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Abstract—A new hybrid approach for Petri nets (PNs) is
proposed in this paper by combining the PNs principles with
the foundations of information theory for knowledge represen-
tation. The resulting PNs have been named Plausible Petri nets
(PPNs) mainly because they can handle the evolution of a discrete
event system together with uncertain (plausible) information
about the system using states of information. This paper overviews
the main concepts of classical PNs and presents a method to allow
uncertain information exchange about a state variable within
the system dynamics. The resulting methodology is exemplified
using an idealized expert system, which illustrates some of the
challenges faced in real-world applications of PPNs.

Keywords—Petri nets; Expert Systems; Knowledge representa-
tion

I. INTRODUCTION

A. Classical Petri Nets

Petri Nets (PNs) are bipartite directed graphs (digraph)
used for modeling the dynamics of systems, which are known
after the celebrated thesis dissertation Kommunikation mit
Automaten by Carl Petri in 1962 [1]. Two types of nodes
are represented in a PN: transitions and places, which are
temporarily visited by tokens, the abstract moving units of a PN
that can adopt different meanings depending on the application
(also different meanings within a specific PN). The distribution
of tokens over the PN at a specific time of execution is referred
to as marking.

From a mathematical perspective, a PN can be defined as
an ordered 6-tuple P as follows [2]:

P , 〈P,T,E,M0,D,W〉 (1)

where P ∈ Nnp and T ∈ Nnt are vectors to denote the
set of np places and nt transitions of the PN respectively,
M0 ∈ Nnp is the initial marking, and D ∈ Rnt is the non-
negative vector of switching delays of the transitions (0 by
default). The connections between transitions and places are
expressed through the set of edges E ⊆ (P×T)∪(T×P), so
that E ⊂ Nnp×Nnt contains ordered pairs of nodes. Each edge
(also referred to as arc) has assigned a weight, a non-negative
integer value (1 by default) defined in the set of weights W.

There are three main laws that govern a PN, that can be
enunciated as follows:

1) Transitions always consume from all the input arcs at
the same time;

2) Transitions always produce from all out-coming arcs the
same amount;

3) Transitions cannot consume tokens from an empty place.

The dynamics of classical PNs can be described through a state
equation defined as follows:

Mk+1 = Mk + ATuk (2)

where uk is the firing vector at state k, an nt-dimensional vec-
tor of Boolean values whose elements are obtained according
to the firing rule, as will be explained further below. A is an
nt × np matrix typically referred to as the incidence matrix,
whose elements are the result of subtracting the forward
(A+) and backward (A−) incidence matrices respectively, as
follows:

A = A+ −A− (3)

where

A+ =


a+11 a+12 ··· a+1np

a+12 a+22 ··· a+2np

...
. . .

a+nt1
a+nt2

··· a+ntnp

 A− =


a−11 a−12 ··· a−1np

a−12 a−22 ··· a−2np

...
. . .

a−nt1
a−nt2

··· a−ntnp


(4)

In the last equation, the element a+ij is the weight of the arc
from transition ti to output place pj , whereas a−ij is the weight
of the arc to transition ti from input place pj , where i =
1, . . . , nt, j = 1, . . . , np. If transition ti is activated at state k,
then ui,k ∈ uk is modified according to the firing rule, which
can be expressed as follows:

ui,k =

{
1, if M(j) > a−ij ∀pj ∈ •Pti

0, otherwise
(5)

where M(j) ∈ N is the marking for place pj , and •Pti denotes
the set of places that belong to the pre-set of transition ti, i =
1, . . . , nt, as will be next described.

B. Tokens, probability, and information

Despite the efficiency that PNs have demonstrated for
modelling expert system dynamics for a widespread range of
applications, their pragmatism is not commensurate with the
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reality of certain systems [3], [4]. From the last years, a signif-
icant increase in the research activity has been observed in the
literature about the definition of new kind of tokens as a way to
make PNs better aligned with the reality of the systems to be
idealized. Traditionally, tokens in classical PNs are interpreted
as moving objects (typically integer units) in a network of
interconnected places, as mentioned in Section I-A. Further
approaches encountered in the literature consider different kind
of tokens, like for example numerical tokens [5], [6], fuzzy
tokens [4], [7], particle tokens [8], [9], to cite just but any,
each one providing some changes on the net dynamics, yet
defining a variant of the classical PNs.

