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Abstract—With growing significance of interval-valued data,
interest in artificial intelligence methods tailored to this data
type is similarly increasing across a range of application do-
mains. Here, regression, i.e., the modelling of the association
between interval-valued variables has been shown to be both
challenging and rewarding. Beyond the mathematical challenges,
fundamentals, such as the visualization of regression models, are
not similarly available for interval-valued data, limiting both
accessibility and utility of resulting models. Recently, the Interval
Regression Graph (IRG) was introduced, providing a powerful
visualization tool for interval-valued regression models. In this
paper, we demonstrate the IRG in a practical data-science appli-
cation, showing how it can rapidly highlight powerful insights of
data. Specifically, we focus on consumer characteristics, analyzing
potential relationships between their demographic characteristics
and their product purchase intentions. We conclude with a brief
outlook on the potential and remaining challenges of leveraging
interval-valued data using fuzzy systems and artificial intelligence
more broadly.

Index Terms—Intervals, regression, uncertainty, linear

I. INTRODUCTION

Interval-valued (IV) data have gained growing importance
as a basic data type as they can capture information entirely
with an intrinsic representation of range or uncertainty in each
individual ‘measurement’, which is not possible with point-
values, such as numbers or ranks [1]. Such IV data may arise
from imprecision and uncertainty in measurement in sensor
data, uncertainty of outcome in stock prices, or in vagueness
or nuance in linguistic terms [2]–[4].

Regression for IV data is a fundamental step from a
statistical and artificial intelligence (AI) point of view, and
it is being increasingly applied in domains ranging from
marketing to cyber-security, modelling of the relationships
between variables and their inherent uncertainty or range [5],
[6]. For example, the regression of IV consumer preference
data can allow us to infer not only how a snack’s nutritional
benefits influence purchase intention of consumers, but also
how uncertainty about these benefits impact is associated with
uncertainty in purchase intention [7], a crucial insight from a
marketing perspective.
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A number of linear regression approaches have been devel-
oped for IV data, using different reference points of intervals,
such as center values, lower and upper bounds, or center
and range (width) as regression variables [3]. While earlier
approaches struggled maintaining mathematical coherence in
the models, i.e., ensuring lower interval bounds are smaller
than upper bounds, [8]–[10], the most recent approaches [11]–
[14] adopt refined strategies and algorithms to ensure the
coherence of bounds. A detailed review of the state of the art
approaches, their behaviour, advantages and pitfalls using both
synthetic and real-world data sets having various properties
are provided in [15]. Experiments consistently show that
among the existing interval linear regression approaches, the
Parametrized Model (PM) introduced in [14] produces the best
model fit overall, for a variety of IV data sets.

The same paper [15] also introduces the aforementioned
novel visualization for IV regression models, drastically im-
proving their interpretability and thus accessibility and utility.
These models are referred to as ‘interval regression graph’
(IRG) and succinctly show the complex relationship between
IV regressor and regressand in respect to both position (center)
and uncertainty (range) within a given IV regression model. To
illustrate the IRG, we show an example of a synthetic IV data
set in Fig. 1(a) where the position and range of the regressand,
Y increase with the position and range of regressor, X—that
is, they vary in unison. This reflects a common case, e.g., the
price of cars vs their horsepower. The relationship between
the variables in this figure—as modelled by the regression
method—is captured through the IRG in Fig. 1(b). The IRG
will be discussed in more details in Section III.

Going beyond the journal paper, this paper aims to expand
on the interpretability of the IRG, demonstrating how it can
provide rapid insight into the relationship of IV variables via
the respective regression models in real-world applications
such as marketing and consumer-insight.

Here, extant studies using numeric data suggest that con-
sumers’ purchase intention is related to their personal de-
mographic characteristics, such as age, gender, race and in-
come [16], [17]. These studies indicate that consumers desire
to buy products are significantly different across age-groups,
gender, and income using statistical tests, such as t-tests or
ANOVA tests. For example, they highlight the importance of



(a) Set-1 (b) IRG for Set-1

Fig. 1: (a) Visualization of IV data Set-1 and (b) IRG in respect
to Ŷ (range) using the PM method [14].

ethical consumption or socially responsible consumption with
associated low environment footprint in respect to purchase
intention [17]. Further, they show that this sustainability focus
is more common in older individuals, while environmentally-
conscious and health-conscious attitudes were more strongly
expressed among females compared to males [17].

