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Abstract—Laser-generated Lamb waves, coupled with a large 

bandwidth Michelson interferometer, have been demonstrated to 

accurately measure the thickness of a MEMS pressure sensor 

diaphragm in the [110] direction of a silicon wafer. Using the 

reassigned Gabor time-frequency method to produce group 

velocity dispersion curves, the technique facilitates the 

measurement of thickness, Young’s modulus and Poisson’s ratio 

from just one non-contact measurement.  In this investigation, 

thickness was determined to be 35.01 µm ± 0.18 µm. For 

comparison, the thickness was measured using an independent 

optical technique; obtaining a value of 34.60 µm ± 0.27 µm. 

Values for Young’s modulus and Poisson’s ratio were also 

determined to be 163 GPa ± 11.7 GPa and 0.351 respectively and 

these are in good agreement with values found in the literature. 

 
Index Terms—Elastic modulus, Elasticity, Laser ultrasonics, 

Microelectromechanical systems (MEMS), Poisson’s ratio, 

Silicon, Young’s modulus, 

I. INTRODUCTION 

ICROELECTROMECHANICAL systems (MEMS) 

have dimensions that fall broadly within the 1 µm to 1 

mm range and combine electrical and mechanical components. 

The MEMS pressure sensor is one such system. With the 

continued growth of the MEMS industry, there is an ever-

increasing need to measure the dimensions and material 

properties of these structures – both on the silicon wafers and 

the final pressure sensor membrane, not only to ensure 

reliability but also to improve future designs. One concern is 

that the material properties at the microscale can vary 

significantly compared to those of the bulk material [1]. The 

preliminary results reported here show close correlation with 

bulk values for this particular device process. 

The main applications of MEMS pressure sensors in the 
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automotive industry are manifold air pressure sensors and 

common fuel rail pressure sensors for engine management 

systems [2]. In the medical industry, MEMS pressure sensors 

are used in applications such as disposable devices for 

catheters employed in surgical operations [3], and for pressure 

and differential flow monitoring in continuous positive airway 

pressure machines for treating sleep apnea [4]. The 

construction industries use MEMS pressure sensors to 

measure airflow [5], while the aerospace industry uses MEMS 

pressure sensors to monitor engines, flaps and other functions, 

and to provide precision altitude air pressure measurement [6]. 

This work was conducted on the diaphragms of pressure 

sensors etched into silicon wafers. This is the only method, as 

far as we know that can deduce the described mechanical 

properties from a single measurement. Others, have employed 

laser generated surface acoustic waves using commercial 

instrumentation [27] to obtain thin film thickness on a large 

substrate and additionally used a nanoindentation technique to 

determine mechanical properties. However, this is a 

destructive technique [28]. A full review of applications and  

current characterization techniques is given in [22]. Due to the 

potential speed of the test procedure, it could be possible to 

automate this as a test mechanism for use during the 

manufacturing process. 

II. LAMB WAVES AND TIME FREQUENCY ANALYSIS 

A. Lamb Waves 

Lamb waves are ultrasonic guided waves which occur in 

thin plates, where the planar dimensions are much greater than 

the thickness and where the wavelength is of the order of the 

thickness [7]. They are formed by the interference of multiple 

reflections and mode conversion of longitudinal and transverse 

waves at the surfaces of the plate. These waves propagate as 

so called symmetric and antisymmetric modes, so called 

because of the relative displacement patterns on the two plate 

surfaces (Fig. 1 & Fig. 2) 

These modes are superpositions of longitudinal and shear 

vertical waves and each wave type can propagate 

independently of the other. Fig. 1 and Fig. 2 show a 

representation of the particle motion in the material. The 

symmetric and anti-symmetric modes are normally 

abbreviated to Si and Ai (i = 0, 1, …) respectively. The 

symmetric modes normally have a dominant in-plane motion 

Campbell McKee, Brian Culshaw, and Richard Leach 

Laser Ultrasound Measurement of Diaphragm 

Thickness, Young’s Modulus and Poisson’s 

Ratio in a MEMS Device. 

