMISE for variance estimates: (τ∗1, τ
∗
2, τ
∗
3) = (0.3, 0.7, 0.8)

to those for σ̂2t,nt and σ̂2t,rw), in line with what we would expect from our theoretical consistency

results derived in section 2. It is encouraging to see that the attractive behaviour of the new

σ̂2t estimator is maintained across all the different volatility specifications employed and the

different SBAR settings considered for the explosive and stationary segment magnitudes and

timings. These findings are also confirmed by both the RMISE and MIAPE error measures.

5 Empirical illustration: Bitcoin data 2016-2019

In this section, we compare the empirical performance of our estimator with the untruncated

estimator and the rolling standard deviation estimator, using a dataset for the logarithms of

Bitcoin prices as yt. The rolling standard deviation, at various fixed lengths of intervals (e.g.

30-day, 60-day, 120-day, etc.), is available in databases such as the Bloomberg Terminal and

Thompson Reuters Datastream.

Bitcoin is a digital asset designed to work as a medium of exchange that uses cryptography.

It has long been recognised as a speculative asset among financial economists. Bitcoin gained

much media exposure in late 2017 because of the rapid increase and decrease in its price. Its

unit price increased dramatically, reaching a historical high on December 17th, 2017, after which
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T = 200 T = 500 T = 1000

Volatility ρ∗1 = −ρ∗2 σ̂2
t σ̂2

t,nt σ̂2
t,rw σ̂2

t σ̂2
t,nt σ̂2

t,rw σ̂2
t σ̂2

t,nt σ̂2
t,rw

Model (a) 0.0000 0.0702 0.0701 0.0604 0.0474 0.0474 0.0419 0.0353 0.0353 0.0315
0.0200 0.2971 1.5600 5.1065 0.0869 14.5626 39.6193 0.0367 > 100 > 100
0.0400 0.1634 18.3270 42.5372 0.0927 > 100 > 100 0.0695 > 100 > 100
0.0600 0.1971 > 100 > 100 0.1412 > 100 > 100 0.1075 > 100 > 100

Model (b) 0.0000 0.2251 0.1599 0.1630 0.1488 0.1056 0.1073 0.1036 0.0770 0.0777
0.0200 0.2155 0.4166 1.5721 0.1478 4.6226 13.0841 0.1058 > 100 > 100
0.0400 0.2395 5.8927 14.5309 0.1602 > 100 > 100 0.1115 > 100 > 100
0.0600 0.2520 42.5400 85.2695 0.1668 > 100 > 100 0.1161 > 100 > 100

Model (c) 0.0000 0.1820 0.1399 0.1439 0.1273 0.0972 0.0985 0.0924 0.0735 0.0744
0.0200 0.1803 0.4631 2.0429 0.1356 4.9954 15.3439 0.1018 > 100 > 100
0.0400 0.2407 6.7788 17.9248 0.1772 > 100 > 100 0.1304 > 100 > 100
0.0600 0.2875 48.7844 > 100 0.2137 > 100 > 100 0.1602 > 100 > 100

Model (d) 0.0000 0.1487 0.1486 0.1527 0.1086 0.1048 0.1067 0.0820 0.0784 0.0797
0.0200 0.1956 0.9880 3.6392 0.1076 10.1845 28.6784 0.0760 > 100 > 100
0.0400 0.2054 12.5623 30.6302 0.1426 > 100 > 100 0.1097 > 100 > 100
0.0600 0.2603 88.6872 > 100 0.1916 > 100 > 100 0.1484 > 100 > 100

Model (e) 0.0000 0.2508 0.2543 0.2741 0.1753 0.1673 0.1775 0.1291 0.1212 0.1276
0.0200 0.3388 0.9912 2.9853 0.1994 8.7940 23.5196 0.1247 > 100 > 100
0.0400 0.2781 11.4496 25.9884 0.1754 > 100 > 100 0.1308 > 100 > 100
0.0600 0.2605 80.1094 > 100 0.1826 > 100 > 100 0.1360 > 100 > 100

Model (f) 0.0000 0.1119 0.0861 0.0852 0.0694 0.0588 0.0584 0.0483 0.0441 0.0436
0.0200 0.0991 0.4806 1.9777 0.0654 5.8051 16.5738 0.0491 > 100 > 100
0.0400 0.1279 7.3803 18.1855 0.0839 > 100 > 100 0.0582 > 100 > 100
0.0600 0.1586 53.2021 > 100 0.1037 > 100 > 100 0.0740 > 100 > 100

Note: σ̂2
t , σ̂2

t,nt and σ̂2
t,rw denote the truncation-based variance estimator, the estimator without truncation,

and the classical rolling window estimator, respectively.

Table 2: MIAPE for variance estimates: (τ∗1, τ
∗
2, τ
∗
3) = (0.3, 0.7, 0.8)

T = 200 T = 500 T = 1000

Volatility ρ∗1 = −ρ∗2 σ̂2
t σ̂2

t,nt σ̂2
t,rw σ̂2

t σ̂2
t,nt σ̂2

t,rw σ̂2
t σ̂2

t,nt σ̂2
t,rw

Model (a) 0.0000 0.0026 0.0026 0.0023 0.0018 0.0018 0.0016 0.0013 0.0013 0.0012
0.0200 0.0102 0.0194 0.0682 0.0079 0.0710 0.1953 0.0063 0.5140 1.1450
0.0400 0.0120 0.1292 0.2953 0.0058 1.2052 2.2215 0.0030 51.3026 81.2238
0.0600 0.0103 0.4541 0.8540 0.0062 12.2071 18.6075 0.0047 > 100 > 100

Model (b) 0.0000 0.0178 0.0106 0.0104 0.0114 0.0073 0.0071 0.0078 0.0054 0.0053
0.0200 0.0167 0.0113 0.0452 0.0105 0.0481 0.1645 0.0072 0.4933 1.1344
0.0400 0.0167 0.0982 0.2588 0.0108 1.1782 2.2005 0.0075 52.2679 82.7706
0.0600 0.0171 0.4171 0.8161 0.0109 12.2718 18.7245 0.0075 > 100 > 100

Model (c) 0.0000 0.0154 0.0093 0.0090 0.0101 0.0066 0.0065 0.0071 0.0051 0.0050
0.0200 0.0146 0.0145 0.0521 0.0093 0.0533 0.1712 0.0063 0.4896 1.1194
0.0400 0.0145 0.1065 0.2680 0.0101 1.1775 2.1924 0.0077 51.3372 81.2934
0.0600 0.0153 0.4257 0.8235 0.0110 12.1818 18.5828 0.0085 > 100 > 100

Model (d) 0.0000 0.0121 0.0102 0.0098 0.0085 0.0073 0.0071 0.0063 0.0055 0.0054
0.0200 0.0148 0.0208 0.0654 0.0114 0.0694 0.1917 0.0091 0.5116 1.1417
0.0400 0.0149 0.1239 0.2882 0.0105 1.2012 2.2165 0.0073 51.3001 81.2209
0.0600 0.0150 0.4469 0.8457 0.0108 12.2030 18.6026 0.0080 > 100 > 100

Model (e) 0.0000 0.0157 0.0135 0.0137 0.0107 0.0092 0.0092 0.0078 0.0068 0.0068
0.0200 0.0152 0.0175 0.0536 0.0106 0.0547 0.1739 0.0082 0.5014 1.1440
0.0400 0.0155 0.1099 0.2725 0.0102 1.1891 2.2126 0.0072 52.2747 82.7769
0.0600 0.0151 0.4314 0.8316 0.0097 12.2829 18.7364 0.0070 > 100 > 100

Model (f) 0.0000 0.0095 0.0066 0.0060 0.0058 0.0045 0.0041 0.0039 0.0034 0.0031
0.0200 0.0087 0.0122 0.0521 0.0056 0.0559 0.1754 0.0043 0.5001 1.1361
0.0400 0.0086 0.1085 0.2709 0.0056 1.1880 2.2074 0.0040 51.8282 82.0673
0.0600 0.0092 0.4297 0.8283 0.0061 12.2434 18.6739 0.0045 > 100 > 100

Note: σ̂2
t , σ̂2

t,nt and σ̂2
t,rw denote the truncation-based variance estimator, the estimator without truncation,

and the classical rolling window estimator, respectively.

Table 3: RMISE for variance estimates: (τ∗1, τ
∗
2, τ
∗
3) = (0.4, 0.6, 0.7)
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T = 200 T = 500 T = 1000

Volatility ρ∗1 = −ρ∗2 σ̂2
t σ̂2

t,nt σ̂2
t,rw σ̂2

t σ̂2
t,nt σ̂2

t,rw σ̂2
t σ̂2

t,nt σ̂2
t,rw

Model (a) 0.0000 0.0702 0.0701 0.0604 0.0474 0.0474 0.0419 0.0353 0.0353 0.0315
0.0200 0.2642 0.5093 1.8923 0.1994 1.6030 4.7974 0.1438 10.4224 25.3197
0.0400 0.3245 3.3386 8.1399 0.1575 26.9090 53.1514 0.0755 > 100 > 100
0.0600 0.2851 11.6579 23.2564 0.1563 > 100 > 100 0.1104 > 100 > 100

Model (b) 0.0000 0.2251 0.1599 0.1630 0.1488 0.1056 0.1073 0.1036 0.0770 0.0777
0.0200 0.2130 0.1668 0.5432 0.1387 0.4197 1.4192 0.0956 3.3264 8.3430
0.0400 0.2147 0.9515 2.6421 0.1430 8.8386 17.8896 0.1015 > 100 > 100
0.0600 0.2202 3.7391 7.9741 0.1456 91.3034 > 100 0.1015 > 100 > 100

Model (c) 0.0000 0.1820 0.1399 0.1439 0.1273 0.0972 0.0985 0.0924 0.0735 0.0744
0.0200 0.1874 0.2186 0.8152 0.1240 0.5873 2.0424 0.0869 4.2206 10.9465
0.0400 0.2031 1.3906 3.8222 0.1472 11.7341 24.2712 0.1143 > 100 > 100
0.0600 0.2281 5.2921 11.2538 0.1706 > 100 > 100 0.1328 > 100 > 100

Model (d) 0.0000 0.1487 0.1486 0.1527 0.1086 0.1048 0.1067 0.0820 0.0784 0.0797
0.0200 0.2788 0.4531 1.5290 0.2068 1.3701 4.0704 0.1499 9.2523 22.2931
0.0400 0.3047 2.6422 6.6014 0.2015 23.2374 45.6425 0.1334 > 100 > 100
0.0600 0.3206 9.4154 18.9759 0.2266 > 100 > 100 0.1655 > 100 > 100

Model (e) 0.0000 0.2508 0.2543 0.2741 0.1753 0.1673 0.1775 0.1291 0.1212 0.1276
0.0200 0.2626 0.3317 0.9235 0.1901 0.6740 2.1076 0.1439 4.3972 11.1099
0.0400 0.2760 1.6299 4.1058 0.1761 12.1990 24.8113 0.1200 > 100 > 100
0.0600 0.2562 5.8556 12.0245 0.1624 > 100 > 100 0.1168 > 100 > 100

Model (f) 0.0000 0.1119 0.0861 0.0852 0.0694 0.0588 0.0584 0.0483 0.0441 0.0436
0.0200 0.1059 0.1664 0.7069 0.0687 0.5927 1.9933 0.0533 4.5926 11.4387
0.0400 0.1101 1.2975 3.5191 0.0705 12.0997 24.2961 0.0520 > 100 > 100
0.0600 0.1219 5.0564 10.5327 0.0811 > 100 > 100 0.0621 > 100 > 100

Note: σ̂2
t , σ̂2

t,nt and σ̂2
t,rw denote the truncation-based variance estimator, the estimator without truncation,

and the classical rolling window estimator, respectively.