With the view to exploring the relevance of uncertainty and
range in these variables, and leveraging linear regression, this
paper examines such relationships where consumers provide
their purchase intention of snack foods using IV data for
different attributes of the products. We demonstrate how the
IRG can support the effective articulation of the relationship
between purchase intention and different attributes (e.g., visual
appeal, taste, healthiness, ethics) in respect to demographic
factors of consumers (e.g., age, gender). We note that while
IRGs are independent of the underlying regression approach,
i.e. can be generated based on all IV regression methods, we
only consider the PM method as it consistently produces strong
results in terms of model fit among existing methods [14], [15].

The paper is organized as follows: Section II describes IV
data sets and reviews the best IV linear regression methods
where both dependent and independent variables are IV, based
on the vector representation of intervals in the regression
process. Section III introduces the interval regression graph
(IRG) and Section IV demonstrates the behaviour of the IRG
in interpreting the relationship between variables in terms of
their position and range for the real-world data set. Lastly,
Section V concludes the paper and highlights future work.
Table I presents a list of acronyms and notation used in this
paper to assist the reader.

II. BACKGROUND

In this section, all IV data sets used in this paper are
introduced. Then, a brief review of well-known linear regres-
sion models for IV data is provided followed by a detailed
discussion on one of the leading regression models—the
Parametrized Model (PM) [14]. Note that this paper focuses on
IV regression as it provides a natural underpinning for future
extension to more complex data types such as fuzzy sets.

A. IV Data Sets

An interval a is defined by its left and right endpoints, a−

and a+ with a− ≤ a+ [18]. a− and a+ are also referred to

TABLE I: Acronyms and Notation

CM Center Method [8]
MinMax MinMax Method [9]
CRM Center and Range Method [10]
CCRM Constrained Center and Range Method [11]
CIM Complete Information Method [12]
LM Linear Model [13]
PM Parametrized Model [14]
IV Interval-Valued
IRG Interval Regression Graph
a Interval {a ⊆ R : a = [a−, a+], a− ≤ a+}
aw Range of Interval, aw = |a| = |a+ − a−|
ac Center of Interval, ac =

(a++a−)
2

ar Radius of Interval ar ≃ 1
2
aw (Half Range)

Y IV Regressand
Ŷ Estimated Y
X IV Regressor(s)

as the lower and upper bounds of a. It is generally presented
as a = [a−, a+], however, its alternate representation is [ac −
aw

2 , ac + aw

2 ] where ac = (a++a−)
2 is its center and aw =

|a+ − a−| is its range [18]1. A set of intervals forms an IV
data set. In this paper, all data sets are ‘fully’ IV, i.e., all
variables, both independent and dependent variables are IV.

B. Linear Regression Models for IV Data Sets

A number of linear regression approaches have been put
forward for IV regressand and regressor(s). We succinctly
review key regression approaches in chronological order. In
this review, we consider Y = {y1, y2, . . . , yn} as a regressand
with n intervals where yi = [y−i , y

+
i ], 1 ≤ i ≤ n and

{X1,X2, . . . ,Xp} as p ≥ 1 regressors where each Xj also has
n intervals, Xj = {xj1, xj2, . . . , xjn} with xji = [x−

ji, x
+
ji],

1 ≤ j ≤ p, 1 ≤ i ≤ n. The estimated regressand is defined as
Ŷ = {ŷ1, ŷ2, . . . , ŷn}.

