
1 
 

 
 

INTRAGASTRIC INFUSION OF DENATONIUM BENZOATE ATTENUATES INTERDIGESTIVE 

GASTRIC MOTILITY AND HUNGER SCORES IN HEALTHY FEMALE VOLUNTEERS 

Eveline Deloose1, Pieter Janssen1, Maura Corsetti1,2, Jessica Biesiekierski1, Imke Masuy1, 

Alessandra Rotondo1, Lukas Van Oudenhove1, Inge Depoortere1, Jan Tack1 

1 Translational Research Centre for Gastrointestinal Disorders, University of Leuven, Belgium 

2 National Institute for Health Research, Nottingham Digestive Diseases Biomedical Research 

Unit, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham, UK 

Names for PubMed indexing: Deloose, Janssen, Corsetti, Biesiekierski, Masuy, Rotondo, Van 

Oudenhove, Depoortere, Tack 

Running title: DB and the effect on the MMC and motilin release 

Key terms: Bitter, Hunger, Migrating motor complex, Motilin, Denatonium benzoate 

Number of figures and tables: tables (4) and figures (6) 

Clinical trial registration: NCT02759926 

Corresponding author and person to who reprint requests should be addressed: 

Jan Tack, MD, TARGID, Herestraat 49, box 701, BE-3000 Leuven, Belgium 

E-mail: jan.tack@kuleuven.be, Tel: +32 (0)16 345751, Fax: +32 (0)16 345939 

Conflict of interest: The authors declare no conflict of interest 

Funding: This work was supported by a Methusalem grant from Leuven University and by a 

research grant from the Fonds voor Wetenschappelijk Onderzoek (FWO) to Jan Tack, M.D., 

Ph.D. At the time of the study Eveline Deloose was a PhD fellow and Jessica Biesiekierski a 

postdoctoral fellow of the FWO. Methusalem is a grant provided by the KULeuven. FWO is a 

research funding institute supported by the Flemish government. The funders had no role in 

the design, implementation, analysis and interpretation of the data. 

Abbreviations: CASR: Ca²+-sensing receptor, CCK: cholecystokinin, DB: denatonium benzoate, 

ERK: extracellular signal-regulated kinase, GIT: gastrointestinal tract, GLP-1: glucagon-like 



2 
 

 
 

peptide 1, GPCR: G-protein coupled receptor, HRM: high-resolution manometry, MI: motility 

index, MMC: migrating motor complex, PROP: 6-n-propylthiouracil, TAS2R: taste 2 receptor, 

VAS: visual analogue scale. 



2 
 

 
 

ABSTRACT 1 

Background: Denatonium benzoate (DB) has been shown to influence ongoing ingestive 2 

behavior and gut peptide secretion.  3 

Objectives: To study the effect of intragastric administration of DB on interdigestive motility, 4 

motilin and ghrelin plasma levels, hunger and satiety ratings and food intake in healthy 5 

volunteers. 6 

Design: Lingual bitter taste sensitivity was tested using 6 concentrations of DB in 65 subjects. 7 

Placebo or DB (1 µmol/kg) were given intragastrically to assess their effect on fasting 8 

gastrointestinal motility and hunger ratings; on motilin and ghrelin plasma levels; on satiety 9 

and finally on caloric intake. 10 

Results: Women (n=39) were more sensitive towards a lingual bitter stimulus (p=0.005) than 11 

men (n=26). In women (n=10), intragastric DB caused a switch in the origin of phase III 12 

contractions from stomach to duodenum (p=0.001) and decreased hunger ratings (p=0.04). 13 

These effects were not observed in male participants (n=10). In females (n=12), motilin 14 

(p=0.04) plasma levels decreased after intragastric DB administration while total and 15 

octanoylated ghrelin were not affected. Intragastric administration of DB decreased hunger 16 

(p=0.008) and increased satiety ratings (p=0.01) after a meal (500 kcal) in 13 female subjects 17 

without affecting gastric emptying in 6 female subjects. Caloric intake tended to decrease 18 

after DB administration compared to placebo (720±58 kcal vs 796±45 kcal; p=0.08) in 20 19 

female subjects. 20 

Conclusions: Intragastric DB administration decreases both antral motility and hunger ratings 21 

during the fasting state, possibly due to a decrease in motilin release. Moreover, DB decreases 22 

hunger and increases satiety ratings after a meal and shows potential to decrease caloric 23 

intake. This trial was registered at clinicaltrials.gov as NCT02759926. 24 
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INTRODUCTION  28 

Denatonium benzoate (DB), benzyl-diethyl (2:6-xylylcarbamoyl methyl) ammonium benzoate, 29 

is a strong bitter tastant added to household products to prevent ingestion of potentially 30 

harmful substances through taste aversion (1, 2). Concentrations as low as 10 ppb are already 31 

detectable, at 50 ppb the taste is distinguishably bitter and at 10 ppm it is described as 32 

unpleasantly bitter. In the US, DB is added at a concentration of 6 ppm to denature alcohol 33 

