
Reasoning about the Executability of
Goal-Plan Trees

Yuan Yao1, Lavindra de Silva2, and Brian Logan (B)3

1 School of Computer Science
University of Nottingham

yvy@cs.nott.ac.uk
2 Institute for Advanced Manufacturing

Faculty of Engineering
University of Nottingham

lavindra.desilva@nottingham.ac.uk
3 School of Computer Science

University of Nottingham
bsl@cs.nott.ac.uk

Abstract. User supplied domain control knowledge in the form of hi-
erarchically structured agent plans is at the heart of a number of ap-
proaches to reasoning about action. This knowledge encodes the “stan-
dard operating procedures” of an agent for responding to environmental
changes, thereby enabling fast and effective action selection. This paper
develops mechanisms for reasoning about a set of hierarchical plans and
goals, by deriving “summary information” from the conditions on the
execution of the basic actions forming the “leaves” of the hierarchy. We
provide definitions of necessary and contingent pre-, in-, and postcondi-
tions of goals and plans that are consistent with the conditions of the
actions forming a plan. Our definitions extend previous work with an
account of both deterministic and non-deterministic actions, and with
support for specifying that actions and goals within a (single) plan can
execute concurrently. Based on our new definitions, we also specify re-
quirements that are useful in scheduling the execution of steps in a set
of goal-plan trees. These requirements essentially define conditions that
must be protected by any scheduler that interleaves the execution of
steps from different goal-plan trees.

1 Introduction

User supplied domain control knowledge in the form of hierarchically structured
agent plans is at the heart of a number of approaches to reasoning about action.
This knowledge encodes the “standard operating procedures” of an agent for
responding to environmental changes, thereby enabling fast and effective action
selection. Various lines of previous work have exploited such control knowledge,
including multi-agent coordination [6, 7], interleaved plan execution in single-
agent systems [17, 16], heuristic approaches to speeding up classical planning [2,



11, 4], and approaches to synthesising desirable primitive and abstract plans [12,
8].

This paper develops mechanisms for reasoning about a set of hierarchical
plans and goals, by deriving “summary information” from the conditions on the
execution of the basic actions forming the “leaves” of the hierarchy. We provide
definitions of necessary and contingent pre-, in-, and postconditions of goals and
plans that are consistent with the conditions of the (possibly nondeterministic)
actions forming a plan. Such information is useful when writing agent programs,
e.g. when deciding which goal-plan tree is the minimally interfering “building
block” to include within a new plan in order to bring about a desired postcon-
dition. In addition to summarising the “static” properties of a single goal-plan
tree, we also define requirements that are useful in scheduling the execution of
steps in a set of goal-plan trees. While goal-plan trees are most commonly used
to represent a BDI agent’s domain knowledge, the mechanisms we present could
equally be used to represent and reason about the executability of Hierarchi-
cal Task Network (HTN) planning [10] structures, e.g., to synthesise new HTN
recipes from existing task networks. HTN and BDI systems are closely related
in terms of syntax and semantics, making it possible to translate between the
two representations [14].

The paper extends the most closely related strands of work in the literature,
i.e., [6, 7, 17, 16] in two main ways. Like us, these authors also derive summary
information from a set of hierarchical plans, and use that information to find a
schedule for the concurrent execution of a given set of top-level goals. Our first
extension is an account of both deterministic and non-deterministic primitive
actions, and the second is the ability to specify that actions and goals within
a (single) plan can execute concurrently. We also contribute novel correspond-
ing definitions for the conditions that must be protected by any scheduler that
interleaves the execution of steps from different goal-plan trees.

The remainder of this paper is organised as follows. In Section 2 we discuss
closely related work from the literature. In Section 3, we define the ‘static’,
necessary and contingent conditions of actions, plans and goals. Then, in Section
4 we define the corresponding ‘dynamic’ notions, which specify the conditions
that must be taken into account when scheduling. Finally, in Section 5, we
conclude and identify directions for future work.

