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Key Points 

Key point 1 – The paucity of climate impacts studies on solar geoengineering is a key missing link in 

the interdisciplinary research on this topic 

Key point 2 – The climate impacts community can use existing tools and datasets to assess many solar 

geoengineering effects on natural and human systems 

Key point 3 – Solar geoengineering could be tailored to produce different climate outcomes 

demanding innovative approaches to impacts assessment 

Abstract 

Despite a growing literature on the climate response to solar geoengineering – proposals to cool the 

planet by increasing the planetary albedo –  there has been little published on the impacts of solar 

geoengineering on natural and human systems such as agriculture, health, water resources, and 

ecosystems. An understanding of the impacts of different scenarios of solar geoengineering deployment 

will be crucial for informing decisions on whether and how to deploy it. Here we review the current 

state of knowledge about impacts of a solar geoengineered climate and identify major research gaps. 

We suggest that a thorough assessment of the climate impacts of a range of scenarios of solar 

geoengineering deployment is needed and can build upon existing frameworks. However, solar 

geoengineering poses a novel challenge for climate impacts research as the manner of deployment 

could be tailored to pursue different objectives making possible a wide range of climate outcomes. We 

present a number of ideas for approaches to extend the survey of climate impacts beyond standard 

scenarios of solar geoengineering deployment to address this challenge. Reducing the impacts of climate 

change is the fundamental motivator for emissions reductions and for considering whether and how to 

deploy solar geoengineering. This means that the active engagement of the climate impacts research 
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community will be important for improving the overall understanding of the opportunities, challenges 

and risks presented by solar geoengineering. 

1. Introduction 

There is a growing international commitment to reduce fossil fuel emissions, as reflected in the Paris 

Agreement of the United Nations Framework Convention on Climate Change (UNFCCC) 2015 21st 

Conference of Parties, which has as one objective: “Holding the increase in the global average 

temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature 

increase to 1.5°C above pre-industrial levels” [UNFCCC, 2015]. However, global carbon dioxide (CO2) 

emissions would need to decline substantially by 2050 and perhaps even turn negative by 2100 in order 

to achieve a 50% chance of avoiding a global warming of >2°C relative to preindustrial [Clarke et al., 

2014; Fuss et al., 2014; Meinshausen et al., 2009]. The slow progress on emission reductions to date 

(global emissions in 2014 were 65% higher than in 1990 [Le Quéré et al., 2015]) and the possibility of 

substantial impacts even in the case of strong future mitigation efforts have motivated discussions of 

whether solar geoengineering could be a potential means of reducing some impacts of climate change 

[Crutzen, 2006; Smith and Rasch, 2012]. There are a number of solar geoengineering proposals that 

could prove feasible and potentially inexpensive to deploy relative to the costs of mitigation and 

adaptation [McClellan et al., 2012; Robock et al., 2009; Salter et al., 2008]. These include stratospheric 

aerosol injection, a proposal to release megatons of sulphate or other types of aerosol particles into the 

stratosphere to scatter light [Crutzen, 2006; Weisenstein et al., 2015]; marine sky brightening, where 

sea-salt aerosols would be sprayed into the marine boundary layer to increase cloud reflectivity and also 

directly scatter light by the aerosol particles [Latham, 1990]; and surface albedo modification, which 

aims to increase the albedo of crop, urban or other land surfaces [Hamwey, 2007].  
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Simply considering the physical consequences, it is clear that no form of solar geoengineering could 

obviate the need for mitigation. This is because solar geoengineering cannot fully offset the global and 

regional climatic changes induced by increases in atmospheric greenhouse gas (GHG) concentrations, 

and also because it would not address direct effects of higher atmospheric CO2 concentrations, such as 

ocean acidification or altered plant growth and water use efficiency [Boucher et al., 2013; Clarke et al., 

2014; Schäfer et al., 2015; Shepherd et al., 2009]. However, solar geoengineering may still offer a 

possibility to reduce some of the key risks posed by climate change, although it would also introduce 

novel risks. Whether the various forms of solar geoengineering could reduce the aggregated risks of 

climate change, how the risk burden would be redistributed, and what novel risks would be posed are all 

critical issues that need to be better quantified and brought forward for open discussion. However, 

scientific evidence on which to base such judgments is currently not sufficiently robust. Whilst there 

have been many studies into the consequences of solar geoengineering on climate as such, there have 

been few studies of the subsequent impacts on natural and human systems that are vulnerable to these 

changes (Figure 1).  

