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Abstract

Classification problems with an imbalanced class distribution have received
an increased amount of attention within the machine learning community
over the last decade. They are encountered in a growing number of real-
world situations and pose a challenge to standard machine learning tech-
niques. We propose a new hybrid method specifically tailored to handle
class imbalance, called EPRENNID. It performs an evolutionary prototype
reduction focused on providing diverse solutions to prevent the method from
overfitting the training set. It also allows us to explicitly reduce the under-
represented class, which the most common preprocessing solutions handling
class imbalance usually protect. As part of the experimental study, we show
that the proposed prototype reduction method outperforms state-of-the-art
preprocessing techniques. The preprocessing step yields multiple prototype
sets that are later used in an ensemble, performing a weighted voting scheme
with the nearest neighbor classifier. EPRENNID is experimentally shown to
significantly outperform previous proposals.
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Differential evolution, Nearest neighbor

1. Introduction

Class imbalance is present in a dataset when its instances are unevenly
distributed among the classes. It is encountered in many real-world situations
such as medical diagnosis [1], microarray data analysis [2] or software quality
evaluation [3]. Many applications are inherently prone to class imbalance,
motivating the increased amount of attention to this issue within the machine
learning community [4].

The class imbalance problem [5] refers to the fact that the performance
of learning algorithms can be severely hampered by data imbalance. In this
work, we focus on two-class imbalanced classification, where the elements
of the majority class outnumber those of the minority class. Traditionally,
the majority elements are denoted as negative, whereas the minority ele-
ments are referred to as positive. Standard classification techniques may not
perform well in this context, as they internally assume equal class distribu-
tions. Consequently, over the last decade, a considerable amount of work has
been proposed in the specialized literature to alleviate the imbalance prob-
lem [6, 7, 8]. Some approaches work at the data level, while others develop
custom classification processes. At the data level, the so-called data sampling
methods modify the training dataset to produce a better balance between
classes [9, 10]. Solutions at the algorithm level are modifications of exist-
ing methods and internally deal with the intrinsic challenges of imbalanced
classification [11, 12].

Prototype reduction techniques [13] were originally developed to simplify
large training datasets in order to improve the noise tolerance, the speed and
the storage requirements of learning models [14, 15]. They can be applied to
imbalanced datasets [16, 17, 18] as a data level approach, balancing majority
and minority classes. Two main families of prototype reduction techniques
exist in the literature: prototype selection (PS) [19] and prototype genera-
tion (PG) [20]. The former is limited to selecting a subset of instances from
the original training data, while the latter can create new artificial instances
to better adjust the decision boundaries of the classes. However, PG meth-
ods are known to be susceptible to overfitting [20, 21]. The best performing
models are evolutionary-based techniques, such as differential evolution [22].
In [23], the authors showed that a hybrid setting of PS and PG can signifi-
cantly improve the classification process in a balanced class setting. To the
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best of our knowledge, no hybrid PS-PG techniques have been developed to
deal with imbalanced classification problems so far.

In this paper, we propose a combined model for the classification of two-
class imbalanced data, integrating both a hybrid preprocessing and a classifi-
cation step. We extend the framework of [23] for use in the presence of class
imbalance, considerably modifying both PS and PG stages. We also aim at
introducing diversity in the process. The multiple prototype sets resulting
from the preprocessing step are further combined in a custom ensemble for
classification. The classification step is an extension of the k nearest neigh-
bor classifier (kNN, [24]). We call our method EPRENNID, an Evolutionary
Prototype Reduction based Ensemble for Nearest Neighbor classification of
Imbalanced Data.

The main contributions of this work are as follows:

• We first introduce a new evolutionary PS method specifically tuned to
handle class imbalance. Although it is related to undersampling meth-
ods, it takes a step away from them by allowing the removal of minority
elements from the dataset, as in [25]. Most existing methods do not
allow such kind of reduction of non-representative or noisy elements
from the positive class.

• To alleviate the overfitting issues of prototype reduction models, we
take advantage of the evolutionary nature of the proposed method.
Instead of yielding a single reduced set, EPRENNID provides several
well-performing and diverse ones.

• The evolutionary PG method used in this work [23] has been modified
to handle the class imbalance problem.

• Finally, the optimized prototype sets are used in a classifier ensemble,
using an adaptive scheme selecting the most suitable prototype sets to
classify each single target instance with kNN.

To analyze the performance of our proposal, we carry out an extensive
experimental study on 35 two-class imbalanced datasets, categorized into
different groups corresponding to the difficulty of identifying minority ele-
ments. We compare our model with state-of-the-art models and apply non-
parametric statistical tests to check whether there are significant differences
among them.
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The remainder of this paper is structured as follows. In Section 2, we
review the PS and PG schemes and provide more details on related work in
imbalanced classification. Section 3 introduces the proposed model, with a
detailed explanation of the separate preprocessing and classification phases.
We have conducted a comprehensive experimental study. Its setup is de-
scribed in Section 4, while Section 5 lists and discusses our results. Finally,
Section 6 formulates the conclusions of this work and outlines future research
directions.

2. Preliminaries and related work

This section provides the necessary background for the remainder of the
paper. Sections 2.1 presents prototype selection and generation techniques,
focusing on the methods on which our model is based. Section 2.2 introduces
the problem of classification with imbalanced datasets and its evaluation is
recalled in Section 2.3.

2.1. Prototype reduction

Prototype reduction techniques aim to reduce the available training set
T = {x1, x2, . . . , xn} of labeled instances to a smaller set of prototypes S =
{y1, y2, . . . , yr}, with r < n and each yi either drawn from T or artificially
constructed. The set S, rather than the entire set T , is used afterwards to
train the classifier.

These methods are commonly combined and designed to be used with the
kNN classifier. This lazy learning algorithm [26] assigns new input instances
to the class to which the majority of their k nearest neighbors in the training
set belongs. Despite its performance, it suffers from several drawbacks such
as low efficiency, high storage requirements and sensitivity to noise. PS and
PG techniques can be beneficial to alleviate these issues. To that end, the
instances contained in S should form a good representation of the original
class distributions. Furthermore, their size relative to that of T should be
small enough in order to considerably reduce the storage and execution time
requirements of kNN.

A PS method reduces T to S by selecting a subset of its instances. This
implies that for every instance yi ∈ S there exists an element xj ∈ T such
that yi = xj. In [19], a taxonomy for PS methods was proposed and an
extensive experimental study was conducted. The main difference between
PG and PS is that the former can either select elements from T or construct
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artificial ones, while the latter is restricted to selecting elements from T .
Therefore, a set S constructed by a PG method is not necessarily a subset of
T , allowing for a larger flexibility in the construction of S. For PG methods,
a related taxonomy has been proposed in [20]. In what follows, we describe
the PS and PG methods on which we base our proposal.

2.1.1. Steady State Memetic Algorithm for Instance Selection

The Steady State Memetic Algorithm (SSMA) is a genetic algorithm for
PS. In several experimental studies (e.g. [19, 23]), it has been shown to be
one of the best-performing PS methods, which is due to its optimization
procedure performed in each iteration. As a genetic algorithm, it evolves a
population of I individuals, the chromosomes, over a number of generations
G. Each individual corresponds to a candidate subset and is encoded as
a bitstring, where a 0 in the ith position means that the ith element of T
is not included in the subset, while a 1 means that it is. The quality of
an individual, that is, how good a solution it is, is evaluated by a so-called
fitness function. To calculate the fitness of a candidate subset S, SSMA uses
a combined criterion, namely the accuracy of the kNN classifier on the entire
training set T using S as prototype set and the reduction in size of S relative
to T .

The population is optimized over the subsequent generations, such that
the final fittest individual corresponds to an optimal solution. To guide
the evolution, it uses two genetic operators: crossover and mutation. In
each generation, two parents are selected to produce two new individuals by
means of the Half Uniform Crossover (HUX) procedure: positions in which
the parents take on the same value, are simply copied to the children, while
for the remaining ones, each child randomly copies half of each parent.