2 Related Work

Our approach is closely related to two previous strands of work in the literature.
The first is that of Clement et al. [6, 7], where algorithms are presented for deriv-
ing “summary” information from developer-defined hierarchical plans belonging
to the agents in a multi-agent system. The derived knowledge is then used to find
a schedule that coordinates the activities of the agents at run time. The work of
Thangarajah et al. [17, 16, 15] is similar, though they focus on the single-agent
case. They describe an approach based on summary information that coordi-
nates the various goal-plan trees of a single agent, in order to exploit positive



interactions between them and to avoid negative interactions, both of which in-
volve reasoning about necessary and possible (summary) conditions of different
ways of achieving a goal. They give algorithms for scheduling goal-plan trees,
e.g., to determine whether a newly adopted (sub)goal will definitely be safe to
execute without conflicts, or will definitely result in conflicts. In the latter case,
Thangarajah et al. suspend the goal until it is safe to execute it.

An important difference between the work of Thangarajah et al. and that of
Clement et al., is that Thangarajah et al. define the necessary post-condition
of a goal or plan as the effects that are necessarily brought about at any (even
an intermediate) stage during the goal’s or plan’s possible executions, whereas
Clement et al. define a necessary post-condition as those effects that necessarily
hold at the end of all executions. We incorporate both these notions in our ap-
proach: our definition of a necessary postcondition of a plan or goal in Section
3 is similar to the necessary postconditions of Clement et al, and the notion of
execution conditons that must hold for the successful execution of a set of goal-
plan trees we present in Section 4 is similar to the necessary postconditions of
Thangarajah et al. Another important difference involves the treatement of cases
where a plan step makes the ‘descendant’ (sub)plan associated with a later plan
step inapplicable. Clement et al. assume that such conflicts can be resolved dur-
ing the scheduling phase, by inserting an available (concurrent) plan—possibly
one belonging to a different agent—that asserts a suitable post-condition.4 We
disallow such conflicts, and define a “local” notion of a contingent condition
which does not rely on other concurrent plans.

Our work is also related to that of de Silva et al. [9], who focus on how
summary information could be used for the synthesis of “abstract plans”. In [9],
the authors describe how both the strands of work described above could be
extended to support agent programs that include variables, i.e., to a restricted
first-order language. While the approach of de Silva et al. also supports basic
actions, the actions they consider are deterministic and cannot be executed in
parallel with other actions. In contrast, our approach is sufficiently general to
allow the parallel execution of (nondeterministic) actions and subgoals.

3 Goal-Plan Trees

As in [17, 15] we use goal-plan trees to represent the relations between goals,
plans and actions, and to reason about the interactions between intentions. The
root of a goal-plan tree is a top-level goal5 (goal node), and its children are
the plans that can be used to achieve the goal (plan nodes). Plans may in turn

4 This assumption is related to the Modal Truth Criterion [5]. See also [23], where
scheduling the concurrently executing plans of a single agent is used to recover from
action failures.

5 We assume a procedural interpretation of goals (‘goals to do’ rather than goals to
achieve a state). It is straightforward to adapt the definitions below for declarative
goals.



〈GoalType〉 ::= 〈GoalTypeName〉 〈Precondition〉 〈In-condition〉 〈Postcondition〉
〈Plans〉

〈GoalTypeName〉 ::= 〈Label〉
〈Plans〉 ::= 〈PlanTypeName〉 (, 〈PlanTypeName〉)∗

〈PlanType〉 ::= 〈PlanTypeName〉 〈Precondition〉 〈In-condition〉 〈Postcondition〉
〈PlanBody〉

〈PlanTypeName〉 ::= 〈Label〉
〈PlanBody〉 ::= 〈ExecutionStep〉 (; 〈ExecutionStep〉)∗

〈ExecutionStep〉 ::= 〈ActionTypeName〉 | 〈GoalTypeName〉
| (〈ExecutionStep〉 ‖ 〈ExecutionStep〉)