Here we argue that a thorough climate impacts assessment is needed to better evaluate societally 

relevant consequences of deploying solar geoengineering. First, we present a brief review of research to 

date on the climate responses to solar geoengineering deployment. We then argue that the difference 

between the climate response to solar geoengineering and the response to elevated GHG 

concentrations is substantial enough to warrant a comprehensive assessment of the former’s climate 

impacts. We review the few studies that have assessed the impacts of the various forms of solar 

geoengineering on natural and human systems, highlighting the paucity of such impact studies as a 

critical research gap. We then elaborate additional challenges that solar geoengineering poses for 

climate impacts research which arise from the fact that how solar geoengineering is deployed would be 

a choice and a wide range of climate outcomes would be possible. We conclude with recommendations 
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2) Food, e.g., crop yields and fish stocks; 3) Water, e.g., freshwater availability and flooding; 4) 

Ecosystems (terrestrial and aquatic), e.g., loss of habitat and other pressures on biodiversity; 5) Coasts, 

e.g., erosion of coasts and coastal inundation.  

2. The climate response to solar geoengineering 

Simulations show that the climate response to global solar geoengineering is markedly different from a 

simple reversal of the effects of GHGs on the climate. Rather than providing a detailed review of the 

climate effects of solar geoengineering, as has been done recently by Schäfer et al. [2015], Mcnutt et al. 

[2015] and Irvine et al. [2016], we instead provide a short summary of the effects of solar 

geoengineering on temperature, the hydrological cycle, and sea level rise. A more thorough summary of 

the climate response to idealized “sunshade” geoengineering, i.e. reduced solar insolation, as well as a 

summary of the differences between this and other more feasible forms of solar geoengineering can be 

found in the supplementary online materials (see also Niemeier et al. [2013], Kalidindi et al. [2014] and 

Ferraro et al. [2014]). 

All methods of solar geoengineering have the potential to cool the planet, with spatial patterns of 

climate response that depend on the pattern of the exerted forcing, climate feedbacks, and 

teleconnections that cause nonlocal effects [Alterskjær et al., 2013; Haywood et al., 2013]. The intensity 

of the hydrological cycle is expected to increase in response to global warming, and has been found to 

decrease in response to solar geoengineering, resulting in net reductions in precipitation and 

evaporation if solar geoengineering fully offsets the GHG forcing (see Kravitz et al. [2013], Schmidt et al. 

[2012], and Supplemental Figure 2). No known method of solar geoengineering can simultaneously 

restore both global temperature and global precipitation to earlier, low-GHG values as the response of 

these two measures to solar and GHG forcing is markedly different [Niemeier et al., 2013; Tilmes et al., 

2013]. Solar geoengineering offsets many GHG-forced changes to both mean climate and extreme event 
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probabilities [Curry et al., 2014]. Solar geoengineering could reduce sea level rise by slowing the melt of 

land-ice and reducing the warming of the oceans [Irvine et al., 2009; Irvine et al., 2012; Moore et al., 

2010]. However, a substantial amount of future sea level rise could be committed before any potential 

deployment begins as some ice-masses are already unstable in current conditions [Applegate and Keller, 

2015; McCusker et al., 2015]. 

These effects apply to all global solar geoengineering methods. In contrast to GHG forcing, the effect of 

solar geoengineering on the climate system would depend upon the particular proposal and the manner 

of its deployment. Fundamentally, the consequences of deploying solar geoengineering will vary 

depending on how much cooling is exerted. Different proposals will have different climate effects: for 

example, sulphate aerosol injections into the stratosphere resulting in a global coverage would produce 

a markedly different climate response compared to tropical marine cloud brightening [Jones et al., 

2011]. Moreover, different solar geoengineering proposals have different associated degrees of freedom 

that can be modified to exert some control over the climate response. For example, the effects of 

stratospheric sulphate aerosol injection depend on the amount, latitude, altitude, and season of 

injection [Niemeier et al., 2011; Niemeier and Timmreck, 2015; Robock et al., 2008]. We discuss some of 

these “design” aspects of solar geoengineering later, but we note that quantifying the potentials and 

limitations of geoengineering is an active area of research (e.g. Kravitz et al. [2016]). 