(3). Specialized G-protein coupled receptors (GPCRs) from the taste 2 receptor (TAS2R) family 34 

are involved in the perception of bitter compounds (4). Until now, 25 TAS2Rs have been 35 

identified in humans (5). Based on the sensitivity towards 6-n-propylthiouracil (PROP), three 36 

categories of bitter sensitivity have been identified: non-tasters, medium-tasters and super-37 

tasters (6, 7). It has been reported that more women than men are classified as super-tasters 38 

(6, 8). 39 

Besides its extreme bitter taste, DB also has effects on gastrointestinal functions. Direct 40 

intraluminal administration of DB in mice has shown to inhibit ongoing ingestive behavior, to 41 

suppress food intake and to inhibit gastric emptying (9, 10). Moreover, DB stimulated the in 42 

vitro release of glucagon-like peptide 1 (GLP-1) and cholecystokinin (CCK), which are known 43 

to increase satiety and satiation respectively (11, 12). Intragastric administration of DB in 44 

humans has been shown to impair relaxation of the proximal stomach after infusion of a liquid 45 

meal and to increase satiation during an oral nutrient tolerance test (13). 46 

During the fasting state, the gastrointestinal tract (GIT) exhibits a specific contractility pattern 47 

known as the migrating motor complex (MMC), which can be divided into three phases (14-48 

17). During phase I, no contractions are present in the upper GIT; activity increases during 49 

phase II to reach a burst of maximum contractility during phase III, which can originate from 50 
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the stomach or the small intestine (14, 15). Exogenous administration of motilin or ghrelin 51 

triggers a premature gastric phase III in healthy volunteers (17, 18). Endogenous motilin 52 

plasma levels, but not ghrelin, fluctuate in synchrony with antral contractility of the MMC, to 53 

reach a peak just before the occurrence of a gastric phase III (16, 17, 19). We recently showed 54 

that motilin-induced gastric phase III contractions of the MMC signal hunger in healthy 55 

volunteers and that motilin plasma levels were closely associated with interdigestive hunger 56 

ratings (20, 21). In 1916, Carlson (22) reported an inhibitory effect of intragastrically 57 

administered bitter compounds on both fasting gastric contractility and hunger sensations, 58 

but the underlying mechanism was not elucidated. 59 

A first objective of the current study was to evaluate gender differences in the bitter taste 60 

sensation of orally administered DB in healthy volunteers. Secondly the effect of intragastric 61 

administration of DB on hunger ratings and gastrointestinal activity was evaluated. The third 62 

aim was to evaluate the role of gastrointestinal hormones in the DB-induced effects. As fourth 63 

and fifth objectives, we evaluated if DB was able to attenuate the return of hunger after a 64 

standardized meal and to decrease caloric intake respectively.  65 



6 
 

 
 

MATERIAL AND METHODS  66 

This study was approved by the Medical Ethics Committee of the Leuven University Hospital, 67 

Leuven, Belgium, and performed in full accordance with the Declaration of Helsinki. 68 

Study design 69 

The current study consisted of 5 independent protocols studying the following parameters: 70 

lingual bitter taste sensitivity, gastrointestinal activity, hormonal responses, satiety ratings 71 

and food intake. 72 

Test compounds 73 

DB was purchased from Sigma-Aldrich (St Louis, MO, USA). Solutions of DB were prepared in 74 

tap water. The stock concentration for intragastric administration was 10 mM. A volume of 75 

0.1 ml/kg bodyweight was administered. The dosage of DB was chosen based on its inhibitory 76 

effect on gastric accommodation in healthy volunteers (13). Tap water was given during the 77 

placebo condition in a volume of 0.1 ml/kg bodyweight. The pH between the 2 test solutions 78 

did not differ (pH7.4). 79 

Subjects 80 

Volunteers were eligible to participate if they were healthy, aged between 18 and 60 years 81 

old, had a BMI (in kg/m²) between 18 and 30, and were recruited from an existing volunteer 82 

database in our group. Exclusion criteria were gastrointestinal diseases, abdominal surgery 83 

(appendectomy allowed), psychiatric illnesses, and usage of drugs affecting the GIT or central 84 

nervous system. Written informed consent was obtained from all volunteers before the start 85 

of the study. A total of 65 volunteers (40% men; mean±SEM age: 29±1 y; mean±SEM BMI: 86 

23±0.4) participated in the bitter taste protocol; 20 (50% men; age: 27±9 y; BMI: 24±2) 87 
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participated in the gastrointestinal protocol; 12 female subjects (age: 31±4 y; BMI: 22±1) 88 

participated in the hormone protocol; 13 female subjects (age: 28±3 y; BMI: 23±1) participated 89 

in the satiety protocol and 20 female (age: 23±0.3 y; BMI: 22±1) subjects were included in the 90 

food intake protocol. Sample sizes were calculated based on results from previous studies and 91 

provided 80% power to detect significant differences of 15% with an alfpha of 0.05 (13, 23, 92 