Afterwards, random mutation is applied to the children. This procedure
changes the value of a randomly selected position with probability p. The
most defining aspect of the SSMA method is its use of an optimization pro-
cedure, the so-called meme. This is an iterative optimization process that
pursues a double objective to improve individuals of the population: the re-
duction of the number of selected prototypes and the enhancement of the
classification accuracy. The meme is applied on a generated child when its
fitness value is higher than the current lowest fitness in the population. When
its fitness is lower, the optimization is only executed with a small probability.
We refer to the original proposal [27] for a detailed description.
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2.1.2. Scale Factor Local Search in Differential Evolution

Scale Factor Local Search in Differential Evolution (SFLSDE) [28] was
shown to be one of the top performing PG methods in the experimental study
of [23]. It is a positioning adjustment algorithm, optimizing the positions of
the instances in the dataset. The method uses differential evolution (DE,
[29, 22]), which follows the evolutionary framework, evolving a population of
candidate solutions over a number of generations. The evolution is guided
by custom mutation and crossover operators. In general, for each individ-
ual xi, mutation is achieved by randomly selecting two other chromosomes
x1 and x2 from the current population. A new individual is created by in-
creasing xi by the difference of x1 and x2, weighted by a scale factor F > 0.
A number of different mutation operators exist, but we have chosen to use
the DE/RandToBest/1 strategy, which makes use of the current fittest xbest
individual in the population. It increases xi by both the difference of the
two randomly selected individuals as well as the difference of xi and xbest,
weighting both terms by F . After mutation, crossover is performed, ran-
domly modifying the mutated individual in certain positions. The crossover
is guided by another user-specified parameter Cr.

SFLSDE is a memetic DE algorithm and modifies the general mutation
and crossover schemes, integrating two local searches. The method uses
adaptive values for the F and Cr parameters. Specifically, each instance xi
has its custom values Fi and Cri values assigned to it, which are updated in
each iteration. When updating the scale factors Fi, two local searches are
used: the golden section search and hill-climbing. We refer to [28] for further
details.

2.2. Imbalanced classification

In a wide range of classification problems, the number of instances that
belong to each class can be radically skewed. Standard classifiers tend to be
biased towards the majority class, although the minority class is normally
the most interesting class.

Several approaches have been developed to alleviate the imbalance prob-
lem either at the data level or by designing especially designed classification
methods that address the particular challenges associated to these types of
problems. At the data level, data sampling methods modify the dataset to
find a better balance between the classes, such that class imbalance should
not hinder a posterior classification process. A first group consists of under-
sampling methods, which remove a part of the majority class. This can be
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done in a random way [9] or more complex heuristics for selecting majority
class candidates for removal can be put in place [30, 16]. By reducing the
size of the dataset, undersampling methods are actually performing proto-
type selection. However, they are constrained in their application, as they
are usually only allowed to reduce the majority class, leaving the minority
elements untouched.

The strategy adopted by a second kind of methods consists of finding a
more favorable balance between classes by means of oversampling the minor-
ity class. The size of this class is increased by adding duplicates of existing
minority instances or by constructing artificial elements based on the ones
at hand. A straightforward approach is presented in [9]. It involves the du-
plication of randomly selected minority elements. The SMOTE technique
[10] laid the foundation of more complex oversampling methods. Instead of
duplicating existing minority elements and thereby increasing their weight
in the dataset, it generates a number of synthetic instances assigning them
to the minority class. Several later proposals (e.g. [31, 32, 33]) are modifica-
tions of SMOTE, replacing some of its random components by more complex
procedures.

Finally, several hybrid data sampling methods, both undersampling the
majority and oversampling the minority class, have been designed as well.
They often combine an initial oversampling step by posterior data cleaning
[9]. The first phase usually results in a perfectly balanced dataset, on which
the data cleaning is executed. The latter can be performed on either the
entire intermediate set or be restricted to the newly generated instances.
Alternatively, a complete intertwining of the oversampling and undersam-
pling approaches can be set up, generating minority elements and removing
majority instances at the same time [34, 35].

Apart from the data level approaches discussed above, some specific clas-
sification algorithms tolerating class imbalance have been proposed as well.
These include the cost-sensitive learners, like cost-sensitive kNN [12], cost-
sensitive C4.5 [11], cost-sensitive SVM [36, 37] and cost-sensitive neural net-
works [38], which modify traditional classifiers by assigning different costs to
the misclassification of minority and majority instances. These costs are used
in the construction of the classification model and reduce the dominance of
majority over minority elements.

A number of ensemble techniques have also been specifically designed
to handle the classification of imbalanced data with multiple applications
[39]. Most commonly, they use a standard ensemble learning technique,
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such as the boosting [40] or bagging [41] schemes, and incorporate some
heuristics to deal with class imbalance or cost-sensitive models [42]. Other
ensemble-based approaches analyze the influence of noisy data in imbalanced
classification [43]. Prominent and recent examples include the SMOTEBoost
[44], SMOTEBagging [45], RB-Bagging [46], NBBag [47], and EUSBoost [48]
methods. Very recent proposals also deal with multi-class imbalanced data
[49].

2.3. Evaluation of imbalanced classifiers

In this section, we review the important issue of the evaluation of the
classification performance on imbalanced data. Table 1 presents a generic
confusion matrix for binary classification problems, displaying the number
of true positives (TP), true negatives (TN), false positives (FP) and false
negatives (FN) obtained in a classification experiment. As this paper focuses
on binary problems, we restrict this matrix to the binary case as well, but
its generalization to more than two classes is straightforward.

Table 1: Confusion matrix obtained after classification of a two-class dataset

Actual/Predicted Positive Negative

Positive TP FN

Negative FP TN

In traditional classification applications, the performance of a classifier
is commonly assessed by the classification accuracy (percentage of correctly
classified examples, that is, acc = TP+TN

n
, where n is the size of the dataset).

In the presence of class imbalance this measure usually provides misleading
results, because it does not distinguish between the number of correct labels
of different classes, making it sensitive to skewness in class distributions [50].

As an alternative to the overall accuracy, the geometric mean g mean is
often used [16, 51, 52]. This measure is defined as

g mean =

√
TP

TP + FN
· TN

TN + FP
.

Another widely used evaluation measure in this domain is the Area under
the ROC-curve (AUC) [7, 9, 16]. A ROC-curve is defined for probabilistic
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classifiers on binary problems and reflects the trade-off between its true pos-
itive TP and false positive FP rates. The area under it expresses how well
the classifier achieves this, in a single measure.

For a discrete classifier, outputting actual class labels rather than class
probability estimates, a ROC-curve can be constructed by converting its
crisp output to the required class probabilities. As noted in [53], one needs
to consider the inner workings of the method to extract these values. For
example, when applying the kNN classifier on a binary problem, an instance
is assigned to the class to which the majority of its k nearest neighbors
belong. The probabilities of belonging to the positive and negative classes
can be set to k+

k
and k−

k
respectively, where k+ represents the number of

positive elements among the k neighbors and k− the number of negative
ones. As shown in [54], when k = 1, the AUC is computed as

AUC =
1 + TP − FN

2
.

The difference between AUC and g mean is that the AUC presents a
global picture of the strength of the classifier, varying the threshold of how
likely instances should belong to the positive class to be assigned to it (except
in the case of kNN and k = 1), while g mean solely considers the standard
decision criterion, assigning instances to the class to which they most likely
belong.

As discussed in [53], ROC-curves are insensitive to changes in class dis-
tribution, rendering the AUC a proper measure to use in the classification of
imbalanced data. This results from the fact that the points of the curve are
determined using the row-wise ratios of the confusion matrix. By using the
rows separately, the ROC-curve and the AUC do not depend on the actual
class distribution.

3. Proposed model: EPRENNID

In this section, we introduce our new model for the classification of im-
balanced data, incorporating both a preprocessing and a classification step.
The former involves the combination of PS and PG and the latter uses an en-
semble of well-performing prototype sets, provided by the preprocessing step,
in a weighted voting scheme. Its different stages are depicted in Figure 1.

The description of EPRENNID is divided into two main parts. In Sec-
tion 3.1 we discuss its preprocessing phase and in Section 3.2, we proceed
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Figure 1: Schematic workflow of EPRENNID. In a first step, diverse prototype sets
(numPS) are selected from the training data using the proposed SSMAImb algorithm.
These prototype sets are refined by using SFLSDEImb to optimize the positioning of the
prototypes of every subset. Finally, the resulting pre-processed datasets are used in a
weighted vote to classify test instances.

with the classification part of our model, which is an ensemble approach
using kNN.

3.1. Preprocessing: a hybrid prototype reduction model for imbalanced data

In this section, we propose a hybrid prototype reduction model to pre-
process imbalanced data. Based on the model presented in [23], in which the
authors combined PS and PG models for standard classification, our proposal
will hybridize these two processes to alleviate the weaknesses of the isolated
models in the imbalanced context.