Within the existing interval regression approaches, the Cen-
ter Method (CM), proposed by Billard and Diday [8] in 2000,
is considered as the initial approach to perform regression on
interval regressor and regressand. It uses interval center of
both regressand and regressor to build the bi-variate vectors
and then compute regressor coefficients. These coefficients are
later applied with the regressor lower and upper bounds to
separately estimate the regressand lower and upper bounds.
This approach is simple but faces two major drawbacks.
First, it uses the same coefficients to estimate both regressand
bounds which often leads to poor estimation and violation
of the mathematical coherence of regressand bounds where
the estimated lower bound is greater than the estimated upper
bound [11]. Second, the resulting regression is often too re-
strictive as it imposes the centers’ behavior on the bounds [14].

To improve regression performance, Billard and Diday [9]
later developed the MinMax method in 2002 to directly utilize
the lower and upper bounds of the regressors to separately
estimate the lower and upper bounds of the regressand. Using
two separate models in the MinMax approach to estimate the

1For an interval a, its half of range is often termed as its radius, defined
as ar ≃ 1

2
aw [18].



regressand bounds improves the model fitness and interpreta-
tion compared to the CM method, however, it does not guar-
antee the mathematical coherence of regressand bounds [10].
In addition, the model fitness of the MinMax method can
be reduced if there is not a clear dependency between the
respective bounds of regressand and regressor [14]. In this
regard, Neto and Carvalho [10] also developed the Center
and Range Method (CRM) in 2008 which considers not only
the interval centers but also involves the range of regressor
and regressand variables to estimate the regressor coefficients.
They build two separate regression models—one for the
centers and other for the ranges of variables. They compute
the regressor coefficients separately for the center and range
estimations and apply them along with the center and range of
regressor to estimate those of regressand. The CRM method
subsequently uses the estimated regressand center and range
to compute its lower and upper bounds. The CRM model
provides better estimation than the CM method when there
is a linear dependency between the ranges of regressand and
regressors [11], [14]. However, this improved fitness can be
observed only when there exists range dependency. In addition,
it still does not ensure mathematical coherence on bounds [14].

All of the regression models discussed so far face one
common drawback—they do not guarantee the mathematical
coherence of regressand bounds—one of the fundamental
properties of intervals (left endpoint ≤ right endpoint). To
maintain such coherence, Neto and Carvalho [11] later adapted
the CRM model [10] by enforcing positivity restrictions on
the coefficients which are estimated in respect to the relation-
ship of the range of regressand and regressor variables. The
adapted method is known as the Constrained Center and Range
Method (CCRM), where the overall process of estimating
the regressand bounds remains the same as for the CRM
model with positivity constraints on the range coefficients. To
enforce the constraints, the CCRM method applies an iterative
algorithm proposed by Lawson and Hanson in [19]. While the
CCRM model guarantees mathematical coherence, it can lead
to biased estimation outcomes [11]. In this regard, Neto and
Carvalho recommend to apply the CRM model in all cases,
only adopting the CCRM method as a suitable strategy when
the CRM method fails to maintain such coherence [11]. In
particular, the positivity restriction within the CCRM method
forces any negative range coefficient to 0 and updates the
remaining range coefficients, in turn leading to potentially
biased estimation outcomes and poor model fitness [11].

To reduce bias in the estimation process, Wang et al. [12]
proposed the Complete Information Method (CIM) in 2012
which considers all internal points of intervals in the estima-
tion process. It basically models each interval observation of
regressand and regressor variables as a hyper-cube and builds
the regression model on these hyper-cubes. It adopts Moore’s
linear combination algorithm [20] through an indicator func-
tion to ensure the consistency of bounds, where an indicator
attached to a coefficient turns into 0 whenever the coefficient
is negative, otherwise it is set to 1. This positivity indication
helps keeping the mathematical coherence by the CIM method

but at the price of potentially poor model fit [14], [15].
To maximize model performance while preserving its flex-

ibility and interpretability, Sun and Ralescu [13] developed
the Linear Model (LM) in 2015 based on the affine operator
in the cone C = {(x, y) ∈ R2|x ≤ y}. The LM method
considers both lower and upper bounds of regressors and their
ranges for estimating the bounds of the regressand. Here, the
IV regressand is considered as a linear transformation of the
IV regressor. This approach also imposes positivity constraints
on the range coefficients to ensure the coherence of interval
bounds. Even though the authors assume positivity constraints
on range coefficients, the actual model setting does not ensure
compliance with these constraints. As a result, it can result
in negative range coefficients—which may lead to flipped
interval bounds. The authors do not discuss how to maintain
these constraints in practice, though they expect that if any
estimated range coefficient turns out to be negative, forcing it
to be positive may lead to poor fitness of the LM model. In
this regard, the LM method has been extended by enforcing
positive restrictions on range coefficients only when needed
to avoid unnecessary estimation bias and made it suitable for
practical real-world deployment [15].