24). Based on the results obtained from the lingual (study 1) and gastrointestinal (study 2) 93 

bitter sensitivity studies it was decided to only include female participants for the last 3 study 94 

protocols. A flow chart of the subject distribution can be found in the online supplemental 95 

material (Supplemental Figure 1). None of the volunteers dropped out. Volunteers that 96 

participated in multiple protocols were randomly selected. All subjects were studied after an 97 

overnight fast of 12 hours and were asked to refrain from smoking at least 1 hour before the 98 

start of the study except for the first study protocol where smoking was not allowed before 99 

the start of the study. 100 

Study protocols 101 

Study 1: Bitter taste sensitivity of DB 102 

Six different concentrations (0, 0.1 µM, 1 µM, 10 µM, 0.1 mM and 1 mM) of DB were tested 103 

using taste strips (25). The taste strips were placed on the tongue for 90 sec with a closed 104 

mouth. Between each concentration participants rinsed their mouth with tap water. The taste 105 

strips were given in ascending order of DB concentration, but participants were not aware of 106 

this. Bitter taste sensation was scored for each concentration on a 10 cm visual analogue scale 107 

(VAS) (0 cm: not bitter at all, 10 cm: extremely bitter).  108 

Study 2: Hunger and gastrointestinal motility responses to intragastric DB administration 109 

during the interdigestive state 110 
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This study was a placebo-controlled single-blind randomized trial. All these participants also 111 

participated in study 1 (Supplemental Figure 1). Placebo (tap water) or DB (1 µmol/kg 112 

bodyweight) was administered directly into the upper part of the stomach through a 113 

nasogastric feeding tube (Flocare, Nutricia, Bornem, Belgium), 20 min after a complete MMC 114 

cycle (Figure 1A). The position of the feeding tube was checked with fluoroscopy. By bypassing 115 

the tongue, participants could not taste which compound was given. After administration, the 116 

measurement continued until the next phase III. Hunger was scored every 5 min on a 10 cm 117 

VAS (0 cm: not at all hungry, 10 cm: as hungry as I have ever felt) (26). Adverse events 118 

(headache, nausea and stomach ache) were scored every 20 min on a 9-point numerical rating 119 

scale. 120 

Study 3: The effect of intragastric DB administration on motilin and ghrelin plasma levels 121 

during the interdigestive state 122 

This study was a placebo-controlled single-blind randomized trial. These subjects also 123 

participated in study 1 and 10 of them also participated in study 2 (Supplemental Figure 1). 124 

Twenty minutes (Figure 1B) after the end of a phase III contraction either placebo (tap water) 125 

or DB (1 µmol/kg bodyweight) were administered directly into the upper part of the stomach 126 

through a nasogastric feeding tube. The position of the feeding tube was checked with 127 

fluoroscopy. The measurement was continued for another 2 hours and blood samples were 128 

taken every 10 min to measure motilin and ghrelin plasma levels. The first blood sample was 129 

taken 10 min prior to intragastric administration. Hunger was scored every 5 min on a VAS. 130 

Study 4: The effect of DB on hunger and satiety ratings after a meal 131 

This study was a placebo-controlled single-blind randomized trial. Thirty minutes (Figure 1C) 132 

after the intragastric administration of placebo (tap water) or DB (1 µmol/kg bodyweight), a 133 
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meal, consisting of two pancakes (500 kcal total), was consumed within 15 min. In 6 subjects 134 

(31±6 years, 23±2 kg/m²), pancakes ingested on both occasions were labeled with sodium 13C-135 

octanoate. Every 15 min, starting from just before the treatment until 6 hours after the meal, 136 

volunteers exhaled in an exetainer that was stored in the fridge for later analysis. The 13CO2 137 

secretion data was analyzed by non-linear regression to allow curve fitting and calculation of 138 

the gastric half-emptying time. Subjects scored their hunger and satiety feelings prior to the 139 

administration and every 15 min for 4 hours starting from the meal intake on a VAS. 140 

Study 5: The effect of DB on food intake 141 

This study was a placebo-controlled double-blind randomized trial. Forty minutes after the 142 

intragastric administration of DB (1 µmol/kg bodyweight) or placebo (tap water), subjects ate 143 

ad libitum from an excess free-choice buffet for 1 hour. Food items included a variety of pre-144 

sliced, ready-to-eat food items including bread, ham, cheese, lettuce, tomato, mayonnaise, 145 

jam, sweets, crisps, rice pudding, waffles, chocolate, apple and banana, which were weighed 146 

pre- and postprandially to calculate caloric intake. The total caloric value of the buffet meal 147 

was 2330 kcal containing 55 g protein, 94 g fat of which 32 g was saturated and 291 g 148 

carbohydrates. 149 

Study techniques 150 

Antroduodenal motility: 151 

Activity of the MMC was measured in study protocol 2 and 3 using a high-resolution solid-152 

state manometry catheter (36 channels, spaced 1 cm apart, Manoscan 360, Sierra Scientific 153 

