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Abstract

Most implementations of meshless BEMs use a circular integration contours (spherical in 3D)
embedded into a local interpolation stencil with the so called Companion Solution (CS) as a kernel,
in order to eliminate the contribution of the single layer potential. However, the Dirichlet Green’s
Function (DGF) is the unique Fundamental Solution that is identically zero at any given close surface
and therefore eliminates the single layer potential. One of the main objectives of this work is to show
that the CS is nothing else than the DGF for a circle collocated at its origin. The use of the DGF
allows the collocation at more than one point, permitting the implementation of a P-adaptive scheme
in order to improve the accuracy of the solution without increasing the number of subregions. In our
numerical simulations, the boundary conditions are imposed at the interpolation stencils in contact
with the problem boundary instead of at the corresponding integration surfaces, permitting always
the use of circular integration contours, even in regions near or in contact with the problem domain
where the densities of the integrals are reconstructed from the interpolation formulae that already
included the problem boundary conditions.
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1 Introduction

When dealing with the BEM for large problems, with or without closed form fundamental solution,
it is frequently used a domain decomposition technique, in which the original domain is divided into
subdomains, and on each of them the full integral representation formulae are applied. At the interfaces of
the adjacent subdomains the corresponding full-matching conditions are imposed (local matrix assembly).
While the BEM matrices, which arise in the single domain formulation, are fully populated, the subdomain
formulation leads to block banded matrix systems with one block for each subdomain and overlaps between
blocks when subdomains have a common interface. In the limit of a very large number of subdomains,
the resulting internal mesh pattern looks like a finite element grid. The implementation of the subdomain
BEM formulation in this limiting case, i.e. a very large number of subdomains, including cells integration
at each subdomain has been called by Taigbenu and collaborators as the Green Element Method (GEM)
(see [18]). A similar approach based on large number of subdomains but using the Dual Reciprocity
Method (DRM) to evaluate the domain integrals at each subdomain, instead of cell integration, has been
referred by Popov and Power [12] as the Dual Reciprocity Multi Domain approach (DRM-MD), for more
details see Portapila and Power [13].
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Meshless formulations of local BEM approaches, see Zhu et al., [19], are attractive and efficient tech-
niques to improve the performance of local BEM schemes. In the meshless BEM the integral represen-
tation formulae are applied at local internal integration subregions embedded into interpolation stencils
that are heavily overlapped. In this type of approach the continuity of the field variables are satisfied
by the interpolation functions avoiding the local connectivity between subdomains or elements needed to
enforce the matching conditions between them. Different interpolation schemes can be employed at the
interpolation stencils, being the moving least squares shape functions and RBF interpolations the most
popular approaches used in the literature. A major advantage of the meshless local BEM formulations
in comparison with the classical BEM multi domain decomposition approaches, as the GEM and the
DRM-MD, is that the resulting integrands of the integral representation formulae are all regular, instead
of singular, since the collocation points are always selected inside the integration subregion.

In the Local Boundary Integral Element Methods (LBEM or LBIEM) the solution domain is covered
by a series of small and heavily overlapping local interpolation stencils, where a direct interpolation
of the field variables is used to approximate the densities of the integral operator, and the boundary
conditions of the problem are imposed at the integral representation formula; i.e. at the global system of
equations, [1,5,6,15,16,19]. In this type of approach, the domains of integration usually are defined over
several stencils, resulting in highly overlapping integration subregions, in addition to the overlapping of
interpolation stencils.