In this work, a hybrid approach is proposed by combining
traditional tokens with a new class of tokens that represent
a degree of belief about a state variable at a certain mode
which is specified by a place. The resulting framework has
been named Plausible Petri Nets (PPN) since certain tokens
enclose a set of numerical values about a state variable x from
a finite-dimensional set X ⊂ Rd, along with a mapping over
X denoted by f : X ⊂→ R+ that assigns each element x with
a non-negative value interpreted as its relative plausibility, as
will be discussed in the next section. In PPNs, the moving
units are objects (in the sense of integer units as in classical
PNs) and also states of information about x. Moreover, the
consumption and production of tokens in PPNs are not only
associated with the concept of adding and subtracting integer
values, but also with the operation of adding and subtracting
information about the state variable x.

The next section provides further insight into the concepts
of plausibility, uncertainty, and states of information, since they
are fully adopted throughout the text. Section III is devoted to
providing the basis and main rules of the proposed PPNs. In
Section IV, our framework is illustrated using an example of
application. Finally, Section V gives concluding remarks.

II. BASIC OPERATIONS IN PLAUSIBLE PETRI NETS

Let A ⊆ X be a subset representing a certain event or
proposition over X in such a way that there exist a probability
measure P (A) through a density function f(x) that can be
normalized such that

∫
X f(x)dx = 1. In this sense, P (A)

is interpreted as the plausibility of a set of possible values
x given a state of information about them provided by f(x)
[10]–[12]. Let us now evoke the first principles of Boolean
logic by recalling the concepts of the logic operators AND (∧)
and OR (∨) for the conjunction and disjunction of propositions,
respectively. Then, the following logical relationships are com-
patible according to the De Morgan’s law [13], [14] for two
probability measures Pa(A) and Pb(A), each one ascribed to
the state of information fa(x) and fb(x), respectively:

Pa(A) = 0 OR Pb(A) = 0 ⇒ (Pa ∧ Pb)(A) = 0

Pa(A) 6= 0 OR Pb(A) 6= 0 ⇒ (Pa ∨ Pb)(A) 6= 0
(6)

where (Pa ∧ Pb)(A) and (Pa ∨ Pb)(A) can be expressed as
[15]:

(Pa ∧ Pb)(A) =
∫
A
(fa ∧ fb)(x)dx (7a)

(Pa ∨ Pb)(A) =
∫
A
(fa ∨ fb)(x)dx (7b)

In the last equation, the densities (fa∧fb)(x) and (fa∨fb)(x)
represent the conjunction and disjunction of states of informa-
tion given by fa(x), fb(x), respectively [12], [16]. Besides,
(Pa ∧ Pb)(A) and (Pa ∨ Pb)(A) stand for the plausibility of
the set of values x ∈ A in compliance with the information
given by (fa ∧ fb)(x) and (fa ∨ fb)(x), respectively.

Next, because commutativity is allowed in logic of proposi-
tions, i.e. (Pa ∨Pb)(A) = (Pb ∨Pa)(A) and (Pa ∧Pb)(A) =
(Pb ∧ Pa)(A), then a simple solution for the unnormalized
densities (fa ∧ fb)(x) and (fa ∨ fb)(x) are such that [17]:

(fa ∨ fb)(x) = fa(x) + fb(x) (8a)

(fa ∧ fb)(x) =
fa(x)fb(x)

µ(x)
(8b)

where µ(x) is the homogeneous density function [12], [18],
a reference state of information that can be understood as
a probability model for x ∈ X in absence of any other
information, which actually represents the state of total ig-
norance about X [18], [19]. In case that X is a linear space,
it is demonstrated [17] that µ(x) = const, i.e., µ(x) is a
uniform over X . See Fig. 1 for a conceptual illustration of
the conjunction and disjunction of states of information over
some arbitrary densities fa(x) and fb(x). Moreover, it is worth
noting that the conjunction and disjunction operations over
states of information can be extended to the case of multiple
states of information (e.g. f1(x), f2(x), . . . , fn(x)), as follows
[18]:

(f1 ∨ · · · ∨ fn)(x) =
n∑
i=1

fi(x) (9a)

(f1 ∧ · · · ∧ fn)(x) =
n∏
i=1

fi(x)

µ(x)
(9b)

