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We investigate synchronization effects in quantum self-sustained oscillators theoretically using
the micromaser as a model system. We use the probability distribution for the relative phase as a
tool for quantifying the emergence of preferred phases when two micromasers are coupled together.
Using perturbation theory, we show that the behavior of the phase distribution is strongly depen-
dent on exactly how the oscillators are coupled. In the quantum regime where photon occupation
numbers are low we find that although synchronization effects are rather weak, they are nevertheless
significantly stronger than expected from a semiclassical description of the phase dynamics. We also
compare the behavior of the phase distribution with the mutual information of the two oscillators
and show that they can behave in rather different ways.

I. INTRODUCTION

Self-sustained oscillators do not have a preferred phase,
but when two or more of them are weakly coupled to-
gether a phase preference can emerge spontaneously, an
effect known as synchronization. Self-sustained oscilla-
tors are ubiquitous in nature and synchronization effects
have been widely studied across the physical and biolog-
ical sciences [1]. Synchronization has also been studied
in quantum optical systems such as the laser, although
generally focussing on regimes where approximate semi-
classical descriptions work well [2, 3]. In the last few
years there has been considerable interest in studying
the synchronization of oscillators and related systems [4–
22] close to threshold or at low excitation levels where
semiclassical approaches break down and fully quantum
mechanical calculations are required. Recent theoretical
work has explored different ways of quantifying synchro-
nization in quantum oscillators [5, 7, 14, 15, 20], as well
as investigating the connection between it and measures
of correlation such as mutual information and entangle-
ment [5, 8, 10, 15, 19]. Detailed comparisons have also
been made between the predictions of quantum mod-
els and those of related semiclassical or classical descrip-
tions [7, 12].

Studies of synchronization effects in the quantum
regime have largely concentrated on the behavior of sim-
ple model systems such as van der Pol oscillators [7, 9,
10, 12, 15, 17, 19, 21] (together with closely related
models [22]), though a number of other systems includ-
ing atomic ensembles [13, 16] and optomechanical oscil-
lators [5, 6, 12, 18] have also been investigated. In this
article we investigate synchronization in a very different
model system consisting of two weakly coupled micro-
masers (see Fig. 1).

The micromaser is a self-sustained oscillator consisting
of a microwave cavity driven by a steady flow of excited
atoms which interact strongly with a particular cavity
mode [23–25]. The micromaser was used to carry out a
range of pioneering experiments in quantum optics [23].
However, it has also become possible to engineer sys-
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FIG. 1: (Color Online) Schematic diagram of the coupled
micromaser system. Each micromaser consists of an optical
cavity which interacts with a flow of excited two-level atoms.
If the cavities were separated by a partially reflecting mir-
ror, photon tunnelling would lead to a (coherent) coupling
between them, ε.

tems with similar behavior in the solid-state using, for
example, superconducting [31, 32] or optomechanical [33]
devices.

The micromaser makes a very interesting model sys-
tem with which to explore synchronization effects in the
quantum regime because it displays a very rich range
of dynamical behaviors, including strongly non-classical
features which go well beyond those found in simpler sys-
tems like the quantum van der Pol oscillator. Further-
more, an exact steady-state solution is available for the
density operator of the micromaser [24] and important
dynamical properties such as the linewidth [27–30] have
been studied extensively.

Using a probability distribution for the relative phase,
we explore how a preference for a particular phase (or
phases) emerges when two micromasers are weakly cou-
pled together in different ways. We investigate the be-
havior of the phase distribution over a wide range of pa-
rameters ranging from a semiclassical regime where pho-
ton occupation numbers are large to a quantum regime
where occupation numbers are small and the steady-state
of the system can be strongly non-classical. We derive a
simple Fokker-Planck equation for the phase distribution
assuming large photon occupation numbers and compare
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it with numerical calculations using the full master equa-
tion of the system. We find that whilst the Fokker-Planck
equation provides a good description of the phase distri-
bution in the semiclassical regime, it substantially under-
estimates the extent to which a preferred phase emerges
in the quantum regime. We also compare the behavior
of the phase distribution with the mutual information
and entanglement of the micromasers and find that the
behavior is somewhat different in each case.