By means of PS, a number of well-performing prototype sets are gen-
erated, which are further optimized using a PG method. The underlying
motivation for applying such hybridization is that PG models are more flexi-
ble than PS techniques, allowing us to obtain more accurate reduced sets that
are not limited to selecting a subset of instances from the original training
set. However, PG models also suffer from several drawbacks such as initial-
ization issues (appropriate choice of the number of prototypes per class) and
more complex search spaces, in which PS models can be exploited to ease
the posterior PG process. More details about the benefits of hybridizing PS
and PG can be found in [23]. We use the most successful combination sug-
gested by their experiments: the PS method SSMA (Section 2.1.1) and the
PG method SFLSDE (Section 2.1.2).

The hybrid prototype reduction step incorporated in EPRENNID is con-
siderably different from the proposal of [23] in order to alleviate the overfitting
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problems of these models and handle imbalance problems.

• Firstly, we provide a wide variety of reduced sets with a newly proposed
PS method, SSMAImb. This method entirely replaces the SSMA step
in [23] to take into account the class imbalance, allowing elimination of
both positive and negative examples (Section 3.1.1).

• Secondly, the optimization performed by SFLSDE has been modified
as well (named SFLSDEImb), by means of a new objective function,
more appropriately evaluating the performance of a prototype set in a
classification process (Section 3.1.2).

• Finally, we combine the above two methods in a hybrid setting, opti-
mizing multiple SSMAImb generated prototype sets with SFLSDEImb.
We use a diversity mechanism to select a diverse set of well-performing
prototype sets to deal with the overfitting problem often encountered
by PG. They are later optimized in separate populations, out of which a
final diverse set is again selected to be used in the classification step. In
this way, during classification, EPRENNID has the flexibility to select
prototype sets that have proven to perform well in the neighborhood
of a specific target, instead of relying on one prototype set to perform
well in the entire feature space (Section 3.1.3).

3.1.1. SSMAImb

Even though SSMA performs very well on balanced data, it fails when
faced with class imbalance. A preliminary experimental study [54] showed
that the direct application of this method significantly worsens the classifi-
cation performance and tends to remove all the examples from the minority
class. Nevertheless, its good performance on balanced data, its use of the
optimization step and its flexibility motivated us to adapt it to tackle imbal-
anced problems. We have kept the defining aspects of SSMA in place, i.e.
it remains a steady state memetic algorithm, but we have integrated some
imbalance-resistant heuristics at three crucial points: the fitness function,
the parent selection mechanism and the meme optimization. We call the
modified method SSMAImb.

Fitness function modifications

The first change that needs to be made lies with the fitness function,
as it has some clear shortcomings in the context of class imbalance. By
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evaluating the classification performance by the accuracy and explicitly using
the reduction, small subsets consisting of mostly negative elements can easily
attain high fitness values and give the impression of representing high quality
subsets. As an example, consider a training set T consisting of 10 positive
and 90 negative elements and a singleton candidate subset S of one negative
instance. Using the 1NN rule as the classifier, all instances are classified as
negative, yielding an accuracy of 90%. The reduction rate would be 99%.
The combination results in a high fitness value, even though this set will never
be able to classify any positive element correctly. To remedy this situation,
we propose a new fitness function, similar to the one used in [16]:

fitness(S) = g mean−
∣∣∣∣1− 1

IRS

∣∣∣∣ · P, (1)

where g mean replaces the accuracy to evaluate the classification perfor-
mance of S. This is determined by using kNN and leave-one-out cross-
validation. The value IRS corresponds to the imbalance ratio of the set S.
This measure evaluates how imbalanced a set is and is defined as IRS = MajS

MinS
,

where MajS and MinS correspond to the cardinality of the majority and mi-
nority classes in S respectively. It is important to note that the majority and
minority classes in S do not necessarily correspond to those in T . Finally,
the parameter P determines the weight of the second term and therefore how
much class imbalance is penalized in S. The authors of [16] proposed to use
P = 0.2 and we have adopted this value as well. We evaluated other values
for P in a preliminary experimental study, but no significant differences in
performance were observed, so we decided to use its default value. The new
fitness function favors subsets S with a good classification performance and
that are not too imbalanced. The fitness function is used to decide whether
the meme optimization is applied or not. In a later stage of our proposal (see
Section 3.1.3), it is also applied in the selection of the fittest individuals.

Parent selection mechanism

When selecting parents to create offspring, the original SSMA method
assigns a higher probability of being selected to individuals with a higher
fitness. However, SSMAImb does not use the fitness measure for such purpose,
because it is more focused on providing good classification performance (P =
0.2). The parent selection procedure of SSMAImb aims to explicitly favor
more balanced sets in the population as well, reducing the imbalanced ratio
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while keeping the g-mean high, independently of any parameter P . Thus, we
propose a new measure, defined as

Sel(S) = 2 ·
g mean · 1

IRS

g mean+ 1
IRS

, (2)

which corresponds to the harmonic mean of g mean and 1
IRS

. The harmonic
mean of two values tends more strongly to the smaller one, meaning that
both inputs should attain high values for it to be large. In this case, this
corresponds to a high value for g mean and low IR. Chromosomes attaining
higher Sel(·) values have a higher probability of being selected for reproduc-
tion.

The HUX operator must deal with a constraint posed by imbalanced
problems: avoid creating children that do not contain any positive instances.
For example, consider two parents that differ in all genes in a dataset with
|T | = 11, with 3 positive and 8 negative instances:

1 0 1︸ ︷︷ ︸
Minority

0 1 0 1 0 1 0 1︸ ︷︷ ︸
Majority

and 0 1 0︸ ︷︷ ︸
Minority

1 0 1 0 1 0 1 0︸ ︷︷ ︸
Majority

.

In the construction of their children, randomly half of the positions of each
parent are used. This could yield a child without minority class elements:

0 0 0︸ ︷︷ ︸
Minority

1 0 1 1 0 1 0 1︸ ︷︷ ︸
Majority

.

To tackle this issue, the HUX operator will be initially limited to the positions
of the majority elements. This creates two partial children with only majority
elements. Next, the minority positions are filled up in each child. When both
parents take on the same value, this value is copied to the child. Otherwise,
we set the position to 1 while there are fewer minority than majority elements
in the chromosome. When a perfect balance has been achieved, we go back
to selecting a random value. This procedure depends on the order in which
the minority genes are considered. We first use the genes set to 1 in the
fittest parent, randomly ordered.

Meme optimization

Finally, the meme optimization procedure has been modified as well.
First, its evaluation of the classification performance by the accuracy has
been replaced by the AUC. Note that our new fitness function uses the
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g mean measure, while we now evaluate classification performance by the
AUC. By incorporating the two measures in the PS algorithm, we avoid over-
fitting one of them and instead aim to optimize both. Furthermore, instead
of trying to increase the reduction, we are allowing only majority positions
to be set to 0 and minority positions to be set to 1. The majority and minor-
ity classes are again determined within the chromosome at hand. When the
chromosome is perfectly balanced, that is, the same number of elements for
both classes are selected, no optimization is performed. Note that an empty
set S is also perfectly balanced, but in such a situation S is optimized by
adding an arbitrary element of each class. By setting majority genes to 0
and minority genes to 1, IRS can only decrease, possibly up to a point where
a perfect balance is achieved and an imbalance in the other direction would
be created. To prevent this, the optimization halts prematurely when this
occurs. We present the modified optimization procedure in Algorithm 1.

Algorithm 1 Optimization procedure of SSMAImb

Require: A chromosome S = {s1, s2, . . . , sn}
Ensure: The optimized chromosome
1: Determine the majority and minority class in S.
2: while there are untested positions do
3: S∗ ← S.
4: Select a random untested minority position with si = 0 or majority position with

si = 1.
5: Change the value of the selected position in S∗.
6: AUCS∗ ← AUC of kNN, using S∗ as prototype set.
7: AUCS ← AUC of kNN, using S as prototype set.
8: gain← AUCS∗ −AUCS .
9: if gain ≥ µ then

10: S ← S∗

11: end if
12: if IRS = 1 then
13: halt the optimization
14: end if
15: end while

In the original algorithm, the value µ is a given threshold. If µ ≥ 0,
a modified chromosome is only accepted when it results in a higher AUC
of the classifier. When µ < 0, individuals can also be accepted when they
correspond to a set S with lower classification performance, preventing a
premature convergence to a local optimum. The value of this parameter is
adaptive. It is initialized as µ = 0, specification by the user is not required.
When after a given number of generations the performance of the best chro-
mosome in the population has not improved, it is increased internally by
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0.001. When the reduction corresponding to the best chromosome has not
increased for a given number of populations, µ is decreased by 0.001. The
value 0.001 was chosen as it is used in combination with the AUC, which is
a number in the interval [0, 1].