Table 4: MIAPE for variance estimates: (τ∗1, τ
∗
2, τ
∗
3) = (0.4, 0.6, 0.7)

the price underwent a rapid depreciation, losing a third of its value by December 30th. Harvey

et al. (2020) studied the daily level price data from late 2017 to early 2018 using a sign-based

approach to bubble testing and dating, and confirmed the existence of explosive behaviour from

November 13th 2017 to December 7th 2017, a period before the highest value was reached. In

this illustration, we focus on the log Bitcoin price over a longer period of daily closing prices,

from January 1st 2016 to April 2nd 2019, obtained from Yahoo Finance. Figure 1 provides a

plot of the log Bitcoin price.

We use the same uniform kernels as in the Monte Carlo simulations for our proposed estima-

tor σ̂2t from (5), the non-truncated estimator σ̂2t,nt and the rolling standard deviation estimator

σ̂2t,rw discussed in section 4. The truncation level is again chosen as described in section 2.1 with

σ̆ calculated using the standard deviation of ∆yt over the first 10% of the sample. The computed

actual truncation level is roughly 7 times the standard deviation σ̆. For the bandwidths, we

implemented the leave-one-out CV methods discussed in section 2.1 with h1 = b1T
−1/3/ log(T )

and h2 = b2T
−1/4, and the optimisation for both b1 and b2 is performed over a grid from 1/5

to 5 with increment 0.1 (i.e. B1 = B2 = {0.2, 0.3, ..., 4.9, 5}). The selected h1 corresponds to

performing the first step local least squares using a window of 40 evenly split lead and lag ob-
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Figure 1: Bitcoin log price.

servations, and the selected h2 corresponds to performing the second step variance estimation

using a window of 120 evenly split lead and lag observations. To account for the possibility

of non-trivial dependence in the truncated squared residuals sequence, we also implemented

leave-p-out CV for the selection of h2; we found very similar bandwidths were obtained as those

selected by leave-one-out CV, hence we report results only for the leave-one-out case.

In Figure 2, we provide plots of the volatility estimators. We plot the square root of each

estimator in the figures, since this can be interpreted as estimated volatility. We observe that the

rolling estimator σ̂t,rw generally produces the highest volatility estimates, while our proposed

estimator σ̂t produces the lowest; the “no truncation” version of our estimator σ̂t,nt produces

volatility estimates that lie inbetween σ̂t and σ̂t,rw (σ̂t,nt coincides with σ̂t for much of the

sample period). This observation is in line with our intuition and simulation results regarding

the differential behaviour among the estimators. Considering the volatility estimators over

different sub-periods of the data, we find that the most obvious differences occur over the

predominantly explosive phase of the data leading up to January 2018, during which time there

are also a number of relatively smaller rapid expansions and contractions. In this period, the

σ̂t,rw and σ̂t,nt estimates are relatively similar, while the σ̂t estimates are substantially lower.

This feature is largely common across the first step window widths considered, and it is not

surprising that the greatest differences arise due to the truncation element of σ̂t, which has most

effect around the times of explosive behaviour in the data. In the earlier period of less dramatic
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Figure 2: Volatility estimates: σ̂2t , σ̂
2
t,nt and σ̂2t,rw denote the truncation-based variance estima-

tor, the estimator without truncation, and the classical rolling window estimator, respectively.

price increase (up to mid 2017) and also in the later period following the numerical peak of the

series in January 2018, it is interesting to observe that the correction made by truncation is

less apparent, with the σ̂t and σ̂t,nt estimators producing really quite similar results, while both

σ̂t and σ̂t,nt produce volatility estimates a little lower than σ̂t,rw, especially in the cases of the

shorter first step bandwidths. In these periods, it seems that the truncation plays less of a role,

while the LLS approach involved in σ̂t and σ̂t,nt results in reduced volatility estimates compared

to the simple rolling approach, suggesting that properly accounting for the AR dynamics can

lead to a less inflated (and arguably more reliable) estimator of the true volatility.

6 Conclusion

In this paper we have proposed a new two-step truncation-based variance estimator for time

series data containing possibly multiple unit root, explosive and stationary collapse segments

at unknown times. The estimator consists of a first step LLS estimation, and a second step

smoothing of truncated squared residuals obtained from the first step nonparametric estima-

tion. We have derived uniform consistency results for the estimator in the context of possible

explosive (and subsequent stationary collapse) behaviour. Our simulation results confirm the

superiority of the new estimator relative to competing methods in terms of accuracy in the

presence of explosive/stationary collapse behaviour, as might be observed during an asset price
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bubble/crash in financial data. In an empirical illustration employing recent Bitcoin data, we

also demonstrate the potential value of the estimator in a practical application. While our ap-

proach focuses on estimating the variance function while treating the autoregressive dynamics

separately, in practice changes in variance and changes in the autoregressive parameter may be

interlinked. It would be interesting to entertain the possibility of an extended (and inevitably

more complex) model allowing for such endogenous interactions, and we consider this as an

avenue for potential future research.
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Appendix: Proofs of theorems

Technical lemmas

To begin, we state a number of technical lemmas that will be used in the proofs of the theorems.

Proofs of the technical lemmas are contained in the online Supplementary Appendix.

Lemma 1. Under conditions A1-A3 and B1-B2, if ρ∗1 > 0 and ρ∗2 < 0,

max
Th1+16t6t∗1−Th1

|ρ̂t − ρt| = Op

√ log(T )

T 2h1


max

t∗1+Th1+16t6t∗2−Th1
|φ(t+Th1−1−t

∗
1)

1 (ρ̂t − ρt)| = Op

(
T 1/p−1/2 log2(T )

)
max

t∗2+Th1+16t6t∗3−Th1
|φ(t−Th1−1−t

∗
2)

2 (ρ̂t − ρt)| = Op

(
φ
−(t∗2−t∗1)
1 T 1/p−1/2 log2(T )

)
max

t∗3+Th1+16t6T−Th1
|ρ̂t − ρt| = Op

(√
log(T )

(aT ∨ T 1/2)2Th1

)
.

In Lemma 1, the uniform rate of convergence in the pre-explosive unit root regime is the

same as that in Li et al. (2016) and Phillips et al. (2017). The uniform rates derived in the

explosive, stationary and the post-stationary unit root regimes are new.

Lemma 2. Under the same condition as Lemma 1, when Th1 + 1 6 t 6 t∗1 − Th1,

1

Th1

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
→ γ

which by assumption satisfies 0 < γ <∞.

When t∗1 + Th1 + 1 6 t 6 t∗2 − Th1, for φ1 > 1, a > 0

1

φ
a(t+Th1−1−t∗1)
1

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
φ
a(i−1−t∗1)
1 = O(1)

and in the limit it is strictly positive and nondegenerate to 0.

When t∗2 + Th1 + 1 6 t 6 t∗3 − Th1, for 1 > φ2 > 0, a > 0

1

φ
a(t−Th1−1−t∗2)
2

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
φ
a(i−1−t∗2)
2 = O(1)

and in the limit it is strictly positive and nondegenerate to 0.
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When t∗3 + Th1 + 1 6 t 6 T − Th1,

1

Th1

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
→ γ.

Lemma 3. Uniformly for 0 6 τ 6 τ∗1,

(1/
√
T )y[τT ] ⇒ U(τ),

where U(s) :=
∫ s
0 σ(r)dW (r).

Uniformly for t∗1 < t 6 t∗2,

T−1/2φ
−(t−t∗1)
1 yt

d→ U(τ∗1).

Uniformly for t∗2 < t 6 t∗3,

T−1/2φ
−(t∗2−t∗1)
1 φ

−(t−t∗2)
2 yt

d→ U(τ∗1).

Uniformly for τ∗3 < τ 6 1, for y∗ defined in A3,

(aT ∨ T 1/2)−1y[τT ] ⇒


U(τ)− U(τ∗3) aT /T

1/2 → 0,

y∗ + U(τ)− U(τ∗3) aT /T
1/2 → 1,

y∗ aT /T
1/2 →∞.

Lemma 4. Assume the same conditions as Lemma 1.

When Th1 + 1 6 t 6 t∗1 − Th1,

T−2h−11

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
y2i−1 = Op(1)

and it is also strictly positive and nondegenerate to 0 with probability 1.

When t∗1 + Th1 + 1 < t 6 t∗2 − Th1,

T−1φ
−2(t+Th1−1−t∗1)
1

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
y2i−1 = Op(1)

and it is also strictly positive and nondegenerate to 0 with probability 1.

When t∗2 + Th1 + 1 < t 6 t∗3 − Th1,

T−1φ
−2(t∗2−t∗1)
1 φ

−2(t−Th1−1−t∗2)
2

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
y2i−1 = Op(1)
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and it is also strictly positive and nondegenerate to 0 with probability 1.

When t∗3 + Th1 + 1 < t 6 T − Th1,

(aT ∨ T 1/2)−2T−1h−11

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
y2i−1 = Op(1)

and it is also strictly positive and nondegenerate to 0 with probability 1.

Lemma 5. Assume the same conditions as Lemma 1.

When Th1 + 1 6 t 6 t∗1 − Th1 we have

max
Th1+16t6t∗1−Th1

∣∣∣∣∣∣
t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
yi−1ui

∣∣∣∣∣∣ = Op

(√
T 2h1 log(T )

)
. (9)

When t∗1 + Th1 + 1 < t 6 t∗2 − Th1,

max
t∗1+Th1+1<t6t∗2−Th1

∣∣∣∣∣∣φ−(t+Th1−1−t∗1)1

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
yi−1ui

∣∣∣∣∣∣ = Op

(
T 1/p+1/2 log2(T )

)
. (10)

When t∗2 + Th1 + 1 < t 6 t∗3 − Th1 ,

max
t∗2+Th1+1<t6t∗3−Th1

∣∣∣∣∣∣φ−(t−Th1−1−t∗2)2

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
yi−1ui

∣∣∣∣∣∣ = Op

(
φ
(t∗2−t∗1)
1 T 1/p+1/2 log2(T )

)
.

