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Using evolving interface techniques to solve network problems
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(joint work with many people, acknowledged through references in this abstract)

In recent years there has been increasing interest from applied analysts in apply-
ing the models and techniques from variational methods and partial differential
equations (PDEs) to tackle problems on networks. This talk gave an overview of
some of the recent developments in this young and growing area.

For the purposes of the talk, [1] kicked off the research in this area. In this paper
the authors use graph versions of the Ginzburg-Landau functional for data clus-
tering, data classification, and image segmentation. Minimisation of the classical
continuum Ginzburg-Landau functional,
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provides a model for phase separation. Here W (u u?(1 — u)? is a double well
potential with minima at « = 0and v = 1, and u descrlbes the relative presence of
the two phases {u =~ 0} and {u ~ 1} in the domain 2. When F' is minimised under
some suitable constraints on « (e.g. a mass constraint of the form [, udr = M)
and for small values of the parameter ¢, u will take values close to 0 and 1, with
transitions between those values occurring in small regions of width O(e).

In [1] the graph functional
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was introduced. This is a functional whose input argument u is a function on the
nodes of a given graph, instead of on a continuum set {2 C R™ and which serves as
a graph counterpart of F. Here V is the node set of the (finite, simple, undirected)
graph, w;; is a nonnegative weight on the edge between nodes i and j in the graph,
and u; is the value of the function u on node 4. In [1] this functional was used in
combination with either a mass constraint or an additional data fidelity term to
cluster or classify the nodes of a graph into two groups (‘phases’ where u ~ 0 and
u ~ 1) based on the pairwise node similarity encoded in the edge weights w;;. By
treating the pixels of an image as nodes in a graph, data classifcation can be used
for image segmentation as well.
We can now ask a number of questions:

(1) Can we find graph analogues of properties of the continuum functional?
(2) Is the continuum functional a limit of the graph functionals in some sense?
(3) What can we say about the resulting algorithm and its usage for data
analysis/image processing?
(4) Are there other network problems that can be tackled by a PDE inspired
approach?
(5) Are there other PDE /variational systems that have interesting network
analogues?
e If the inspiring PDEs are related, are their graph analogues related?

This talk gave a short overview addressing (some aspects of some of) these
questions.

(1) Does f have similar properties as F'? In [2] we proved that f I'-converges,
when € — 0, to the graph total variation functional
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with as domain the set of node functions u which take values in {0, 1}.
This mirrors the well-known continuum result [3, 4]. Moreover, for such
{0, 1}-valued functions w, TV (u) reduces to the graph cut [5] of the node
partition Vo = {i : u; = 0}, Vi = {i : u; = 1}, i.e. the sum of the edge
weights w;; corresponding to edges that have one node in V4 and the other
in Vi.

(2) Furthermore, when f or TV are defined on certain graphs of which a
sensible continuum limit can be defined, they I'-converge to the continuum
total variation in the continuum limit, e.g. on 4-regular graphs obtained by
ever finer discretisations of the flat torus [2] and on point clouds obtained
by sampling ever more points from an underlying subset of R™ [6, 7, 8].

(3) Minimisation of f is in practice (approximately) achieved either by solving
a gradient flow equation of Allen-Cahn type,
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(plus additional terms coming from a mass constraint or fidelity term) or
by a graph version of the threshold dynamics (or MBO) scheme [9]:

@(0) = 0,
du; ~

1
2" where @(t) solves 3
% dt :_Zjevwij(ui_uj)-

In the (spectral) graph theory literature [5, 10] (Au); := > oy wij(u; —
u;) is known as the unnormalised or combinatorial graph Laplacian of w.
The equations above can also be formulated and solved with normalised
versions of the graph Laplacian.

On a given graph, these equations can be solved quickly and accurately
using a truncated spectral decomposition based on the eigenfunctions of
the graph Laplacian (in combination with a convex splitting scheme in the
case of the graph Allen-Cahn equation) [1, 11].

The construction of the underlying graph in the first place can pose
a significant computational problem, especially when the number of data
points (and thus nodes in the graph) is very large. Matrix completion
techniques such as the Nystrom extension [12, 13| and fast eigenvalue
computation algorithms such as the Rayleigh-Chebychev algorithm [14]
make such computations feasible.

This graph Ginzburg-Landau method has found many applications,
for example in data clustering and classification and image segmentation
[1, 11, 15] and has also been extended to deal with clustering and classifi-
cation into more than two classes [16, 17, 18, 19, 20]. Recent papers prove
convergence of the graph Allen-Cahn algorithm (both the spectrally un-
truncated and truncated versions) and extend the method to non-smooth
potentials and hypergraphs.

This shows that such PDE driven techniques can provide fast approxi-
mative alternatives to combinatorial problems whose exact solution is too
computationally complex.

Another example of such a problem is the computation of a maximum cut
in graphs, i.e. to find a partition of the node set into two sets such that
the sum of the edge weights corresponding to edges with one node in each
set is maximal. If the graph is bipartite, this corresponds to partition-
ing the node set according to the bipartite structure. The exact solution
of this classical problem is known to be computationally unfeasible for
large graphs. Work currently in preparation introduces a fast approxi-
mate solution method for this problem using an adaptation of the graph
Ginzburg-Landau functional f [21].

The continuum counterparts of both the graph Allen-Cahn equation and
graph MBO scheme from point (3) can be viewed as approximating mean
curvature flow [22, 23, 24, 25, 26]. This suggests that graph curvature and
graph mean curvature flow are interesting concepts to consider as well. In
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[27] we introduced both. The graph curvature of a node set S is given by
ZjESCwij7 ifi e S,

_ZjESwU7 if i € 5¢,

and the related graph mean curvature flow has a variational formulation

along the lines of [28, 29, 30] which leads to a time discrete evolution of
node subsets S (given an initial set Sp),
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Here d; is the degree of node 7 and sd is the signed graph distance from
node i to the boundary of node set S,,. In [27] we started studying the
very interesting question if the graph Allen-Cahn equation, graph MBO
scheme, and graph mean curvature flow are as intimately connected as
their continuum counterparts, but establishing such connections is still
mostly an open problem.

Other current work studies a graph version of the Ohta-Kawasaki func-
tional [31], which was originally introduced as a variational model for
pattern formation in diblock copolymers [32].

The research on these novel methods has shown that new PDE inspired graph

procedures can efficiently (approximately) solve complex graph problems, while at
the same time offering fertile ground for proving theoretical connections between
the various graph problems (inspired by similar connections their continuum coun-
terparts have) and between the graph problems and their continuum analogues.
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