From the above discussion, it is clear that imposing pos-
itivity restriction on coefficients in the regression approach
to ensure the mathematical coherence can lead to poorer
regression performance. In the next section, we describe one of
the most recent interval regression approaches—Parametrized
Model [14]—which maintains coherence, adjusting the model
as needed-only and delivers overall superior model fit in
comparison to the other state-of-the-art approaches [6].

C. The Parametrized Model for IV Data

Souza et al. [14] developed the Parametrized Model (PM) in
2017 which also uses two different models for the regressand
bounds. Instead of using specific interval points, such as center,
range, interval bounds, the PM method automatically extracts
the best reference points from the regressors and uses them
to build regression models for both lower and upper bounds
of the regressand. Here, an interval is considered as a line
segment. For instance, given an interval a, any point q ∈ a can
be computed as q = a−(1− λ) + a+λ, 0 ≤ λ ≤ 1. By setting
λ, a is turned into a single point. Hence, when λ = 0, q = a−

(lower bound of a) and when λ = 1, q = a+ (upper bound
of a). Similarly, q = ac (center of a) when λ = 0.5. Utilizing
this concept, the PM method specifies the linear regression
models for the lower and upper bounds of Y in (1).

y−i = β−
0 +

p∑
j=1

β−
j (1− λj)x

−
ji + β−

j λjx
+
ji + ϵ−i ,

y+i = β+
0 +

p∑
j=1

β+
j (1− λj)x

−
ji + β+

j λjx
+
ji + ϵ+i .

(1)

Equation (2) simplifies (1) by replacing β−
j (1− λj) by α−

j

and β−
j λj by ω−

j for lower bounds, and β+
j (1−λj) and β+

j λj



by α+
j and ω+

j respectively.

y−i = β−
0 +

p∑
j=1

α−
j x

−
ji + ω−

j x
+
ji + ϵ−i

y+i = β+
0 +

p∑
j=1

α+
j x

−
ji + ω+

j x
+
ji + ϵ+i .

(2)

In matrix notation, the lower bound model can be expressed
for all n observations as Y− = X∗β− + ϵ−, where

Y− = (y−1 y−2 . . . y−n )
T , β− = (β−

0 α−
1 ω−

1 . . . α−
p ω−

p )
T ,

ϵ− = (ϵ−1 ϵ−2 . . . ϵ−n )
T , and X∗ =


1 x−

11 x+
11 . . . x+

p1

1 x−
12 x+

12 . . . x+
p2

...
...

... . . .
...

1 x−
1n x+

1n . . . x+
pn

 .

The LS estimate of the coefficients for the lower bound
model, β− is computed by (3).

β̂
−
= ((X∗)T X∗)−1(X∗)T Y− (3)

The matrix expression follows the same pattern for the upper
bound model, Y+ = X∗β+ + ϵ+, and the LS estimate of the
coefficients for the upper bound model, β+ in defined in (4).

β̂
+
= ((X∗)T X∗)−1(X∗)T Y+ (4)

Finally, using β̂
−

and β̂
+

, the lower and upper bounds of Y
are estimated using (5).

ŷ−i = β̂−
0 +

p∑
j=1

α̂−
j x

−
ji + ω̂−

j x
+
ji

ŷ+i = β̂+
0 +

p∑
j=1

α̂+
j x

−
ji + ω̂+

j x
+
ji.

(5)

The PM method does not automatically guarantee the math-
ematical coherence of the bounds [14]. To avoid flipping the
interval bounds, the approach estimates the range of Y using
(6) before performing the regression.