M 

mailto:c.mkee@strainstall.com
mailto:Richard.Leach@nottingham.ac.uk


10.1109/JSTQE.2016.2635518 2 

compared to the dominant out-of-plane motion of the anti-

symmetric modes. Each of these wave modes are governed by 

their own equation [9].  

 
 

These equations are the well know Rayleigh-Lamb 

dispersion equations and are given below. Symmetric modes 

are defined as 

 

tan(𝑞ℎ)
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and antisymmetric modes are defined as 
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where, ℎ = 𝑑
2⁄ , d is the plate thickness, k is the wavenumber, 

ω is the angular frequency and p and q are given by 

 

𝑝2 =
𝜔2

𝐶𝐿
2 − 𝑘2 𝑞2 =

𝜔2

𝐶𝑇
2 − 𝑘2 

 
where CL and CT are the longitudinal and transverse wave 

velocities respectively. The velocities are a function of the 

wave’s frequency and the plate thickness, making Lamb 

waves dispersive. 

The longitudinal and transverse wave velocities can be 

related to the material elastic properties by [9] 
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where λ and µ are the Lamé constants, and can be expressed as 

 

𝜆 =  
𝜈𝐸

(1 − 2𝜈)(1 + 𝜈)
 µ =  

𝐸

2(1 + 𝜈)2
 

 

E is Young’s modulus, ρ is the material density and υ is 

Poisson’s ratio. If CL, CT and ρ are known, Poisson’s ratio and 

Young’s modulus are given by: [9] 
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1 − 2 (

𝐶𝑇

𝐶𝐿
)

2

2 − 2 (
𝐶𝑇

𝐶𝐿
)
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𝐸 = 2𝜌𝐶𝑇
2(1 + 𝜐). (6) 

 

The Rayleigh-Lamb wave equations are used to obtain 

velocity dispersion curves. These dispersion curves can either 

be wavenumber, phase velocity or group velocity dispersion 

curves, and the choice of which to use ultimately depends on 

the measurement type and experimental set up. Lamb waves, 

can travel with both a phase and group velocity. The phase 

velocity is the velocity at which an individual component of a 

wave propagates and is given as 𝑐𝑝 = 𝜔
𝑘⁄ , whereas the group 

velocity is the velocity of the guided wave packet and is given 

as 𝑐𝑔 = 𝛿𝜔
𝛿𝑘⁄ . The group velocity defines the speed and 

direction of the flow of energy transmitted by the wave. Fig. 3 

shows an example of the group velocity dispersion curve 

calculated for 50 µm [110] silicon. These dispersion curves 

were produced using a MATLAB programme developed 

within the University of Strathclyde Centre for Ultrasonic 

Engineering [10]. It is clear that as the frequency increases, so 

does the number of modes, and so theoretically, an infinite 

number of modes can exist in a plate, all of which are 

dispersive at some point. However, below a certain cut-off 

threshold, only the two fundamental modes, S0 and A0, can 

propagate. . These curves vary slightly in detail for different 

crystal directions due to different effective physical constants. 

The non-dispersive, low frequency component of the S0 

mode is known as the plate wave velocity and is given by 

 

lim
𝑓𝑑→0

𝑐𝑠 =  √
𝐸

𝜌(1 − 𝜐2)
 

 

(7) 

where cs is the symmetric Lamb wave velocity or plate wave 

velocity. As the frequency increases, the fundamental 

symmetric and antisymmetric modes converge to the Rayleigh 

wave velocity, CR [9]. The dispersion equations and the 

resulting dispersion curves are used to describe the 

relationship between frequency, sample thickness and phase or 

group velocity. Fig. 3 with (1) and (2) shows that: 

 The wave modes are a function of the product of the 

frequency and sample thickness. 

 The lower order modes (A0 and S0) exist for all 

frequencies and the higher order modes (Ai and Si (i = 1, 

2…)) appear with increasing frequency. 