3.1.2. SFLSDEImb

As a second step in the preprocessing phase, we apply a PG algorithm.
We have opted to combine SSMAImb with a modified version of SFLSDE.
This combination yielded the best results in [23], making it a potential can-
didate for extension to imbalanced classification problems. Nevertheless, the
authors used the accuracy of the 1NN classifier to evaluate the fitness of
the individuals during DE. Following our discussion in Section 2.3, the ac-
curacy is not an appropriate fit performance measure for class imbalance in
the training set and we have accordingly changed it to g mean. We do not
modify the other DE operators of mutation and crossover as we did in the
PS step. The PG method is applied after the dataset has been preprocessed
by SSMAImb. The individuals coming from this PS step are already more
balanced, implying that the genetic operators in SFLSDE do not have to
be specifically tuned to handle class imbalance. As before, we denote the
modified DE algorithm as SFLSDEImb.

3.1.3. Hybridizing SSMAImb and SFLSDEImb

As SSMAImb is a genetic algorithm, it encounters a high number of can-
didate prototype sets during its run. Even though these do not correspond
to the final fittest solution, they might still constitute valid alternatives per-
forming well in the classification. To use these solutions and enhance the
performance of our algorithm, we therefore do not restrict ourselves to se-
lecting only the fittest solution found by SSMAImb, but rather select a diverse
set of fit individuals, setting up a voting committee for the final classification
step (Section 3.2).

The user specifies the desired number numPS of prototype sets, which
are selected from among the 50% fittest chromosomes encountered during the
entire execution. The selection procedure is described in Algorithm 2. The
first set is chosen as the overall fittest one. The remaining sets are selected by
an incremental procedure, continuously adding subsets diverse enough from
the ones previously selected, until numPS have been chosen.

The diversity measure between two prototype sets S1 and S2 is based
on Yule’s Q-statistic [55]. This is a well-known measure in the ensemble
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community that ensures a good level of diversity in the classification behavior
of two datasets [56]. It has recently been shown that promoting diversity by
means of the Q-statistic in an ensemble for imbalanced classification has a
positive effect on its performance evaluated by both AUC and g mean [57].
The examples of the training set T are classified with the 1NN rule, using
both prototype sets S1 and S2 as reference sets. Their diversity is computed
as follows:

diversity(S1, S2)← 1− n00n11 − n01n10

n00n11 + n01n10

, (3)

where n00 represents the number of instances that none of the classifiers
predicted correctly, n11 the number of samples correctly classified by both of
them, and n01 and n10 counts the number of samples predicted by S1 and
not by S2 and vice versa.

Algorithm 2 Selection of a diverse set of fit prototype sets
Require: A complete set S of candidate prototype sets, an integer numPS
Ensure: Set div of numPS selected prototype sets
1: div ← {S}, where S is the fittest individual in S
2: numPS ← numPS − 1
3: while numPS > 0 do
4: diversitymax ← 0
5: Sbest ← null
6: for all S ∈ S do
7: diversitycurr ← 0
8: for all P ∈ div do
9: diversitycurr ← diversitycurr + diversity(S, P )

10: end for
11: if diversitycurr > diversitymax then
12: diversitymax ← diversitycurr
13: Sbest ← S
14: end if
15: end for
16: T ← T \ Sbest
17: div ← div ∪ {Sbest}
18: numPS ← numPS − 1
19: end while

Each selected prototype set undergoes position adjustment by SFLSDEImb,
in order to further optimize the positions of the prototypes. Initial popula-
tions on which DE is being applied should contain individuals covering the
entire population space, which is why [29] suggested filling it in a random
way. In our framework, each prototype selected after the PS step seeds a
separate population. The population is generated randomly, but the struc-
ture of the seeding chromosome is preserved, in that all individuals have the
same class sizes.
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After execution of SFLSDEImb, instead of selecting the final fittest indi-
vidual from each population, we use a procedure similar to the one described
in Algorithm 2 to preserve the diversity initially injected between the popu-
lations. We have incorporated a slight modification in this stage, namely by
weighting the diversity measure by the fitness of the subset. In this way, we
achieve a trade-off between fitness and diversity, obtaining a set of diverse
prototype sets without undoing the efforts of the optimization.

3.2. Classification

In [58], an ensemble approach to kNN classification using PS was intro-
duced. In each iteration of a boosting algorithm, PS was applied to train
a classifier to improve the classification of difficult instances. PS is used
to construct subsets of the training set able to better classify these difficult
instances. Although we are also using an ensemble approach for the kNN
classifier, incorporating PS, the classification process set up in EPRENNID
is very different from the one in [58]. We are not using a boosting scheme,
but constructing an ensemble based on a diverse set of preprocessed proto-
type sets S. These are used in a weighted vote to perform the classification.
In particular, when classifying a target instance x, prototype sets perform-
ing well in the neighborhood of x are assigned a larger weight in the vote
compared to ones not performing particularly well there.

For each target instance x, different weights are assigned to all prototype
sets. For each set S, we consider the Ks nearest neighbors of x in the training
set. Each neighbor is classified by 1NN using S as prototype set. The
weight of S is set equal to the number of correctly classified neighbors and is
therefore an integer contained in the interval [0, Ks]. When all sets have been
processed, the weights are normalized by dividing them all by the maximal
weight that was encountered.

When the weights have been determined, EPRENNID proceeds with the
final classification of x. The instance is classified by kNN numPS times,
using each prototype set once, where k is specified by the user. Each set
votes for the class to which it assigns x, using its computed weight. Finally,
x is assigned to the class with the highest number of votes.

4. Experimental setup

This section discusses our experimental setup. We introduce the datasets
on which our experiments are run (Section 4.1), the state-of-the-art methods
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Table 2: Description of the real-world two-class datasets used in the experimental study.
This table lists the number of instances (Inst) and the IR of the dataset, measuring the
degree of imbalance between the majority and minority classes.

Dataset Inst IR Dataset Inst IR

D
E

N
S

E

abalone-3vs11 502 32.47 page-blocks0 5472 8.79

ecoli4 336 15.80 segment0 2308 6.02

glass6 214 6.38 shuttle2vs5 3316 66.67

haberman 306 2.78 texture2redvs34 1042 23.81

iris0 150 2.00 vehicle2 846 2.88

kddcup-bovsb 2233 73.43 wisconsin 683 1.86

new-thyroid1 215 5.14

M
E

D
IU

M

abalone17vs78910 2338 39.31 segment6redvs345 1002 82.50

appendicitis 106 4.05 shuttle67vs1redB 2023 86.96

cleveland0vs4 173 12.31 vehicle0 846 3.25

ecoli3 336 8.60 wdbc-MredBvsB 372 23.80

glass4 214 15.46 yeast4 1484 28.10

movementlibras1 336 13.00

S
P

A
R

S
E

abalone20vs8910 1916 72.69 shuttle6vs23 230 22.00

ecoli0147vs2356 336 10.59 wdbc-MredvsB 365 44.63

glass5 214 22.78 winequality-red4 1599 29.17

ionosphere-bredvsg 235 22.50 winequality-white3vs7 900 44.00

magic-hredvsgred 2645 54.10 yeast0256vs3789 1004 9.14

phoneme-1redvs0red 2543 46.98

for imbalanced classification to which EPRENNID is compared (Section 4.2),
the evaluation measures (Section 4.3) and the statistical tests that we used
(Section 4.4).

4.1. Datasets

We have selected 35 two-class imbalanced datasets on which all methods
are executed. They were constructed by taking real-world datasets avail-
able from the UCI [59] or KEEL dataset [60] repositories and consequently
merging or removing classes until only two remain. This procedure is com-
mon practice and has been used in other experimental studies as well (e.g.
[2, 48, 52, 61]).

Different kinds of minority class examples may have a different influence
on learning classifiers [62, 63]. To enrich the performed analysis, we have
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further divided the datasets into three subgroups, dense, medium and sparse,
which represent different degrees of difficulty to recognize minority elements.
Minority instances in dense datasets are grouped closely together, while they
are more spread out in sparse datasets.

Inspired by [62], we use the local neighborhood of minority elements to
consider them as safe, borderline, rare or outliers. In this work, we propose
an alternative definition that is more conservative than the one used in [62].
For each minority instance, we determine its five nearest neighbors in the
dataset and denote it as:

• Safe: the five nearest neighbors of this instance all belong to the mi-
nority class.

• Borderline: the instance has one or two majority class elements among
its five nearest neighbors.

• Rare: the instance has three or four of its five nearest neighbors be-
longing to the majority class.

• Outlier: all five nearest neighbors of the instance belong to the majority
class.