As is the case of the interpolation stencils, different shapes of the integration subregion can be con-
sidered in the implementation of a meshless BEM, being a circular shape the most popular one (sphere
in 3D). As suggested by Zhu et al. [19] (see also Atluri et al. [2], and most of today implementations
of meshless BEMs), in the case of a circular integration subregion with a single evaluation point at the
centre of the circle, a Companion Solution instead of the Fundamental Solution can be used in the in-
tegral representation formula of a given problem in order to eliminate the single layer potential in the
integral formulation. However, it is well known in the mathematical literature, that the Dirichlet Green’s
function is the unique fundamental solution that eliminates the single layer potential from the integral
representation formula, whatever the shape of the integration surface is. For clearness in the presenta-
tion, we provide here the formal mathematical definition of the different singular solutions considered in
this work, i.e. Fundamental solution, Green’s function and Dirichlet Green’s function. A Fundamental
solution of a linear partial differential equation (PDE), or free space Green’s function, is a particular so-
lution, i.e. a no unique solution, of the corresponding nonhomogeneous PDE with a Dirac delta function
as the nonhomogeneous term, which is singular at the collocation point of the delta function, the Green’s
function is the unique solution of the same nonhomogeneous PDE; i.e. with a Dirac delta function as the
nonhomogeneous term and consequently a singular solution, that satisfies a given homogeneous bound-
ary condition on a prescribed boundary, consequently, the Dirichlet Green’s function is the corresponding
Green’s function satisfying a homogeneous Dirichlet boundary condition. One of the main objectives
of this work is to show that the so called Companion Solution (CS) is nothing more than the Dirichlet
Green’s function (GF) for a circle collocated at its origin. This should not be regarded as pure semantic
meaning of the word (Companion or Green’s function), which in the opinion of the authors is important
to clarify; since, as shown here, the use of the centre of the circle as the only collocation point of the
integral formulation significantly restricts the versatility of the meshless approach.

2 Mathematical formulation and boundary integral represen-
tion formula

Let us consider a boundary value problem defined on a two dimensional domain 2 that satisfies a linear
partial differential equation (PDE) of the following type:

Vo) = (x5 (09 1)

which is written as a non-homogeneous Laplace’s equation with non-homogeneous term given by b, and
u (x) is the unknown potential field at the point x € Q.
The problem definition is completed by specifying the following boundary conditions (BC):

u(x) =ug(x) only (2)
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where 'y UI's =T, with 'y and I's are non-intersecting parts of the domain boundary I', and the functions
ug and gg are suitably prescribed functions of x.

The integral representation formula for the above linear PDE in terms of the Laplace’s fundamental
solution is obtained from the Green’s second identity in terms of the superposition of surfaces (single and
double layers) and volume potentials.

c©u©)= [
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with £ as the evaluation point, also referred as collocation point, and u* (x, §) as the fundamental solution
of the Laplace problem, which in the case of two-dimensional problems is given by :
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where R (x,£) is the distance between the integration points x and collocation point £, i.e. R = |x —¢|,
and ¢* (x) = 2% (x,€). The constant value ¢ (£) € [0, 1], being 1 if the point ¢ is inside the domain and
% if the point £ is on a smooth part of the domain boundary T'.

In the BEM literature, the approach to obtain the above integral representation formula is sometime
referred to as a weighted residual or reciprocity approach instead of the Green’s second identity, which
is a misuse of a concept (a weighted residual is an approximate formulation while the Green’s identity is
an exact representation).

The above integral representation formula is the basis of any meshless BEM approach, where the
integration surface I' and domain €2 are chosen as integration subregions, I'; and €2;, embedded inside of
a corresponding interpolation stencils, which are heavily overlapped. If in the above formulation instead
of using the fundamental solution, u* (x,£), and its normal derivative, ¢* (x,¢), the Dirichlet Green’s
function, G (x, ) and its corresponding normal derivative, @ (x, ), are used, follows that equation (4) at
each integration subregion reduces to:

c@u©= [ Qxudr. + [ 16 x . (6)
where by definition over the surfaces I'; the value of G is identically zero.