 
Fig. 1.  Particle motion of the symmetric Lamb wave mode [8]. 

  

 
Fig. 2.  Particle motion of the antisymmetric Lamb wave mode [8]. 
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 There are regions of low dispersion for the lower order 

modes (≈50 MHz for the case analyzed in Fig. 3), before 

the higher order modes begin to appear. 

 

One commonly used method for obtaining Lamb wave 

phase velocity dispersion curves is by using the two 

dimensional Fourier transform (2D-FT) as described in [26]. 

This signal processing method requires hundreds of 

measurements and is only applicable to relatively large 

structures. A much simpler solution would be to use a signal 

processing technique that only requires one measurement.  

 
 

B. Time–frequency analysis of Lamb waves 

As first stated by Gabor [11], it is possible to map a one 

dimensional time domain signal into a two dimensional time 

and frequency signal, which represents the variation of 

spectral energy over time [12].  Lamb waves are an example 

of a non-stationary multimode signal making it suitable for 

time-frequency analysis. Time-frequency analysis is able to 

resolve individual Lamb modes, leading to a group velocity 

representation [13]. 

C. Short time Fourier Transform 

The short time Fourier transform (STFT) contains a 

windowing function that, when applied to a signal, breaks the 

signal into segments, where a Fourier transform is performed. 

This is mathematically defined as  

 

𝑆𝑇𝐹𝑇(𝑥; 𝜔, 𝑡) = ∫ 𝑥(𝜏) ℎ(𝜏 − 𝑡)𝑒−𝑖2𝜋𝜔𝜏  𝑑𝜏
∞

−∞

 (8) 

 

The window, h(τ - t) suppresses the signal around the 

analysis time point, τ = t, and the STFT gives a local spectrum 

of the signal x(τ) around t. The output of the STFT is the 

spectrogram and is the energy density spectrum of the STFT. 

This is given as 

 

𝐸(𝜔, 𝑡) ∝ |𝑆(𝜔, 𝑡)|2. (9) 

 

The STFT, as with all time-frequency representations, 

suffers from the Heisenberg-Gabor uncertainty principle. This 

states that it is impossible to simultaneously obtain good 

resolution in time and frequency. The resolutions in time and 

frequency are related and limited by the inequality:  

 

𝜎𝑡
2𝜎𝜔

2 ≥
1

4
 (10) 

 

where σt is the standard deviation for time and σω is the 

standard deviation for frequency. The resolution in time and 

frequency of the spectrogram is dictated completely by the 

window size and type used. A narrow window will give good 

time resolution and poor frequency resolution, while a wide 

window gives good frequency resolution and poor time 

resolution.  

D. The reassignment method 

The reassignment method [14] provides a method for 

“cleaning up” the spectrogram. In the reassignment method, 

the energy of the signal is moved from its original location 

(𝑡, 𝜔) to a new location (�̂�, �̂�), reducing the spread of the 

spectrogram and improving its resolution by concentrating its 

energy at a “center of gravity” [14]. It was shown in [14] that 

the reassigned coordinates �̂� and �̂� for a spectrogram are  

 

�̂� = 𝑡 − ℜ (
𝑆𝒯ℎ(𝑥, 𝑡, 𝜔). 𝑆ℎ(𝑥, 𝑡, 𝜔)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

|𝑆ℎ(𝑥, 𝑡, 𝜔)|2
) (11) 

 

and 

 

�̂� = 𝜔 − ℑ (
𝑆𝒟ℎ(𝑥, 𝑡, 𝜔). 𝑆ℎ(𝑥, 𝑡, 𝜔)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

|𝑆ℎ(𝑥, 𝑡, 𝜔)|2
) (12) 

 

where Sh(x,t,ω) is the standard STFT of the signal x using 

window function h(t) and STh(x,t,ω) is the STFT using a time-

ramped version of the window, t∙h(t) and SDh(x,t,ω) is the 

STFT using the first derivative of the window function, 
𝑑ℎ(𝑡)

𝑑𝑡
 

[14].  