The three groups of datasets are constructed based on the division of
their minority instances among these four types.

• In a dense dataset, at least half of the minority elements are safe or
borderline.

• On the other hand, when more than half of the minority instances are
rare elements or outliers, the dataset is considered sparse.

• In all remaining cases, the dataset is assigned to the medium group.

Table 2 provides an overview of all datasets. We specify the number of
instances they contain and the degree of imbalance between the two classes,
represented by the IR. The datasets are divided among the three groups, of
which the sizes range between 11 and 13.
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4.2. Methods

We have chosen a number of popular, well-performing data sampling
methods to compare our model with. Preprocessing methods are used in
conjunction with a later classification step. Since the base classification in
EPRENNID is performed by the kNN classifier, we have opted to use it for
the other data sampling methods as well for a fair comparison.

Below, we provide a short descriptive overview, including specifications
with regard to their parameter settings. A specific choice of parameters over
the different data sources may result in better performance, but our purpose
here is to analyze the general performance of the techniques without a time-
consuming parameter tuning step. Their operations should provide good
enough results even though the parameters are not optimized for a particular
problem. For this reason, we always use the default values recommended by
their developers.

• Borderline-SMOTE2 (Border2, [31]): this oversampling procedure is
a modification of SMOTE. It uses minority elements located near the
decision boundaries as seeds for the construction of artificial instances.
Artificial minority elements are introduced on the line segment between
the seed instance and a randomly selected element from among their
k nearest positive neighbors. For each seed, one synthetic element is
also generated on the line segment connecting it to its nearest negative
neighbor.

• SMOTE-TL (SMT-TL, [9]): a Tomek Link (TL) is defined as a pair
of opposite class elements which are located more closely to each other
than to any other element in the dataset. The SMOTE-TL method
consists of first applying SMOTE and afterward removing all pairs of
elements that form a TL.

• SMOTE-RSB∗ (SMT-RSB, [64]): similar to SMOTE-TL, this method
first applies SMOTE on the dataset and afterward removes certain
instances. All original instances are automatically retained, but the
synthetic elements are required to belong to the rough lower approxi-
mation [65] of the minority class. If they do not satisfy this criterion,
they are removed.

• NCR [30]: this undersampling method seeks to remove harmful major-
ity instances. It uses the Edited Nearest Neighbor method with k = 3
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[66] to remove noisy negative instances. When a negative element is
misclassified by 3NN, it is removed from the dataset. When a positive
instance is misclassified by the 3NN rule, all of the negative instances
contributing to this misclassification are removed.

• Spider2 [35]: this is a hybrid data sampling method. It has a number
of options to be set, where we have chosen the best ones put forward
by [35]. In a first phase, negative instances that are misclassified by
3NN are relabeled as positive. Secondly, a number of duplicates of
misclassified positive elements are added to the dataset.

• SSMAImb (Section 3): we have also included our modified SSMAImb al-
gorithm described above, leaving out the PG optimization step and the
ensemble classification procedure. This allows us to determine whether
the added complexity of the latter two steps improves the performance
of SSMAImb or whether the actual strength of our model lies in the PS
step alone.

• IPADE-ID (IPADE, [18]): this is a previously proposed method for
imbalanced classification using DE, making it an interesting competitor
of EPRENNID. It is an extension of the IPADE method [67] to the
imbalanced domain. In both the internal workings as well as the final
classification step of IPADE-ID, we are using the kNN classifier. This
makes for a fair comparison with EPRENNID and the data sampling
methods, as they use kNN as well.

• Evolutionary undersampling (EUS, [16]): based on the PS method
CHC [68], the authors proposed a modified version to handle class
imbalance, similar to what has been done in this paper for the SSMA
method. They developed two settings, that either focus on balancing
the dataset (EBUS) or optimizing the classification performance (EU-
SCM). Furthermore, they provide an option to perform a global selec-
tion (GS), removing instances of both classes in the reduction process,
or majority selection (MS), solely reducing the majority class. Their
custom fitness functions use either the AUC or g mean to evaluate
the classification performance. We have selected the best performing
setting, the EBUS-MS method, using g mean in its fitness evaluations.

In addition to these data sampling models, some representative ensemble-
based techniques are also considered:
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• SMOTEBagging [45]: this bagging procedure constructs bootstrap sam-
ples of the training set by applying the SMOTE oversampling method.
The resampled version of the majority class is always obtained via
random resampling. In sampling the minority class for a bootstrap
sample, a given percentage is obtained via random resampling, while
the other part is constructed by creating synthetic minority instances
with SMOTE. The percentage of random resampling is varied between
the different bootstrap samples. A balance between the two classes is
guaranteed in each sample.

• SMOTEBoost [44]: this ensemble method uses SMOTE in each iter-
ation of the AdaBoost.M2 boosting algorithm [69]. The oversampling
step creates synthetic minority elements in order to better represent
previously misclassified minority instances, thereby implicitly increas-
ing their weights in the current interation.

• EUSBoost [48]: Similarly to SMOTEBoost, EUSBoost embeds the EUS
method described above in AdaBoost.M2. In each boosting round, the
undersampling step reduces the majority class to a subset.

The parameter settings of EPRENNID are presented in Table 3. SSMAImb

is a modified version of SSMA and we have used the same default parameters
as the latter method, as proposed in [27]. In the PG step, we use the default
parameters used in [23] for SFLSDEImb. For more detail on these parameter
values, we refer to [23] and [28]. In the hybridization step, we use 40 popu-
lations of 10 individuals each. The populations are kept small on purpose,
to avoid that they all converge to the same solution, which would result in a
loss of diversity. In order to provide a more global picture, we have set k to
1, 3 and 5 for the kNN classifier used in the final classification step.

4.3. Evaluation measures

We evaluate the classification performance by the two popular methods
discussed in Section 2.2: the AUC and g mean. All results are obtained by
means of five-fold stratified cross validation. We note that both EPRENNID
and all included methods, apart from NCR and Spider2, contain random
components. To account for this degree of randomness, we repeat the exper-
iments 10 times and report the averages and standard deviation over these
10 runs.
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Table 3: Parameter settings for the EPRENNID method.

Phase Parameter values

SSMAImb Evaluations = 10000, Population = 30,

pmutation = 0.001, k = 1

SFLSDEImb Iterations = 500, Fl = 0.1, Fu = 0.9,

iterSFGSS = 8, iterSFHC = 20

Hybridization numPS = 40, Population = 10

Classification Ks = 5, k = 1, 3, 5

4.4. Statistical analysis

In order to test for significance in the observed differences in the exper-
imental results, we apply non-parametric statistical tests, as recommended
in [70, 71]. We use the Friedman test [72] to verify whether any significant
differences in performance are present among a group of methods. When
the p-value of this test is lower than a specified significance level α, the
null hypothesis of equivalent performance is rejected and we conclude that
significant differences exist among the methods.

To determine where these significant differences occur, we apply the Ne-
menyi post hoc test. In this test, the performance of two classifiers is signifi-
cantly different only if their average ranks differ by a certain critical distance.
The critical distance depends on the number of algorithms, the number of
datasets and the critical value for a significance level provided by a Studen-
tized range statistic. The result of the Nemenyi post hoc test is plotted with
an average ranks diagram. The ranks are depicted on the axis, so that the
best algorithms are at the right side of the diagram. A line with the length
of the critical distance is drawn between those algorithms that do not differ
significantly (in performance) for a significance level of α = 0.05. More in-
formation about these tests and other statistical procedures can be found at
http://sci2s.ugr.es/sicidm/.

5. Experimental results

We have conducted a thorough experimental study comparing our method
to the current state-of-the-art in imbalanced classification. This section
presents and interprets our experimental results, including a statistical anal-
ysis. In Section 5.1, we consider the internal reduction associated with
our model. Section 5.2 presents an initial overview of the classification
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results. We divide the further discussion of these results into two main
parts. Section 5.3 compares EPRENNID with data sampling models, while
Section 5.4 presents a comparison with ensemble-based models. Due to
the extent of our experimental analysis, we are unable to list all results
here. The complete results are reported on the associated web page http:

//www.cwi.ugent.be/sarah.php.

5.1. A note on reduction

Before discussing the classification performance of our proposal in detail,
we briefly note that the average reduction of the prototype sets in the ensem-
ble in EPRENNID is 0.6413 (dense), 0.8123 (medium), 0.8904 (sparse) and
0.7733 (all). The global reduction after the SSMAImb step however is only
0.3820 (dense), 0.6108 (medium), 0.7393 (sparse) and 0.5662 (all). The global
reduction is computed by taking the union of the prototype sets and compar-
ing it to the full training set. Since we guarantee a level of diversity between
the sets in the ensemble, the global reduction is noticeably lower than the
average reduction. Since reduction is not the most relevant measure for our
method, we do not further compare these values with those obtained by the
data sampling methods and instead focus on the classification performance.