Instruments, Los Angeles, CA, USA, Manoview analysis software v2.0.) as described previously 154 

(19). During the manometry measurements, phases of the MMC were identified based on 155 
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standardized definitions (27, 28). Motility index (MI) was calculated as follows: (number of 156 

contractions*average amplitude contractions*average duration contractions)/5min (19, 29). 157 

Average MI was calculated by averaging 6 consecutive antral channels. The anatomical 158 

location of the channels was determined via fluoroscopy and through the characteristics of 159 

the contractions measured using high-resolution manometry.  160 

Hormone measurements: 161 

Blood samples for motilin detection were collected in lithium heparin tubes containing 500 162 

kIU/ml aprotinin (Roche Applied Science, Penzberg, Germany) and stored at -80°C, after 163 

centrifugation, until assayed. Ghrelin blood samples were collected in EDTA tubes 164 

supplemented with 500 kIU/ml aprotinin, centrifuged, acidified to a final concentration of 165 

0.1N HCl, extracted on Sep-Pak C18 columns and vacuum-dried. Motilin and ghrelin levels 166 

were determined by radioimmunoassay as fully described elsewhere (10, 19). 167 

Statistical analysis 168 

Significance was set at p<0.05. BMI and age were compared between sexes using two-tailed 169 

unpaired Student’s t-tests or Mann Whitney U tests depending on the distribution. Bonferroni 170 

correction for multiple testing was applied for post-hoc t-tests. SAS (Statistical Analysis System 171 

version 9.3; SAS Institute) was used to analyze the data. Data are represented as mean±SEM 172 

or median [Q1, Q3]. 173 

Study 1: Bitter taste sensitivity of DB 174 

Bitter taste sensitivity was analyzed using mixed models with BMI, sex, DB concentration and 175 

an interaction effect between sex and DB concentration as independent variables. Sex and DB 176 
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concentration were entered as categorical variables. DB concentration was entered as a 177 

repeated within-subject variable.  178 

Study 2: Hunger and gastrointestinal motility responses to intragastric DB administration 179 

during the interdigestive state 180 

The percentage origin of phase III was compared between placebo and DB with McNemar’s 181 

test. Paired Student’s t-tests were used to compare the interval between administration and 182 

phase III contractions between placebo and DB. Percentage change of hunger was calculated 183 

with 10 min before intragastric administration as the reference point. Mixed model analysis 184 

was used to compare percentage change of hunger between placebo and DB during phase III. 185 

Drug (placebo and DB) and time were entered as categorical fixed effects; a drug-by-time 186 

interaction effect was included. Drug and time were entered as within-subject variables. 187 

Study 3: The effect of intragastric DB administration on motilin and ghrelin plasma levels 188 

during the interdigestive state 189 

Mixed model analysis was used to assess the main effects of time and drug (placebo and DB) 190 

and the interaction effect between time and drug on the percentage change of hormone 191 

plasma levels. Drug and time were entered as within-subject categorical variables. Percentage 192 

change of hormone plasma levels was calculated with 10 min prior to intragastric 193 

administration as the reference point. 194 

The effect of hormone plasma levels on MI antrum was assessed using mixed model analysis 195 

with the hormone of interest (motilin, total ghrelin or octanoylated ghrelin), drug (placebo 196 

and DB) and time as main effects together with an interaction effect between drug and 197 

hormone. Drug and time were entered as categorical within-subject variables. The same 198 
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analysis was done for hunger as the dependent variable. Percentage change was used for MI 199 

antrum, hormone plasma levels and hunger. The reference point was set at 10 min prior to 200 

intragastric administration. 201 

Study 4: The effect of DB on the return of hunger after a meal 202 

Mixed model analysis was used to assess the effect of drug (placebo and DB) on hunger and 203 

satiety after a meal intake. Drug and time were included as categorical within-subject main 204 

effects together with their interaction effect. Gastric half-time emptying time was compared 205 

between the 2 conditions using Wilcoxon signed rank test. 206 

Study 5: The effect of DB on food intake 207 

Our hypothesis for this protocol was that intragastric administration of DB would decrease 208 

caloric intake compared to placebo. This hypothesis was formulated based on the results of 209 

our previous experiments which are described in the results section (study 2-4). Based on the 210 

hypothesized direction of the effect we decided to compare caloric intake between placebo 211 

and DB administration using a one-tailed paired Student’s t-test.    212 
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RESULTS  213 