3. Progress on climate impacts assessments of solar geoengineering 

The results summarized above suggest that global solar geoengineering could be effective at offsetting 

some GHG-induced climate trends [Boucher et al., 2013; Niemeier et al., 2013]. However, the efficacy of 

solar geoengineering at offsetting the various consequences of elevated GHG concentrations can be 

quite different. Moreover, solar geoengineering produces a number of novel effects and does not 

directly affect the atmospheric CO2 concentration (although it would have indirect effects on the carbon 
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cycle, see supplemental section 1). Thus, whilst the overall magnitude of climate change, measured in 

terms of the deviations of various climate variables from some low-GHG baseline, might be reduced 

[Boucher et al., 2013], the vector of climate change would certainly be different from that of GHG-

induced climate change, as the relative changes in these variables would differ [Moreno-Cruz et al., 

2011; Yu et al., 2015]. Whilst some climate impacts depend in a fairly straightforward manner on the 

state of the climate, e.g. mortality in extreme heat conditions depends on changes in extreme 

temperatures; many climate impacts depend on changes in a number of different climate variables. For 

example, C4 grasses generally outperform C3 grasses in hot, dry, low-CO2 conditions, and so it is unclear 

how the competition between these two types of vegetation will play out in scenarios with higher CO2 

concentrations, lower temperatures and an altered hydrological cycle [Franks et al., 2013]. Thus an 

evaluation of the effects of solar geoengineering on the full range of climate impacts will be needed.  

Changes in the climate do not constitute risks and benefits on their own. Rather, the risks of climate 

change arise through the impacts of these changes in the climate on the systems and services we value 

and depend on, such as agriculture, health, and ecosystems. Impacts assessments must account for the 

exposure of natural and human systems to the hazards posed by a changing climate and the 

vulnerability of those systems to a modified climate. Vulnerability needs to be characterized both in 

terms of the susceptibility of the system to those changes and its adaptive capacity to cope with them 

(we use the definitions laid out in the IPCC WG2 glossary throughout [Field et al., 2014]). Deploying solar 

geoengineering would change the hazards posed by climate change, and whilst it would not directly 

affect the exposure and vulnerability of human populations to those hazards, these factors must be 

considered when evaluating the climate impacts of solar geoengineering (Figure 2). 
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Among the few studies examining crop responses to solar geoengineering, Pongratz et al. [2012] found 

that a deployment of sunshade geoengineering would increase global crop yields compared to a 

scenario without sunshade geoengineering by reducing the heat stress associated with GHG warming. 

With a focus on China, Xia et al. [2014] found that sunshade geoengineering reduced rice yields and 

increased maize yields compared to a scenario of rising GHG concentrations without sunshade 

geoengineering, although compared to the preindustrial era, yields were increased in all cases due to 

the ongoing CO2 fertilization effect. Both studies also found substantial regional variation that arises 

from regional differences in the climate response, particularly the precipitation response, due to the 

sensitivity of marginal regions to the sign of temperature change. Parkes et al. [2015] found that marine 

sky brightening geoengineering could increase crop yields and reduce the occurrence of crop failures in 

West Africa and Northern China, although a large part of this response was partly due to fertilization 

effect of atmospheric CO2 and partly due to the increased precipitation in these regions, a response 

which may be unique to marine sky brightening. 

Tropical coral reefs, and the rich biodiversity they support, are identified as very vulnerable to climate 

change [IPCC, 2014]. Coral bleaching, where corals eject their photosynthetic symbionts and which often 

results in colony mortality, is induced by anomalously elevated ocean temperatures but is also sensitive 

to aragonite saturation levels [Anthony et al., 2008]. A couple of studies have investigated the potential 

efficacy of sunshade geoengineering for protecting these shallow-water coastal ecosystems. Solar 

geoengineering was found to reduce sea surface temperatures and hence prevent a substantial fraction 

of current habitat from becoming unsuitable for coral reefs as compared to various GHG emission 

scenarios (Figure 3) [Couce et al., 2013]. However, in the case where solar geoengineering counters all 

forcing on a global scale, tropical regions become cooler with respect to the pre-industrial period, 

causing a reduction in habitat suitability (Figure 3). Latham et al. [2013] found that marine cloud 

brightening could reduce sea-surface temperatures and hence reduce the occurrence of the high 
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community composition) within a shallow water mask between 60°N and 60°S as predicted by 

bioclimatic envelope modelling. This figure is drawn from the Boosted Regression Trees results 

produced by Couce et al. [2013] who provide a more complete description of the experiments and 

analysis of these results. 