Ŷw = X∗((X∗)T X∗)−1(X∗)T Yw (6)

If all estimated ranges are positive (ŷw ∈ Ŷ w), the model
automatically ensures mathematical coherence. However, if at
least one of the estimated ranges is negative, it applies the
Box-Cox transformation [21], extended to intervals by the
authors [14], to transform the regressand so that the desir-
able coherence is achieved by the PM method. Equation (7)
defines the extended Box-Cox transformation for the interval
yi = [y−i , y

+
i ].

yki =

{ [
(y−

i +k2)
k1−1

k1
,
(y+

i +k2)
k1−1

k1

]
, if k1 ̸= 0.[

log(y−i + k2), log(y
+
i + k2)

]
, if k1 = 0.

(7)

where k1 is any real value and k2 is under the following
restriction: y−i + k2 > 0.

In the next section, we present the recently introduced visu-
alization approach for IV regression1—the interval regression
graph (IRG)—which visualizes the relationship in terms of
both center and range between IV regressor and regressand.

(a) IRG as to Ŷ (center) (b) IRG as to Ŷ (range)

Fig. 2: Relationship between regressand and regressor in
respect to center (position) (a) and range (b) using the PM
method for Set-1 (Fig. 1(a)).

III. THE INTERVAL REGRESSION GRAPH (IRG) FOR IV
REGRESSION

Visualization of regression provides a powerful way to
interpret and communicate the relationship between variables.
Intervals are complex compared to the numeric data, and
similarly, the interpretation and communication of any insights
from intervals and/or associated regression can be complex. To
facilitate and enhance the interpretability of interval regression,
a powerful and novel 3D visualization approach—the interval
regression graph (IRG)—is introduced [15] which succinctly
visualizes the relationship between an independent and de-
pendent variable of interest. In other words, IRGs capture
the change in a regressand’s key features (center and range)
for given changes in a regressor’s key features (center and
range)–for a given regression model. Note that while it is
tempting to think about such a visualisation as a comparatively
simple 2D representation using two regression lines, e.g. one
for the upper and one for the lower endpoints, this is not
possible as there are not sufficient degrees of freedom in a
2D visualization to represent both center and range of both
regressor and regressand.

In this paper, we focus on regression and IRGs between
individual variables. We will consider the multi-variate case in
future publications. Algorithm 1 presents the pseudocode for
generating the IRGs for regressand center and range in respect
to a regressor’s center and range–for a given regression model.

To illustrate the IRG and its use, consider the IV Set-1
(Fig. 1(a)), presented in the introductory section. Figures 2(a)
and (b) separately present the two different aspects of the IRG
for Set-1 based on the PM regression method. The bottom-
left and bottom-right axes always show the range (X(range))
and regressor’s center (X(center)) respectively. In Fig. 2(a),
the vertical axis denotes the regressand’s estimated center
(Ŷ (center)), while in Fig. 2(b), it reflects the regressand’s
estimated range (Ŷ (range)) .

Interpreting these figures, we can see how Fig. 2(a) vi-
sualizes that the regressand’s center, Ŷ (center) increases in
respect to the increasing values of both the regressor’s range,
X(range) and center, X(center). Fig. 2(b) shows how the
regressand’s range, Ŷ (range) also increases in respect to
both increasing values of the regressor’s range, X(range) and



Algorithm 1 Interval Regression Graph (IRG) Generation
Input: An IV regression model. We use the PM method [14]
here. The IV regressor’s (e.g., from the original data set)
minimum range and maximum range are rangeXmin and
rangeXmax, as well as its minimum center and maximum
center coordinates are centerXmin and centerXmax.
Output: Two IRG plots mapping the regressor to the regres-
sand’s center, Ŷ (center) and range, Ŷ (range).