Women are more sensitive to DB lingual stimulation than men 214 

BMI (p=0.02), but not age (p=0.9), differed between the two sexes (Table 1). Increasing 215 

concentrations of DB were perceived as more bitter (Figure 2; p<0.0001), but a significant sex 216 

effect (Figure 2; p=0.005) was also present. There was no interaction effect between sex and 217 

DB concentration (p=0.1). There was a trend of a positive association between BMI and bitter 218 

taste perception (beta coefficient of 0.3±0.2; p=0.06). 219 

Intragastric administration of DB inhibits gastric phase III and decreases hunger scores in 220 

female participants 221 

BMI (p=0.003), but not age (p=0.6), differed between the two sexes (Table 1). None of the 222 

volunteers could discriminate between placebo and DB during intragastric administration. No 223 

adverse events were reported by any of the participants when DB was given. 224 

In women, administration of DB (Figure 3A; p=0.001) reduced the number of phase III 225 

contractions with a gastric origin from 67% (placebo) to 33% (DB). The interval between 226 

intragastric administration and the occurrence of phase III did not differ (p=0.5) between 227 

placebo (76±12 min) and DB (93±12 min) treatment. In men (Figure 3B) there was no (p=0.1) 228 

difference in the origin of phase III contractions between placebo (57% gastric) and DB (40% 229 

gastric). The interval between intragastric administration and the occurrence of phase III did 230 

not differ (p=0.2) between placebo (76±11 min) and DB (111±19 min). 231 

The switch from a gastric to a duodenal phase III origin in females after DB administration was 232 

accompanied by a significantly lower percentage change of hunger scores compared to 233 
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placebo (Figure 3C; p=0.04). In contrast, in male participants, the percentage change in hunger 234 

scores (Figure 3D; p=0.3) during phase III did not differ between placebo and DB treatment.  235 

Intragastric administration of DB inhibits the increase in motilin plasma levels 236 

The effect of intragastric administration of DB on the release of motilin and ghrelin during the 237 

interdigestive state was measured. There was a significant main effect of treatment (Figure 238 

4A; p=0.04) on the percentage change of motilin plasma levels due to a relative increase in 239 

motilin plasma levels during placebo administration and a relative decrease during intragastric 240 

administration of DB. There was no difference between the 2 treatment arms for the 241 

percentage change of total (Figure 4B; p=0.3) or octanoylated (Figure 4C; p=0.5) ghrelin 242 

plasma levels. Values of the raw hormone plasma concentrations can be found in the online 243 

supplemental material (Supplemental Figure 2). 244 

The change in antral motility was affected by the change in motilin plasma levels (p=0.0003), 245 

as well as by DB administration (p=0.02) (Table 2). Furthermore, a significant interaction effect 246 

between these two factors was found (p=0.01). This interaction effect depicts a significant 247 

difference in the slope of the regression curves between placebo and DB. This positive 248 

assiciation between antral motility and motilin plasma levels was reduced after DB 249 

administration compared to placebo (Table 3). A similar result was obtained for the effect of 250 

motilin plasma level changes on changes in hunger ratings (Table 4). There was a significant 251 

main effect of motilin (p=0.0002), DB administration (p=0.02) and a significant interaction 252 

effect between the two (p=0.02). The slope of the regression curve between hunger changes 253 

and motilin changes differed between placebo and DB (Table 3).  254 

Changes in antral motility were not associated with changes in total (p=0.9) or octanoylated 255 

ghrelin (p=0.9) (Table 2). Changes in total ghrelin plasma levels showed a trend (p=0.06) to be 256 
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associated with changes in hunger ratings. There was no associaton between changes in 257 

octanoylated ghrelin (p=0.9) plasma levels and changes in hunger ratings (Table 4). 258 

Intragastric administration of DB suppresses hunger and increases satiety ratings after a meal 259 

DB administration before the standard meal was associated with prolonged elevated satiety 260 

scores and delayed return of hunger after the meal (Figure 5). Hunger scores (Figure 5A) were 261 

affected by both DB administration (main effect with lower ratings over all time points after 262 

DB, p=0.008) and time relative to the meal (p<0.0001). The course of hunger over time tended 263 

to differ between placebo and bitter adminsitration (p=0.07). Similarly, satiety scores (Figure 264 

5B) were affected by both DB administration (higher ratings over all time points after DB, 265 

p=0.01) and time (p<0.0001). There was no interaction effect between time and bitter 266 

administration for satiety scores (p=0.4). 267 

Gastric half-emptying time (measured in 6 subjects) did not differ between placebo and DB 268 

(109 [93, 118] min vs 109 [87, 128] min; p=0.7).  269 

Ad libitum food intake tended to decrease after intragastric administration of DB compared 270 

with placebo (720±58 kcal vs 796±45 kcal; p=0.08) (Figure 6). 271 
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DISCUSSION  272 