Air pollution is one of the leading causes of premature deaths in urban settings globally. Due to 

increased stagnation in hot regions and increased reaction rates with higher temperature, global 

warming is expected to lead to an increase in low layer ozone and other pollutants, an effect known as 

the “climate penalty” [Rasmussen et al., 2013]. Nowack et al. [2016] show that sunshade 

geoengineering could reduce UV radiation at the surface and increase surface ozone, which is harmful to 

human, animal, and plant health [Silva et al., 2013]. Stratospheric aerosol injection geoengineering 

would deposit the injected aerosols at the surface, posing an environmental risk that will depend on the 

aerosol material [Effiong and Neitzel, 2016], though most of the aerosol particles would be removed by 

wet deposition as they descend from the stratosphere and so the contributions to airborne particulate 

matter at the surface would likely be low [Eastham, 2015]. Stratospheric aerosol injection 

geoengineering would also change the chemistry of the stratosphere; if deployed soon, it could delay 

the recovery of the ozone hole by some decades [Pitari et al., 2014; Tilmes et al., 2009], though the 

effect will depend strongly on the injected type of aerosol [Weisenstein et al., 2015]. 

4. Research gaps  

Our review of the climate impacts research into solar geoengineering reveals substantial gaps in 

understanding. First of all, there have been few quantitative studies of the climate impacts of solar 

geoengineering. Almost all of these studies have focused on stratospheric aerosol injection 

geoengineering, or its proxy sunshade geoengineering, with only a couple of studies into marine sky 

brightening geoengineering and no studies into the climate impacts of other types of solar 
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geoengineering. Critically, many climate impacts sectors are completely absent from the published 

literature to date, for example: water resources, flood risk, storm damage, terrestrial ecosystems, 

fisheries, and vector-borne diseases. Of the few sectors that have been studied (i.e. agriculture, ocean 

ecosystems, and air pollution; see above) there remains considerable work to constrain the potential 

climate impacts from solar geoengineering. 

The gaps in understanding around the climate impacts of solar geoengineering go beyond simply the 

absence of studies addressing particular impacts, as solar geoengineering poses novel challenges for 

climate impacts research that will require novel approaches to address. We outline three key areas in 

which progress can be made: (1) The comprehensive, systematic assessment of the climate impacts of 

scenarios of solar geoengineering deployment, (2) The evaluation of the potential and limits of solar 

geoengineering deployment tailored to reduce climate risks, (3) The development of objectives to 

evaluate solar geoengineering deployment scenarios. 

Area 1 - Comprehensive, systematic assessment of the climate impacts of scenarios of solar 

geoengineering deployment. 

Evaluating the climate impacts of particular scenarios of solar geoengineering deployment poses many 

of the same challenges that have been faced in evaluating the climate impacts of scenarios of future 

GHG emissions. Also, the future development of demography, economy, land-use, and other factors are 

critical for shaping the exposure and vulnerability of societies and ecosystems to climate risk, and these 

factors will also need to be accounted for in climate impacts assessments of solar geoengineering by 

considering a range of future socio-economic pathways [O’Neill et al., 2014]. It will be critical to account 

for uncertainties in and among the different impacts models (e.g., the response of systems to climate 

conditions that are novel), Earth system models (e.g., climate feedbacks and the parameterization of 

sub-grid scale processes), and socio-economic projections to make a thorough evaluation of risks. 
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Additionally, the linkages between different hazards and different sectors need to be assessed; e.g., 

changes in water availability affect crop yields through effects on irrigation, with cascading impacts on 

food security, and in turn human health. The climate impacts community is currently working to 

integrate uncertainty in the socio-economic projections and interactions between sectors and regions 

into projections of climate risk, but this work is still at an early stage [Hallegatte et al., 2016]. 

Area 2 - The evaluation of the potential and limits of solar geoengineering deployment tailored to 

reduce climate risks. 

In addition to these familiar challenges with impacts assessment modelling, solar geoengineering poses 

a novel challenge for climate impacts research. GHG emissions policy permits some influence over the 

future evolution of the climate state, however there are strong constraints, e.g. the economic costs and 

infrastructural lifetimes, which effectively limit this influence to reducing the magnitude of future 

warming. On the other hand, the climate consequences of solar geoengineering would depend on how it 

is chosen to be deployed and feasible forms of solar geoengineering present a wide range of options for 

deployment. For example, the altitude, latitude, season and rate of release of stratospheric aerosols 

would be a matter of choice and the consequences of different patterns and rates of release would 

differ in important ways [Niemeier et al., 2011]. Any deployment of solar geoengineering whether in 

climate models or in the real world, would need to be defined in terms of its inputs, outcomes, or both. 