In the case of a circular integration surface I'; with radius R;, the Dirichlet Green’s function for a
source point, &, inside the circle can be obtained from the circle theorem, and given by (for more details
see Milne-Thomson [10]):
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with the image or reflection point, é , located outside the circle along the same ray of the source point.
In the above expression R(x,&) is the distance between the field point x and the source point & given
by R(x,€)* = R(x)* + R2 — 2R (x) Ry cos(0), with Ry the distance between the source point and the
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centre of the circle, similarly R(x, &) is the distance between x and the image point £, where R (x, 13 ) =
R(x)*+(R*/R2)—2R (x) (R2/Ry) cos(f), with R2/Ry as the distance from the image point to the centre

of the circle and 0 as the angle between the vectors x and £ from the centre of the circle. When the
source point ¢ is located at the origin, i.e. Ry = 0, the above expression for the Green’s function reduces

to:
6x,6) = - () )




In the meshless BEM literature, the above expression has been referred as a Companion Solution
(see Zhu et al. [19]), but as can be seen from the preceding analysis, the so call Companion Solution
is none other than the Dirichlet Green’s function for a circle evaluated at its origin. Sladek et al. [17]
appear to recognise this when they mention in their manuscript “it is seen that (8) is the Green’s function
for the Possion’s equation vanishing on the boundary of the circular subregion of radius R;”, without
given any further detail. As we will show later this is not just a matter of words meaning, i.e. calling a
known function (Green’s function) by a different name (Companion Solution), but the use of only one col-

location point at the centre of the circle in the Green’s function limiting the versatility of the formulation.

For clarity on the presentation and comparison of results, from now on we will refer to the Green’s
function collocated at the centre of the circle as a Companion Solution (CS) and in its general form as
the Green’s function (GF). In most of the BEM meshless approaches using a Companion Solution in their
formulation, equation (6) is employed at every internal integration subregion, with the values of u given in
terms of its neighbouring values by the interpolation algorithm, while equation (4) is used at integration
subregions in contact with the problem boundary in order to implement the corresponding boundary
conditions at the integral representation formula (global matrix boundary conditions collocation). Later
we will explain how in this work we are able to use equation (6) at every subregion (in contact or not with
the problem boundary), and for each admissible boundary condition (Dirichlet, Newmann or mixing), by
using a local matrix boundary conditions collocation instead of a global one.

Different approaches are used in the literature to evaluate at each integration subregion the corre-
sponding volume integrals in (4) and/or (6). In this work we use the Dual Reciprocity Method (DRM),
which consists in approximating the density b(x) of the volume integrals in terms of a interpolation
function, i.e.

n
b > B (%, %) (9)
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with n as the number of interpolation points (in the present meshless method the number of points at the
interpolation stencils) and ¢ (x, xx) usually defined by a Radial Basis Function (RBF). Simultaneously,
it is defined an auxiliary particular solution ¢ of the PDE operator used to obtain the original integral
representation formula (the Laplacian in the present case) with the interpolant function ¢ as the non-

homogeneous term, i.e. V2@ (x,Xk) = ¢ (X, Xk).

By applying again the Green’s second identity (dual reciprocity or dual Green), to the resulting
volume integral with the particular solution as density and the fundamental solution as kernel (Green’s
function in the present case), the following surface only integral representation formula at each subregion
is obtained:
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In the above expression, the coeflicients §j are given by the inverse of the interpolation formula (9) as:

[8] = [A7"][0].

with A~! as the inverse of the interpolation matrix.

In order to be able to implement the above integral representation in terms of only double layer
potentials, with the unknown potential v and the auxiliary particular solution ¢ as densities, we use here
the version of the meshless DRM approach proposed by Caruso et al. [3], i.e. the LRDRM, where the
boundary conditions of the problem are imposed locally at interpolation schemes in contact with the
problem boundary, in terms of a Hermite interpolation, i.e.

u(x) = Z%‘Sﬁj (X)+ D a; Bep; (%) (11)

Jj=n+1



with n; auxiliary points given by the boundary points belonging to an interpolation stencil in contact
with the problem boundary. In this way, at interpolation stencils inside the problem domain n, = 0,
and at those in contact with the problem boundary, n; is equal to the number of boundary collocation
points belonging to the given stencil with By; defined by the corresponding boundary condition, which
is identical to the unit operator in the case of Dirichlet condition.