(11)

When t∗3 + Th1 + 1 < t 6 T − Th1 ,

max
t∗3+Th1+1<t6T−Th1

∣∣∣∣∣∣
t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
yi−1ui

∣∣∣∣∣∣ = Op

(√
(aT ∨ T 1/2)2Th1 log(T )

)
. (12)

Lemma 6. Under the same assumptions as Theorem 2, we have

max
16s6N

∣∣∣∣∣
T∑
i=1

K

(
i/T − τ s

h2

)
(u2i − σ2i )

∣∣∣∣∣ = Op

(√
Th2 log(T )

)
. (13)

Proof of Theorem 1

First we give some preliminaries. It proves convenient to characterise the level of the process

at the end of the first stationary collapse segment in the form y[τ∗13T ] = y∗aT , where y∗ is a

random variable bounded in probability and aT is a deterministic sequence. Since the collapse

segment is a mean-reverting stationary AR process, y[τ∗13T ] will either be Op(1) or divergent;

it follows then that, without loss of generality, aT = 1 or aT → ∞, respectively. The proof of
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the theorem then proceeds in three main steps. We first prove the theorem in the case where

J = 1 and aT →∞. Next we extend the proof to the case of J > 1, now with y[τ∗j3T ] = yj∗aj,T ,

j = 1, .., J , where the yj∗ again denote random variables bounded in probability, and where the

determinstic sequences aj,T →∞. Finally, we further extend the proof to the case of aj,T = 1.

(i) Proof for Theorem 1 when J = 1 and aT →∞

Since J = 1 in this part of the proof, we suppress the dependence on j in all our notation in

this part.

Define σ̃2(τ s) =
∑T

i=1wτs,iu
2
i and σ̄2(τ s) =

∑T
i=1wτs,iσ

2
i . We first make the following

decomposition:

σ̂2(τ s)− σ2(τ s) = (σ̂2(τ s)− σ̃2(τ s)) + (σ̃2(τ s)− σ̄2(τ s)) + (σ̄2(τ s)− σ2(τ s)) ≡ A+B + C.

For A, we make the following decomposition

A = σ̂2(τ s)− σ̃2(τ s)

=

T∑
i=1

wτs,i(û
2
i I(|ûi| < ψT )− u2i )

=

Th1∑
i=1

+

t∗1−Th1∑
i=Th1+1

+

t∗1+Th1∑
i=t∗1−Th1+1

+

t∗2−Th1∑
i=t∗1+Th1+1

+

t∗2+Th1∑
i=t∗2−Th1+1

wτs,i(û
2
i I(|ûi| < ψT )− u2i )

+

 t∗3−Th1∑
i=t∗2+Th1+1

+

t∗3+Th1∑
i=t∗3−Th1+1

+

T−Th1∑
i=t∗3+Th1+1

+
T∑

i=T−Th1+1

wτs,i(û
2
i I(|ûi| < ψT )− u2i )

≡ A0 +A1 +A′1 +A2 +A′2 +A3 +A′3 +A4 +A′4 (14)

where we decompose the sum into nine terms. In these terms, A1, A2, A3, A4 correspond to the

interiors of the respective unit root, explosive, stationary and unit root segments; A′1, A
′
2, A

′
3

correspond to the shrinking neighbourhoods around the change points between segments; while

A0 and A′4 are the two boundaries of the sample.

We first consider A′1. By construction we have E(û2i I(|ûi| < ψT ) − u2i ) = O(ψ2
T ) for all i.

Using this, together with Xu and Phillips (2008)’s Lemma A (d) that max16i6T,06s61wτs,i =
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1/(Th2), we have

|A′1| =

∣∣∣∣∣∣
t∗1+Th1∑

i=t∗1−Th1+1

wτs,i(û
2
i I(|ûi| < ψT )− u2i )

∣∣∣∣∣∣
6

∣∣∣∣∣∣∣
 t∗1+Th1∑
i=t∗1−Th1+1

w2
τs,i

1/2 t∗1+Th1∑
i=t∗1−Th1+1

(û2i I(|ûi| < ψT )− u2i )2
1/2

∣∣∣∣∣∣∣
6

∣∣∣∣∣∣∣
max

s,i
wτs,i

t∗1+Th1∑
i=t∗1−Th1+1

wτs,i

1/2 t∗1+Th1∑
i=t∗1−Th1+1

(û2i I(|ûi| < ψT )− u2i )2
1/2

∣∣∣∣∣∣∣
= Op

((
1

Th2

)1/2

× (Th1ψ
4
T )1/2

)
= Op

((
h1ψ

4
T

h2

)1/2
)

where we use the Cauchy-Schwarz inequality in the second step and the order of
∑t∗1+Th1

i=t∗1−Th1+1(û
2
i I(|ûi| <

ψT )− u2i )2 is easily implied from evaluating its expectation. Using the same argument for the

neighbourhoods of the change points and the sample boundaries, we have

|A0 +A′1 +A′2 +A′3 +A′4| = Op

((
h1ψ

4
T

h2

)1/2
)
. (15)

With the truncation mechanism, it is seen that the orders of these terms are controlled by ψT ,

which is chosen by the researcher. Without the truncation mechanism, these terms could be

much larger and even prevent consistency of the variance estimator.

Next we consider A1. We have

t∗1−Th1∑
i=Th1+1

wτs,i(û
2
i I(|ûi| < ψT )− u2i )

=

t∗1−Th1∑
i=Th1+1

wτs,i(((ρi − ρ̂i)yi−1 + ui)
2I(|ûi| < ψT )− u2i )

=

t∗1−Th1∑
i=Th1+1

wτs,i(ρi − ρ̂i)2y2i−1I(|ûi| < ψT ) + 2

t∗1−Th1∑
i=Th1+1

wτs,i(ρi − ρ̂i)yi−1uiI(|ûi| < ψT )

+

t∗1−Th1∑
i=Th1+1

wτs,i(u
2
i I(|ûi| < ψT )− u2i )

≡ A11 +A12 +A13.
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For A11,

|A11| 6

∣∣∣∣∣∣
t∗1−Th1∑
i=Th1+1

wτs,i(ρi − ρ̂i)2y2i−1

∣∣∣∣∣∣
6 max

Th1+16i6t∗1−Th1
(ρi − ρ̂i)2 max

Th1+16i6t∗1−Th1
y2i−1

∣∣∣∣∣∣
t∗1−Th1∑
i=Th1+1

wτs,i

∣∣∣∣∣∣
= Op

(
log(T )

T 2h1
× T

)
= Op

(
log(T )

Th1

)
(16)

using the result of Lemma 1, Lemma 3 and noting that 0 < max06s61
∑t∗1−Th1

i=Th1+1wτs,i ≤ 1. For

A12, we have

|A12| 6

∣∣∣∣∣∣
t∗1−Th1∑
i=Th1+1

wτs,i(ρi − ρ̂i)yi−1ui

∣∣∣∣∣∣
6 max

Th1+16i6t∗1−Th1
|ρi − ρ̂i| max

Th1+16i6t∗1−Th1
|yi−1|

t∗1−Th1∑
i=Th1+1

wτs,i|ui|

= Op

√ log(T )

T 2h1
× T

 = Op

√ log(T )

Th1

 , (17)

where
∑t∗1−Th1

i=Th1+1wτs,i|ui| = Op(1) follows from evaluating its expectation. For A13,

E|A13| =

t∗1−Th1∑
i=Th1+1

wτs,iE(u2i I(|ûi| > ψT ))

6

t∗1−Th1∑
i=Th1+1

wτs,i(Eu
4
i )

1/2(P (|ûi| > ψT ))1/2

→ 0, (18)

because when Th1 + 1 6 i 6 t∗1 − Th1, ûi = ∆yi − ρ̂iyi−1 = (ρi − ρ̂i)yi−1 + ui = Op(1) for all i

in this range by Lemma 1.

Next we consider A2. Similar to A1 we have

A2 =

t∗2−Th1∑
i=t∗1+Th1+1

wτs,i(ρi − ρ̂i)2y2i−1I(|ûi| < ψT ) + 2

t∗2−Th1∑
i=t∗1+Th1+1

wτs,i(ρi − ρ̂i)yi−1uiI(|ûi| < ψT )

+

t∗2−Th1∑
i=t∗1+Th1+1

wτs,i(u
2
i I(|ûi| < ψT )− u2i )

≡ A21 +A22 +A23.
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For A21,

A21 6

∣∣∣∣∣∣
t∗2−Th1∑

i=t∗1+Th1+1

wτs,i(ρi − ρ̂i)2y2i−1

∣∣∣∣∣∣
6 Tφ−2Th11

t∗2−Th1∑
i=t∗1+Th1+1

wτs,i|φ
2(i+Th1−1−t∗1)
1 (ρi − ρ̂i)2||T−1φ

−2(i−1−t∗1)
1 y2i−1|

6 Tφ−2Th11 max
t∗1+Th1+16i6t∗2−Th1

|φ2(i+Th1−1−t
∗
1)

1 (ρi − ρ̂i)2|

max
t∗1+Th1+16i6t∗2−Th1

|T−1φ−2(i−1−t
∗
1)

1 y2i−1|
t∗2−Th1∑

i=t∗1+Th1+1

wτs,i

= Op(φ
−2Th1
1 T 2/p log4(T )), (19)

where we have used the results of Lemma 3 and Lemma 1. For A22,

A22 6

∣∣∣∣∣∣
t∗2−Th1∑

i=t∗1+Th1+1

wτs,i(ρi − ρ̂i)yi−1ui

∣∣∣∣∣∣
6 T 1/2φ−Th11

t∗2−Th1∑
i=t∗1+Th1+1

wτs,i|φ
(i+Th1−1−t∗1)
1 (ρi − ρ̂i)||T−1/2φ

−(i−1−t∗1)
1 yi−1||ui|

6 T 1/2φ−Th11 max
t∗1+Th1+16i6t∗2−Th1

|φ(i+Th1−1−t
∗
1)

1 (ρi − ρ̂i)||T−1/2φ
−(i−1−t∗1)
1 yi−1|

t∗2−Th1∑
i=t∗1+Th1+1

wτs,i|ui|

= Op(φ
−Th1
1 T 1/p log2(T )). (20)

Using the same argument as in deriving (18), we have A23 = op(1).