1: Generate the set X(range) of p discretizations of the
interval [rangeXmin, rangeXmax]

2: Generate the set X(center) of q discretizations of the
interval [centerXmin, centerXmax]

3: for each discretized X(range)i, 1 ≤ i ≤ p do
4: for each discretized X(center)j , 1 ≤ j ≤ q do
5: Compute X(left)ij = X(center)j − X(range)i

2

6: Compute X(right)ij = X(center)j +
X(range)i

2

7: Compute Ŷ (left)ij , Ŷ (right)ij with X(left)ij ,
X(right)ij using the regression model

8: Compute Ŷ (center)ij =
Ŷ (left)ij+Ŷ (right)ij

2

9: Compute Ŷ (range)ij = Ŷ (right)ij − Ŷ (left)ij
10: end for
11: end for
12: Generate Ŷ (center) 3D IRG plot with Ŷ(center) on

the vertical axis, X(range) on the bottom left axis and
X(center) on the bottom right axis.

13: Generate Ŷ (range) 3D IRG plot with Ŷ(range) on
the vertical axis, X(range) on the bottom left axis and
X(center) on the bottom right axis.

14: return IRG plots for Ŷ (center) and Ŷ (range).

center, X(center), and that it does so at a greater rate in each
case than does Ŷ (center).

IV. DEMONSTRATION

In this section, we demonstrate the use of IRGs to visualize
and interpret the relationship between IV regressand and
regressor in a given data set. We use a real-world data set on
IV consumer ratings of eight (UK market) snack-food prod-
ucts [7]. In this set, 40 consumers rated each product—using
the ‘DECSYS’ interval open-source survey software [22]—
based on different attributes, such as, their nutritional value,
healthiness, their branding, ethics, price, and taste, as well as
their overall purchase intention (OPI) for the given products.
62% of participating consumers were female, and the rest were
male with varying ages between 18 to 55. All responses were
collected on a scale from 0 to 100. Table II presents the survey
questions given to the consumers.

In this paper, we explore whether and how IRGs can serve
to capture and visually communicate the inherent relationship
between consumers’ OPI and their demographic characteris-
tics, such as age, gender—for IV data, similar to how the
traditional ‘regression line plots’ articulate such relationships
for discrete data.

TABLE II: Food Snacks Purchase Intention Data Set: Product
Attributes and Associated Survey Question [7].

Attribute Survey Question
Visual Appeal How much do you like the look of this product?
Value for Money How happy would you be to pay x for this product?

(where x is the retail price per item for the product
in question)

Healthiness How much can this product contribute to a healthy
diet?

Taste How much do you like the taste of this product?
Branding How much does the product brand appeal to you?
Ethics How ethical is this product?
Overall Purchase Overall, how likely are you to buy this product?
Intention

As mentioned in the introduction, studies using numeric
variables suggest that consumers desire to buy are linked to
their personal demographic characteristics. In particular, OPI
varies across age groups and gender. Further, younger people
tend to value more on taste and visual appeal than older
individuals. Similarly, ethical standards and health conscious-
ness appear to have a stronger impact on the OPI of females
than males. Throughout this section, we will explore whether
these or similar insights are found for IV data, and whether
additional insights can be identified based on the richer nature
of IV data2.

A. Ethical Standards and Gender

We first explore potential differences in OPI in respect to
different levels of ethical standards for males and females. We
separately regressed OPI (regressand) on ethics (regressor) for
both females and males with the PM method. Figures 3(a)
and (b) present the data sets for female and male consumers
respectively. Figures 3(c) and (d) present the IRGs capturing
the relationship of ethics on the OPI in respect to their center
and range (uncertainty) for both groups.

First, the IRGs in Fig. 3(c) reveal that the center/position of
OPI varies solely in respect to the center/position of ethical
standards for both males and females. It also shows that higher
ethical values lead to higher OPI in both cases. However,
ethical standards seem more important to female than male
customers in the sample overall. Perhaps more interestingly,
and uniquely ‘visible’ for IV data, the IRG in Fig. 3(d) shows
that the range/uncertainty of OPI varies quasi uniquely in
respect to the range/uncertainty of ethics, with a little impact
of its center, i.e. uncertainty on ethical standards is directly
related to the uncertainty in OPI. Males are overall more
uncertain, while the positive relationship is slightly stronger
for females consumers.