5.2. Overview of results

In Table 4, we present a compact overview of the classification results
of all included methods, using both the AUC and g mean as evaluation
measures. As noted above, we consider three different values for k in the
classification step of EPRENNID. The data sampling methods are combined
with 1NN, 3NN and 5NN. The ensemble methods are only evaluated for
k = 1, as motivated in Section 5.4. We list the average values for each
dataset group, combined with the average standard deviation over 10 runs
where applicable. The reader can refer back to this table throughout our
discussion in the remainder of the paper. The full results can be consulted
at http://www.cwi.ugent.be/sarah.php.

5.3. Comparison with data sampling models

In this section, we compare EPRENNID to the selected data sampling
methods. In addition to Table 4, Table 5 lists the full results of the clas-
sification by 1NN evaluated using the AUC. The data sampling methods
were combined with 1NN and the value of k in the classification step of
EPRENNID was set to 1 as well. For each group of datasets, the result of
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Table 4: Overview of all classification results

AUC g mean
1NN Dense Medium Sparse Dense Medium Sparse
EPRENNID 0.9626±0.003 0.9514±0.004 0.9020±0.011 0.9289±0.006 0.8651±0.017 0.7372±0.018
Border2 0.9291±0.004 0.8135±0.018 0.6926±0.053 0.9294±0.004 0.8130±0.019 0.693±0.056
SMT-TL 0.9313±0.005 0.8575±0.019 0.7763±0.029 0.9311±0.005 0.8574±0.020 0.776±0.030
SMT-RSB 0.9267±0.004 0.8154±0.026 0.7084±0.043 0.9269±0.004 0.8160±0.029 0.708±0.045
NCR 0.9263 0.8358 0.7400 0.9228 0.8067 0.747
Spider2 0.9181 0.8027 0.7110 0.9137 0.6425 0.568
SSMAImb 0.9326±0.005 0.8722±0.017 0.7873±0.034 0.9318±0.005 0.8712±0.018 0.782±0.035
IPADE 0.9190±0.009 0.8795±0.022 0.8111±0.026 0.9168±0.010 0.8687±0.032 0.783±0.044
EUS 0.9276±0.007 0.8737±0.014 0.7836±0.028 0.9272±0.008 0.8734±0.015 0.785±0.030
SMOTEBagging 0.9544±0.006 0.9210±0.010 0.8516±0.014 0.9285±0.007 0.8536±0.013 0.717±0.016
SMOTEBoost 0.9419±0.014 0.8671±0.036 0.7797±0.036 0.8441±0.061 0.3677±0.148 0.262±0.096
EUSBoost 0.9329±0.015 0.8580±0.056 0.7254±0.073 0.8828±0.050 0.6250±0.227 0.349±0.174
3NN
EPRENNID 0.9637±0.002 0.9522±0.006 0.8845±0.013 0.9217±0.004 0.8752±0.014 0.7412±0.028
Border2 0.9367±0.010 0.8372±0.049 0.7257±0.069 0.9368±0.011 0.8378±0.052 0.7257±0.073
SMT-TL 0.9399±0.007 0.8844±0.029 0.8161±0.037 0.9397±0.008 0.8843±0.030 0.8166±0.040
SMT-RSB 0.9409±0.009 0.8661±0.031 0.7431±0.049 0.9406±0.009 0.8663±0.032 0.7435±0.052
NCR 0.9393 0.8847 0.7825 0.9152 0.7628 0.5531
Spider2 0.9487 0.8624 0.7484 0.9182 0.7844 0.6111
SSMAImb 0.9417±0.011 0.8985±0.034 0.8150±0.044 0.9350±0.012 0.8885±0.035 0.7972±0.048
IPADE 0.8575±0.035 0.7876±0.058 0.7447±0.052 0.4011±0.225 0.5416±0.210 0.4436±0.205
EUS 0.9378±0.013 0.8967±0.028 0.7961±0.044 0.9374±0.014 0.8967±0.030 0.7959± 0.047
5NN
EPRENNID 0.9601±0.002 0.9457±0.006 0.8763±0.012 0.9137±0.006 0.8651±0.019 0.6921±0.038
Border2 0.9396±0.014 0.8553±0.052 0.7488±0.071 0.9397±0.014 0.8553±0.055 0.7488±0.075
SMT-TL 0.9443±0.010 0.9019±0.019 0.8302±0.039 0.9439±0.011 0.9015±0.020 0.8298±0.042
SMT-RSB 0.9429±0.012 0.8816±0.033 0.7584±0.058 0.9430±0.013 0.8821±0.035 0.7589±0.062
NCR 0.9479 0.8998 0.7982 0.9048 0.6954 0.4496
Spider2 0.9466 0.8851 0.7662 0.9189 0.7847 0.6267
SSMAImb 0.9414±0.017 0.8915±0.042 0.7967±0.057 0.9331±0.018 0.8767±0.047 0.7776±0.062
IPADE 0.8760±0.032 0.8153±0.048 0.7582±0.046 0.4746±0.220 0.6184±0.164 0.5153±0.176
EUS 0.9387±0.017 0.9001±0.033 0.7868±0.051 0.9378±0.018 0.8999±0.035 0.7873±0.056

the best-performing method is printed in bold. In order not to clutter this
discussion, we do not list the complete results of the g mean measure nor for
3NN and 5NN. The results of the statistical analyses relevant to this section
can be found in Figure 2, plotting the average ranks diagrams. We note that
we have taken the entire group of 35 datasets to perform the statistical anal-
ysis, rather than doing this group-wise, as the sizes of the groups are rather
small. We discuss the results of the two evaluation measures, AUC and
g mean, separately in Sections 5.3.1 and 5.3.2 respectively. In Section 5.3.3,
we compare EPRENNID to the data sampling methods in terms of their
runtime.

5.3.1. Analysis of the AUC results

The conducted experimental study represented in Figure 2 suggests that
EPRENNID dominates all previous proposals with respect to the AUC for all
values of k. For 1NN, the IPADE-ID method outperforms most data sampling
methods, showing the strength of DE in the imbalanced domain, but it is
further improved upon by EPRENNID. For higher values of k, IPADE-ID
does not perform well, being dominated by all data sampling methods, while
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Figure 2: Average ranks diagrams for AUC and g mean using 1NN, 3NN and 5NN classi-
fiers. Better algorithms are located on the right side of the plot (rank closer to 1). Those
that differ by less than the critical distance computed for a p-value=0.05 are linked by a
red line.

EPRENNID still comes out on top.
An interesting point to observe is that the absolute differences in the

obtained values increase with the difficulty of the datasets, going from the
dense to the sparse groups. This conclusion is similar to the one drawn
in the experimental study of [35], which also investigated the effect of the
distribution of the minority instances on the performance of several methods.
In particular, taking the results of 1NN in Table 5 as an example, we observe
that the difference between the best and worst performing methods increases
from 0.0445 for the dense group, over 0.1487 for the medium group to 0.2094
for the sparse datasets. Furthermore, even though the AUC of EPRENNID
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does decrease with the difficulty of the dataset, this decrease is less prominent
than for other methods. For instance, while EPRENNID only loses 0.0606,
its closest competitors IPADE-ID and EUS face a decrease in AUC of about
0.1079 and 0.1440. Although their dataset-wise results are not printed here,
similar conclusions can be drawn for 3NN and 5NN. This observation shows
the good performance of EPRENNID for all types of class imbalance.

We note that our new PS method SSMAImb also performs tolerably well,
most prominently so for 1NN. For this classifier, it yields better results than
all included data sampling methods, putting it at the same level as IPADE-
ID. It is interesting to observe that SSMAImb, a true undersampling method
removing both positive and negative elements, is able to outperform un-
dersampling (NCR, EUS), oversampling (Borderline-SMOTE2) and hybrid
(SMOTE-TL, SMOTE-RSB, Spider2) data sampling methods. This con-
stitutes clear evidence that the complete protection of the minority class,
incorporated by all these methods, is not necessarily justified. Allowing the
removal of minority elements, which can also be noisy or redundant, pro-
vides us with an added flexibility, which makes it possible to handling class
imbalance more appropriately. For higher values of k, SSMAImb remains
steadily at the top and, apart from by EPRENNID, is only improved by NCR
and SMOTE-TL for 5NN. We conclude that we have proposed a strong PS
method able to handle class imbalance, but it can nevertheless be further im-
proved by hybridizing it with PG and including the ensemble classification.
From Figure 2, we observe that, for all classifiers, our method has the best
rank with respect to the AUC values. Comparing EPRENNID to the others
with the Nemenyi post hoc test, we conclude that it yields significantly better
results than all other methods under consideration, since none of the others
is located within the critical distance of our proposal. This statement holds
for all three classifiers and confirms the clear dominance of our new method
over the state-of-the-art in data sampling.