This work is organized as follows. We introduce our
model of the coupled micromaser system and briefly re-
view the key properties of the uncoupled micromaser in
Sec. II. Then we introduce the relative phase distribution
in Sec. III. We show how perturbation theory can be used
to understand the behavior of the phase distribution in
the weak coupling limit in Sec. IV. Then in Sec. V we de-
rive a simple analytic formula for the phase distribution
in the semiclassical limit and compare it with numerical
calculations. We examine the behavior of other mea-
sures of correlation between the micromasers in Sec. VI.
Finally, we summarize our findings and discuss possible
directions for future work in Sec. VII.

II. MICROMASER MODEL

We consider a model system consisting of two micro-
masers, assumed for simplicity to be identical, that are
coupled together weakly. As is the case for classical os-
cillators [1, 34, 35], the behavior can be very sensitive
to the form of the coupling as well as its strength. We
investigate two specific forms for the coupling involving
either additional terms in the Hamiltonian of the sys-
tem (coherent coupling) or additional dissipative terms
in the master equation (dissipative coupling). The start-
ing point for our model is the standard master equation
description for the micromaser [24, 25], to which we shall
simply add additional terms to describe the coupling.

The master equation for the density operator of the
two micromasers, ρ, (in the interaction picture) takes the
form

ρ̇ = L1[ρ] + L2[ρ] + Lc[ρ] (1)

where here L1[ρ] and L2[ρ] describe the uncoupled dy-
namics of the two micromasers and the interaction be-
tween them is given by Lc[ρ].

The dynamics of each individual micromaser is con-
trolled by a balance of interactions between the cavity
and the flow of atoms which pass through it, and be-
tween the cavity and its electromagnetic environment
which gives rise to losses. The atoms can be traced out of
the master equation so that the dynamics of the system

is captured by the terms [24, 25]
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where aj is the lowering operator for a mode of the cavity
j (j = 1, 2), N is the rate at which atoms pass through
the cavity and φ is the Rabi angle which quantifies the
strength of the atom-cavity interaction. Note that we
have adopted units of time such that the cavity loss rate,
γ, is unity and we have taken the zero-temperature limit
for simplicity.

For coherent coupling between the two micromasers
the interaction is described by the Hamiltonian

Hc = ~ε(a1a
†
2 + a†1a2), (3)

with ε the coupling strength (scaled by γ), and hence in
this case

L(coh)
c [ρ] = − i

~
[Hc, ρ]. (4)

For dissipative coupling the master equation includes
terms which describe an additional loss channel for the
system whose properties depend on the state of both
modes [10, 12, 17]

L(diss)
c [ρ] = ε

[
(a1 − a2)ρ(a†1 − a

†
2)

−1

2

{
(a†1 − a

†
2)(a1 − a2), ρ

}]
. (5)

In the following we will focus mainly on the regime where
the coupling is very weak ε� 1.

Coherent coupling between two micromasers could be
achieved by forming the cavities with a common mir-
ror which is only partially reflective [26] (see Fig. 1) and
would therefore allow photons to tunnel between the two
cavities. Dissipative coupling might be engineered using
a more elaborate set-up involving a third cavity placed
between the cavities of the micromasers so that pho-
tons can tunnel between it and each of the micromasers.
An effective dissipative coupling between the micromaser
cavities would then arise provided the third cavity was
much more strongly damped, as discussed in Ref. 12.

Before going on to look at how either coherent or dissi-
pative coupling affects the system, we briefly review the
most important properties of the uncoupled micromaser
(ε = 0). The steady-state density operator for a micro-
maser is diagonal in the number state representation and
the probability of finding the cavity in the n-th number
state is [24, 25]

Pn = K

n∏
m=1

N sin2(φ
√
m)

m
, (6)
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FIG. 2: (Color Online) Steady-state occupation number
〈n〉/N (a) and associated Fano factor, F , (b) for an uncoupled

micromaser as a function of Θ = φN1/2 and N . The inset in
(a) shows the full number distribution Pn for the case where
N = 20.

where K is a constant determined by normalization.
Although the density operator can be written in terms

of an apparently simple formula, the state of the system
changes dramatically as a function of the atomic flow
rate, N , and the strength of the atom-cavity interaction,
parameterized by the pump parameter: Θ = φN1/2. Fig.
2 illustrates the behavior of the average occupation num-
ber 〈n〉 and the number fluctuations, measured by the
Fano factor F = (〈n2〉 − 〈n〉2)/〈n〉, as a function of Θ
and N ; the inset shows an example of the full number
distribution Pn. The system has a threshold at Θ = 1,
above which a limit-cycle emerges—manifesting in the
Pn distribution as a peak at non-zero n. After initially
growing very rapidly in size, the limit-cycle then gets
progressively smaller as Θ is increased (up until Θ ∼ 4).
There is a strong peak in F around threshold and it then
drops below unity, a signature of number squeezing [36].