Finally, observe that the normalization of the density function
in (8b) may require the evaluation of an intractable integral
such that

∫
X

1
α
fa(x)fb(x)

µ(x) dx = 1, where α is a normaliz-
ing constant. Moreover, note that there might be situations
where the conjunction is conducted with density functions
which are not completely known, perhaps because they are
defined trough samples. Hence, sampling-based algorithms
(e.g. particle methods) [20], [21] can be used in those cases
to circumvent the evaluation of the normalizing constant. In
particle methods, a set of N samples {x(n)}N

n=1
with associ-

ated weights {w(n)}N
n=1

are used to obtain an approximation
for the required density function [e.g. (fa ∧ fb)(x)] with a
feasible computational cost, as follows:

(fa ∧ fb)(x) ≈
N∑
n=1

w(n)δ(x− x(n)) (10)

where x(n) ∼ (fa ∧ fb)(x), and δ is the Dirac delta. The
particle weight w(n) represents a likelihood value of the n-th
particle, which can be obtained as follows:

w(n) =
fa(x

(n))fb(x
(n))∑N

n=1 fa(x
(n))fb(x(n))

(11)

where X is assumed to be a linear space.
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fa(x)

x

fb(x)

x

fa(x)

fb(x)

f(x) = (fa ∧ fb) (x)

x

(a) Conjunction of fa(x) and fb(x)

fa(x)

x

fb(x)

x

fa(x)

fb(x)

f(x) = (fa ∨ fb) (x)

x

(b) Disjunction of fa(x) and fb(x)

Fig. 1. Illustrative example of the conjunction and disjunction operation over two states of information, namely fa(x) (left panels) and fb(x) (center panels). The
right panels represent the resulting density f(x) from the conjunction (upper right) and disjunction (lower right) of fa and fb. The resulting PDF is represented
superimposed over fa and fb for better understanding.

III.INFORMATION FLOW DYNAMICS IN PPNS

A. Modelling assumptions

Let {xk, k ∈ N} be a stochastic process taking values in
X , which is manifested through different modes corresponding
to each place of the Petri net. Next, let us consider that P ∈ P
can be partitioned into two disjoint sets: 1) numerical places
P(N ) ∈ Nnp , and 2) symbolic places P(S) ∈ Nn

′
p , such

that P(N ) ∪ P(S) = P ∈ Nnp+n
′
p , and P(N ) ∩ P(S) =

∅. Analogously, the set of transitions T is partitioned into
numerical transitions T(N ) ∈ Nnt , and symbolic transitions
T(S) ∈ Nn′t , where T(N ) ∪ T(S) = T ∈ Nnt+n

′
t , and

T(N )∩T(S) 6= ∅. Those transitions that belong to T(N )∩T(S)

are referred to as mixed transitions. Finally, let us call by
•Pti , the subset of places from the pre-set of transition
ti, i = 1, . . . , nt. Analogously P•ti is to denote the subset of
places that belongs to the post-set of ti. From this standpoint,
the dynamics of PPNs is formulated under the adoption of the
following items:

1) At a certain time k, the place p
(N )
j encloses a state of

information about xk given by f
pj
k , where fpjk : Aj →

R+ and Aj is a subset of X ;

2) Equivalently, any transition ti ∈ T(N ) carries a state
of information about xk defined over Ai ⊆ X , namely
f tik (xk);

3) As in classical PNs, there exist arc weights for the
symbolic places, denoted by a

′+
ij , a

′−
ij ∈ W(S) ⊂ N,

whereby the incidence matrix A(S) can be obtained as:
A(S) = a

′+
ij − a

′−
ij , i = 1, . . . , n′t, j = 1, . . . , n′p, where

n′p, n′t are the number of symbolic places and transitions
of the PPNs, respectively. The arc weights for the numer-
ical places are denoted by a+ij , a

−
ij ∈W(N ) ⊂ R+, where

A(N ) = a+ij − a−ij , and i = 1, . . . , nt, j = 1, . . . , np,
being in this case nt, np the amount of numerical transi-
tions and numerical places of the PPN, respectively. These
weights provide us with a measure of the importance
of the information that flows from/to the corresponding
transition;

4) Any transition ti always consumes from all its input arcs
at the same time. Moreover, an input arc from place p(N )

j

to transition ti ∈ T(N ) conveys a state of information
given by the conjunction of states of information of
f
pj
k (xk) and f tik (xk), namely (f

pj
k ∧ f

ti
k )(xk);