2Note that the sample size is small, i.e., it is sufficient for the aims of this
paper, i.e., demonstration of IRGs, but we emphasise that no general insights
into consumer behavior should be inferred from this paper. We are consciously
not exploring a further statistical analysis of the correlations here for the same
reason. At the same time, the intriguing insights identified in this paper in our
view serve to underline the value of using IV data, including as part of a much
larger, balanced sample to further our broader understanding of consumers.



(a) Ethics and OPI for female
consumers

(b) Ethics and OPI for male con-
sumers

(c) IRG in respect to OPI(center) (d) IRG in respect to OPI(range)

Fig. 3: Ethics and Gender. OPI=Overall purchase intention.

B. Health Consciousness and Gender

This section inspects if female consumers’ health conscious-
ness differs from that of male consumers in respect to OPI. We
split all products into two categories considering their nutri-
tional value: one category termed as ‘health-focused, branded
snack bar’, i.e., products with higher nutritional value and the
other category as ‘value snack bar’, i.e., generally cheaper
products with lower nutritional value. For the purposes of
this paper, we selected two products, one from each category
and explored their perception by female and male groups. We
separately performed regression of OPI (regressand) in respect
to visual appeal (regressor) for both sets with the PM method.
Figures 4(a) and (b) present the data sets for female and male
consumers respectively for the ‘health-focused, branded snack
bar’. Similarly, Figs. 5(a) and (b) show the data sets for female
and male consumers respectively for the ‘value snack bar’.
Figures 4(c) and (d) (also Figs. 5(c) and (d)) present the IRGs
capturing the relationship of healthiness on the OPI in respect
to their center and range for the female and male consumers.

From the IRGs of the center of OPI in Figs. 4(c) and 5(c),
it is visible that female consumers give more importance to
the healthiness and nutritional value of the products in their
intention to purchase them compared to the male consumers
and their purchasing intention increases with the increase of
healthiness of the product. On the other hand, the IRGs of
the range of OPI in Figs. 4(d) and 5(d), show that female
consumers are getting more uncertain in their intention to
purchase a product when they are not certain about the
healthiness and nutritional value of that product as compared
to male consumers.

C. Taste and Age Groups

This section explores differences between younger and older
consumers in the impact of taste on OPI. We divided the

(a) Healthiness and OPI for fe-
male consumers

(b) Healthiness and OPI for
male consumers

(c) IRG in respect to OPI(center) (d) IRG in respect to OPI(range)

Fig. 4: Health Consciousness and Gender (for health-focused,
branded snack bar). OPI=Overall purchase intention.

(a) Healthiness and OPI for fe-
male consumers

(b) Healthiness and OPI for
male consumers

(c) IRG in respect to OPI(center) (d) IRG in respect to OPI(range)

Fig. 5: Health Consciousness and Gender (for value snack bar).
OPI=Overall purchase intention.

consumers into two groups—‘younger’ with age less than
or equal to 25 and ‘older’ with age above 25. This split in
the sample was driven purely by the distribution of age, i.e.
generating two groups of comparable size. Again, if an actual
market research study was conducted, a representative sample
with age groups driven for example by target consumer groups
would be more meaningful.

We separately regressed OPI on taste for both sets with
the PM method. Figures 6(a) and (b) present the data sets for
‘younger’ and ‘older’ consumers respectively. Figures 6(c) and
(d) present the IRGs capturing the relationship of taste on the



(a) Taste and OPI for young
consumers (age ≤ 25)

(b) Taste and OPI for old con-
sumers (age > 25)

(c) IRG in respect to OPI(center) (d) IRG in respect to OPI(range)

Fig. 6: Taste and Age groups. OPI=Overall purchase intention.

OPI in respect to their center and range (uncertainty) for each
of ‘younger’ and ‘older’ sets. The IRG in Fig. 6(c) shows that
in this case also the center of OPT varies in respect to the
center of taste for both sets. It also shows that the ‘younger’
consumers give more importance to the taste of products in
respect to their OPI. The IRG in Fig. 6(d) show that the
uncertainty in OPI increases in respect to the increase in both
center and range of taste. Interestingly, a higher decline in the
uncertainty of OPI is observed in particular for the ‘younger’
consumers for higher center value of taste.