For Θ > 4 the behavior becomes more complicated and
the micromaser moves between a range of different states.
It undergoes dynamical transitions between limit-cycles
with different average energies [24] and can co-exist in a
mixed state involving two limit-cycle states (seen as two
peaks in the Pn distribution). At certain specific values
of φ such that sin(φ

√
m+ 1) = 0 with m = 0, 1, 2, ... the

system becomes trapped : P(n>m) = 0 because the matrix
element that generates transitions between the m and
m+ 1 number states vanishes. These trapping states [23]
have a number state distribution that can be extremely
sharply peaked. For example, at φ = π/

√
2 (m = 1

trapping state) one typically finds P1 � P0 and as N
is increased the system gets closer and closer to being
exactly in the n = 1 number state.

The extremely narrow Pn distributions that the mi-
cromaser displays above threshold come close to reaching
what might be thought of as the most quantum of limit-
cycle states—pure number states. However, the micro-
maser’s steady-state isn’t always strongly non-classical.
The average occupation number of the micromaser is
roughly proportional to N for fixed Θ and the non-
classical features are strongest for either relatively small
N or larger values of Θ. In contrast, when 〈n〉 � 1 and
〈n〉 � φ2 the dynamics of the number distribution, Pn, is
well described by a Fokker-Planck equation in which n is
treated as a continuous variable [24], which corresponds
to the semiclassical limit of the system.

III. RELATIVE PHASE DISTRIBUTION

Phase distributions provide a convenient way of char-
acterizing the emergence of a preferred relative phase in
systems of coupled oscillators. For a single oscillator the
quantum mechanical phase distribution is given by [36],

P (ϕ) =
1

2π
〈ϕ|ρ|ϕ〉 =

1

2π

∞∑
n,m=0

〈n|ρ|m〉ei(m−n)ϕ, (7)

where |ϕ〉 =
∑∞

n=0 einϕ|n〉 is an eigenstate of the
Susskind-Glogower operator

∑∞
n=0 |n〉〈n+1|. This phase

distribution, P (ϕ), also emerges naturally from the Pegg-
Barnett description of the phase operator [37] or indeed
when one seeks to define a distribution which is the
canonical conjugate of the number distribution [38]. In
the steady-state only the diagonal components of the un-
coupled micromaser density operator are non-zero in the
number distribution, so we see immediately that there is
no preferred phase and the phase distribution is simply
uniform: P (ϕ) = 1/2π.

When two micromasers are coupled, either coherently
or dissipatively, a preference emerges for certain values of
the relative phase, ϕ− = ϕ1−ϕ2, but not the total phase
ϕ+ = ϕ1 + ϕ2. The relative phase distribution takes the
form [14, 39, 40]

P (ϕ−) =
1

2π

∞∑
n,m=0

∞∑
k=max(n,m)

eiϕ−(m−n)

×〈n, k − n|ρ|m, k −m〉, (8)

which can also be rewritten explicitly as a Fourier series

P (ϕ−) =
1

2π
+

1

π
Re

[ ∞∑
p=1

eipϕ−

∞∑
n=0,m=0

ρ(p)
n,m

]
, (9)
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FIG. 3: (Color Online) Comparison of the relative phase
probability distributions calculated numerically for coherent
(solid, black) and dissipative (dashed, red) coupling with

ε = 0.1, N = 5 and Θ = φN1/2 = 2. The inset shows
the strengths of the peaks in the relative phase distributions,
characterized by S, as a function of the coupling; the dotted
lines are from the perturbation theory described in Sec. IV.

where we adopt the notation ρ
(p)
n,m = 〈n,m+p|ρ|n+p,m〉.

It is also helpful to be able to characterize the emer-
gence of a phase preference using a single number. Start-
ing from the relative phase distribution, one can simply
extract the size of the peak relative to the uniform dis-
tribution [14],

S = 2πmax [P (ϕ−)]− 1. (10)

This is something that we will make extensive use of here,
though it should be noted that the choice is by no means
unique [18, 22].