For A3 we again consider the dominant terms

A3 =

t∗3−Th1∑
i=t∗2+Th1+1

wτs,i(ρi − ρ̂i)2y2i−1I(|ûi| < ψT ) + 2

t∗3−Th1∑
i=t∗2+Th1+1

wτs,i(ρi − ρ̂i)yi−1uiI(|ûi| < ψT )

+

t∗3−Th1∑
i=t∗2+Th1+1

wτs,i(u
2
i I(|ûi| < ψT )− u2i )

≡ A31 +A32 +A33.
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A31 can be analyzed as follows

A31 6

∣∣∣∣∣∣
t∗3−Th1∑

i=t∗2+Th1+1

wτs,i(ρi − ρ̂i)2y2i−1

∣∣∣∣∣∣
6 φ2Th1−22 Tφ

2(t∗2−t∗1)
1

t∗3−Th1∑
i=t∗2+Th1+1

wτs,iφ
2(i−Th1−t∗2)
2 (ρi − ρ̂i)2|T−1φ

−2(t∗2−t∗1)
1 φ

−2(i−1−t∗2)
2 y2i−1|

6 φ2Th1−22 Tφ
2(t∗2−t∗1)
1 max

t∗2+Th1+16i6t∗3−Th1
φ
2(i−Th1−t∗2)
2 (ρi − ρ̂i)2

max
t∗2+Th1+16i6t∗3−Th1

|T−1φ−2(t
∗
2−t∗1)

1 φ
−2(i−1−t∗2)
2 y2i−1|

t∗3−Th1∑
i=t∗2+Th1+1

wτs,i

= Op(φ
2Th1
2 T 2/p log4(T )) (21)

where we have used the results of Lemma 3 and Lemma 1. For A32,

A32 6

∣∣∣∣∣∣
t∗3−Th1∑

i=t∗2+Th1+1

wτs,i(ρi − ρ̂i)yi−1ui

∣∣∣∣∣∣
6 φTh1−12 T 1/2φ

(t∗2−t∗1)
1

t∗3−Th1∑
i=t∗2+Th1+1

wτs,iφ
(i−Th1−t∗2)
2 |ρi − ρ̂i||T−1/2φ

−(t∗2−t∗1)
1 φ

−(i−1−t∗2)
2 yi−1||ui|

6 φTh1−12 T 1/2φ
(t∗2−t∗1)
1 max

t∗2+Th1+16i6t∗3−Th1i
φ
(i−Th1−t∗2)
2 |ρi − ρ̂i|

max
t∗2+Th1+16i6t∗3−Th1

|T−1/2φ−(t
∗
2−t∗1)

1 φ
−(i−1−t∗2)
2 yi−1|

t∗3−Th1∑
i=t∗2+Th1+1

wτs,i|ui|

= Op(φ
Th1
2 T 1/p log2(T )). (22)

Using the same argument as in deriving (18), we have A33 = op(1).

A4 can be decomposed in the same way as A1 and each term will respectively have the same

order as A11, A12 and A13. Therefore, collecting the results of (16), (17), (18) (and also the

derived order for A23 and A33), (19), (20), (21) and (22), we have

A = Op

(
log(T )

Th1

)
+Op

√ log(T )

Th1

+ op(1)

+Op(Tφ
−2Th1
1 T 2/p−1 log4(T )) +Op(T

1/2φ−Th11 T 1/p−1/2 log2(T ))

+Op(φ
2Th1
2 T 2/p log4(T )) +Op(φ

Th1
2 T 1/p log2(T )).

Under Assumptions B2 and C3, A = op(1). Specifically, we note that because log(T ) and T

are separately dominated by some polynomial rate of Th1, the above terms involving powers of
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Th1, i.e. the terms φ−2Th11 , φ−Th11 , φ2Th12 and φTh12 will converge to 0 at a speed faster than any

combined polynomial diverging rate of log(T ) and T , hence the last four terms are op(1).

For the term B = σ̃2(τ s) − σ̄2(τ s), notice that σ̄2(τ s) − σ̃2(τ s) =
∑T

i=1wτs,i(u
2
i − σ2i ) and

{u2i−σ2i } is a m.d.s. indexed by i. Using Burkholder’s inequality and then the Markov inequality,

it can be shown that 1
Th2

∑T
i=1K

(
i/T−τs
h2

)
(u2i − σ2i ) = Op

(√
1/(Th2)

)
. Also since that 0 <

1
Th2

∑T
i=1K

(
i/T−τs
h2

)
<∞ we find |σ̄2(τ s)− σ̃2(τ s)| = Op

(√
1/(Th2)

)
under assumption C3.

For the term C = σ̄2(τ s)− σ2(τ s), we notice that

|C| =

∣∣∣∣∣
1
Th2

∑T
i=1K( i/T−τsh2

)(σ2(i/T )− σ2(τ s))
1
Th2

∑T
i=1K( i/T−τsh2

)

∣∣∣∣∣ .
The numerator satisfies

∣∣∣∣∣ 1

Th2

T∑
i=1

K(
i/T − τ s

h2
)(σ2(i/T )− σ2(τ s))

∣∣∣∣∣
=

∣∣∣∣∫ 1

0

1

h2
K

(
u− τ s
h2

)
(σ2(u)− σ2(τ s))du(1 + o(1/T ))

∣∣∣∣
=

∣∣∣∣∣
∫ 1−τs

h2

−τs
h2

K(z)(σ2(τ s + h2z)− σ2(τ s))dz(1 + o(1))

∣∣∣∣∣
6 Lβh2

∫ 1−τs
h2

−τs
h2

|K(z)z|dz(1 + o(1))

by the Lipschitz continuity of the σ2(.) function. Notice now the integral
∫ 1−τs

h2
−τs
h2

|K(z)z|dz 6∫∞
−∞ |K(z)z|dz <∞, by Assumption C1. The numerator thus has order O(h2). The denomina-

tor clearly satisfies 0 < 1
Th2

∑T
i=1K( i/T−τsh2

) <∞ for all 1 6 s 6 N . Thus we have C = O(h2),

which is clearly o(1) under the assumption that h2 → 0.

In summary, we have shown that maxs |σ̂2(τ s)− σ2(τ s)| = op(1) and our proof is complete.

(ii) Extending to J > 1, aj,T →∞

When J > 1, later episodes will be similar to the first episode, with the only difference being

that the initial values of later episodes will be the end of the previous episode’s stationary

collapse segment. As in the single episode case, for episode j, write the level of the process at

the end of a stationary collapse segment in the form y[τ∗j,3T ] = yj,∗aj,T , where yj,∗ is a random

variable bounded in probability and aj,T is a deterministic sequence. Then for any episode

j > 1, the initial value of episode j is essentially y[τ∗j−1,3T ]
= yj−1,∗aj−1,T . The analysis of any

episode j can then be conducted in exactly the same way as before.

Under the same condition as Lemma 1, when j > 1, if ρ∗j,1 > 0 and ρ∗j,2 < 0, it can be shown
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that

max
t∗j−1,3+Th1+16t6t∗j,1−Th1

|ρ̂j,t − ρj,t| = Op

(√
log(T )

(aj−1,T ∨ T 1/2)2Th1

)
max

t∗j,1+Th1+16t6t∗j,2−Th1
|φ

(t+Th1−1−t∗j,1)
j,1 (ρ̂j,t − ρj,t)| = Op(T

1/p(aj−1,T ∨ T 1/2)−1 log2(T ))

max
t∗j,2+Th1+16t6t∗j,3−Th1

|φ
(t−Th1−1−t∗j,2)
j,2 (ρ̂j,t − ρj,t)| = Op(φ

−(t∗2−t∗1)
1 T 1/p(aj−1,T ∨ T 1/2)−1 log2(T )).

Notice that no more conditions than those required for Lemma 1 are needed for the above

results in the general episode j case. This is because larger initial values actually make the

estimation problem easier (in the sense of a higher rate of convergence), so there is no need to

impose additional conditions.

(iii) Extending to J > 1 and aj,T = 1

In the above, we prove our results when aT → ∞. From the proof, it can be seen that when

aj−1,T = 1, the rate of convergence of the LLS estimator in the subsequent unit root segment

(Op

(√
log(T )

(aj−1,T∨T 1/2)2Th1

)
) is still valid. However, aj−1,T = 1 makes analysis of the rate of

convergence for the LLS estimator in the stationary collapse regimes more complicated. For

episode j > 1, when aj,T = 1, the process will have already collapsed to an Op(1) level at some

time in the preceding stationary collapse segment, i.e. for some t satisfying t∗j,2 + 1 6 t 6 t∗j,3.

Denote this point in time as tmrj , where the superscript signifies mean reversion. It can be

anticipated that the rate of convergence of the LLS estimator will be different before, after and

around the time of tmrj . When the LLS estimator uses all the observations before tmrj , its rate of

convergence will be the same as that derived in the previous section for the stationary collapse

segment. When the LLS estimator uses all the observations after tmrj but before tj,3, then

the same proof strategy of deriving the uniform rate can be applied and it can be shown that

maxt∗j,1+Th1+16t6t∗j,2−Th1 |ρ̂j,t−ρj,t| = Op

(√
log(T )/(Th1)

)
and the associated residuals will still

deliver a consistent variance function estimator. When the LLS estimator uses observations from

both sides of tmrj , the rate of convergence of the LLS estimator will be a complicated quantity;

however, such a rate does not require an explicit derivation because the length of the interval

involved has order Th1. As in our analysis for the term A′1, the effect of this interval on the final

estimator will vanish under our bandwidth and truncation parameter assumptions. Therefore,

our result also holds for the case aj,T = 1.
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Proof of Theorem 2

As in the proof of Theorem 1, we again proceed using the same three steps. We first prove

Theorem 2 when J = 1 and aT →∞.

Again in this part of the proof, we suppress the dependence on j in all our notation. In what

follows, maxt without specifying the range of t means the maximum is taken over 1 6 t 6 T ; a

maxs without specifying the range of s means the maximum is taken over 1 6 s 6 N . N will be

defined later in the proof. Let C denote a generic positive number, the value of which changes

with the context where it is employed. In a summation of the form
∑T−Th1

i=Th1+1, Th1 may not

be an integer, thus the above summation is a short-hand notation for the summation over the

integers in the range [Th1 + 1, T − Th1].

First partition the interval [0, 1] into N equilength subintervals Is = [(s − 1)/N, s/N ] for

s = 1, . . . , N . Let τ s be the center of Is. Clearly the intervals cover [0, 1]. We then have the

following decomposition:

sup
τ∈[0,1]

|σ̂2(τ)− σ2(τ)|

= max
16s6N

sup
τ∈Is
|σ̂2(τ)− σ2(τ)|

= max
16s6N

sup
τ∈Is
|σ̂2(τ)− σ̂2(τ s) + σ̂2(τ s)− σ2(τ s) + σ2(τ s)− σ2(τ)|

6 max
16s6N

sup
τ∈Is
|σ̂2(τ)− σ̂2(τ s)|+ max

16s6N
|σ̂2(τ s)− σ2(τ s)|+ max

16s6N
sup
τ∈Is
|σ2(τ s)− σ2(τ)|.