The reassignment method can be considered a two-step 

process: 

 Smoothing – the purpose is to smooth oscillatory 

interference but has the disadvantage of smearing 

localised components. 

 Squeezing – the purpose is to refocus the contributions 

that survived the smoothing. 

III. GENERATING GUIDED ELASTIC WAVES IN A MEMS 

PRESSURE SENSOR 

The Lamb waves were excited in the diaphragm of a 

MEMS pressure sensor using a broadband laser source. Fig. 4 

shows the pressure sensor diaphragms etched into a (100) n-

type silicon wafer with stiffening boss [15]. Also visible is a 

blank test plate (circled) used for the measurements. The 

diaphragms are approximately 2.5mm square. The sample was 

mounted vertically in between the generation source laser and 

 
Fig. 3.  Lamb wave group velocity dispersion curves for a 50 µm silicon 

wafer in the [110] direction. Symmetric modes are shown as dashed lines. 

Anti-symmetric modes are shown as solid lines 
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a Michelson interferometer, and was held in place using 

magnetic strips. The generation source used was a Teem 

Photonics Powerchip PB Nano UV laser (PowerChip-PNV-

B25010-130) with wavelength 355 nm, pulse energy of 28 µJ, 

pulse width of 400 ps and repetition rate of 10 Hz. The laser 

was mounted on a Newport motion controller translation stage 

(MM4005) which was used to adjust the laser in the y-axis, to 

adjust the source-detector distance and in the x-axis, to adjust 

the focusing of the laser beam. The beam was focused onto the 

sample using a UV cylindrical lens. The cylindrical lens 

focuses the beam to a line, reducing the energy density and 

avoiding ablation. The detection scheme was a custom built 

Michelson interferometer with 200 MHz bandwidth [22]. The 

optimal focus was obtained by firing the laser and                  

finely adjusting the translation stage until the signal with the 

maximum signal to noise ratio was observed on an 

oscilloscope. The oscilloscope used was an Agilent Infininium 

54832D MSO and the signals were averaged 4096 times with 

each measurement. The experimental set up is described in 

detail in [22].  

 
 

IV. CHARACTERISATION OF THE MEMS PRESSURE SENSOR – 

RESULTS AND DISCUSSION 

 

Fig. 5 shows the measured signal while Fig. 6 shows the 

same data filtered using a Chebyshev Type II digital bandpass 

filter between 5 MHz and 250 MHz. The Chebyshev filter is 

more suitable when the frequency content of a signal is more 

important. Below 5MHz the ultrasonic wavelength well 

exceeds the diaphragm dimensions The signal is off large 

amplitude and long wavelength  and any delay measurements 

are very strongly influenced by the surrounding silicon 

substrate which are consequently extremely difficult to 

interpret.  Indeed Fig. 6 does have evident structure below the 

nominal 5MHz cut off indicating strong interference. 

To obtain the group velocity dispersion curve, the 

reassigned Gabor transform was applied to the data using the 

MATLAB Time-Frequency Toolbox [16]. 

 The Gabor transform is similar to the STFT with the 

exception that the Gabor transform uses a Gaussian window 

with much improved time and frequency resolution compared 

to the STFT. This resulted in the time-frequency 

representations of Fig. 7. For the Gabor transform, the window 

length is given as N/4, where N is the length of the analysed 

signal. In this case the window length is 256 ns. 

 
 

 
 

Fig. 7 contains all the information needed to determine the 

thickness of the membrane along with values for group 

velocity, plate velocity, Rayleigh velocity, Young’s modulus 

and Poisson’s ratio.  Three measurements, plate velocity, 

Rayleigh velocity and S1 mode zero group velocity give all the 

information needed to derive these important parameters.. 