The relative phase distribution for the micromaser
system is obtained by solving for the steady-state of
the master equation (1) using standard numerical meth-
ods [41]. Coherent and dissipative couplings with the
same strength give rise to markedly different behavior
in the relative phase distribution, as is illustrated in Fig.
3. Coherent coupling leads to much weaker phase locking
than dissipative coupling and generates a relative phase
distribution which is π-periodic rather than 2π-periodic.
This matches the well-known differences in relative phase
dynamics of reactively and dissipatively coupled classical
oscillators which are usually understood by deriving ap-
proximate equations of motion for the relative phase of
the oscillator assuming weak coupling [1, 35].

IV. PERTURBATION THEORY

Perturbation theory provides a straightforward way of
understanding the differences between the quantum me-
chanical relative phase distributions generated by coher-
ent and dissipative coupling. We begin by considering the

case of coherent coupling before moving on to dissipative
coupling.

A. Coherent Coupling

Writing the master equation in terms of the number
state basis, we find

ρ̇(p)
n,m = −

[
µ

(p)
n + µ

(p)
m

2
+ c(p)

n + d(p)
n + c(p)

m + d(p)
m

]
ρ(p)
n,m

+c
(p)
n−1ρ

(p)
n−1,m + c

(p)
m−1ρ

(p)
n,m−1 + d

(p)
n+1ρ

(p)
n+1,m

+d
(p)
m+1ρ

(p)
n,m+1 + ∆(p)

n,m, (11)

where the terms arising from the coupling are given by

∆(p)
n,m = −iε

[√
n(m+ p+ 1)ρ

(p+1)
n−1,m

+
√

(n+ 1)(m+ p)ρ
(p−1)
n+1,m

−
√
m(n+ p+ 1)ρ

(p+1)
n,m−1

−
√

(n+ p)(m+ 1)ρ
(p−1)
n,m+1

]
, (12)

and the coefficients which describe the uncoupled evolu-
tion are given by [27]

1

2
µ(p)
n = 2N sin2

[
φ

2

(√
n+ p+ 1−

√
n+ 1

)]
+
[
n+

p

2
−
√
n(n+ p)

]
(13)

c
(p)
n−1 = N sin(φ

√
n) sin(φ

√
n+ p) (14)

d(p)
n =

√
n(n+ p). (15)

In the steady-state ρ̇
(p)
n,m = 0, leading to a set of linear

equations for the components ρ
(p)
n,m. For ε = 0 the sets of

linear equations for different p values are uncoupled; they

are also homogeneous and have the solutions ρ
(p)
n,m = 0,

except in the diagonal case (p = 0) where the components
must also obey the normalization condition.

Working to first order in the coupling means that we
replace the terms in Eq. (12) by their unperturbed val-
ues which are all zero—apart from the diagonal ones,

ρ
(0)
n,m = PnPm. Therefore only the equations for the p = 1

components are affected (we only need consider the com-
ponents with p > 0 which appear in the expression for
the relative phase distribution (9)) for which we find

∆(1)
n,m = −iε

√
(n+ 1)(m+ 1) (Pn+1Pm − Pm+1Pn) .

(16)

Thus at first order, the components ρ
(1)
n,m are in general

non-zero, and pure imaginary (since Pn(m) are probabili-
ties), whilst those with p > 1 remain zero. However, since

∆
(1)
n,m = −∆

(1)
m,n, there is a corresponding relationship be-

tween the components: ρ
(1)
n,m = −ρ(1)

m,n. This has impor-
tant consequences for P (ϕ−): the sum of all the p = 1
elements is zero and hence to first order P (ϕ−) = 1/2π.
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Working to second order in the coupling, ∆
(2)
n,m is no

longer zero (since ρ
(1)
n,m is of order ε) and one finds that

the components ρ
(2)
n,m are all real and proportional to ε2.

In this case there is no cancelling of the terms in the sum
and hence to second order the relative phase distribution
takes the form

P (ϕ−) =
1

2π

[
1 + ε2C0 cos(2ϕ−)

]
, (17)

where C0 is a constant which depends on the parameters
of the uncoupled micromasers (φ and N). This of course
is just what we see for the case of coherent coupling in
Fig. 3.