Finally, in Figure 3, we visually compare the full EPRENNID model to
three partially constructed ones, in order to determine whether the added
complexity of the full model increases its performance. The figure is based
on the performance of 1NN evaluated by the AUC. We already observed
that solely applying SSMAImb, generating a single prototype set, yields good
classification results, although they are improved upon by EPRENNID. Fur-
thermore, optimizing this single subset by SFLSDEImb does not on its own
increase the performance, as presented by SSMAImb-SFLSDEImb in the fig-
ure. This setup results in a slight decrease in performance, which we suspect
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Figure 3: Comparison of EPRENNID with partially constructed models. In SSMAImb,
only the PS step is performed. SSMAImb+SFLSDEImb is the same as EPRENNID, apart
from the important fact that only one prototype set is constructed. This comparison was
done for 1NN, of which the performance was evaluated by the AUC.

to be due to the overfitting problem to which PG methods are prone [20].
We also consider the extension of SSMAImb with the ensemble approach in
EPRENNID, without optimizing the prototype sets by SFLSDEImb. This
setting is represented by SSMAImb-Ens. Although giving an improvement
over SSMAImb, it is itself clearly improved upon by introducing the opti-
mization step by PG. The optimization of multiple diverse prototype sets
and their aggregation into a classification ensemble is shown to be truly
worth the effort.

5.3.2. Analysis of the g mean results

With respect to the evaluation by g mean, the results are less favorable for
EPRENNID, as shown in Table 4. For 1NN, we observe that EPRENNID still
outperforms several state-of-the-art data sampling methods, but it is itself
outperformed by the IPADE-ID method for medium and sparse datasets.
The undersampling method EUS combined with 1NN yields better average
results than EPRENNID as well. Our PS method SSMAImb still exhibits
very good overall behavior, again proving its obvious strength for imbalanced
classification.
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In combination with 3NN, we observe that the hybrid data sampling
methods SMOTE-TL and SMOTE-RSB∗ perform better than before, plac-
ing them at the same level as EPRENNID, IPADE-ID, SSMAImb and EUS.
For 5NN, the hybrid data sampling methods, especially SMOTE-TL, domi-
nate. EPRENNID yields decent results, although its overall average result for
g mean is lower than that of SSMAImb. Considering this phenomenon more
closely, we observed that this is due to a decrease in performance of EPREN-
NID on sparse datasets, for which its average g mean value is considerably
lower than that of SSMAImb, as can be seen in Table 4. In a sparse dataset,
the minority class is severely spread out over the feature space, making it
more difficult for kNN to classify them correctly, especially for higher values
of k. By using the ensemble approach in EPRENNID, misclassifications can
build up, resulting in a decrease in performance. We conclude that in such
a setting, where higher values of k are used to classify a sparse dataset with
the kNN rule, it might be more appropriate to stick to the preprocessing
method SSMAImb.

In the statistical analysis of the g mean values (Figure 2), SMOTE-TL is
assigned the best rank for all values of k. For 1NN, 3NN and 5NN, SMOTE-
TL is shown to significantly outperform NCR and Spider2. For 3NN and
5NN, it also performs significantly better than IPADE and EPRENNID. As
noted above, upon closer examination it is revealed that the poor average
result of EPRENNID in this case is due to an inferior performance on the
sparse datasets.

Nevertheless, by taking the results of both evaluation measures into ac-
count, we can conclude that our new proposal of a hybrid model, integrating
PS and PG in its preprocessing step and using a weighted voting procedure
in its classification, is competitive with the state-of-the-art data sampling
methods as well as IPADE-ID.

5.3.3. Runtime analysis

In this section, we present the runtimes of the different data sampling
methods and our proposal, for both the preprocessing and classification steps.
The results for 1NN can be found in Table 6, presenting the average group-
wise runtime for EPRENNID and the data sampling methods. The values for
3NN and 5NN, for which the conclusions are similar, are available on http://

www.cwi.ugent.be/sarah.php. We distinguish between the preprocessing
and classification times. The former, given in seconds, refers to the necessary
time to balance the dataset (data sampling methods) or the full construction
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Table 6: Runtime results for the data sampling methods using the 1NN as classifier.

Preprocessing (s) Dense Medium Sparse

EPRENNID 6285.093 ± 1089.312 702.119 ± 50.100 669.144 ± 97.315

Border2 0.251 ± 0.012 0.091 ± 0.011 0.075 ± 0.010

SMT-TL 3.283 ± 0.013 0.837 ± 0.008 1.065 ± 0.007

SMT-RSB 3.176 ± 0.137 1.732 ± 0.072 2.084 ± 0.061

IPADE 137.123 ± 51.000 5.891 ± 2.852 5.697 ± 2.798

SSMAImb 113.327 ± 10.907 25.045 ± 2.116 39.547 ± 3.501

EUS 1152.029 ± 14.996 170.549 ± 2.473 129.586 ± 2.667

NCR 0.995 ± 0.039 0.279 ± 0.025 0.339 ± 0.031

Spider2 2.212 ± 0.103 0.554 ± 0.043 0.681 ± 0.044

Classification (ms) Dense Medium Sparse

EPRENNID 137.997 ± 28.917 70.786 ± 8.813 18.261 ± 4.164

Border2 488.872 ± 47.487 143.804 ± 14.858 145.282 ± 15.684

SMT-TL 473.463 ± 37.858 109.449 ± 9.733 142.340 ± 14.580

SMT-RSB 485.849 ± 42.917 142.452 ± 13.077 144.506 ± 17.950

IPADE 5.075 ± 1.043 3.735 ± 0.721 3.031 ± 0.558

SSMAImb 36.198 ± 2.991 7.298 ± 1.504 5.876 ± 1.137

EUS 36.215 ± 2.541 7.582 ± 1.036 6.304 ± 0.889

NCR 251.820 ± 25.394 57.258 ± 5.336 72.309 ± 7.640

Spider2 278.728 ± 24.861 83.234 ± 9.049 84.696 ± 8.225

of the prototype set ensemble (EPRENNID). The latter, which is given in
milliseconds, is the average time spent to label one test instance based on
the preprocessed dataset (data sampling methods) or using the prepared
ensemble in a weighted vote (EPRENNID). We note that this comparison is
somewhat unfair towards EPRENNID, as our proposal constructs an entire
classification ensemble, while the data sampling methods merely resample
the dataset. As such, it can be expected that the preprocessing time for
our proposal is longer, as is also clear in Table 6. However, we note that
the preprocessing step only has to be executed once for each dataset. The
resampled dataset or constructed ensemble can be reused in every subsequent
classification. The classification time for EPRENNID is not high and indeed
noticeably lower than that of SMOTE-TL, one of its closest competitors in
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Figure 4: Average ranks diagrams for AUC and g mean using the 1NN classifier for the
ensemble-based models. Better algorithms are located on the right side of the plot (rank
closer to 1). Those that differ by less than the critical distance computed for a p-value=0.05
are linked by a red line.

terms of classification performance. Nevertheless, if the required runtime of
EPRENNID cannot be afforded by the user, he can resort to our SSMAImb

method instead, which has a good classification performance (Table 4) and a
reasonable runtime. In Section 5.4, we compare the runtime of EPRENNID
to other ensemble methods, which makes for a fairer comparison.

5.4. Comparison with ensemble-based models

In this section, we compare EPRENNID to other ensemble-based models
for imbalanced classification described in Section 4.2. We note that to estab-
lish a fair comparison between the different ensemble methods, we use the
1NN technique as base classifier in all cases. All ensembles use the same num-
ber of classifiers internally, set to the same value as the number of prototype
sets used by EPRENNID.