By using this interpolation scheme, the value of the unknown density u in (10), with the integration
circle located at an internal interpolation stencil, is obtained from the interpolation reconstruction formula
at those integration points over the circles as:

u(x) =’ A u

and

u(x) = [0, Bx(¢)]"A™? {B,:Eu)}

at any integration circle located at a boundary interpolation stencil, with A~1 as the inverse of the Her-
mite interpolation matrix. In this way, the boundary conditions of the problem are taken into account
in the above interpolation expression for .

For other implementations of the DRM meshless approach see Kovarik et al [7] and Dehgam and
Shirzadi [4]. These three DRM meshless formulations are based on the DRM approximation of the inte-
gral representation formula (4) in terms of superposition of single and double layer potentials, with the
fundamental solution and its normal derivative as kernels, instead of the integral formula (10) defined
by only superposition of double layer potential, with the Dirichlet Green’s function as the kernel, as
considered in this work.

In cases where the non-homogeneous term b in (1) is function of the derivative of the field variable
u, we use the generalized finite different approximation used in most of the DRM formulations, where
this value is approximated by the derivative of the interpolation reconstruction function in terms of the
neighbouring values of u at the interpolation stencils, i.e.

dux) _0px)", 1

at internal stencils and

du(x) e (x), Bl z 1 u
ox; O0x; A {B ]

at boundary stencils.

Everything that have been mentioned above for a two dimensional domain is also valid for a three
dimensional one by using the corresponding Dirichlet Green’s function for a sphere instead of a circle,
with image source point located at

R Rf
$=¢h

according to the Kelvin transform and the Green’s function given by the sphere theorem (see [10]) as:

1 1 al
G((x,¢) =~ (R(x,«f) Ry R(x, é))

In the limit when the source point (collocation point) tends to the centre of the sphere the above expression
tends to:

(=1 (7~ 7 )



corresponding to the so call Companion Solution in a three dimensional problem.

The main objective of this work is not to compare different implementation of meshless DRMs (see
Caruso et al. [3] for such a comparison) but instead, we highlight the misreference to the so called
Companion Solution (Green’s function) in meshless BEMs and the lost in versatility of the approach
when the Green’s function is only evaluated at the center of the integration subregions. As we will show
in the next section, by keeping the number of interpolation stencils fixed and increasing the number of
collocation points (different to the center of the circle) at the local integration formula in regions of high
variations of the field variable u a kind of P-adaptive scheme is implemented.

3 Numerical comparison

To compare the performance of the so called CS using a single evaluation point at the centre of the
circle and the GF using more than one evaluation point per integration subregion, when required, we
present in this section numerical results obtained by the LRDRM [3] meshless approach based on the
integral representation formula (10) with @ as the normal derivative of the CS or GF, respectively. In
our implementation of the LRDRM approach, we used as interpolant function the multiquadric RBF
and the shape parameter is defined at each stencil to be proportional to the average distance between
stencil points, as suggested in the original work, changes on the value of the shape parameter are obtained
by changing the value of the proportionality constant. It is important to mention here that the main
objective of this section is not to show the robustness of this type of meshless BEM numerical approach,
which has been reported in several previous publications, but instead address the issue of the limitation
of using a single collocation point at the center of the GF (the so called CS) instead of several points at
different locations, as required by the problem.

A classical benchmark steady state convection-diffusion problem with a variable velocity field is consid-
ered that has been used before as test example for different numerical schemes in the literature (see [11,14]
for different types of local DRM solutions of this problem).