For example, GeoMIP includes a stratospheric aerosol injection experiment with a specific, fixed release 

rate of SO2 into the tropical lower stratosphere, i.e. it is defined only in terms of its inputs, and also a 

similar experiment where the rate of release is adjusted to halt the increase in radiative forcing due to 

rising GHG concentrations, i.e. it is defined both in terms of its inputs and its outcomes [Kravitz et al., 

2011]. Focusing solely on the outcomes would be to adopt a design perspective, where the particulars of 
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a solar geoengineering deployment would be chosen specifically to pursue certain objectives such as 

reducing the impacts of climate change [Kravitz et al., 2016].  

Whilst solar geoengineering could be tailored with the aim of pursuing certain objectives, the large 

natural variability in the climate and the substantial uncertainty about the climate response to solar 

geoengineering would limit what could be achieved. Simulation studies have demonstrated that solar 

geoengineering could be deployed to maintain global mean temperatures at some constant level, or 

alternatively to slow the rate of change, in the presence of rising GHG concentrations and substantial 

natural variability [Kravitz et al., 2014b; MacMartin et al., 2014; MacMartin et al., 2013b]. In these 

studies the global mean temperature was kept close to the target value using simple negative feedback 

from observations, i.e. increasing the amount of light reflected when the planet is observed to be above 

the target temperature and vice versa. Beyond affecting global mean temperature, solar geoengineering 

deployment could be tailored in a number of ways to affect regional climate outcomes. Idealized studies 

have demonstrated that it is in theory possible to ‘optimize’ solar geoengineering deployment to more  

closely offset the effects of elevated GHG concentrations in terms of regional mean temperature or 

precipitation, by modifying the latitudinal and seasonal distribution of solar forcing, for example [Ban-

Weiss and Caldeira, 2010; MacMartin et al., 2013a]. In a climate model study Kravitz et al. [2016] 

demonstrated a crude version of such regional optimization on an ongoing deployment of solar 

geoengineering using the same kind of feedback described above.  

Nevertheless, no past study has attempted to tailor solar geoengineering deployment to alleviate the 

impacts of climate change. Given that solar geoengineering is being considered as a means to reduce the 

risks and impacts of climate change this begs the question: What potential deployments of 

geoengineering could best reduce these risks? To provide robust answers to this question would require 

surveying the climate impacts of a much broader range of scenarios than have been assessed to date 
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and making quantitative comparisons between alternative outcomes. The degree of certainty to which 

these outcomes could be attributed to the particular deployment of solar geoengineering in a still poorly 

understood and noisy climate system would also need to be evaluated.  

Area 3 - The development of objectives to evaluate solar geoengineering deployment scenarios. 

Policymakers faced with the choice of whether and how to deploy solar geoengineering would want to 

know how it affects the stakeholders they represent. Clear climate objectives which address the effects 

of policies on the impacts of climate change would therefore be of great value. An example of this is the 

high-level objective agreed at the Paris COP21 to limit global-mean temperature increase, as a proxy for 

aggregate climate risks, which is being used to guide national emissions policies. While solar 

geoengineering deployed along with emissions cuts could make it possible to reach the 2.0 or even 1.5 

°C global-mean temperature targets, the climate impacts of limiting the global mean temperature by 

stringent emissions cuts would be different from those of achieving the same target by moderate 

emissions cuts supplemented by cooling from solar geoengineering [Tilmes et al., 2016]. This means that 

global mean temperature would not be a good proxy for aggregate climate risks if solar geoengineering 

were to be deployed. To inform decisions on whether and how to include solar geoengineering as part 

of a portfolio of climate policies an objective (or objectives) which appropriately captures the climate 

risks of these different choices would be valuable.  