D. Visual Appeal and Age Groups

We explore whether younger individuals value visual appeal
differently to older consumers in respect to OPI, using the
same partition for ‘younger’ and ‘older’ as in the previous
section. We separately regressed OPI (regressand) on visual
appeal (regressor) for both sets with the PM method. Fig-
ures 7(a) and (b) present the data sets for ‘younger’ and
‘older’ consumers respectively. Figures 7(c) and (d) present
the IRGs capturing the relationship of visual appeal on the
OPI in respect to their center and range (uncertainty) for the
‘younger’ and ‘older’ data sets.

The IRG in Fig. 7(c) shows that the center of OPI varies
a small amount in respect to the center of visual appeal for
both sets, increasing slightly with improved visual appeal. It
also highlights that the OPI overall is substantially higher for
the ‘younger’ consumers. The IRG in Fig. 7(d) shows that
the uncertainty in OPI increases in respect to the increasing
range/uncertainty on visual appeal and decreases in respect
to the increasing center/position of the same. Again, a higher
decline in the uncertainty of OPI is seen for the ‘younger’
consumers for the higher center value of visual appeal.

(a) Visual appeal and OPI for
young consumers (age ≤ 25)

(b) Visual appeal and OPI for
old consumers (age > 25)

(c) IRG in respect to OPI(center) (d) IRG in respect to OPI(range)

Fig. 7: Visual appeal and Age groups. OPI=Overall purchase
intention.

V. CONCLUSIONS

Recognizing the importance of visualization of regression
results, this paper presents a series of illustrations of how
and where interval-valued (IV) data, combined with recently
introduced IV regression models—featured with a novel visual
tool—Interval Regression Graphs (IRGs)—offer rapid and
otherwise inaccessible insight into data, and as in this case,
consumer behavior.

Through a series of experiments, we demonstrate how IRGs
as a novel visualization approach can clearly communicate
the intrinsic relationship between the interval-valued (IV)
variables in respect to their position (center) and uncertainty
(range). We stress that the actual regression examples shown
are for illustration-only. They are based on comparatively
small samples, and should not be taken as generalisable insight
on how purchase intention of different consumer groups varies
in respect to different product attributes (note the limitations
set out in the footnote of Section IV)3.

For example, we discuss how the IRGs show how younger
individuals value taste and visual appeal more than older
people in buying snack foods, and how female consumers
emphasise ethical standards and health more than male con-
sumers. Crucially, we demonstrate how the IRGs capture
insights uniquely identifiable through IV data, such as that
female consumers’ uncertainty in respect to their purchase
intention grows with growing uncertainty in ethical standards

3We note that for this very reason, we purposely do not provide statistical
summary information on the quality of fit of the individual models. First, the
generation of visualizations of IV regression models is the focus of this paper.
Second, the actual notion of traditional measures such as R-squared which
used in some cases [23], is actually not trivial for IV data. For example,
should quality of fit focus on how well the model approximates interval
size, or, interval position, or a given combination of both? Depending on the
conjunctive or disjunctive nature of the intervals, the answer to this question
will drive the relevant quality of fit, such as ‘R-squared’ measure.



or healthiness/nutritional aspects (e.g., calorie, sugar intake)
of snack foods.

To emphasise, the individual insights from the experiments,
the examples highlight the powerful capacity for IV data
to effectively and efficiently provide insights which are not
similarly accessible for numeric data. In other words, for
comparable effort and cost [4], IV data can provide deeper
insight in applications ranging from marketing, to medicine
and management, all the way to cyber-security.

In turn, this underlines both the potential, and need for
more research in the modelling and reasoning with these data
using statistical and computational intelligence techniques. In
future work, we will explore more complex cases, with larger
IV data sets and multiple regressors—as part of real-world
deployments. Further, we are actively working on developing
novel approaches to deriving models such as fuzzy sets from
IV data and developing the appropriate inference techniques
which provide the capacity to both identify and communicate
the rich insights in these data to decision makers.
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