5) Any transition ti produces to its output arcs the same
amount of information given by the conjunction of states
of information between f tik (xk) and f

•Pti (xk), i.e.,
(f tik ∧ f

•Pti )(xk). In the last expression, f
•Pti (xk)

results from the disjunction of the states of information
of the pre-set of transition ti, i.e., f

•Pti (xk) = (fpti,1 ∨
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fpti,2 ∨ · · · ∨ fpti,m)(xk) (recall [9a]), where places
pti,1, pti,2, . . . , pti,m ∈ •Pti ⊂ P(N );

6) If numerical place p(N )
j belongs to the pre-set of ti, and

assuming that1 p(N )
j /∈ P•tĩ ∀ĩ = 1, . . . , nt, then the state

of information that remains in p(N )
j at k + 1 after firing

ti, is the conjunction of fpjk (xk) and f tik (xk) weighted
according to a−ij , i.e. fpjk+1(xk+1) = a−ij(f

pj
k ∧ f

ti
k )(xk);

7) Correspondingly, the state of information resulting in
place p

(N )

j̃
after firing ti given that p(N )

j ∈ P•ti , is
the disjunction of the states of information f

pj
k (xk) and

(f tik ∧ f
•Pti )(xk), where the latter is multiplied by its

output weight a+ij . Mathematically fpjk+1(xk+1) =
(
f
pj
k ∨

a+ij

(
f tik ∧ f

•Pti

))
(xk).

Observe that the rules given above, specifically those from
items 3) and 5), are in agreement with the rules of classical
PNs given in Section I-A except for the consideration that here,
part of the flow of tokens is based on states of information.

B. Marking evolution

In PPNs, the marking at state k consists of both
types of information given by M

(N )
k for the numerical

places, and M
(S)
k for the case of symbolic places, so

that Mk =
(
M

(N )
k ,M

(S)
k

)
. Mathematically, M

(N )
k is ex-

pressed through a column vector specified by M
(N )
k =(

fp1k (xk), f
p2
k (xk), . . . , f

pnp

k (xk)
)T

, such that each f
pj
k (xk)

is a normalized density function that provides us with a
measure of the relative plausibility of xk at place p

(N )
j ,

j = 1, . . . , np. Similarly, M
(S)
k is expressed through a column

vector of integer values so that its jth component represents the
number of tokens present in place p(S)j at state k. The marking
evolution of M

(S)
k for the symbolic subnet has been given in

(2), which corresponds to the state equation of an ordinary
PN [2]. However, the marking evolution corresponding to
the numerical places gives response to the information flow
dynamics described in Section III-A, and in particular, results
from applying the rules 4) to 7). Both markings, namely M

(N )
k

and M
(S)
k , evolve in a synchronized manner driven by the

firing rule for PPNs, as will be explained below.

C. Firing rule for PPNs

In PPNs, any transition ti ∈ T is fired at state k if the
delay time has passed and:

1) ∀p(S)j ∈ •Pti , M
(S)
k (j) > a

′−
ij , for ti ∈ T(S), ti /∈

(T(S) ∩T(N ));

1The assumption implies that place p
(N )
j does not belong to the post-set

of any transition.

2) ∀p(N )
j ∈ •Pti , (f

pj
k ∧ f

ti
k )(xk) 6= ∅, which, in this case,

applies for numerical transitions, i.e., ti ∈ T(N ), ti /∈
(T(S) ∩T(N ));

3) Condition 1) and 2) are both satisfied for numerical places
and symbolic places from the pre-set of ti, when ti is a
mixed transition, i.e. ti ∈ (T(S) ∩T(N )).

Condition 1) means that each symbolic place from the pre-set
of ti has enough amount of tokens according to their input
arc weight, as in classical PNs. On the other hand, condition
2) allows us to ensure that every conjunction of states of
information between f ti and each of the density functions
from the pre-set of ti, are possible. Note that a conjunction
(e.g. (fpjk ∧ f

ti
k )(xk)) is possible if (f

pj
k ∧ f

ti
k )(xk) 6= ∅ for

any subset B ∈ X [12].