B. Dissipative coupling

We now look at what happens for dissipative coupling
described by Eq. (5). In this case we can simplify the
master equation by taking into account the fact that some
of the terms in (5) simply act to increase the effective
damping of the oscillators and can be absorbed into the
terms which are already present for the uncoupled system
by rescaling the parameters: Ñ = N/(1+ε), ε̃ = ε/(1+ε).

Working in the number basis, the master equation with
dissipative coupling takes the form given by (11) (though

with ε̃ and Ñ replacing ε and N) with

∆(p)
n,m = −ε̃

[√
(n+ 1)(m+ 1)ρ

(p−1)
n+1,m+1

+
√

(n+ p+ 1)(m+ p+ 1)ρ(p+1)
n,m

−1

2

√
n(m+ p+ 1)ρ

(p+1)
n−1,m

−1

2

√
(n+ p+ 1)mρ

(p+1)
n,m−1

−1

2

√
(n+ 1)(m+ p)ρ

(p−1)
n+1,m

− 1

2

√
(n+ p)(m+ 1)ρ

(p−1)
n,m+1

]
. (18)

At first order in the coupling, only the p = 1 term is
non-zero,

∆(1)
n,m =

ε̃

2

√
(n+ 1)(m+ 1) (19)

× [Pn+1Pm + PnPm+1 − 2Pn+1Pm+1] .

This generates non-zero components ρ
(1)
n,m which are all

real with ρ
(1)
n,m = ρ

(1)
m,n so there is no cancellation when

they are summed up. Hence to lowest order in the cou-
pling the relative phase distribution for dissipative cou-
pling takes the form

P (ϕ−) =
1

2π
[1 + εC1 cos(ϕ−)] , (20)

where C1 is a constant (that again depends on the pa-
rameters of the uncoupled micromasers) which matches
the behavior in Fig. 3.

The insights into the general form of the relative phase
distribution provided by perturbation calculations are
quite general, in the sense that the overall form of the
relative phase distribution is entirely determined by the
coupling terms (only the constants C0 and C1 depend on
the details of the micromaser systems). However, pertur-
bation theory is also very useful for exploring the behav-
ior where the state space of the system becomes so large
that a direct numerical solution becomes impracticable.

V. SEMICLASSICAL LIMIT

To understand the behavior in the semiclassical limit
we start from the expression for the relative phase dis-
tribution in the form of Eq. (9) and focus on the case of
dissipative coupling, which is the simplest. The equation
of motion for the relative phase is given by

Ṗ (ϕ−, t) =
1

π
Re

[ ∞∑
p=1

eipϕ−

∞∑
n,m=0

ρ̇(p)
n,m

]
. (21)

Using the master equation (11), with the dissipative cou-
pling terms (18), we find that [29]∑∞

p=1 eipϕ−
∑∞

n,m=0 ρ̇
(p)
n,m =

∑∞
n,m=0 ρ

(0)
nmf0(ε̃) (22)

+
∑∞

p=1 eipϕ−
∑∞

n,m=0

[
f1(ε̃)− 1

2

(
µ

(p)
n + µ

(p)
m

)]
ρ

(p)
n,m ,

where

f0(ε̃) =
1

2
ε̃eiϕ−

[√
n(m+ 1) +

√
m(n+ 1)− 2

√
mn
]

(23)
and

f1(ε̃) = 1
2 ε̃
[
eiϕ−

(√
n(m+ p+ 1) +

√
m(n+ p+ 1)

−2
√
nm)− e−iϕ−

(
2
√

(m+ p)(n+ p)

−
√

(m+ p)(n+ 1)−
√

(n+ p)(m+ 1)
)]
. (24)