Table 7 collects the results on all datasets, evaluating the classification
performance of the 1NN classifier in terms of the AUC measure. As we saw
in the comparison of EPRENNID with data sampling methods, our proposal
dominates the other methods for all datasets groups. Its dominance becomes
more apparent for increasing difficulty of the dataset, going from the dense, to
the medium, to the sparse group. Figure 4 depicts the statistical evaluation
by means of average ranks diagrams. It shows that EPRENNID significantly
outperforms SMOTEBagging, SMOTEBoost and EUSBoost with respect to
the AUC obtained over all datasets. Considering the evaluation by g mean
(Table 4 and Figure 4), our method also obtains the best average results and
best rank in the statistical test. It is shown to be significantly better than
the two boosting methods EUSBoost and SMOTEBoost.
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Table 7: AUC results for the ensemble-based models using 1NN as base classifier, with
standard deviations over 10 runs

SMOTEBagging EUSBoost SMOTEBoost

abalone-3vs11 0.9995 ± 0.0010 0.9982 ± 0.0014 1.0000 ± 0.0000

ecoli4 0.9564 ± 0.0104 0.9029 ± 0.0208 0.9563 ± 0.0250

glass6 0.9186 ± 0.0250 0.8976 ± 0.0488 0.9105 ± 0.0471

haberman 0.6136 ± 0.0127 0.5597 ± 0.0470 0.5761 ± 0.0518

iris0 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000

kddcup-bovsb 1.0000 ± 0.0000 0.9990 ± 0.0009 1.0000 ± 0.0000

new-thyroid1 0.9921 ± 0.0022 0.9881 ± 0.0038 0.9942 ± 0.0060

page-blocks0 0.9659 ± 0.0044 0.9025 ± 0.0139 0.9248 ± 0.0082

segment0 0.9967 ± 0.0059 0.9954 ± 0.0036 0.9969 ± 0.0012

shuttle2vs5 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000

texture2redvs34 0.9816 ± 0.0063 0.9526 ± 0.0288 0.9540 ± 0.0232

vehicle2 0.9917 ± 0.0020 0.9551 ± 0.0163 0.9686 ± 0.0120

wisconsin 0.9905 ± 0.0029 0.9764 ± 0.0085 0.9637 ± 0.0105

Mean dense 0.9544 ± 0.0056 0.9329 ± 0.0149 0.9419 ± 0.0142

abalone17vs78910 0.8753 ± 0.0108 0.7085 ± 0.0791 0.7531 ± 0.0230

appendicitis 0.7185 ± 0.0183 0.6673 ± 0.0886 0.7795 ± 0.0296

cleveland0vs4 0.9491 ± 0.0128 0.9242 ± 0.0410 0.8402 ± 0.0775

ecoli3 0.9058 ± 0.0135 0.8256 ± 0.0445 0.8252 ± 0.0378

glass4 0.9707 ± 0.0046 0.8686 ± 0.0682 0.8570 ± 0.0841

movementlibras1 0.9770 ± 0.0014 0.9303 ± 0.0628 0.9599 ± 0.0325

segment6redvs345 0.9356 ± 0.0362 0.9437 ± 0.0421 0.9002 ± 0.0333

shuttle67vs1redB 0.9789 ± 0.0005 0.9463 ± 0.0534 0.9733 ± 0.0129

vehicle0 0.9783 ± 0.0030 0.9309 ± 0.0194 0.9331 ± 0.0114

wdbc-MredBvsB 0.9914 ± 0.0023 0.9272 ± 0.0445 0.9517 ± 0.0288

yeast4 0.8507 ± 0.0100 0.7648 ± 0.0696 0.7647 ± 0.0230

Mean medium 0.9210 ± 0.0103 0.8580 ± 0.0557 0.8671 ± 0.0358

abalone20vs8910 0.8359 ± 0.0184 0.6100 ± 0.0965 0.8024 ± 0.0286

ecoli0147vs2356 0.9185 ± 0.0068 0.8801 ± 0.0521 0.8651 ± 0.0243

glass5 0.9891 ± 0.0019 0.9127 ± 0.0374 0.9041 ± 0.0395

ionosphere-bredvsg 0.8771 ± 0.0167 0.7681 ± 0.0839 0.8650 ± 0.0357

magic-hredvsgred 0.7693 ± 0.0208 0.5455 ± 0.0819 0.6607 ± 0.0235

phoneme-1redvs0red 0.8150 ± 0.0115 0.6231 ± 0.0753 0.6730 ± 0.0196

shuttle6vs23 0.9980 ± 0.0007 0.9618 ± 0.0285 0.9225 ± 0.0802

wdbc-MredvsB 0.9474 ± 0.0242 0.9659 ± 0.0460 0.8399 ± 0.0218

winequality-red4 0.6414 ± 0.0187 0.5629 ± 0.0905 0.5674 ± 0.0297

winequality-white3vs7 0.7410 ± 0.0198 0.5105 ± 0.1375 0.6713 ± 0.0743

yeast0256vs3789 0.8350 ± 0.0113 0.6389 ± 0.0699 0.8057 ± 0.0164

Mean sparse 0.8516 ± 0.0137 0.7254 ± 0.0727 0.7797 ± 0.0358
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Table 8: Runtime results for the ensemble-based methods.

Building (s) Dense Medium Sparse

EPRENNID 6285.093 ± 1089.312 702.119 ± 50.100 669.144 ± 97.315

SMOTEBagging 2687.683 ± 438.284 1258.393 ± 86.260 1619.857 ± 111.510

SMOTEBoost 6895.590 ± 1112.069 2850.102 ± 252.999 3871.108 ± 386.373

EUSBoost 5901.096 ± 418.371 1053.477 ± 143.183 1158.963 ± 58.233

Classification (ms) Dense Medium Sparse

EPRENNID 137.997 ± 28.917 70.786 ± 8.813 18.261 ± 4.164

SMOTEBagging 25.924 ± 6.102 28.398 ± 5.536 25.089 ± 4.736

SMOTEBoost 50.297 ± 10.121 50.409 ± 8.781 44.000 ± 8.653

EUSBoost 7.392 ± 0.990 2.968 ± 0.746 1.798 ± 0.224

We also comment on the computational complexity of EPRENNID com-
pared to the other ensembles. In order to do so, Table 8 presents the average
group-wise runtime required by each method, differentiating between build-
ing and classification times. The building time refers to the necessary time
to create the ensemble, while the classification time involves the average time
spent to label a test instance. The former is given in seconds, the latter in
milliseconds. We observe that both are comparable between the four mod-
els. The classification time of EPRENNID is slightly higher than that of the
other models, which is due to the target-specific weight construction for the
prototype sets in the ensemble. This component is not present in the other
ensemble-based methods. Nevertheless, taking the prediction results into ac-
count, EPRENNID may be preferred over the other three models, especially
for imbalanced datasets with higher difficulty. Indeed, we observe that for
the medium and sparse groups, the average building time of EPRENNID is
the lowest among the four models and its classification performance is highly
superior as well, as indicated in Table 4 and Figure 4.

6. Conclusion and future work

In this work, we have introduced a new combined preprocessing and clas-
sification model able to cope with imbalanced data. Inspired by previous
work in a balanced class setting, we proposed a new genetic PS model tak-
ing class imbalance into account. While most of the data sampling methods
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completely protect the minority class, the proposed model can reduce both
majority and minority class examples, when necessary.

In our experiments, we were able to show that our new PS method out-
performs several popular data sampling methods used in imbalanced clas-
sification. This shows that strenuously protecting minority elements is not
necessarily the best option and including more flexible heuristics can prove
to be more useful in dealing with class imbalance.

Secondly, we proposed to select not one, but a diverse set of well-performing
prototype sets generated by the PS method. These sets were further opti-
mized by a differential evolution scheme. As a final step, we set up an
ensemble with the optimized prototype sets. The implemented voting strat-
egy allows to assign prototype sets performing well in the neighborhood of a
target instance a larger weight in its classification.

Our model does not aim to perform a significant data reduction of the
dataset, but to increase the overall performance. Our experiments showed
that it significantly outperforms state-of-the-art data sampling methods and
ensemble-based methods, as well as a previous proposal using differential
evolution in imbalanced classification, for the AUC measure. However, for
the g mean measure, it provides a similar performance in comparison to
state-of-the-art models. In terms of computational cost, it is fairly similar to
other ensemble-based methods.

As future work, we consider to study how an artificial injection of noisy
examples may affect the behavior of our proposal. Moreover, we also in-
tend to extend the presented approach to use other classifiers, like decision
trees and support vector machines. This will require the development of cus-
tom prototype reduction methods for these classifiers in the class imbalance
domain.
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[58] N. Garćıa-Pedrajas, Constructing ensembles of classifiers by means of
weighted instance selection, IEEE Transactions on Neural Networks
20 (2) (2009) 258–277.

[59] M. Lichman, UCI machine learning repository (2013).
URL http://archive.ics.uci.edu/ml
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