An appropriately defined climate objective, i.e. one which can serve as a reasonable proxy for overall 

climate risks, might also be a useful target for the tailoring of solar geoengineering deployment. To date, 

studies which have defined an objective for solar geoengineering deployment have typically formulated 

it in terms of restoring mean temperature and precipitation conditions of some baseline climate [Ban-

Weiss and Caldeira, 2010; Kravitz et al., 2014a; Kravitz et al., 2016; Moreno-Cruz et al., 2011]. However, 

it will be important in future work to address the effects of solar geoengineering on the full range of 
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different climate impacts. Initial studies have illustrated a number of trade-offs that would need to be 

addressed in defining an objective (or objectives) for solar geoengineering deployment. For example, 

the goals of restoring precipitation patterns and restoring Arctic sea-ice cover to a low-GHG state would 

be best achieved by different deployments of solar geoengineering [MacMartin et al., 2013a]. In 

addition, due to regional differences in the climate response to solar geoengineering the deployment 

which best achieves an objective in one region is not going to be the same as that to achieve it in all 

others [Kravitz et al., 2014a]. Formulating objectives to aid decision-making on whether and how to 

deploy solar geoengineering will thus be a major challenge and one in which climate impacts research 

will have an important role. 

5. Ways forward 

Here we provide some recommendations on how the field might make significant headway in providing 

a comprehensive understanding of the impacts of solar geoengineering. These recommendations 

ultimately require that the field moves from a curiosity-driven approach to one that is more strategic 

about addressing key scientific uncertainties. 

Recommendation 1 - Drive impacts models with standardized solar geoengineering scenarios and 

prioritize the most pressing analyses. 

Whilst a comprehensive climate impacts assessment of scenarios of solar geoengineering deployment 

will be challenging, many of the tools and much of the expertise needed have already been developed. 

For example, the Inter-Sectoral Impacts Modelling Intercomparison Project (ISIMIP) has developed a 

framework for meeting the same basic challenges in assessing the risks of climate change [Warszawski 

et al., 2014]. ISIMIP has drawn together previously independent efforts to evaluate climate change 

impacts on various sectors and at different temporal and spatial scales. It has produced ensemble-

based, cross-sectoral and quantitative projections by developing a consistent approach to climate data 
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processing and bias-correction, and employing shared socio-economic projections [Hempel et al., 2013; 

Warszawski et al., 2014].  

The Geoengineering Model Intercomparison Project (GeoMIP) [Kravitz et al., 2011] has been developing 

and analyzing a set of solar geoengineering experiments that could be used as input for future climate 

impacts studies. Its outputs can be used in the same way as the RCP scenario simulations from the 

Coupled Model Intercomparison Project 5 (CMIP5) are used in efforts to project the impacts of global 

warming (such as in ISIMIP). These GeoMIP results are archived in the same databases and to the same 

standards as the CMIP5 results and are publically available through the Earth System Grid Federation 

network (http://esgf.llnl.gov/). The next round of GeoMIP simulations will include a small number of 

core experiments addressing various forms of solar geoengineering including, for example, the G6 

experiment where sulfate aerosol injection (and alternatively sunshade) geoengineering is deployed 

against a backdrop of a high-emissions scenario to reproduce the radiative forcing of a moderate-

emissions scenario, as well as a number of idealized experiments. These simulations are being produced 

on the same schedule as the CMIP6 simulations with results expected through 2017 [Kravitz et al., 

2015]. Thus, a timely opportunity exists to combine the ISIMIP framework with state-of-the-art 

projections from Earth system models run under specific solar geoengineering scenarios. 

Given the wide range of possible scenarios of solar geoengineering deployment, climate impacts sectors, 

and regions to analyze we recommend a number of priorities for this research. We recommend that 

those forms of solar geoengineering in which there is the greatest confidence that they are technically 

feasible be given the highest priority, i.e. stratospheric sulfate aerosol injection or marine cloud 

brightening geoengineering [Boucher et al., 2013]. That said solar dimming experiments are useful 

learning tools as they eliminate some of the complications and uncertainties posed by the other forms 

of solar geoengineering.  Furthermore, there should be a systematic approach to addressing knowledge 
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gaps, with impacts that have not received a great deal of attention previously, such as water resources, 

terrestrial ecosystems, and human health, being given the highest priority. It may be useful to consider a 

number of regional “test cases” to explore interdependencies of risks and to aid in accounting for the 

specifics of different regional exposures and vulnerabilities to the range of risks that climate change 

poses and that solar geoengineering would affect. A number of priority regions have been identified for 

climate impacts research, which, for the purpose of synergy, would be useful to choose here 

[Warszawski et al., 2014]. 