Note that there is no closed form mathematical expression to 

relate group velocity to elastic constants, which may be 

manipulated to obtain elastic constants. Developing such an 

expression would be highly complex and would present severe 

challenges for computerised optimisation [17]. Therefore, the 

practical method for obtaining material properties is by 

measuring the group velocities of each mode at appropriately 

selected frequencies and using the equations (3) to (6). To 

determine the material properties, some assumptions have to 

be made. It is assumed that the density is 2329 kgm-3 and that 

the transverse wave velocity in the [110] direction is well 

 
Fig. 4.  MEMS pressure sensor on wafer with test point highlighted. Insert 

shows SEM image of test point 

 
Fig. 5.  Measured Lamb wave generated in MEMS pressure sensor.  
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Fig. 6.  Measured data after bandpass filter between 5 MHz and 250 MHz is 

applied. 
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documented and given as 5844 ms-1 [18]. 

There is every likelihood that the wafer has been doped 

with another element. It is, however, generally accepted that 

doping has no effect on material properties including wave 

velocities, assuming doping levels are <1020 cm-3 [19]. For 

very heavy doping, the mechanical properties such as Young’s 

modulus will typically decrease by approximately 1% to 3% 

[20]. Finally, the source-detector propagation distance is 1.25 

mm. 

 

A. Plate velocity 

An important feature is the non-dispersive component of the 

S0 mode, i.e. the low frequency component, known as the plate 

velocity, defined in (7). It is clear that changes in both 

Young’s modulus and Poisson’s ratio have a large impact on 

the plate velocity in the group velocity dispersion curve, but 

thickness has no impact. In an anisotropic material, in a 

direction of high symmetry, it can be assumed that the plate 

velocity and group velocity of the low frequency S0 mode are 

equal [17]. 

Fig. 7 shows the arrival time of the S0 mode.  Note that 

there is spurious structure in these results due to some extent 

to system noise and also due to multipath effects.  

Consequently we use prior knowledge of the direct source to 

detector path length to assist in isolating important features in 

the results. 

 Fig. 7 also shows a high region of dispersion in the A0 

mode. Concentrating on the S0 mode, the arrival time occurs at 

0.14 µs. Considering a propagation distance of 1.25 mm, this 

equates to a group velocity of 8930 ms-1 ± 320 ms-1. The 

quoted error is due to the uncertainty in the propagation 

distance. This is the value for the plate velocity within the 

membrane. The A0 mode, shown in Fig. 7 from approximately 

0.2 µs and under  approximately 50 MHz  is highly insensitive 

to variations in mechanical properties and as such can be 

ignored.  This results from the implications of window length 

(256  ns) and frequency resolution highlighted in  (10) 

 

B. Rayleigh velocity 

When the fundamental symmetric and anti-symmetric Lamb 

wave modes begin to converge, the Lamb waves start to make 

the transition to a Rayleigh wave. In other words the 

frequency of the wave has increased and the wavelength 

decreased to a smaller dimension relative to the plate or 

membrane thickness.  

The time-frequency plot in Fig. 7 shows the point where the 

A0 and S0 modes almost meet. Note that is the point where the 

two fundamental modes converge and the group velocity for 

both modes becomes the Rayleigh wave velocity.  

The two modes can be seen converging in Fig. 8., with the 

A0 mode on the left and the S0 mode on the right. Fig. 8. shows 

a magnified region of Fig. 7. 

Knowing the source-detector separation distance, the 

Rayleigh wave velocity was calculated to be 5465 ms-1 ± 

145 ms-1.  

Fig. 8. highlights a problem with the reassigned time-

frequency method. On the left, is some structure believed to be 

the Rayleigh wave associated with the A0 mode. On the right 

is the S0 mode approaching the Rayleigh velocity. In between 

these two modes, however, is interference caused by two 

closely-spaced components. With time-frequency 

representations, there is a trade-off between resolution and 

localisation (10).If more than one component is seen within a 

time-frequency smoothing window, a beating effect occurs, 

causing interference fringes.  