IV.APPLICATION EXAMPLE

In this section, a numerical example is provided to illustrate
our proposed methodology. To this end, let us consider that
there exist a measurement about a bi-dimensional state variable
xk = (x1,k, x2,k), performed using two sensors denoted by s1
and s2. The information from s1 and s2 is initially represented
in places p(N )

1 and p(N )
2 using probability densities as respec-

tive states of information about xk. Suppose now that the sen-
sors are imperfect so that they introduce uncertainty that can
modeled as a zero mean Gaussian density function with covari-
ance matrix given by Σ1 and Σ2, respectively. Next, consider
that the component-wise measurements are stochastically inde-
pendent so that Σ1 = diag(σ2

v1 , σ
2
v2), Σ2 = diag(σ2

w1
, σ2
w2

),
where σv1 , σv2 , σw1

, σw2
are the standard deviations of mea-

surement errors v = (v1, v2) and w = (w1, w2), for sensors
s1 and s2, respectively. The system being modeled is based
on an expert system that controls the activation of a discrete-
event subsystem (which can represent an automata, machine,
or similar, in a real-world application). Once a new data
point arrives, then the activation/deactivation of the discrete
subsystem occurs conditioned upon the quality of the infor-
mation coming from the sensors. The differential entropy, as
a measure of the data uncertainty, is used in this example as a
quality indicator of the information given by the sensors. Fig. 2
provides a geometric description of the PPN being modeled
using four numerical places (p(N )

1 to p
(N )
4 ), five symbolics

places (p(S)1 to p
(S)
5 ), and three mixed transitions labeled as

t1, t2, and t3. A cold transition (ε) is used to represent the
data arrival to the system. In our PPN model, the information
from sensors s1 and s2, initially represented in places p(N )

1

and p
(N )
2 , is further gathered in place p

(N )
3 provided that

transition t1 is fired. The joint information in place p
(N )
3 is

then used to activate a sequence of discrete-event system (e.g. a
machine) if the differential entropy of xk is lower than a
certain reference value ξ ∈ R, which is taken as ξ = 7 in
this example. Next, the state of information about xk is finally
collected in place p(N )

4 . Otherwise, transition t2 is activated
whereby the information in place p(N )

2 is improved using the
joint information about xk given in place p(N )

3 . Note that p(S)2
helps in synchronizing transitions t1 and t3, so as to avoid
them to be activated simultaneously.
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The initial marking for the numerical places is

M
(N )
0 =

(
fp10 (x0), f

p2
0 (x0), f

p3
0 (x0), f

p4
0 (x0)

)T
, where

fp10 ∼ N (x̂, Σ1), f
p2
0 ∼ N (x̂ + β, Σ2), f

p3
0 = fp40 = ∅. In

the last expressions, x̂ is the data point that arrives to the
system, and β is a bias that applies to the measurements from
sensor s2. In this example, x̂ = (20, 15), and β = (5, 5),
both expressed in arbitrary units. The covariance matrices
for fp10 (x0) and fp20 (x0) are given by Σ1 = diag(42, 32)
and Σ2 = diag(32, 32), respectively. See Fig. 3 for a
particle-based representation of the states of information for
places p(N )

1 and p(N )
2 at k = 0.

On the other side, the initial marking for symbolic places
is given by M

(S)
0 = (0, 0, 0, 0, 1)

T . The mixed transitions ti,
i = {1, 2, 3} are defined using Diract Delta density functions,
i.e., f ti(xk) ∼ IBi

(xk), thus their firing is prescribed for the
state variable xk on fulfilling the condition xk ∈ Bi, where:

B1 =
{

xk ∈ X : (x1,k − 20)2 + (x2,k − 20)2 6 10
}

(12a)

B2 =
{

xk ∈ X : H(xk) > ξ
}

(12b)

B3 =
{

xk ∈ X : H(xk) < ξ
}

(12c)

In (12b) and (12c), H : X → R denotes the differen-
tial entropy of xk, that can be obtained by calculating2

1/2 ln
[
(2πe)d det [cov(xk)]

]
as a measure quantifying the un-

certainty of xk. Here, we assume for simplicity that the time
spent by the machine in performing transitions t4 and t5
is negligible. The rules for the information flow dynamics
of PPNs [recall rules 4) to 7) in Section III-A] along with
(2), are applied in confluence with the firing rule for the
system state evolution described through the marking Mk. The
particle approximation for conjunction of states of information
described in Section II, has been applied to evaluate the
conjunction of states of information resulting from applying