Recommendation 2 - Make a structured comparison of the climate impacts of a wide range of scenarios 

of future GHG forcing and possible deployments of solar geoengineering using emulators of more 

complex models. 

The handful of scenarios produced by GeoMIP cannot span the full range of possible combinations of 

GHG and solar geoengineering scenarios, nor capture the ways in which solar geoengineering could be 

tailored. As an example, conducting the analyses depicted in Figure 3 using fully complex Earth System 

Models and climate impacts models to investigate the full range of plausible scenarios would be 

computationally prohibitively expensive.  Instead, reference scenarios, such as the GeoMIP G6 

experiment [Kravitz et al., 2015], could be used to develop computationally efficient emulators of the 

effects of solar geoengineering so a wider range of scenarios could be explored [Cao et al., 2015]. 

Simplified methods, such as linear scaling (e.g., Irvine et al. [2010], Ricke et al. [2010], and Kravitz et al. 

[2014a]) or climate emulation (also called pattern scaling, e.g. Rougier and Sexton [2007], Sanderson et 

al. [2008], and Osborn et al. [2014]) which has already been applied to climate impacts studies, e.g. 

Gerten et al. [2013] and [Arnell et al., 2014], may show particular promise for exploring the range of 

climate model responses to geoengineering in a cheaper, computationally efficient way. 
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Ultimately, these simulations could be used to address tradeoffs between solar geoengineering and 

emissions cuts as means for achieving particular temperature targets. There has already been 

substantial work to describe and quantify the impacts of different levels of mean global warming under 

different GHG emissions scenarios [Arnell et al., 2014; Schewe et al., 2014]. This could be extended by 

investigating the climate impacts of cases which achieve a certain temperature target with different 

scenarios of GHG emissions and solar geoengineering deployment, as was done for Figure 3. In addition, 

different manners of deploying solar geoengineering, different methods, or combinations thereof could 

be compared within such a framework to ascertain which deployments might be more optimal for 

particular impacts. However, the substantial uncertainties in the climate response to GHG forcing and 

solar geoengineering will need to be accounted for and would limit the confidence in such projections. 

Recommendation 3 - Apply the concept of dangerous climate change to develop quantifiable objectives 

for the evaluation of solar geoengineering. 

We recommend that the climate research community apply the concept of dangerous climate change to 

scenarios including solar geoengineering. The concept of dangerous climate change has helped to focus 

discussions and clarify issues in climate change and, appropriately modified, it may serve the same 

function in the discussion of solar geoengineering. Five ‘reasons for concern’ were first elaborated in the 

IPCC’s third assessment report as a means to inform the declared intention of the UNFCCC to avoid 

‘dangerous climate change’ [McCarthy, 2001]: risks to unique and threatened systems, extreme weather 

events, the distribution of impacts, global aggregate impacts, and large-scale singular events. These 

same reasons for concern could help provide a framework for understanding the complex mix of 

potential benefits and risks of different scenarios of GHG emissions and solar geoengineering 

deployment (we briefly review the potential effects of solar geoengineering on each of these reasons for 

concern in supplemental section 3). However, it may be necessary to complement such a framework by 
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incorporating  novel concerns such as the risk of rapid warming that would follow if solar 

geoengineering deployment were to be terminated at a point when a large cooling effect was being 

exerted [Matthews and Caldeira, 2007]. 

Just as there has been a demand for quantifiable objectives for climate policy, e.g. global-mean 

temperature targets and carbon budgets, there may be a demand for similar objectives to guide possible 

solar geoengineering deployment. Such objectives will be of value for evaluating the different ways that 

solar geoengineering could be deployed [Kravitz et al., 2016]. Evaluating climate impacts and 

summarizing these results in terms of the reasons for concern outlined above supported the assessment 

of what would constitute dangerous climate change, i.e. in setting temperature targets, and hence 

served to guide the formulation of climate policy goals. In the same manner, evaluating the climate 

impacts of solar geoengineering and evaluating the effects on these reasons for concern could provide 

the basis for quantifiable objectives for solar geoengineering deployment and thereby inform the 

debate as to whether solar geoengineering could be a serious option to be considered along with GHG 

emissions mitigation.   