Our study showed that DB inhibited phase III contractions with gastric origin, with an 273 

increased occurrence of phase III starting in the duodenum. In keeping with a role for gastric 274 

phase III in determining interdigestive hunger, this switch was accompanied by a decrease in 275 

hunger scores (20). Similar to our findings in the lingual system, the response to DB was sex-276 

dependent, being more pronounced in women than in men. The increase in motilin plasma 277 

levels was significantly inhibited after DB administration compared to placebo, but ghrelin 278 

plasma levels were not affected. The positive association between motilin and antral motility 279 

was reduced after intragastric DB administration. A similar result was obtained for the 280 

association between motilin and hunger ratings. Moreover, our study showed that intragastric 281 

administration of DB decreased hunger and increased satiety scores after a standard meal 282 

without altering gastric emptying. Finally, ad libitum food intake tended to decrease after 283 

intragastric DB administration. 284 

The most characteristic property of DB is its extreme bitter taste (2). DB is known to interact 285 

with 8 of the bitter taste receptors in man (TAS2R4, TAS2R8, TAS2R10, TAS2R13, TAS2R39, 286 

TAS2R43, TAS2R46, TAS2R47) (31, 32). Our finding that women perceive a bitter lingual 287 

stimulus more intensely than men is in agreement with previous bitter sensitivity studies (6, 288 

8). This sex difference has been associated with the density of fungiform papillae on the 289 

anterior tongue and with polymorphisms in the haplotypes of the TAS2R38 gene for PROP 290 

sensitivity (6, 7, 33, 34).    291 

In addition we found that in women, but not in men, there was a switch in the origin of phase 292 

III contractions from the stomach to the duodenum after administration of DB. This occurred 293 

in parallel with a significant inhibition of hunger during phase III. The inhibitory effect of bitter 294 
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stimuli on antral motility and hunger has already been suggested in the beginning of the 295 

previous century by Carlson (22). A dose of 1 µmol/kg DB was chosen since this dosage 296 

significantly inhibited gastric accommodation without inducing adverse events (13). Also in 297 

the present study no adverse events were reported by the volunteers. Two chronic toxicity 298 

studies showed no significant changes in general behavior and appearance, ophthalmoscopy, 299 

electrocardiograms, body weight, hematological and biochemical studies or urinalysis (35-37). 300 

There is only one published case report of adverse reactions due to an allergic reaction after 301 

exposure to DB (38). Oral administration of 10 ppm DB to children aged 17-36 months induced 302 

a strong taste aversion, but no other effects were noted (1). 303 

It needs to be mentioned that the increase in hunger during phase III was weaker in male in 304 

comparison to female participants during placebo administration in the current study. One 305 

factor contributing to this difference in hunger changes could be the lower occurrence of 306 

gastric phase III contractions in male participants during the present study. Previous studies 307 

did not report a difference in association of phase III contractions and hunger ratings between 308 

men and women (20), but this aspect needs to be studied in more detail and in larger numbers 309 

in future research. 310 

Our study showed that only motilin plasma levels were decreased after administration of DB. 311 

A significant positive association was observed between antral motility and plasma motilin, 312 

but not ghrelin levels. This confirms our previous finding that motilin but not ghrelin is the key 313 

regulator of the MMC in man (19). After administration of DB, this association between motilin 314 

plasma levels and antral motility was reduced, but also the positive relationship between 315 

motilin plasma levels and hunger scores, confirming our recently published observation that 316 

motilin signals hunger (20). 317 
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It has already been described that taste receptors are expressed on enteroendocrine cells, 318 

allowing them to modulate the release of several gastrointestinal hormones (11, 12, 39-41). 319 

In mice, intragastric administration of DB (10 mM) significantly increased both total and 320 

octanoylated ghrelin levels during the first 30 min after gavage (10). Our results in humans 321 

differ as we showed no effect of intragastric DB on ghrelin plasma levels. Comparing the two 322 

studies is difficult due to species and sex differences and also differences in the dosage. The 323 

expression of bitter taste receptors on motilin-producing cells has not been reported but 324 

needs to be addressed. In addition, a direct effect of DB on smooth muscle cell contractility 325 

cannot be excluded since expression of bitter taste receptors has been shown on human 326 

gastric smooth muscle cells. DB administration induced Ca²+ rises and increased extracellular 327 

signal-regulated kinase (ERK) phosphorylation in human gastric smooth muscle cells (13). 328 

Furthermore, bitter compounds induced concentration and region-dependent contractility 329 

changes in mouse intestinal muscle strips (13). 330 

However, the current study does not rule out that the findings related to the administration 331 

of DB are mediated via a different pathway. Rogachevskaja et. al.(42) have shown that DB also 332 

binds to the extracellular Ca2+-sensing receptor (CASR). Moreover, this receptor is also 333 

expressed in the GIT and has been linked to acid secretion and nutrient sensing (43). Further 334 

studies are necessary to elucidate via which pathway DB exerts its effects. 335 

Finally, our study also showed that intragastric administration of DB delayed the return of 336 

hunger and prolonged the satiety feeling after a meal without affecting gastric emptying. 337 