2This expression for the differential entropy is actually an upper-bound
approximation to the actual differential entropy, where the exactness is
achieved when the density function is Gaussian.

p
(S)
1

p
(N )
1

p
(N )
2

p
(N )
3

p
(S)
2

2 t1

p
(S)
5

p
(N )
4

p
(S)
3

p
(S)
4

2

t2

t3

t4t5

ε

Fig. 2. Plausible Petri net of example in Section IV. Numerical places
and transitions are represented using double line to distinguish them from
the symbolic ones. Transitions t4, t5, and place p

(S)
4 under the dashed box

represent a discrete-event subsystem in a simplified manner.
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x
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data : x̂ = [20, 15]
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x
2

data : x̂ = [20, 15]

Fig. 3. Representation of the density functions fp1
k (xk) and fp1

k (xk) for
k = 0 using samples (circles) in the x-space. The green circle represents a
data point arrived to the system.

rules 4) to 7) from the information flow dynamics for the
numerical subnet. The disjunction of states of information are
straightforwardly evaluated using samples by just joining the
samples from the component-wise density functions, and af-
fecting their particle weights using an appropriate normalizing
constant so as to obtain a bone fide density.
The results for the numerical places are presented for states
k = 0 and k = 2 in Fig. 4 (the states of information about
xk remain unchanged in P(N ) after k = 2, hence they are
not represented). A summary of the results for the analysis
of the PPN is provided in Table I. Note from Table I that
the results for symbolic marking and active transitions are
column vectors, although they are not explicitly reflected as
so in this table for clarity. Also, the fourth column represents
the continuum entropy of fp3k (xk), k = 1, 2, 3. The incidence
matrices used for calculations of the numerical and symbolic
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TABLE I. SUMMARY OF THE RESULTS FROM THE ANALYSIS OF THE
PPN SHOWN IN FIG. 2 FOR THREE STATES STARTING FROM k = 0.

State M
(S)
k uk CE

k = 0 (1 0 0 0 0) (1 0 0 0 0) –

k = 1 (0 1 0 0 0) (0 0 1 0 0) 6.21

k = 2 (0 0 1 0 0) (0 0 0 1 0) 6.25

k = 3 (0 0 0 1 0) (0 0 0 0 1) 6.25

subnets are given by:

A(N ) =

−2 −1 1 0

0 2 −1 0

0 0 −1 1

 , A(S) =


1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 1 1


(13)

respectively. Observe from the analysis that numerical and
symbolic subnets interact theirselves in a synchronized man-
ner. To serve as an example, note that transition t1 is activated
after the data arrival at k = 0 because p(S)1 is assigned one
token and (fpi0 ∧ f

t1
0 )(xk) 6= ∅, for i = 1, 2. Note also that

t1 is no longer fired at k > 1 because p(S)1 is empty, hence
condition 1) from the firing rule is not fulfilled. The sequence
of discrete-event actions (marked using a dashed box in Fig. 2)
are activated at k = 2 after t3 is fired, since the entropy
condition given through t3 is fulfilled at such time. Note
that this example demonstrates that the flow of information
can be altered (activate/deactivate) in our PPNs by combining
numerical and symbolic places so as to make their tokens
conveniently interact in a synchronized manner. The results for
the numerical places p(N )

1 and p
(N )
4 are presented for states

k = 0 to k = 2 in Fig 4.

V. CONCLUSION

A novel hybrid approach for PNs has been proposed in
this paper by combining the algebra of classical PNs with the
basis of information theory. As in classical PNs, there exist a
set of places and transitions (labeled here as "symbolic") to
model discrete-event systems using regular tokens as moving
units. In addition, a set of numerical places and transitions
are considered to model knowledge representation about a
system state variable, which interact with the regular tokens
in a synchronized manner. The simulated results demonstrate
that PPNs are a versatile tool to fuse uncertain information
(which can be diverse through the different numerical nodes)
about the state variable with sequences of Boolean events,
provided that an adequate net architecture is adopted. This
fact makes them useful for analyzing hybrid systems with
interaction of diverse sources of information, like in expert
systems. One future research direction is to explore their ability
to model cybersystems, since they can receive, store, exchange,
and process information so as to use it for control. Moreover,
further research effort is needed to investigate formal aspects
of the resulting hybrid system, as well as to explore efficient
implementations using a variety of examples of application.
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Fig. 4. PPN output for numerical places p
(N )
1 (most-left panel) to p

(N )
4 (most-right panel). Each subplot represents the state of information about xk , using

samples (circles) in the state space X .