0%u (x) Ou (x)

D -V —=-k =0 12
with convective velocity
Uy 1
=In—+k - = 1
V=l T + <x1 2> (13)

corresponding to the flow of a hypothetical compressible fluid with a density variation inversely propor-
tional to the velocity field.

The above PDE is solved in the rectangular domain € = [0, 1] x [-0.1,0.1] subject to the following
boundary conditions

’LL(O,ZL'Q):UO ’U,(l,ZL'Q):Ul (14)
2 (31,-0.1) = 2~ (3,0.1) =0,

corresponding to the solution of a one-dimensional problem as a two-dimensional one.

The domain 2 is subdivided into regular overlapping subdomains that are used to construct the
interpolation stencils, which are considered here as rectangular stencils, each of them having an embedded
circular integration subregion. Error estimations are evaluated through L2 error norms computed between
the obtained numerical results and the analytical solution, as follows

vazl (ufazact - utizpz)Q
Zi]\il (uézact)Q
with u?

! vact 8 the nodal values of the exact analytical solution and uflpx the corresponding values of the
numerical result.
The analytical solution of the above boundary value problem for a diffusion coefficient D = 1 is given

by
k U k
u(x) = Uy eXp{ixf + (ln U_(l) - 5) xl} (16)

er, = 100% (15)



showing the formation of shock structures at each side of the problem domain. The decay parameter
k in the convective velocity corresponds to the scale of shock structures at the problem boundaries. In
this work we consider k£ = 40, and in order to obtain a symmetric shock structures at both sides of
the domain the same value of the potential is prescribed at the inlet and outlet of the problem domain,
Uy = Uy = 300. For more details see Fig. 1, where the analytical solution of the potential function and
its longitudinal derivative for the case of k = 40 are reported.

u(z) for k=40 % for k=40
300 w 6000 T T \
250 4000 1
200 2000 1
150 ok |
100 —2000r 1
50 —4000r ,
00 01 02 03 04 05 06 0.7 018 019 1.0 _60000 0.‘1 0.‘2 0‘.3 0‘.4 0‘.5 0‘.6 0‘.7 018 019
X X

Figure 1: Analytical solution of the potential function (left) and its longitudinal derivative (right)

In both cases, CS and GF, the domain is divided into a uniform distribution of massive overlapping
rectangular interpolation stencils having one circular integration subregion per stencil, i.e. the number of
interpolation stencils is equal to the number of integration subregions. To construct the stencils, a uniform
distribution of points is spread over the problem domain and at each of these points a (n x n) stencil
is built, containing the stencil centre point and its (2n — 1) neighbours. Although better distribution of
stencils is always feasible, for the purpose of this comparison this uniform distribution is the most simple
and clear way of presenting it. As a refinement strategy to improve the accuracy of the solution, the
density of interpolation stencils can be increased and keeping only one collocation point per integration
subregion, which is equivalent to a mesh refinement. Alternatively, it is possible to keep the original
uniform distribution of stencils but increase the number of collocation points at the integration subregions,
as required. This second alternative is only possible to be considered when using the GF and not when
using the CS. This last approach will be used to show the limitations of using the CS instead of the
complete GF.

In the case of the CS, where only one source point is included per stencil, the number of interpolation
stencils, Njs, is equal to the number of collocation points (Nyp). In this work when using this type of
function (CS), we only employ stencils with 25 interpolation points, n = 5, where the stencil’s center
is included, i.e. the integral collocation point, see Fig. 2 for the schematic representation of the stencil
configuration around the computational domain where the circles represent the corresponding integration
subregions.