Intragastric administration of DB in mice was able to delay gastric emptying, but the dosage 338 

used was 60 times higher (13). We already reported an effect of DB on satiation during an oral 339 

nutrient challenge test and on gastric accommodation in healthy volunteers (13). The effect 340 
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of DB on both hunger and satiety could be due to a combined effect on the release of both 341 

hunger and satiety hormones. In the present study, we have shown that motilin release is 342 

diminished after DB administration which affects hunger scores. Another study performed by 343 

Kim et. al.(11) showed that administration of DB in mice increased the secretion of GLP-1, a 344 

gastrointestinal hormone known to decrease food intake. Moreover it has been reported that 345 

intragastric administration of DB in mice activates neurons in the nucleus of the solitary tract 346 

possibly via the release of CCK and PYY (44). 347 

Few studies to date have evaluated the effect of bitter agonist administration on food intake 348 

in human volunteers. Our results showed a trend that DB administration decreased caloric 349 

intake. One study reported that intraduodenal administration of quinine (75 mg in 120 ml tap 350 

water) did not alter food intake (45). However, another study reported reduced food intake 351 

after intraduodenal administration of quinine (18 mg in an acid-resistant capsule) (23). These 352 

differences in outcomes are probably due to differences in compounds, administration routes, 353 

dosages and study design. The effect of these compounds on the release of anorexigenic and 354 

orexigenic hormones deserves further evaluation in larger subject groups, outside the scope 355 

of the present study, as this could lead to the development of new therapeutic approaches in 356 

the treatment of obesity. 357 

In summary, for the first time, we provide evidence that DB administered intragastrically is 358 

able to decrease both antral motility and hunger during the fasting state. These effects are 359 

probably caused by the inhibitory effect of DB on motilin release. Moreover, DB increased 360 

satiety and decreased hunger ratings after a standardized meal. These results suggest that DB, 361 

and potentially also other bitter tastants, could be investigated for their potential application 362 

for the treatment of obesity. 363 
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TABLES 

Table 1. Comparison of BMI and age between male and female participants 

 Men Women p-value 

BMI_study 1 

(kg/m²) 

24 [21, 26] (n=26) 22 [20, 24] (n=39) 0.02 

Age_study 1 (years) 25 [23, 33] (n=26) 26 [23, 32] (n=39) 0.9 

BMI_study 2 

(kg/m²) 

25±2 (n=10) 22±1 (n=10) 0.003 

Age_study 2 (years) 23 [22, 26] (n=10) 25 [22, 35] (n=10) 0.6 

Data are represented as mean±SEM or median [Q1, Q3]. BMI and age were compared 

between sexes using two-tailed unpaired Student’s t-test or Mann Whitney U test depending 

on the distribution. 
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Table 2. The effect of hormone plasma levels on antral motility (n=12) 

 Motilin Total ghrelin Octanoylated ghrelin 

Main effect hormone 0.0003 0.9 0.9 

Main effect administration 0.02 0.8 0.2 

Main effect time 0.1 0.1 0.1 

Hormone by administration 0.01 0.7 0.2 

Data were analyzed using mixed model analysis. Antral motility was the dependent variable. 

The hormone of interest (motilin, total or octanoylated ghrelin), administration, time and an 

interaction effect between hormone and administration were the independent variables. The 

table depicts the calculated p-values. 
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Table 3. The interaction effect between motilin and intragastric administration on antral 

motility and hunger 

 Placebo (n=12) DB (n=12) 

Antral motility 238±46 45±77* 

Hunger 6.22±1.2 1.33±2.0* 

Values represent betas, which are the slopes of the regression curves. *: p<0.05 vs placebo. 

Bèta values are given as mean±SEM. 
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Table 4. The effect of hormone plasma levels on hunger scores (n=12) 

 Motilin Total ghrelin Octanoylated ghrelin 

Main effect hormone 0.0002 0.06 0.9 

Main effect administration 0.02 0.3 0.3 

Main effect time 0.5 0.6 0.3 

Hormone by administration 0.02 0.3 0.4 

Data were analyzed using mixed model analysis. Hunger was the dependent variable. The 

hormone of interest (motilin, total or octanoylated ghrelin), administration, time and an 

interaction effect between hormone and administration were the independent variables. The 

table depicts the calculated p-values.  
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FIGURE LEGENDS 

Figure 1. Schematic overview of the protocol outline. All protocols were single-blinded 

randomized placebo-controlled trials. Either placebo (water) or DB (1 µmol/kg 

bodyweight) were administered intragastrically using a nasogastric feeding tube. 