So far the analysis has been exact. We now intro-
duce some approximations to simplify things [27, 29]. We
will make use of the fact that the average occupation is
large in the semiclassical regime so that 〈n〉 � 1 and
〈n〉 � φ2. We will also make two additional assump-
tions: that the coupling is weak ε̃ � 1 and that the
number distribution is strongly peaked about 〈n〉, this
will only be the case when the system is above threshold
with Θ > 1, but not so large that more than one peak
appears in the distribution [see the inset in Fig. 2]. These
last two assumptions have nothing to do with semiclas-
sicality (indeed a strongly peaked number distribution
can be highly non-classical), but rather they are closely
related to those usually made in classical analyses of syn-
chronization [1, 42] which rely on the existence of a well
defined (single) limit-cycle state.
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Our assumptions mean that we need only consider the

components ρ
(p)
n,m for which n,m � p. We proceed by

expanding the coefficients in (22) treating p/n, p/m, 1/n
and 1/m as small quantities and keeping the lowest order
(non-zero) contributions in each case so that we have

f0(ε̃) ' 1

4
ε̃eiϕ−

(
n+m√
nm

)
(25)

f1(ε̃) ' 1

4
ε̃
[
eiϕ−(p+ 1) + e−iϕ−(p− 1)

]
×
(
n+m√
nm

)
(26)

and

µ(p)
n '

[
4Ñ sin2

(
pφ

4
√
n+ 1

)
+
p2

4n

]
'

[
Ñp2φ2

4(n+ 1)
+
p2

4n

]
. (27)

In the last line we also expanded the sine assuming
(pφ)2/n� 1.

Finally, we make use of the assumption that the dis-
tributions are strongly peaked about a common aver-
age [27, 29] and simply replace n and m (together with
n+ 1 and m+ 1) with 〈n〉 so that now Eq. (22) takes the
simplified form

∞∑
p=1

eipϕ−

∞∑
n,m=0

ρ̇(p)
n,m =

1

2
ε̃eiϕ− −

∞∑
p=1

eipϕ−

∞∑
n,m=0

ρ(p)
n,m

×
[
p2∆̃− ε̃(cosϕ− + ip sinϕ−)

]
,

(28)

where we have defined

∆̃ =
Ñφ2 + 1

4〈n〉
. (29)

The parameter ∆̃ matches a simple approximate expres-
sion for the micromaser linewidth [27–30] which is valid
in the semiclassical regime.

Combining Eq. (28) with its complex conjugate leads
to a Fokker-Planck equation for the relative phase distri-
bution:

Ṗ (ϕ−) =

(
∂

∂ϕ−
ε̃ sinϕ− + ∆̃

∂2

∂ϕ2
−

)
P (ϕ−). (30)

The corresponding steady-state distribution is [42]

P (ϕ−) =
1

2πI0(ε̃/∆̃)
eε̃ cosϕ−/∆̃. (31)

The Fokker-Planck equation for the phase distribution
of the coupled micromasers is exactly what we would ex-
pect for coupled classical oscillators in the presence of
noise [1, 42]: it describes a competition between phase

diffusion and the effects of the coupling which tends
to drive the system towards a particular relative phase.
However, the origin of the noise which drives the diffusion
is nevertheless ultimately quantum mechanical rather
than classical and hence it makes sense to see (31) as
a semiclassical equation in this context. It is worth not-
ing that a Fokker-Planck equation with the same form
emerges in the analysis of coupled lasers far above thresh-
old [3].

Now that we have obtained an expression for the phase
distribution in the semiclassical limit we can look in de-
tail at when and how its predictions differ from the full
(quantum) dynamics predicted by the master equation.
The phase distribution obtained using the semiclassical
approximation (31) is compared with the results from a
full numerical solution of the master equation for a rel-
atively small pumping rate, N = 5, in Fig. 4. The first
thing to note is that the standard expectation of classical
synchronization theory is fulfilled: for the weak couplings
used here a rather strong change in the phase distribu-
tion is combined with a relatively weak change in the
average occupation number of the system. Furthermore,
the semiclassical phase distribution does a reasonable job
of describing the strength of the peak in the phase dis-
tribution for Θ values that are not far above threshold.
However, the semiclassical calculation systematically un-
derestimates the strength of the phase locking in the
quantum regime where 〈n〉 ∼ 1 (i.e. Θ > 3) as shown
in the inset to Fig. 4a. Although the phase locking is
pretty weak for larger values of Θ, it is nevertheless about
twice as strong as predicted by the simple semiclassical
calculation.

Although a full numerical solution of the master equa-
tion becomes very difficult for larger N values we can use
perturbation theory to calculate the relative phase dis-
tribution provided that we choose a small enough value
for the coupling (since it turns out that the range of cou-
pling strengths over which the second order perturbation
calculation is a good description varies with N). Fig. 5
compares the value of S obtained using the perturbation
and semiclassical calculations for a range of N values.
It shows clearly that the semiclassical solution (31) pro-
vides an increasingly accurate description of the strength
of the phase locking as N is increased, just as one would
expect.