On the other hand in the case of the GF, the circular integration subregion may have one or more
source points in a sort of P-adaptive scheme. In this case, the computational domain is subdivided
into stencils with one source point per stencil at those integration subregions that are located in the
interior of the domain, as was the case of the CS subdomains distribution, and three source points (the
original center point and two more at each side of it, with all of them inside the integration circle)
at integration subregions near the inlet and outlet boundaries, where the shocks occur. For simplicity
in the implementation and with the idea of minimizing the computational cost of inverting the local
interpolation matrices, in the case of more than one integration source point per integral subregion, the
corresponding interpolation stencil includes only the additional source points of its integration subregion

1.0



and not the source points of the integration subregion of the neighbouring interpolation points in the
stencil, which corespond to the integration on the overlapped stencils. Therefore in our case, we have
stencils with 25 interpolation points at the center of the domain and with 27 points at each lateral side
of the domain. In this way, the number of integration subregions (interpolation stencils), N;s, is smaller
than the number of collocation points, N, since in those stencils with 27 points we have the additional
two collocation points per integration subregion (see Fig. 3 for the corresponding stencil configuration
and integration collocation points around the computational domain).
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Figure 2: Stencil configuration. Regular Distribution
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Figure 3: Stencil configuration. P-adaptive Distribution

A schematic representation of the source points distribution over the computational domain for the
two cases mentioned above can be seen in Fig. 4, where the illustration at the top corresponds to the
CS and at the bottom to the GF, with the P-adaptive distribution of source points (integral collocation
points) towards the shock structures.

Numerical results for both cases, the CS and the GF, are shown in Table 1 where six uniform distri-
butions of interpolation stencils are considered for each case. For the CS results, the number of stencils
range from V;; = 2000 up to N;s = 11520 with identical number of source points, N, i.e. one source
point pert integral subregion. On the other hand, in the case of the GF, with a P-adaptive distribution
of source points near the end sides of the computational domain, the number of uniform distributed in-
terpolation stencils range from N;s = 1280 up to N;s = 8000, with a corresponding distribution of source
points ranging from Ny, = 1792 up to Ny, = 11200 accordingly to the additional integral collocation
points at the shock structures. The number of interpolation stencils in the case of the GF was selected
in order that the resulting number of source or collocation points in both cases are similar, i.e. every row
in Table 1 shows results for a similar number of N,,, aiming to compare results of corresponding global
systems of equations of similar size.
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Figure 4: Schematic representation of source points distributions

In the table, the L2 error norms for u and Ou/dx are reported, where the reconstruction of the
derivative was obtained via the differentiation of the integral equation (10) at the center point of each
integration subregion. As can be observed from the table, for similar numbers of source points, N, both
results show the same order of approximation, being the results with the GF P-adaptive distribution of
source points always slightly better, in particular in the estimation of the derivative. However, looking
at the number of interpolation stencils (integration subregions), N;s, the GF results always require a
significantly lower number of stencils than those used by the CS to achieve a similar accuracy; for
example the CS result for N;s = 8000 attains a L2 error norm of 1.9E-03 for u and of 5.28E-03 for du/0x
while the GF results require only N;s = 4500 to reach a L2 error norm of 1.93E-3 for v and of 2.71E-03
for Ou/0x, with always better precision on the derivative. This behaviour is illustrated in Figure 5, where
we compare the performance of CS and GF by plotting the v and du/dz L2 error norms for different
numbers of integration subregions, N;s, and source points, Ny,. Subfigures (a) and (b) show numerical
results for the concentration against N;s and N, respectively. Similar results for du/dz are shown in
subfigures (¢) and (d).

The main point to address here is the P-adaptive character of the general use of the GF, with the
possibility of more than one source point per integration subregion. By looking at the results in Table 1,
it can be observed that when using the CS with a uniform distribution of N;s = 4500 integration circles
(equal to the number of interpolation stencils) with only one source point per circle at their centres,
N,p = 4500, results in a L2 error norm of 3.0E-3 for u and of 1.1E-02 for du/dz. On the other hand,
when the number of source points are increased in the regions of high gradient of the solution (shock
structures) to a total number of N,, = 6300, by using the P-adaptive character of the GF, and keeping
the same number of integration circles (Ng, = 4500), the L2 error norm of the result reduces to 1.94E-3
for u and to 2.71E-03 for du/0x, with a gain of one order of magnitude on the estimation of the derivative.