First consider σ̂2(τ)− σ̂2(τ s). By definition

σ̂2(τ)− σ̂2(τ s)

=

∑T
i=1Kh2 (i/T − τ) û2i I(|ûi| < ψT )∑T

i=1Kh2 (i/T − τ)
−
∑T

i=1Kh2 (i/T − τ s) û2i I(|ûi| < ψT )∑T
i=1Kh2 (i/T − τ s)

=

∑T
i=1 (Kh2 (i/T − τ)−Kh2 (i/T − τ s)) û2i I(|ûi| < ψT )∑T

i=1Kh2 (i/T − τ)

−σ̂2(τ s)
∑T

i=1 (Kh2 (i/T − τ)−Kh2 (i/T − τ s))∑T
i=1Kh2 (i/T − τ)

6

∑T
i=1

∣∣∣K ( i/T−τh2

)
−K

(
i/T−τs
h2

)∣∣∣ û2i I(|ûi| < ψT )∑T
i=1K( i/T−τh2

)

+σ̂2(τ s)

∑T
i=1

∣∣∣K ( i/T−τh2

)
−K

(
i/T−τs
h2

)∣∣∣∑T
i=1K

(
i/T−τ
h2

) .
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Using the Lipschitz continuity assumption of K(.) over R, we have

max
16s6N

sup
τ∈Is
|σ̂2(τ)− σ̂2(τ s)|

6
C
∑T

i=1 û
2
i I(|ûi| < ψT )

Nh2
∑T

i=1K( i/T−τh2
)

+ σ̂2(τ s)
C
∑T

i=1 1

Nh2
∑T

i=1K
(
i/T−τ
h2

)
= Op

(
ψ2
T

Nh22

)
+Op

(
1

Nh22

)
= Op

(
ψ2
T

Nh22

)

where we have used maxτ σ̂
2(τ) = Op(1) and that (1/T )

∑T
i=2Kh2(i/T − τ) =

∫∞
−∞K(u)du +

o(1) > 0; (1/T )
∑T

i=1 û
2
i I(|ûi| < ψT ) = Op(ψ

2
T ) follows from evaluating its expectation. Now

taking N = (Th2)
2, the above becomes Op(ψ

2
T /(T

2h42)). Then we consider the third term

max16s6N supτ∈Is |σ
2(τ s)− σ2(τ)|. By the Lipschitz continuity of σ(.),

max
16s6N

sup
τ∈Is
|σ2(τ s)− σ2(τ)| ≤ C

(
1

N

)

which is clearly o(1). Then to show the result of the theorem, it remains to show that the

second term satisfies max16s6N |σ̂2(τ s)− σ2(τ s)| = op(1), which we do in the following.

Using the notations σ̃2(τ s), σ̄
2(τ s) and A, B and C defined in the proof of Theorem 1, we

have the decomposition:

max
16s6N

|σ̂2(τ s)− σ2(τ s)| 6 max
s
|A|+ max

s
|B|+ max

s
|C|.

The proof proceeds by showing that each of the three terms are op(1). For A, we can make the

same decomposition as in (14). With reference to the derivation for the pointwise rate for A′1

in the proof of Theorem 1, it is seen that the derived rate is also uniform in s. This is also true

for other boundary and break time neighbourhood terms, hence we have

max
s
|A0 +A′1 +A′2 +A′3 +A′4| = op(1).

Considering the pointwise rates derived in Theorem 1 for the other sub terms of A, we note

that the rates for the terms A11, A13, A21, A23, A31, A33 are already uniform in s. The pointwise

rates for the terms A12, A22 and A32 are not uniform because the order of the terms such as

maxs
∑
wτs,i|ui| cannot be calculated by evaluating their expectations as in Theorem 1. We

compute the order of these terms in the following.
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For A12, we have

max
s
|A12|

6 max
Th1+16i6t∗1−Th1

|ρi − ρ̂i| max
Th1+16i6t∗1−Th1

|yi−1|max
s

t∗1−Th1∑
i=Th1+1

wτs,i|ui|

6 max
Th1+16i6t∗1−Th1

|ρi − ρ̂i| max
Th1+16i6t∗1−Th1

|yi−1|max
s

 t∗1−Th1∑
i=Th1+1

w2
τs,i

1/2 t∗1−Th1∑
i=Th1+1

u2i

1/2

= Op

√ log(T )

T 2h1
× T × 1

Th2
× T

 = Op

√ log(T )

Th1h2


which is op(1) under our bandwidth assumption C3.

Similarly, we can show

max
s
|A22| = Op(φ

−Th1
1 T 1/p log2(T )h

−1/2
2 )

and

max
s
|A32| = Op(φ

Th1
2 T 1/p log2(T )h

−1/2
2 )

which are both op(1) in view of Assumption C3.

The term A4 can be analyzed in the same way as A1 and we have maxs |A4| = op(1). In

summary, we have shown max16s6N |A| = op(1).

For the term maxs |B|, notice that σ̄2(τ s)− σ̃2(τ s) =
∑T

i=1wτs,i(u
2
i − σ2i ) and {u2i − σ2i } is

a m.d.s. indexed by i. By Lemma 6 and the fact that 0 < 1
Th2

∑T
i=1K

(
i/T−τs
h2

)
<∞ we find

max
s
|B| = Op

√ log(T )

Th2

 = op(1)

under assumption C3.

For the term maxs |C|, we note that the pointwise rate derived in Theorem 1 is also uniform

in s. Thus we have maxs |C| = O(hβ2 ), which is clearly o(1) under the assumption that h2 → 0.

In summary, we have shown that maxs |σ̂2(τ s)− σ2(τ s)| = op(1) and our proof is complete

for the case J = 1 and aj,T →∞.

The proof can be extended to the case J > 1, aj,T →∞ by exactly the same argument used

in the proof of Theorem 1. To extend the proof to the case J > 1, aj,T = 1, note again that

the effect of the length Th1 neighbourhood around the mean-reverting time point tmrj on the

uniform behaviour of the variance estimator can also be studied in the same way as the effect
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of the A′1 term; we have already shown above that maxs |A′1| = op(1).
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Proofs of technical lemmas

Proof of Lemma 1

First notice that since the G function is only non-zero over [−1, 1], in general for Th1 + 1 6 t 6

T − Th1 we have,

ρ̂t =

(
T∑
i=1

Gh1

(
i− t
T

)
y2i−1

)−1( T∑
i=1

Gh1

(
i− t
T

)
yi−1∆yi

)

=

 t+Th1∑
i=t−Th1

Gh1

(
i− t
T

)
y2i−1

−1 t+Th1∑
i=t−Th1

Gh1

(
i− t
T

)
y2i−1ρi


+

 t+Th1∑
i=t−Th1

Gh1

(
i− t
T

)
y2i−1

−1 t+Th1∑
i=t−Th1

Gh1

(
i− t
T

)
yi−1ui

 .

Then notice that the ρ(.) function is piecewise constant in each of the four regimes. For

example, when Th1 + 1 6 t 6 t∗1 − Th1, the indices in the range t − Th1 6 i 6 t + Th1 will

satisfy 1 6 i 6 t∗1 and live in the first regime, where by assumption ρi = 0 always holds. Thus

the above becomes

ρ̂t = 0 +

 t+Th1∑
i=t−Th1

Gh1

(
i− t
T

)
y2i−1

−1 t+Th1∑
i=t−Th1

Gh1

(
i− t
T

)
yi−1ui

 .

In the same way, when t∗1 +Th1 + 1 < t 6 t∗2−Th1, the above estimator will only use data from

the second (explosive) regime, where ρi = ρ∗1 always holds. Thus the above becomes

ρ̂t = ρ∗1 +

 t+Th1∑
i=t−Th1

Gh1

(
i− t
T

)
y2i−1

−1 t+Th1∑
i=t−Th1

Gh1

(
i− t
T

)
yi−1ui

 .

We also easily have when t∗2 + Th1 + 1 < t 6 t∗3 − Th1,

ρ̂t = ρ∗2 +

 t+Th1∑
i=t−Th1

Gh1

(
i− t
T

)
y2i−1

−1 t+Th1∑
i=t−Th1

Gh1

(
i− t
T

)
yi−1ui


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and when t∗3 + Th1 + 1 < t 6 T − Th1,

ρ̂t = 0 +

 t+Th1∑
i=t−Th1

Gh1

(
i− t
T

)
y2i−1

−1 t+Th1∑
i=t−Th1

Gh1

(
i− t
T

)
yi−1ui

 .

Using the definition of the ρ(.) function, the above results in the four regimes can be written

compactly as

ρ̂t − ρt =

 t+Th1∑
i=t−Th1

Gh1

(
i− t
T

)
y2i−1

−1 t+Th1∑
i=t−Th1

Gh1

(
i− t
T

)
yi−1ui


in all the four considered “interior” ranges of this theorem. With this representation, the claimed

results of the theorem follow straightforwardly from the results for the corresponding regimes

in Lemma 4 and Lemma 5.

Proof of Lemma 2

When Th1 + 1 6 t 6 t∗1 − Th1, the claimed result can be proved by standard argument such as

that in proof of Lemma A (c) of Xu and Phillips (2008).

When t∗1 + Th1 + 1 6 t 6 t∗2 − Th1,

1

φ
a(t+Th1−1−t∗1)
1

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
φ
a(i−1−t∗1)
1 =

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
φ
a(i−t−Th1)
1 .

By the positivity of the kernel function, φ1 > 1, a > 0 the above is clearly strictly positive and

nondegenerate to 0. On the other hand, since G(.) is bounded, we have

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
φ
a(i−t−Th1)
1 6 C

t+Th1∑
i=t−Th1

φ
a(i−t−Th1)
1

= O(1)

where
∑t+Th1

i=t−Th1 φ
a(i−t−Th1)
1 <∞ because i−t−Th1 6 0 for all i in the range of the summation.

When t∗2 + Th1 + 1 6 t 6 t∗3 − Th1,

1

φ
a(t−Th1−1−t∗2)
2

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
φ
a(i−1−t∗2)
2 =

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
φ
a(i−t+Th1)
2

6 C
t+Th1∑
i=t−Th1

φ
a(i−t+Th1)
2

= O(1)

by noticing that G is bounded, i − t + Th1 > 0 for all i in the above range of summation and

1 > φ2 > 0. It is also nondegenerate to 0 by the same argument as used for the previous regime.

When t∗3 + Th1 + 1 6 t 6 T − Th1, the claim of the lemma can be shown using the same

argument for the regime 1 6 t 6 t∗1 − Th1.
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Proof of Lemma 3

When 0 6 τ 6 τ∗1, that is when 1 6 t 6 t∗1, since (1/
√
T )yt−1 = (1/

√
T )
∑t−1

i=2 σiεi + op(1), the

claimed result follows easily from, e.g. Lemma 1 of Cavaliere (2005).