VI. MUTUAL INFORMATION AND
ENTANGLEMENT

We now turn to look at how other measures of cor-
relations, mutual information and entanglement, behave
as a function of the type and strength of the coupling
between micromasers. Recent work on coupled quantum
van der Pol oscillators has suggested that there may be an
intimate connection between the emergence of synchro-
nization in coupled quantum oscillators and the behavior
of the mutual information [8, 15, 19] and it has even been
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FIG. 4: (Color Online)(a) Strength of the relative phase lock-
ing, measured by S = 2π[P (ϕ−)max] − 1, as a function of

Θ = φN1/2 for dissipative coupling with N = 5 and ε = 0.01,
0.05 and 0.1. In each case the results of full numerical calcu-
lations are shown as full lines and the results from a semiclas-
sical calculation using the Fokker-Planck equation are dotted
lines. The inset shows the relative difference between the
quantum and semiclassical calculations for the same param-
eters. [Note that the small peak around Θ = 5 corresponds
to the n = 1 trapping state.] (b) Behavior of the average
photon number for the same parameters compared with the
uncoupled case, ε = 0 (dotted line).

suggested that mutual information could serve as an or-
der parameter for synchronization [15].

The mutual information, I, of the coupled micromasers
is defined as

I = S(ρ1) + S(ρ2)− S(ρ), (32)

where ρ is the full density operator, ρ1(2), is the reduced
density operator of micromaser 1(2) and S is the von
Neumann entropy, S(ρ) = −Tr[ρ ln ρ].

Perturbation theory tells us immediately that the
mutual information of micromasers will grow at least
quadratically with the strength of the coupling, for both
dissipative and coherent coupling. To see this, we can
write the density operator ρ, its eigenvalues λj , and
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FIG. 5: (Color Online) Relative difference between the quan-
tum (perturbation theory) and semiclassical calculations of
the strength of the phase locking, S, for different values of N
with ε = 0.0001.

eigenkets |j〉, as expansions in [43] ε

ρ = ρ(0) + ερ(1) + . . . (33)

λj = λ0
j + ελ1

j + . . . (34)

|j〉 = |j(0)〉+ ε|j(1)〉+ . . . (35)

To first order, the von Neumann entropy is

S(ρ) = S(ρ(0))− ε
∑
j

λ
(1)
j

(
1 + lnλ

(0)
j

)
, (36)

with λ
(1)
j = 〈j(0)|ρ(1)|j(0)〉, the first order correction to

the eigenvalues. The density operators for uncoupled mi-
cromasers are diagonal in the number state basis,

ρ(0) =
∑
n,m

PnPm|n,m〉〈n,m|, (37)

and as we have seen in Sec. IV the first order correction
terms which form ρ(1) are all off-diagonal in the num-
ber state basis; consequently the first order corrections
to the eigenvalues are all zero. Hence the first order con-
tributions to I vanish for both coherent and dissipative
couplings.

Fig. 6 compares the behavior of the mutual informa-
tion for dissipative and coherent couplings. Not only
does I grow quadratically with ε in both cases, but the
magnitudes are very similar. This is in sharp contrast
to the behavior of the relative phase distributions where
the dissipative coupling leads to much stronger features
in P (ϕ−) than the coherent coupling [see Fig. 3], with a
linear rather than a quadratic dependence on ε.

These results suggest that the mutual information and
the relative phase distribution characterize rather differ-
ent aspects of the state of the coupled system. Whilst
it is certainly to be expected that different measures of
correlation between the micromasers will increase with
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FIG. 6: (Color Online) Mutual information as a function of
the coupling strength for coherent (solid, black) and dissipa-

tive (dashed, red) couplings. Here N = 5 and φN1/2 = 2.

the strength of the coupling, there is no reason why they
should increase at the same rate.

Finally, we comment briefly on the extent to which en-
tanglement is generated between coupled micromasers.
We use the logarithmic negativity of the system to mea-
sure the entanglement [44],

EN (ρ) = log2[2N(ρ) + 1], (38)

where the negativity is N(ρ) = 1
2

∑
i (|λi| − λi), with λi

the eigenvalues of ρTA , the partial transpose of the den-
sity operator of the coupled micromaser system. Figure 7
shows how the entanglement behaves for both types of
coupling.