3.1 Results for different sizes of integration subregion

Results for different sizes of integration subregions for the LRDRM where reported in [3], when using
the integral representation formula based on the superposition of single and double layer potentials, i.e.
in terms of the fundamental solution and its normal derivative. These results were presented to em-
phasize the meshless character of the LRDRM. In this section numerical results for non-overlapping and
overlapping integration circles in the case of using the GF instead of the fundamental solution, i.e. the
integral representation formula based on only superposition of double layer potentials (equation (10)), is
considered. For this purpose a scale factor p is used as a multiplier to change the size of the radius of the
integration circles, while the location of the source points remain fixed. In Figure 6 it can be observed
two overlapping interpolation stencils with three integration circles located at their centre, corresponding



Companion Solution (CS) Green’s function (GF)
Regular distribution P-adaptive distribution
N; No  L2—Error%w L2 — Error% 0u/0z N; Nsp L2—Error% u L2 — Error% Ou/dzx

2000 2000 1,2725E-02 3.0579E-02 1280 1792 4.0688E-03 7.6900E-03
2880 2880 6.4989E-03 1.8826E-02 2000 2800 3.1114E-03 4.9836E-03
4500 4500 3.0147E-03 1.1006E-02 3125 4325 2.5049E-03 3.7308E-03
6480 6480 2.0047E-03 6.8181E-03 4500 6300 1.9385E-03 2.7126E-03
8000 8000 1.9039E-03 5.2833E-03 5780 8092 1.7984E-03 2.3728E-03
11520 11520 1.8644E-03 3.3706E-03 8000 11200 1.7570E-03 2.1694E-03

Table 1: L2 error norm for u and du/0x: Companion Solution (Regular distribution) Vs Green’s function
(P-adaptive distribution). N;s: number of integration subregions. Ng,: number of source points.

to p = 0.5, p =1 and 2. For values of p > 0.5 the integration circles will partially overlap each other,
according to the position of the overlapping stencils considered.

In Table 2, results for seven different values of p are presented, ranging from 0.5 to 2, for the P-adaptive
domain discretization corresponding to 4500 integration subregions and 6300 source points. The results
in the shaded row of the table correspond to those of the shaded row in Table 1, for p = 0.5, N;s = 4500
and N, = 6300. As can be seen from these results, the L2 error norm of the potential and its derivative
are all of the same order of magnitude until p = 1.50, with the best solution obtained for p = 1.0 also
having the smaller maximum relative error. When p = 0.5 all the circles belonging to the boundary
interpolation stencils are tangential to the problem boundary, see figures 6, 2 and 3. On the other hand,
values of p > 0.5 implies overlapping that corresponds in our implementation to some level of extrapo-
lation at the boundary interpolation stencils in order to evaluate the double layer potential density u at
the part of the circles outside the problem domain. Extrapolation is a bad mathematical operator and
too much extrapolation will deteriorate the results, as happens for p > 1.0 when the solution start to lose
accuracy.

Green’s function N;s = 4500 N, = 6300
p  L2—FError%u L2— Error% 0u/dx Maz.REu

0.50 1.9385E-03 2.7126E-03 1.8568E-04
0.75 1.7271E-03 2.7020E-03 6.3435E-05
1.00 1.4912E-03 2.3047E-03 4.8169E-05
1.25 2.5897E-03 4.1144E-03 1.5561E-04
1.50 4.2787E-03 7.8226E-03 2.7167E-04
1.75 6.3640E-03 1.4137E-02 3.6325E-04
2.00 1.0123E-02 4.2688E-02 4.1513E-04