 

C. The S1 mode and membrane thickness 

One interesting property of Lamb waves is that at specific 

frequencies, the group velocity tends towards zero, while the 

phase velocity remains finite. This is illustrated in Fig. 3, 

where the S1 mode crosses the y-axis, i.e. when the S1 mode is 

zero. When the phase velocity becomes infinite, the group 

velocity is zero, meaning the plate vibrates in longitudinal or 

shear thickness mode resonance. These resonances become 

uniformly distributed on the plate surface. The minimum 

Lamb wave mode where this is observed is within the S1 

mode, but it can also occur in higher modes. The S1 mode has 

been shown to have a very large quality factor [21] hence at 

the zero group velocity point there will be a peak in frequency 

response, making it ideal for bulk acoustic wave velocity and 

thickness measurements. The maximum peak shown at ≈120 

MHz is the S1 resonant mode. Fig. 9 shows other peaks of 

 
Fig. 7.  Reassigned Gabor time-frequency representation on the detected 

Lamb wave measured in the MEMS pressure sensor membrane. 

Time / µs

F
re

q
u

e
n

c
y
 /
 M

H
z

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

 
Fig. 8.  Onset of Rayleigh wave. 
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lower amplitudes. These are other elements of the signal 

evident in Fig. 10  

The S1 mode (along with other higher order modes) 

originates at a particular cut-off frequency. At this frequency, 

fR, the plate vibrates in longitudinal or shear thickness mode 

resonance. For the S1 mode, this point is a function of 

longitudinal velocity, CL and the plate thickness, h, thus  

  

𝑓
𝑅

=
𝐶𝐿

2ℎ
. (13) 

 
 

The origins of the S1 zero group velocity resonance are 

within the behaviour of the dispersion curve. A more detailed 

explanation of the formation of these modes is given in [21]. 

Fig. 10 shows that the zero group velocity of the S1 mode 

occurs at a frequency of 120.43 MHz ± 0.64 MHz, equating to 

a thickness of 35.01 µm ± 0.18 µm using (13). 

 
 

The S1 mode at zero group velocity is also very sensitive to 

changes in thickness [21]. The sensitivity to change in 

thickness δh can be given as 

 

𝛿ℎ =
ℎ𝛿𝑓

𝑓
 (14) 

 

where δf and f are the change in frequency shift and frequency 

respectively. If the resonance peak shifts on the order of 

0.1 MHz, and with a measured frequency of 120 MHz and a 

thickness of 35 µm, changes of thickness of 292 nm 

(approximately 0.8%) can be observed. 

D. Estimation of Young’s modulus and Poisson’s ratio in the 

[110] direction 

The solution to the Rayleigh wave equation is given as [29] 

 

𝐶𝑅 =
0.862 + 1.14𝜐

1 + 𝜐
𝐶𝑇 (15) 

 

where CR is the Rayleigh velocity, υ is Poisson’s ratio and CT 

is the transverse velocity.  

Using (15), a value for Poisson’s ratio of 0.351 is obtained. 

Having calculated a value for the plate velocity and Poisson’s 

ratio, Young’s modulus can now be found. Using (7), Young’s 

modulus can be shown to be 163 GPa ± 11.7 GPa. 

E. Experimental and theoretical results 

This final section pulls together the measured time-

frequency spectrogram and using the determined material 

properties, group velocity dispersion curves are given. Here 

the very low surface displacements become more susceptible 

to noise and interference. There is also some overlap with the 

S1 in this region.  At low frequencies (< ≈ 10MHz) the 

multipath effects produce many delayed signals , apparently 

strong due to the higher displacements at lower frequencies, 

which are evident in the lower section of the graph. The 

experimentally derived group velocity dispersion curves are 

compared to those that has been theoretically calculated in 

Fig. 11 for fundamental modes and higher modes, showing 

good agreement between the theoretical and measured points 

taking into account multipath effects and interference caused 

by the time frequency windowing. The dispersion curves were 

obtained using the MATLAB “ginput” function which relies 

on human input. Future work could include automating this 

process. 