When t∗1 < t 6 t∗2, by repeated backward substitution we have

yt = ut + φ1ut−1 + . . .+ φ
t−t∗1−1
1 ut∗1+1 + φ

t−t∗1
1 yt∗1

where yt∗1 is the last observation in the unit root regime (and also serves as the initial value for

the explosive regime). Defining

At = φ
t−t∗1
1 yt∗1 ,

Bt = ut + φ1ut−1 + . . .+ φ
t−t∗1−1
1 ut∗1+1

and we have yt = At + Bt. For the term Bt, notice that it is a martingale, by Burkholder’s

inequality (cf. Shiryaev (1996, p.499)),

E |Bt|2 = E
∣∣∣ut + φ1ut−1 + . . .+ φ

t−t∗1−1
1 ut∗1+1

∣∣∣2
∼ E(u2t + φ21u

2
t−1 + . . .+ φ

2(t−t∗1−1)
1 u2t∗1+1)

6 C
φ
2(t−t∗1)
1 − 1

φ21 − 1
= O(φ

2(t−t∗1)
1 ).

Thus it follows easily that φ
−(t−t∗1)
1 Bt = Op(1) for any t∗1 < t 6 t∗2. Furthermore, notice that by

Doob’s maximal inequality for martingales, we also easily have maxt∗1<t6t∗2 φ
−(t−t∗1)
1 |Bt| = Op(1).

For the term At:

T−1/2φ
−(t−t∗1)
1 At = T−1/2yt∗1

d→ U(τ∗1),

noticing that t∗1 is in the unit root regime. In total, we have uniformly for t∗1 < t 6 t∗2,

T−1/2φ
−(t−t∗1)
1 yt = T−1/2φ

−(t−t∗1)
1 (At +Bt)

d→ U(τ∗1).

When t∗2 < t 6 t∗3, by repeated backward substitution we have

yt =
(
ut + φ2ut−1 + . . .+ φ

t−t∗2−1
2 ut∗2+1

)
+ φ

t−t∗2
2 yt∗2 := B′t +A′t,

where B′t and A′t are defined implicitly. Since 0 < φ2 < 1, we easily have B′t = Op(1) for any

t∗2 < t 6 t∗3. Clearly B′t is a martingale, again by Doob’s maximal inequality for martingales, we

also have maxt∗2<t6t∗3 |B
′
t| = Op(1). Now by assumption that the process crashes into y∗t aT with

aT → ∞ at the end of this regime, the only possible term having this order is A′t. This also

implies that A′t is the dominating term and yt = A′t(1+op(1)). Then using the weak convergence

result from the previous explosive regime that T−1/2φ
−(t∗2−t∗1)
1 yt∗2

d−→ U(τ∗1), we have uniformly

for t∗2 < t 6 t∗3,

T−1/2φ
−(t∗2−t∗1)
1 φ

−(t−t∗2)
2 yt = T−1/2φ

−(t∗2−t∗1)
1 yt∗2(1 + op(1))

d−→ U(τ∗1).
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When τ∗3 < τ 6 1, that is t∗3 < t = [τT ] 6 T , again by repeated backward substitution

yt = yt∗3 + ut∗3+1 + ut∗3+2 + . . .+ ut.

The process is a random walk process starting with a term yt∗3 = Op(aT ), while
∑t

i=t∗3+1 ui is

a sum of m.d.s., which in total has order Op(T
1/2). Again by Doob’s inequality, this rate is

also uniform for t∗3 < t 6 T . Thus the asymptotic behavior of yt in this regime depends on the

relative size of the initial value yt∗3 and
∑t

i=t∗3+1 ui. If aT /T
1/2 → 1, the two parts have the

same order and

1√
T
y[τT ] =

1√
T
yt∗3 +

1√
T

(ut∗3+1 + ut∗3+2 + . . .+ u[τT ])⇒ y∗ + (U(τ)− U(τ∗3)).

If aT /T
1/2 → 0, then

∑t
i=t∗3+1 ui dominates and

1√
T
y[τT ] =

1√
T
yt∗3 +

1√
T

(ut∗3+1 + ut∗3+2 + . . .+ u[τT ])⇒ (U(τ)− U(τ∗3)).

If aT /T
1/2 →∞, then the initial value part dominates and

1

aT
y[τT ] =

1

aT
yt∗3 +

1

aT
(ut∗3+1 + ut∗3+2 + . . .+ u[τT ])⇒ y∗.

The proof for the lemma is thus finished.

Proof of Lemma 4

When Th1 + 1 6 t 6 t∗1 − Th1, we have

T−2h−11

t+Th1∑
i=t−Th1

G

(
i− t
T

)
y2i−1 6 T−2h−11 max

16i6t∗1
y2i−1

t+Th1∑
i=t−Th1

G

(
i− t
T

)
= Op(1),

because max16i6t∗1 y
2
i−1 = Op(T ) follows easily by applying the functional continuous mapping

theorem to the result of Lemma 3 in the corresponding regime. Also from Lemma 2 we have∑t+Th1
i=t−Th1 G

(
i−t
T

)
= O(Th1).

When t∗1 + Th1 + 1 < t 6 t∗2 − Th1, we have

1

Tφ
2(t+Th1−1−t∗1)
1

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
y2i−1

6
1

φ
2(t+Th1−1−t∗1)
1

max
t∗1+1<i6t∗2

|T−1φ−2(i−1−t
∗
1)

1 y2i−1|
t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
φ
2(i−1−t∗1)
1 .

By the results of Lemma 3 and Lemma 2 in the corresponding regime, using an argument similar

to the above first regime, the claimed results for the explosive regime follow easily.
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When t∗2 + Th1 + 1 < t 6 t∗3 − Th1, we have

1

Tφ
2(t∗2−t∗1)
1 φ

2(t−Th1−1−t∗2)
2

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
y2i−1

6
1

φ
2(t−Th1−1−t∗2)
2

max
t∗2+1<i6t∗3

|T−1φ−2(t
∗
2−t∗1)

1 φ
−2(i−1−t∗2)
2 y2i−1|

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
φ
2(i−1−t∗2)
2 .

Similarly, the claimed result for this regime follows from the result of Lemma 3 and Lemma 2

in the corresponding regime by the same argument used above.

When t∗3 + Th1 + 1 < t 6 T − Th1,

(aT ∨ T 1/2)−2T−1h−11

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
y2i−1

6 max
t∗3+16i6T

∣∣∣∣ 1

aT ∨ T 1/2
yi−1

∣∣∣∣2 T−1h−11

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
.

Again, the claimed result follows from the result of Lemma 3 and Lemma 2 in the corresponding

regime by the same argument used above.

Proof of Lemma 5

The proof uses a standard argument (i.e. the truncation argument and the exponential in-

equality) as in Li et al. (2016) and Phillips et al. (2017) to derive the stated uniform rates of

convergence.

When Th1 + 1 6 t 6 t∗1 − Th1 denote

Bt,T =

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
yi−1ui.

Notice that {yi−1ui} is a m.d.s. indexed by i, with respect to the natural filtration generated

by the {ui} sequence. Define

bi = yi−1ui, b̄i = yi−1uiI(|yi−1| 6 c1)I(|ui| 6 c2)

and

b̃i = bi − b̄i.

Further, define

B̄t,T =

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
(b̄i − E(b̄i|Fi−1))

and

B̃t,T =

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
(b̃i − E(b̃i|Fi−1))
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where both B̄t,T and B̃t,T are martingales by construction. Also note that

B̄t,T + B̃t,T =

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
(b̄i + b̃i)−

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
E(b̄i + b̃i|Fi−1)

=

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
bi −

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
E(bi|Fi−1)

=

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
bi = Bt,T

where we use the fact that bi = yi−1ui is a m.d.s. indexed by i. We have thus decomposed Bt,T

into two terms, where each term is by definition a sum of m.d.s., with B̄t,T having bounded

support.

Next, we show

max
Th1+16t6t∗1−Th1

|B̄t,T | = Op

(√
T 2h1 log(T )

)
, (S.1)

max
Th1+16t6t∗1−Th1

|B̃t,T | = op

(√
T 2h1 log(T )

)
(S.2)

which imply (9).

We first prove (S.1). B̄t,T is by construction a sum of m.d.s. with bounded support. We

first compute the previsible quadratic variation,

max
Th1+16t6t∗1−Th1

V 2
t,T := max

Th1+16t6t∗1−Th1

t+Th1∑
i=t−Th1

E

(
G2

(
i− t
Th1

)
(b̄i − E(b̄i|Fi−1))2|Fi−1

)

6 max
Th1+16t6t∗1−Th1

t+Th1∑
i=t−Th1

G2

(
i− t
Th1

)
E(b̄2i |Fi−1)

= max
Th1+16t6t∗1−Th1

t+Th1∑
i=t−Th1

G2

(
i− t
Th1

)
y2i−1I(|yi−1| 6 c1)σ

2
iE(I(|ui| 6 c2)|Fi−1)

6 max
Th1+16t6t∗1−Th1

t+Th1∑
i=t−Th1

G2

(
i− t
Th1

)
y2i−1σ

2
i

6 max
i
y2i−1σ

2
i max

i,t
G

(
i− t
Th1

)
max
t

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
= Op

((√
T
)2)

O(Th1) = Op(T
2h1).

In the above, we have used the shorthand notation maxi, maxt and maxi,t when the range of
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the maximal taken is implicit in the context. Now

P

(
max

Th1+16t6t∗1−Th1
|B̄t,T | > x

)
6 P

(
max

Th1+16t6t∗1−Th1
|B̄t,T | > x, max

Th1+16t6t∗1−Th1
V 2
t,T 6 y

)
+ P

(
max

Th1+16t6t∗1−Th1
V 2
t,T > y

)
6

T∑
t=1

P

(
|B̄t,T | > x, max

Th1+16t6t∗1−Th1
V 2
t,T 6 y

)
+ P

(
max

Th1+16t6t∗1−Th1
V 2
t,T > y

)

6
T∑
t=1

P
(
|B̄t,T | > x, V 2

t,T 6 y
)

+ P

(
max

Th1+16t6t∗1−Th1
V 2
t,T > y

)
.

By the exponential inequality for m.d.s. in Theorem 1.2A of de la Peña (1999),

T∑
t=1

P (|B̄t,T | > x, V 2
t,T 6 y) 6

T∑
t=1

exp

(
− x2

2(y + c1c2x)

)
.

Then choosing x = CTh1/21 log1/2(T ), y = CT 2h1, c1 = (T 2h1)
1
2

(
T

3
2h1

)− 1
p−1

T
− 1

2(p−1) log−
1
2 (T ),

c2 =
(
T

3
2h1

) 1
p−1

T
1

2(p−1) , then the above becomes

T∑
t=1

exp

(
− x2

2(y + c1c2x)

)
=

T∑
t=1

exp

(
− C2T 2h1 log(T )

2(CT 2h1 + CT 2h1)

)

=

T∑
t=1

exp

(
−C log(T )

4

)
= T × T−C/4 → 0,

if we choose C large enough. On the other hand, in view of maxTh1+16t6t∗1−Th1 V
2
t,T = Op(T

2h1)

derived above and y = CT 2h1, P (maxTh1+16t6t∗1−Th1 V
2
t,T > y) can be made arbitrarily small

by choosing C large enough. In total we have

P

(
max

Th1+16t6t∗1−Th1
|B̄t,T | > CTh1/21 log1/2(T )

)
→ 0

thus (S.1) is proved.