Table 2: Numerical results for different sizes of the integration subregion

4 Conclusions

As it has been shown in this work, the so called Companion Solution is nothing else than the Dirichlet
Green’s function for a circle (sphere) collocated at its origin. By the uniqueness of solution of the
considered boundary value problem, it can be shown that the Dirichlet Green’s Function is the unique
fundamental solution that is identically zero at a specified close surface and consequently a single layer
potential represented in term of it is identically zero. This should not be regarded as pure semantic
meaning of the word (Companion or Green’s function), which in the opinion of the authors is important
to clarify that there is only one unique Green function that is identically zero at specified closed surface.
Although there is nothing wrong in using the so call Companion solution on a meshless BEM scheme, its
constraint of a single collocation point at the integration subregions limits the versatility of the approach
in comparison with the use of the complete form of the Dirichlet Green’s function that permits collocation
at more than one point anywhere inside the integration subregions. By using more than one collocation
point inside the integration contours located in regions of high variations of the field variable, it is possible
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Figure 5: Variation of L2 error norms for v and du/dz, with the number of integration subregions and
source points

to implement the proposed P-adaptive scheme in order to improve the accuracy of the numerical solution
without increasing the number of integration subregions, as shown in the results reported in figure 5.
In the case of having only one collocation point per integration subregion, it is also possible to improve
locally the accuracy of the solution by increasing the number of integration subregions at computational
complex regions, in a type of h-adaptive scheme. However, when using the complete form of the Dirichlet
Green’s function both approaches can be used simultaneously, i.e. h and P-adaptive, by increasing the
number of integration subregions and the number of collocation points at the required subregions.

Everything addressed here for two dimensional problems is identically valid for the corresponding
three dimensional analogous cases, as well as the analysis presented for the Laplace equation is valid for
any other well posed boundary (initial) value problem having a fundamental solution. Different analytical
approaches are available in the literature to find the Dirichlet Green’s function on a circle or a sphere for
different partial differential equations, most of them based on the equivalent circle or sphere theorems,
see Maul and Kim [9] and Kukla et al. [8] for the corresponding Dirichlet Green’s functions for the Stokes
system of equations and Helmholtz equation, respectively.

Another advantage of the present meshless BEM scheme in comparison with other similar approaches,
is the use of an interpolation scheme that satisfies the boundary conditions at the interpolation stencils in
contact with the problem boundary, where a Hermite interpolation formula is used to deal with Newmann
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Figure 6: Stencils with different sizes of integration subregions

or mixed type boundary conditions. In this way, it is possible to use always circular or spherical integration
contours even in regions near or in contact with the problem domain, where the densities of the integrals,
i.e. the corresponding values of the field variables at the integration contours, are reconstructed from the
interpolation formulae that already included the problem boundary conditions. It is also shown that it is
possible to use overlapping or non-overlapping integration subregions as long as overlapping interpolation
stencils are employed. In the case of using everywhere overlapping circular integration contours, the
proposed meshless scheme implies some level of extrapolation at the boundary interpolation stencils in
order to evaluate the double layer potential density at the part of the circles outside the problem domain.
It was found that a more accurate solution is obtained when only small extrapolation is allowed, see table
2. This is due to the fact that extrapolation is a bad mathematical operator and too much extrapolation
will deteriorate the results. However, some extrapolation is desirable, but not necessary, to be able to
cover all the problem domain with the integrations subregions. A major consequence of using circular
integration contours everywhere in the problem domain is that is not necessary to truncate the integration
contours at intersections with the problem boundary, with the problem boundary conditions implemented
at those parts of integration contours coinciding with the problem domain instead of being considered at
the corresponding interpolation stencils as proposed in our meshless implementation. Besides by using
truncated circular integration contours at the problem boundary, it is always necessary to evaluate part
of the single layer potential at those common integration surfaces with the problem boundary. On the
other hand, in the case of using circular integration contours everywhere and imposing the boundary
conditions at the level of the interpolation algorithm instead of at the integral representation formula
(as considered here), the singular layer potential is always eliminated by the use of the Dirichlet Green’s
function for a circular domain.
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