6. Conclusions 

We have described the current state of knowledge about the climate impacts of solar geoengineering on 

natural and human systems and revealed substantial research gaps. First, we noted that the climate 

response to the various forms of solar geoengineering is markedly different from that to greenhouse 

gas-induced warming. Until now there have been very few studies on the climate impacts of solar 

engineering, covering only a limited number of sectors (agriculture, coral reefs, and air pollution). For 

example, the absence of studies into the effect on water resources seems a glaring omission given that 

climate model results robustly indicate systematic differences in the hydrological responses to GHG 
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forcing and solar geoengineering. We therefore conclude that a thorough climate impacts assessment is 

needed to provide input to the question of whether and how to deploy solar geoengineering. 

Unlike efforts to cut emissions, solar geoengineering deployment has the potential to be tailored to 

some extent to pursue particular objectives by, for example, modifying the latitude, altitude and rate of 

injection of aerosols into the stratosphere. This possibility poses a novel challenge for climate impacts 

research as a small number of standard scenarios will be insufficient to adequately capture the full range 

of possible deployment choices and so to provide answers for the range of questions that will arise. To 

address this issue we recommend the use of emulation of the results of standard scenarios of solar 

geoengineering deployment as a means to broaden the range of cases that can be studied. However, we 

caution that the substantial uncertainties in the climate response to solar geoengineering will limit the 

extent to which solar geoengineering deployment could be tailored. 

No form of solar geoengineering could simply reverse the effects of climate change; rather, it may 

reduce some environmental changes (e.g., temperature rise and sea level rise), leave others largely 

unaffected (e.g., ocean acidification), and introduce novel environmental changes (e.g., ozone loss in the 

case of stratospheric aerosol injection geoengineering). Therefore, if solar geoengineering is deployed 

global mean temperature would no longer be a reasonable measure of the level of danger posed by 

climate change. Accordingly, we suggest that the concept of dangerous climate change be applied to 

solar geoengineering, whereby evaluating the effect of solar geoengineering on the five ‘reasons for 

concern’ may be a useful first step. Though not the focus of this paper, it is important to note that there 

are also many issues beyond climate impacts, including ethics, engineering, economics, and 

international law, which need to be considered before a knowledgeable decision could be made about 

the deployment of any form of solar geoengineering. 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
To provide a reasonable answer to the question of whether, and if so, how, solar geoengineering should 

be deployed will require understanding whether it could reduce climate risks overall and how it would 

redistribute the burden of those risks. The engagement of the climate impacts modelling community 

with this challenging emerging issue will therefore be critical in the coming years. 
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Appendix 

The supplementary material contains an extensive review of the climate response to solar 

geoengineering and cites the following papers [Alterskjær et al., 2013; Applegate and Keller, 2015; Bala 

et al., 2010; Boos and Hurley, 2013; Camargo, 2013; Cheng et al., 2013; Collins et al., 2013; Couce et al., 

2013; Cox et al., 2004; Crook et al., 2015; Curry et al., 2014; Cziczo et al., 2013; Dagon and Schrag, 2016; 

Davin et al., 2014; Ferraro and Griffiths, 2016; Gabriel and Robock, 2015; Glienke et al., 2015; IPCC, 

2007; 2014; Irvine et al., 2014a; Irvine et al., 2016; Irvine et al., 2009; Irvine et al., 2010; 2011; Irvine et 

al., 2014b; Irvine et al., 2012; Jones and Haywood, 2012; Jones et al., 2013; Joughin et al., 2014; Kalidindi 

et al., 2014; Kravitz et al., 2013; Kravitz et al., 2014a; Kravitz et al., 2009; Kristjánsson et al., 2015; 

Kwiatkowski et al., 2015; Lau and Kim, 2012; Lunt et al., 2008; MacMartin et al., 2014; MacMartin et al., 

2015; Matthews and Caldeira, 2007; McCarthy, 2001; McCusker et al., 2015; Meinshausen et al., 2011; 

Mengis et al., 2015; Mercado et al., 2009; Moore et al., 2015; Moore et al., 2010; Muri et al., 2015; 

Murphy, 2009; Niemeier et al., 2013; Partanen et al., 2012; Pitari et al., 2014; Ridgwell et al., 2009; 

Schmidt et al., 2012; Schuur et al., 2013; Seneviratne et al., 2012; Sillmann et al., 2013a; Sillmann et al., 

2013b; Storelvmo et al., 2014; Tilmes et al., 2009; Tilmes et al., 2008; Trenberth, 2011; Vaughan and 

Lenton, 2011; Weaver et al., 2001; Wigley, 2006]. 
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