REFERENCES

[1] C. A. Petri, “Kommunikation mit automaten,” Ph.D. dissertation, Institut
für Instrumentelle Mathematik an der Universität Bonn, 1962.

[2] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[3] J. Cardoso, R. Valette, and D. Dubois, “Possibilistic Petri nets,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
vol. 29, no. 5, pp. 573–582, 1999.

[4] Z. Ding, Y. Zhou, and M. Zhou, “Modeling self-adaptive software
systems with learning Petri nets,” in Companion Proceedings of the
36th International Conference on Software Engineering. ACM, 2014,
pp. 464–467.

[5] G. Horton, V. G. Kulkarni, D. M. Nicol, and K. S. Trivedi, “Fluid
stochastic Petri nets: Theory, applications, and solution techniques,”
European Journal of Operational Research, vol. 105, no. 1, pp. 184–
201, 1998.

[6] M. Silva, J. Júlvez, C. Mahulea, and C. R. Vázquez, “On fluidization
of discrete event models: observation and control of continuous Petri

nets,” Discrete Event Dynamic Systems, vol. 21, no. 4, pp. 427–497,
2011.

[7] S.-M. Chen, J.-S. Ke, and J.-F. Chang, “Knowledge representation using
fuzzy Petri nets,” Knowledge and Data Engineering, IEEE Transactions
on, vol. 2, no. 3, pp. 311–319, 1990.

[8] C. Lesire and C. Tessier, “Particle Petri nets for aircraft procedure
monitoring under uncertainty,” in Applications and Theory of Petri Nets
2005: 26th International Conference, ICATPN 2005, Miami, USA, June
20-25, 2005. Proceedings, G. Ciardo, Ed. Springer, 2005, pp. 329–348.

[9] L. Zouaghi, A. Alexopoulos, A. Wagner, and E. Badreddin, “Modified
particle Petri nets for hybrid dynamical systems monitoring under envi-
ronmental uncertainties,” in System Integration (SII), 2011 IEEE/SICE
International Symposium on. IEEE, 2011, pp. 497–502.

[10] R. T. Cox, “Probability, frequency and reasonable expectation,” Amer-
ican journal of physics, vol. 14, p. 1, 1946.

[11] E. Jaynes, Papers on probability, statistics and statistical physics. (Ed.
R.D Rosenkrantz), Kluwer Academic Publishers, 1983.

[12] A. Tarantola and B. Valette, “Inverse problems = quest for information,”

7



Journal of Geophysics, vol. 50, no. 3, pp. 159–170, 1982.
[13] I. M. Copi, Introduction to logic. New York, Macmillan, 1953.
[14] R. L. Goodstein, Boolean algebra. Dover Publications, Inc., 2007.
[15] A. Kolmogorov, Foundations of the Theory of Probability (Translation

of 1933 original in German). Chelsea Publishing: New York, 1950.
[16] G. Rus, J. Chiachío, and M. Chiachío, “Logical inference for inverse

problems,” Inverse Problems in Science and Engineering, vol. 24, no. 3,
pp. 448–464, 2016.

[17] A. Tarantola, Inverse problem theory and methods for model parameters
estimation. SIAM, 2005.

[18] K. Mosegaard and A. Tarantola, “Probabilistic approach to inverse
problems,” in International Handbook of Earthquake and Engineering
Seismology, Part A, ser. International Geophysics. Academics Press
Ltd, 2002, vol. 81, pp. 237–265.

[19] E. T. Jaynes, “Prior probabilities,” Systems Science and Cybernetics,
IEEE Transactions on, vol. 4, no. 3, pp. 227–241, 1968.

[20] M. Arumlampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on
particle filters for on-line nonlinear/non-Gaussian Bayesian tracking,”
IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188,
2002.

[21] A. Doucet, N. De Freitas, and N. Gordon, “An introduction to sequential
Monte Carlo methods,” in Sequential Monte Carlo methods in practice,
A. Doucet, N. De Freitas, and N. Gordon, Eds. Springer, 2001, pp.
3–14.

8