For (S.2), notice that

|B̃t,T | =

∣∣∣∣∣∣
t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
(b̃i − E(b̃i|Fi−1))

∣∣∣∣∣∣
6

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
|b̃i|+

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
|E(b̃i|Fi−1)|

= B1 +B2

where B1 and B2 are defined implicitly. First consider B1, and notice that

|b̃i| = |yi−1uiI(|yi−1| > c1 or |ui| > c2)|

6 |yi−1uiI(|yi−1| > c1)|+ |yi−1uiI(|ui| > c2)|
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so that

P

(
max
16i6t∗1

|b̃i| > 0

)
6 P

(
max
16i6t∗1

|yi−1uiI(|yi−1| > c1)| > 0

)
+ P

(
max
16i6t∗1

|yi−1uiI(|ui| > c2)| > 0

)
6 P

(
max
16i6t∗1

|yi| > c1

)
+ P

(
max
16i6t∗1

|ui| > c2

)
6 P

(
max
16i6t∗1

|yi| > c1

)
+

T∑
i=1

P (|ui| > c2)

6 P

(
max
16i6t∗1

|T−1/2yi| > T−1/2c1

)
+ C

(
TE|ui|p

cp2

)
where in the second step, we have used the fact that the events {max16i6t∗1 |yi−1uiI(|yi−1| >
c1)| > 0} and {max16i6t∗1 |yi−1uiI(|ui| > c2)| > 0} respectively imply {max16i6t∗1 |yi| > c1} and

{max16i6t∗1 |ui| > c2}. Using the definition of c1

T−1/2c1 =

 log(T )

T
1− 4

p−1h
1− 2

p−1

1

− 1
2

→∞

by assumption B2. Then using the fact that max16i6t∗1 |T
−1/2yi| = Op(1), we have

P ( max
16i6t∗1

|T−1/2yi| > T−1/2c1)→ 0. (S.3)

Now using the definition of c2 and noticing the finiteness of E|ui|p, we have

TE|ui|p

cp2
= O

( 1

T
1+ 1

ph1

) p
p−1

 = o(1).

Thus in total we have P (max16i6T |b̃i| > 0) = o(1). It then follows that

max
Th1+16t6t∗1−Th1

|B1| = max
Th1+16t6t∗1−Th1

∣∣∣∣∣∣
t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
|b̃i|

∣∣∣∣∣∣
6 max

16i6T
|b̃i| max

Th1+16t6t∗1−Th1

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
= op(Th1) = op

(√
T 2h1 log(T )

)
(S.4)

where we have used maxt
∑t+Th1

i=t−Th1 G
(
i−t
Th1

)
= O(Th1).
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Now, for B2,

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
|E(b̃i|Fi−1)| 6

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
E(|yi−1uiI(|yi−1| > c1)||Fi−1)

+

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
E (|yi−1uiI(|ui| > c2)||Fi−1)

6
t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
|yi−1|I(|yi−1| > c1)E(|ui||Fi−1)

+

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
|yi−1|E (|uiI(|ui| > c2)||Fi−1)

= B21 +B22

where B21 and B22 are defined implicitly. For B22,

max
Th1+16t6t∗1−Th1

|B22| = max
Th1+16t6t∗1−Th1

∣∣∣∣∣∣
t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
|yi−1|E(|uiI(|ui| > c2)||Fi−1)

∣∣∣∣∣∣
6 max

Th1+16t6t∗1−Th1

∣∣∣∣∣∣
t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
|yi−1|

E(|ui|p|Fi−1)
cp−12

∣∣∣∣∣∣
6 C

1

cp−12

max
16i6t∗1

|yi−1| max
Th1+16t6t∗1−Th1

∣∣∣∣∣∣
t+Th1∑
i=t−Th1

G

(
i− t
Th1

)∣∣∣∣∣∣
=

1

cp−12

Op

(√
T
)
O(Th1) = Op

(
1

cp−12

T 3/2h1

)
,

Using the definition of c2, the above becomes

max
Th1+16t6t∗1−Th1

|B22| = Op

(
T−1/2

)
= op(1) = op

(√
T 2h1 log(T )

)
. (S.5)

For B21, first notice that

P

(
max

Th1+16i6t∗1−Th1
|yi−1|I(|yi−1| > c1) > 0

)
6 P

(
max

Th1+16i6t∗1−Th1
|yi−1| > c1

)

which is o(1) from (S.3). Thus

max
Th1+16t6t∗1−Th1

|B21|

= max
Th1+16t6t∗1−Th1

∣∣∣∣∣∣
t+Th1∑
i=t−Th1

Gh1

(
i− t
T

)
|yi−1|I(|yi−1| > c1)E(|ui||Fi−1)

∣∣∣∣∣∣
6 max

16i6t∗1
|yi−1|I(|yi−1| > c1) max

16i6t∗1
E(|ui||Fi−1) max

Th1+16t6t∗1−Th1

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
= op(Th1) = op

(√
T 2h1 log(T )

)
. (S.6)
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Combining results (S.4), (S.5) and (S.6), we have proved (S.2).

When t∗1 + Th1 + 1 < t 6 t∗2 − Th1, during the explosive regime, we use exactly the same

strategy of proof as in the previous regime, although the constants used and the rates derived

will be different. Define

B′t,T = φ
−(t+Th1−1−t∗1)
1

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
yi−1ui.

Define

b′i,t = φ
−(t+Th1−1−t∗1)
1 yi−1ui

b̄′i,t = φ
−(t+Th1−1−t∗1)
1 yi−1uiI(|φ

−(i−1−t∗1)
1 yi−1| 6 c1)I(φ

(i−t−Th1)
1 |ui| 6 c2),

and

b̃′i = b′i − b̄′i.

Also define

B̄′t,T =

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
(b̄′i − E(b̄′i|Fi−1))

and

B̃′t,T =

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
(b̃′i − E(b̃′i|Fi−1)).

Because φ
−(t+Th1−1−t∗1)
1 yi−1ui is a m.d.s. indexed by i, we again have

B̄′t,T + B̃′t,T = B′t,T .

We have thus decomposed B′t,T into two terms, where both terms are by construction martin-

gales, with B̄′t,T having bounded support.

Next, we show

max
t∗1+Th1<t6t

∗
2−Th1

|B̄′t,T | = Op

(
T 1/p+1/2 log2(T )

)
, (S.7)

max
t∗1+Th1<t6t

∗
2−Th1

|B̃′t,T | = op

(
T 1/p+1/2 log2(T )

)
(S.8)

and the claimed result of the lemma follows easily.

We first prove (S.7). B̄′t,T is clearly a sum of m.d.s. with bounded support. We first compute

the previsible quadratic variation. Similar to the previous regime

max
t∗1+Th1<t6t

∗
2−Th1

V ′2T

6 max
t∗1+Th1<t6t

∗
2−Th1

φ
−2(t+Th1−1−t∗1)
1

t+Th1∑
i=t−Th1

G2

(
i− t
Th1

)
y2i−1σ

2
i

6 max
i
|φ−2(i−1−t

∗
1)

1 y2i−1|max
i
σ2i max

i,t
G

(
i− t
Th1

)
max

t∗1+Th1<t6t
∗
2−Th1

t+Th1∑
i=t−Th1

φ
2(i−t−Th1)
1 G

(
i− t
Th1

)
= Op(T )
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where we use the result of Lemma 3. Now using a similar argument as before,

P

(
max

t∗1+Th1<t6t
∗
2−Th1

|B̄′t,T | > x

)
6

T∑
t=1

P
(
|B̄′t,T | > x, V ′2t 6 y

)
+ P

(
max

t∗1+Th1<t6t
∗
2−Th1

V ′2t > y

)
.

By Theorem 1.2A of de la Peña (1999), we have

T∑
t=1

P (|B̄′t,T | > x, V ′2t 6 y) 6
T∑
t=1

exp

(
− x2

2(y + c1c2x)

)
.

Then choosing x = CT 1/p+1/2 log2(T ), y = CT, c1 = T 1/2 log1/2(T ), c2 = T 1/p log1/2(T ), the

above becomes

T∑
t=1

exp

(
− x2

2(y + c1c2x)

)
=

T∑
t=1

exp

(
− C2T 1+2/p log4(T )

2(CT + CT 1+2/p log3(T )

)

∼
T∑
t=1

exp

(
−C log(T )

2

)
= T 1−C/2 → 0

if we choose C large enough. On the other hand, in view of the facts that maxt∗1+Th1<t6t∗2−Th1 V
′2
t =

Op(T ) and y = CT , P (maxt∗1+Th1<t6t∗2−Th1 V
′2
t > y) can be made arbitrarily small by choosing

C large enough. In total we have

P

(
max

t∗1+Th1<t6t
∗
2−Th1

|B̄′t,T | > CT 1/p+1/2 log2(T )

)
→ 0

and we have (S.7) proved.

For (S.8), notice that

|B̃′t,T | =

∣∣∣∣∣∣
t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
(b̃′i − E(b̃′i|Fi−1))

∣∣∣∣∣∣
6

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
|b̃′i|+

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
|E(b̃′i|Fi−1)|

= B′1 +B′2.

First look at B′1. Notice that by definition

B′1 =

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
|b̃′i|

6
t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
|φ−(t+Th1−1−t

∗
1)

1 yi−1uiI(|φ
−(i−1−t∗1)
1 yi−1| > c1)|

+

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
|φ−(t+Th1−1−t

∗
1)

1 yi−1uiI(|φ(i−t−Th1)1 ui| > c2)|

= B′11 +B′12.
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For B′11, notice that

P

(
max

t∗1+Th1<t6t
∗
2−Th1

|B′11| > 0

)
6 P

(
max

t∗1+16i6t∗2
|φ−(i−1−t

∗
1)

1 yi−1| > c1

)
→ 0,

by the definition of c1. We thus have maxt∗1+Th1<t6t∗2−Th1 |B
′
11| = op(1). B′12 can be analyzed

in a similar way as B′11 and notice that

P

(
max

t∗1+Th1<t6t
∗
2−Th1

|B′12| > 0

)
6 P

(
max

t∗1+16i6t∗2
|ui| > c2

)

6

t∗2∑
i=t∗1+1

P (|ui| > c2)

6

t∗2∑
i=t∗1+1

E|ui|p

cp2
→ 0,

using the definition of c2. We thus have

max
t∗1+Th1<t6t

∗
2−Th1

|B′12| = op(1).