Antroduodenal motility was measured continuously during the course of both study 2 

and 3 with high-resolution manometry. Hunger and satiety ratings were scored on 

10cm visual analog scales with endpoints. Blood samples were collected via an i.v. 

catheter and analyzed using hormone-specific RIAs to measure motilin and ghrelin 

(total and octanoylated) plasma levels. Pancakes were labeled with sodium 13C-

octanoate to assess gastric half-emptying time.   
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Figure 2. Bitter lingual sensitivity in male and female participants. These data are part of 

study protocol 1. 6 different concentrations of DB were scored for their bitterness 

using taste strips. Concentrations were presented in ascending order and placed on 

the tongue for 90 sec. Participants rinsed their mouth between consecutive 

administrations. Bitter taste perception was scored on a 10-cm visual analog scale. The 

data was analyzed using mixed-model analysis, with bitter scores as the dependent 

variable and sex, concentration (repeated statement), BMI and an interaction effect 

between sex and concentration as the independent variables. Both DB concentration 

(p<0.0001) and sex (p=0.005) had a significant effect on bitter taste perception. There 

was no significant effect of BMI (p=0.06) or a significant interaction effect between sex 

and DB concentration (p=0.1). Data are represented as means and SEMs.  
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Figure 3. Origin of phase III and hunger scores after intragastric administration of DB (1 

µmol/kg). These data are part of study protocol 2. Percentage of phase III with gastric 

and duodenal origin after intragastric administration of placebo or 1 µmol/kg DB in (A) 

female and (B) male participants. McNemar’s test was used to compare the origin 

between both conditions (*: p<0.05). Percentage change in hunger scores during phase 

III for (C) female and (D) male participants. Percentage change of hunger was 

calculated with 10 min prior to intragastric administration as the reference point. The 

data was analyzed with mixed-model analysis. Percentage change of hunger scores was 

the dependent variable and time, drug and an interaction effect between drug and 

condition were the independent variables. Both drug and time were entered as 

repeated categorical variables. In females the percentage change of hunger scores 

differed significantly between placebo and DB administration (p=0.04), there was no 

significant time (p=07) or interaction effect (p=0.9). In men there was no significant 

effect of condition (p=0.3) or a significant interaction effect (p=0.3), but there was a 

significant time effect (p=0.04). Data (C and D) are represented as means and SEMs.  
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Figure 4. The effect of intragastric administration of DB on motilin and ghrelin plasma levels. 

These data are part of study protocol 3. Percentage change of (A) motilin, (B) total and 

(C) octanoylated ghrelin plasma levels after intragastric administration of placebo or 1 

µmol/kg DB. Time point 0 indicates the start of the intragastric administration. 

Percentage change of the hormone levels was calculated with 10 min prior to 

intragastric administration as the reference point. *: p<0.05. The data was analyzed 

with mixed-model analysis. Change in plasma concentration of the hormone of interest 

was the dependent variable and time, drug and an interaction effect between drug and 

condition were the independent variables. Both drug and time were entered as 

repeated categorical variables. Change in motilin plasma levels differed significantly 

between placebo and DB administration (p=0.04) there was no significant time (p=0.3) 

or interaction effect (p=0.07). There was no significant main effect of drug 

administration (p=0.3) or time (p=0.2) and no significant interaction effect (p=0.3) for 

total ghrelin plasma levels. There was no significant main effect of drug administration 

(p=0.5) or time (p=0.5) and no significant interaction effect (p=0.2) for octanoylated 

ghrelin plasma levels. Data are represented as means and SEMs.  
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Figure 5. The effect of intragastric administration of DB on hunger and satiety scores after a 

meal. These data are part of study protocol 4. (A) Hunger and (B) satiety scores after 

placebo or 1 µmol/kg DB intragastric administration. Compounds were administered 

30 min before the start of the meal (500 kcal). Time point 0 indicates start of meal 

intake. *: p<0.05 Data was analyzed with mixed-model analysis. Hunger or satiety 

scores were the dependent variables and time, drug and an interaction effect between 

drug and condition were the independent variables. Both drug and time were entered 

as repeated categorical variables. Both hunger and satiety scores were significantly 

affected by time (both p<0.0001) and drug administration (p=0.008 and p=0.01 

respectively). There was no significant interaction effect between time and drug 

administration for hunger (p=0.07) and satiety (p=0.4) scores. Data are represented as 

means and SEMs.  
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Figure 6. Food intake after intragastric administration of DB.  These data are part of study 

protocol 5. Caloric intake was calculated in kcal. Total caloric value of the excess-choice 

buffet meal was 4211 kcal. DB (1 µmol/kg) or placebo were given intragastrically 40 

min prior to the start of the buffet meal. Subjects had 1 hour to eat ad libitum. Caloric 

intake between placebo and DB administration was compared using a one-tailed 

paired Student’s t-test (p=0.08). 