In this plot, the mostly dominant source of error is the 

distribution of the points during the reassignment process 

caused by neighbouring modes. In the group velocity 

dispersion curve, these appear isolated. However, upon 

comparing the group velocity dispersion curve with the time-

frequency dispersion of Fig. 7, it is clear that there are a 

considerable number of locations where this interference can 

occur. As discussed above, this is unfortunately unavoidable. 

 

 
Fig. 9.  FFT of measured signal. S1 mode is visible at ≈120 MHz. 
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Fig. 10.  Measure S1 mode approaching zero group velocity. 
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V. MEMBRANE THICKNESS MEASUREMENT – COMPARISON 

WITH ALTERNATE OPTICAL TECHNIQUE  

The discussion above shows that by applying time-

frequency analysis to a multimode Lamb wave signal in a 

MEMS pressure sensor membrane, the membrane thickness 

among other properties can be determined. 

Another method suitable for measuring the thickness of an 

optically transparent material is to use light within a particular 

wavelength range where the material is partially transparent. 

In this case, the two surfaces of the material would act as an 

etalon. If the refractive index of the sample is known, the 

separation of the surfaces, i.e. the sample thickness can be 

determined by measuring the interference between directly 

transmitted and internally reflected light. Interference 

produces intensity modulation with peaks occurring when the 

optical path length difference (2nd) between the two paths is 

an integer number of wavelengths. The difference between the 

peaks is the free spectral range Δυ (wavenumber) or Δλ 

(wavelength) and these are given by 

 

Δν =
𝑐

2𝑛𝑑
 Δλ =

𝜆2

2𝑛𝑑
 (16) 

 

where c is the speed of light in vacuum, λ is the wavelength, n 

is the real part of the complex refractive index and d is the 

plate thickness. 

The laser source was a Santec TSL210 fibre laser with a 

wavelength range of 1530 nm to 1610 nm. The light was 

delivered via an optical fibre and was incident perpendicular 

to the sample. The transmitted light was focused onto a 

photodiode using a ×10 microscope objective and the signal 

was amplified using a Fempto Amplifier (DHPCA-100).  

Over the wavelength range produced by the laser, there is a 

change in refractive index of the sample. This was corrected 

for using the Sellmeier equation for silicon [23]-[25]. 

Fig. 12 shows the transmission spectrum for the MEMS 

pressure sensor. From the measured peaks, the thickness of the 

MEMS pressure sensor membrane was calculated to be 34.6 

µm ± 0.27 µm. 

 

VI. CONCLUSIONS 

It has been shown that, even by taking a single 

measurement and performing time frequency analysis, an 

accurate value for the membrane thickness of a MEMS 

pressure sensor can be calculated using the S1 Lamb wave 

mode. This was calculated to be 35.01 µm ± 0.1 µm. Using a 

comparable technique, the membrane thickness was 

determined to 34.6 µm ± 0.27 µm. It is reasonable to conclude 

that these two results are in good agreement with each other. 

The test points had a thin metallic film on the laser excitation 

side. While this enhanced the absorbed energy used to 

generate the acoustic waves, it had to be removed to allow for 

light transmission for the comparison test. The small 

discrepancy could also be due to the fact that both 

measurements were not taken at the same location, allowing 

for thickness variations within the membrane. 

Values of 163 GPa ± 11.7 GPa for Young’s modulus and 

0.351 for Poisson’s in the [110] direction have also been 

obtained from plate velocity and Rayleigh wave velocity 

measurements.. Comparing these to values taken from [20], 

Hopcroft quotes 169 GPa (3.6% greater than the value 

obtained in this work) for Young’s modulus and 0.36 (2.5% 

 
(a) 

  
(b) 

Fig. 11.  (a) Measured and theoretical fundamental (A0 & S0) group velocity 

dispersion curves for MEMS pressure sensor membrane. (b) Measured and 

theoretical higher (S1, A1 & A2) group velocity dispersion curves for MEMS 

pressure sensor membrane.  
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Fig. 12.  Infrared transmission spectrum for the MEMS pressure sensor 

membrane. 
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greater that the value obtained in this work) for Poisson’s 

ratio. 
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