In total, we then have

max
t∗1+Th1<t6t

∗
2−Th1

|B′1| = op

(
T 1/2+1/p log2(T )

)
. (S.9)

Now, for B′2,

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
|E(b̃i|Fi−1)|

6
t+Th1∑
i=t−Th1

G

(
i− t
Th1

) ∣∣∣φ−(i−1−t∗1)1 yi−1

∣∣∣φ(i−t−Th1)1 I(|φ−(i−1−t
∗
1)

1 yi−1| > c1)E(|ui||Fi−1)

+

t+Th1∑
i=t−Th1

G

(
i− t
Th1

) ∣∣∣φ−(i−1−t∗1)1 yi−1

∣∣∣φ(i−t−Th1)1 E(|uiI(|φ
(i−t∗2)
1 ui| > c2)||Fi−1)

= B′21 +B′22.
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First look at B′22,

max
t∗1+Th1<t6t

∗
2−Th1

|B′22|

= max
t∗1+Th1<t6t

∗
2−Th1

∣∣∣∣∣∣
t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
|φ−(i−1−t

∗
1)

1 yi−1|φ(i−t−Th1)1

E(|uiI(|φ(i−t−Th1)1 ui| > c2)||Fi−1)
∣∣∣

6 C max
t∗1+16i6t∗2

|φ−(i−1−t
∗
1)

1 yi−1|
E(|ui|p|Fi−1)

cp−12

max
t∗1+Th1<t6t

∗
2−Th1

∣∣∣∣∣∣
t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
φ
(i−t−Th1)
1

∣∣∣∣∣∣
= Op

(√
T
)
× op(1)×Op(1) = op(T

1/2+1/p log2(T )), (S.10)

where we have used the definition of c2. Then we look at B′21. First notice that

P

(
max

t∗1+16i6t∗2
|φ−(i−1−t

∗
1)

1 yi−1|I(|φ
−(i−1−t∗1)
1 yi−1| > c1) > 0

)
6 P

(
max

t∗1+16i6t∗2
|φ−(i−1−t

∗
1)

1 yi−1| > c1

)
→ 0.

Thus we have

max
t∗1+Th1<t6t

∗
2−Th1

|B′21|

= max
t∗1+Th1<t6t

∗
2−Th1

∣∣∣∣∣∣
t+Th1∑
i=t−Th1

G

(
i− t
Th1

) ∣∣∣φ−(i−1−t∗1)1 yi−1

∣∣∣ I(∣∣∣φ−(i−1−t∗1)1 yi−1

∣∣∣ > c1

)
φ
(i−t−Th1)
1 E(|ui||Fi−1)

∣∣∣
6 max

t∗1+16i6t∗2

∣∣∣φ−(i−1−t∗1)1 yi−1

∣∣∣ I(∣∣∣φ−(i−1−t∗1)1 yi−1

∣∣∣ > c1

)
max

t∗1+16i6t∗2
E(|ui||Fi−1) max

t∗1+Th1<t6t
∗
2−Th1

∣∣∣∣∣∣
t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
φ
(i−t−Th1)
1

∣∣∣∣∣∣
= op(1)× C ×O(1) = op

(
T 1/2+1/p log2(T )

)
. (S.11)

Combining the results in (S.9), (S.10) and (S.11) we have (S.8) proved.

When t∗2 + Th1 + 1 < t 6 t∗3 − Th1, again define

B′′t,T =

t+Th1∑
i=t−Th1

G

(
i− t
Th1

)
b′′i

with

b′′i = φ
−(t−Th1−1−t∗2)
2 yi−1ui.

The claimed uniform rate of convergence can be derived in a similar fashion as in the explosive
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regime, but with the truncated m.d.s. defined as

b̄′′i = φ
−(t−Th1−1−t∗2)
2 yi−1uiI(|φ

−(i−1−t∗2)
2 yi−1| 6 c1)I(φi−t+Th12 |ui| 6 c2)

and its complement as

b̃′′i = b′′i − b̄′′i

and with the following choice of constants x = CT 1/2+1/pφ
(t∗2−t∗1)
1 log2(T ), y = CTφ2(t

∗
2−t∗1)

1 ,

c1 = T 1/2φ
(t∗2−t∗1)
1 log1/2(T ), c2 = T 1/p log1/2(T ).

When t∗3 + Th1 + 1 < t 6 T − Th1, the process is a random walk process that restarts

from y∗aT . When aT /T
1/2 → 0 or aT /T

1/2 → 1, the derivation and results are exactly the

same as in the Th1 + 1 6 t 6 t∗1 − Th1 case. When aT /T
1/2 → ∞, the derivation is still

the same as in the first random walk regime except with the following choice of constants

x = CaT (Th1)
1/2 log1/2(T ), y = Ca2TTh1, c1 = aT (Th1)

1
2

(
T

3
2h1

)− 1
p−1

T
− 1

2(p−1) log−
1
2 (T ), c2 =(

T
3
2h1

) 1
p−1

T
1

2(p−1) . No further bandwidth assumptions are needed.

Therefore, the detailed proofs for the crash regime and the last random walk regime are

omitted to avoid repetition.

Proof of Lemma 6

First denote zi = u2i − σ2i , and denote the object of interest as

Zs,T =

T∑
i=1

K

(
i/T − τ s

h2

)
zi−1.

Notice that {zi} is a m.d.s. indexed by i, with respect to the natural filtration generated by

the {ui} sequence. The proof uses a truncation technique similar to that used in the proof of

Lemma 5. Define

z̄i = ziI(|zi| 6 c)

and

z̃i = zi − z̄i.

Further, define

Z̄s,T =
T∑
i=1

K

(
i/T − τ s

h2

)
(z̄i − E(z̄i|Fi−1))

and

Z̃s,T =

T∑
i=1

K

(
i/T − τ s

h2

)
(z̃i − E(z̃i|Fi−1)).

Because zi is a m.d.s. indexed by i, as in the proof of Lemma 5 we easily have

Z̄s,T + Z̃s,T = Zs,T .

We have thus decomposed Zs,T into two terms, where both terms are by definition martingales,

with Z̄s,T having bounded support.
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Next, we show

max
16s6N

|Z̄s,T | = Op

(√
Th2 log(T )

)
, (S.12)

max
16s6N

|Z̃s,T | = op

(√
Th2 log(T )

)
. (S.13)

which will imply the result of the lemma.

We first prove (S.12). Z̄s,T is clearly a sum of m.d.s. with bounded support. In the following,

we again use maxs as the shorthand notation for max16s6N . We first compute the previsible

quadratic variation,

max
s
V 2
s,T := max

s

T∑
i=1

E

(
K2

(
i/T − τ s

h2

)
(z̄i − E(z̄i|Fi−1))2|Fi−1

)

6 max
s

T∑
i=1

K2

(
i/T − τ s

h2

)
E(z̄2i |Fi−1)

6 Cmax
s

T∑
i=1

K2

(
i/T − τ s

h2

)
σ4iE(I(|zi| 6 c)|Fi−1)

6 Cmax
s

T∑
i=1

K2

(
i/T − τ s

h2

)
σ4i .

6 C max
16i6T

σ4i max
16i6T,16s6N

K

(
i/T − τ s

h2

)
max
s

∣∣∣∣∣
T∑
i=1

K

(
i/T − τ s

h2

)∣∣∣∣∣
= Op(Th2).

Now using the same argument as in the proof of Lemma 5,

P
(

max
s
|Z̄s,T | > x

)
6

N∑
s=1

P (|Z̄s,T | > x, V 2
s,T 6 y) + P (max

s
V 2
s,T > y).

By Theorem 1.2A of de la Peña (1999), we have for any s,

P (|Z̄s,T | > x, V 2
s,T 6 y) 6 exp

(
− x2

2(y + cx)

)
.

Then, choosing x = C (Th2)
1/2 log1/2(T ), y = CTh2, c = (Th2)

1/2 log−1/2(T ), we have

N∑
s=1

P
(
|Z̄s,T | > x, V 2

s,T 6 y
)

6
N∑
s=1

exp

(
− x2

2(y + cx)

)

=
N∑
s=1

exp

(
− C2Th2 log(T )

2(CTh2 + CTh2)

)

=
N∑
s=1

exp

(
−C log(T )

4

)
= N × T−C/4 → 0,

if we choose C large enough. On the other hand, in view of maxs V
2
s,T = Op(Th2) and the

definition of y, P (maxs V
2
s,T > y) can be made arbitrarily small by choose C large enough. In
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total we have

P
(

max
s
|Z̄s,T | > CT 1/2h

1/2
2 log1/2(T )

)
→ 0

thus (S.12) is proved.

For (S.13), notice that

|Z̃s,T | =

∣∣∣∣∣
T∑
i=1

K

(
i/T − τ s

h2

)
(z̃i − E(z̃i|Fi−1))

∣∣∣∣∣
6

T∑
i=1

K

(
i/T − τ s

h2

)
|z̃i|+

T∑
i=1

K

(
i/T − τ s

h2

)
|E(z̃i|Fi−1)|

= Z1 + Z2.

First consider Z1. Notice that by the definition of |z̃i|,

P

(
max
s

T∑
i=1

K

(
i/T − τ s

h2

)
|z̃i| > 0

)
6 P

(
max
16i6T

|z̃i| > 0

)
= P

(
max
16i6T

|ziI(|zi| > c)| > 0

)
6

T∑
i=1

P (|ziI(|zi| > c)| > 0)

6
T∑
i=1

P (|zi| > c)

6 C
TE|zi|p/2

cp/2
∼ C

TE|ui|p

cp/2

where in the third inequality, we have used the fact that {|zi| > c} implies {|ziI(|zi| > c)| > 0}.
Using the definition of c, the above becomes

P

(
max
s

T∑
i=1

K

(
i/T − τ s

h2

)
|z̃i| > 0

)
6 C

T logp/4(T )

(Th2)p/4
= C

(
log(T )

T
1− 4

ph2

)p/4

which is op(1) under C3. We thus have maxs |Z1| = op(1) = op

(√
Th2 log(T )

)
. Now, for Z2,

T∑
i=1

K

(
i/T − τ s

h2

)
|E(z̃i|Fi−1)| 6

T∑
i=1

K

(
i/T − τ s

h2

)
E(|ziI(|zi| > c)||Fi−1)

6
T∑
i=1

K

(
i/T − τ s

h2

)
E(|zi|p/2|Fi−1)

cp/2−1
.
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Thus,

max
s
|Z2| 6 max

s

∣∣∣∣∣
T∑
i=1

K

(
i/T − τ s

h2

)
E(|ui|p|Fi−1)

cp/2−1

∣∣∣∣∣
6 C

1

cp/2−1
max
s

∣∣∣∣∣
T∑
i=1

K

(
i/T − τ s

h2

)∣∣∣∣∣
= Op

(
1

cp/2−1
Th2

)
= Op

(
log(p−2)/4(T )

(Th2)
(p−6)/4

)
.

By Assumption C3 and straightforward algebra, we have maxs |Z2| = op(1). Combining results

for the uniform rates of Z1 and Z2 we have proved (S.13).
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