We see in Fig. 7(a) that very little entanglement is in
fact generated in this system. For both forms of cou-
pling there is no entanglement except, interestingly, for
the values of Θ that correspond to trapping states which
occur at integer values, n, such that sin(φ

√
n+ 1) = 0.

Figure 7(b) shows how the entanglement at the n = 1
trapping state (Θ = 4.97 for N = 5) changes with the
coupling strength ε, and we see that there is very dif-
ferent behavior depending on how the micromasers are
coupled. Indeed, the behavior is different again from
that seen with either the relative phase or the mutual
information: the logarithmic negativity grows quadrati-
cally for both coherent and dissipative coupling, but the
growth is most rapid for coherent coupling in contrast
to both the relative phase and the mutual information.
The logarithmic negativity eventually peaks and decays
before vanishing around ε ∼ 0.7 for the case of coher-
ent coupling. Very similar behavior was seen in another
system of coupled nonlinear oscillators where trapping ef-
fects restrict the state-space available to the system [45].
In that case vanishing of the entanglement for sufficiently
strong coupling was found to be intimately linked to the
restricted state-space and the same factors seem likely to
be at work here. Overall, however, for both cases the

(a)

(b)

FIG. 7: (Color Online) Entanglement for the coherent (solid,
black) and dissipative (dashed, red) couplings for N = 5. (a)

Logarithmic negativity for ε = 0.5 over a range of Θ = φN1/2.
The dotted lines indicate the locations of the trapping states
(n = 1, 2, 3, 4, 5). (b) Logarithmic negativity as a function
of the coupling strength varied around the trapping state at
Θ = 4.97.

most important point is that the entanglement remains
very weak, even in the strongly quantum regime of very
low photon numbers.

VII. CONCLUSIONS AND DISCUSSION

We have investigated synchronization effects in cou-
pled micromasers using the relative phase distribution
as a tool to quantify the emergence of preferred rela-
tive phases. We used perturbation theory to show that
dissipative coupling between the micromasers leads to a
2π-periodic relative phase distribution whose peak grows
linearly with the coupling. In contrast, for coherent cou-
pling the phase distribution is π-periodic and there is a
quadratic dependence on the coupling.

The relative phase distribution seems to be a very use-
ful tool for describing synchronization effects in the quan-
tum regime. We were able to derive a Fokker-Planck
equation to describe its dynamics in the semiclassical
regime, where photon numbers are large, leading to a



9

steady-state distribution which depended on just the cou-
pling strength and the linewidth of the uncoupled micro-
maser. This derivation also showed quite clearly that the
phase dynamics would be much more complicated in the
quantum regime where photon occupation numbers are
low. Indeed, comparisons of numerical calculations using
the full master equation showed that the Fokker-Planck
equation substantially underestimated the strength of the
features which emerge in the relative phase distribution
in the quantum regime. Interestingly, a very similar un-
derestimate of synchronization effects was obtained using
a semiclassical model for the case of two van der Pol os-
cillators [7]. In our case, it seems that low photon occu-
pation number is the key factor that leads to differences
between quantum and semiclassical predictions.

We also investigated the behavior of the mutual in-
formation and entanglement of coupled micromasers and
found that the behavior was rather different to that of
the relative phase distribution. This is perhaps not sur-
prising as the relative phase distribution depends on a
very specific combination of a sub-set of the elements of
the full density matrix of the system. Whilst one might

expect all forms of correlation to increase with coupling,
at least initially, there is no obvious reason why differ-
ent measures of correlation between the oscillators should
increase in precisely the same way as the relative phase
distribution.

Our work could serve as a starting point for a number
of future studies. For example, it would be interesting to
explore synchronization in the bistable regime where the
micromasers exist in a mixed state consisting of limit-
cycles with two different amplitudes. Another possibility
would be to explore synchronization effects in systems
with more than two micromasers. The perturbation ap-
proach that we used here could prove a useful tool in
analysing systems with a handful of coupled oscillators
where a numerical solution of the full master equation
already becomes very challenging because of the poten-
tially very large state space involved. Finally, it would be
interesting to investigate in detail the range of couplings
which could be achieved in practice with micromasers, as
well as solid-state analogs, and the best way to measure
features in their relative phase distribution.
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