〈ActionType〉 ::= 〈ActionTypeName〉 〈Precondition〉 〈In-condition〉 〈Postcondition〉
〈ActionTypeName〉 ::= 〈Label〉

〈Precondition〉 ::= ε | 〈Condition〉 (, 〈Condition〉)∗
〈In-condition〉 ::= ε | 〈Condition〉 (, 〈Condition〉)∗

〈Postcondition〉 ::= ε | 〈Condition〉 (, 〈Condition〉)∗
〈Condition〉 ::= 〈Statement〉 | NOT 〈Statement〉
〈Statement〉 ::= string | 〈Variable〉 = 〈Value〉

〈Label〉 ::= unique string
〈Variable〉 ::= unique string

〈Value〉 ::= string

〈GoalInstance〉 ::= 〈InstanceName〉 〈GoalType〉
〈PlanInstance〉 ::= 〈InstanceName〉 〈PlanType〉

〈ActionInstance〉 ::= 〈InstanceName〉 〈ActionType〉
〈InstanceName〉 ::= 〈Label〉

Fig. 1. BNF Syntax of goal-plan trees with actions

contain subgoals (goal nodes), giving rise to a tree structure representing all
possible ways an agent can achieve the top-level goal.

In [17, 15] goal-plan trees contain only goals and plans. We extend their
definition of goal-plan trees to allow primitive actions in plans in addition to
subgoals as in [23, 21]. Plans thus consist of a sequence of steps, where a step is
either a primitive action or a subgoal, or a parallel composition of plan steps.6

Parallel composition is supported by BDI agent systems such as JACK [20] and
HTN-like planning systems such as RETSINA [13].

Figure 1 shows the BNF syntax of our extended goal-plan trees. A GoalType
is a template for a goal. A GoalInstance is created when an agent chooses to
pursue a particular instance of goal-type. Similarly, a PlanType is a template
for a plan, and a PlanInstance is created when the agent executes a particular
plan. In addition, we introduce an ActionType as a template for an action, and
an ActionInstance is created when a particular action is chosen for execution by
the agent. GoalTypeName, PlanTypeName and ActionTypeName are labels that

6 The goal-plan trees in [23, 21] do not include parallel constructs.



indicate the type of the goal, the plan or the action respectively. Plans represents
the set of plan-types that may be used to satisfy a goal of the corresponding
GoalType.

Goals, plans and actions have pre-, in-, and postconditions. Pre- and post-
conditions specify respectively the states of the environment which must hold
immediately before the action, plan, or goal is executed, and which are brought
about by executing the action, plan, or goal. In-conditions specify the states of
the environment which must hold for the duration of the execution of the ac-
tion, plan, or goal. In-conditions of plans and goals are thus relevant when their
associated actions are interleaved or overlapped, and in-conditions of actions are
relevant when they are overlapped.

We model the environment using a set of propositions Φ, and define pre-, in-
and postconditions of a goal-plan tree node η (an action, plan or goal) as sets of
literals (elements of Φ+ = Φ ∪ {¬p | p ∈ Φ}) as follows.

Precondition: a precondition is a set of literals φ = pre(η), φ ⊆ Φ+ that must
be true for η to begin execution (where η is an action or plan), or for η to
be achieved (where η is a goal).

In-condition: an in-condition is a set of literals υ = in(η), υ ⊆ Φ+ that must
hold during the execution of η (where η is an action or plan), or during the
pursuit of η (where η is a goal); if any of the literals in υ becomes false during
execution, the action, plan or goal is aborted with failure.

Postcondition: a postcondition (or effect) is a set of literals ψ = post(η),
ψ ⊆ Φ+ that are or may be made true by executing η (where η is an action
or plan), or by achieving η (where η is a goal).

We distinguish two types of pre-, in- and postconditions: necessary and contin-
gent. A necessary (or universal) condition must hold for all executions of an
action or plan or for all ways of achieving a goal, while a contingent (or exis-
tential) condition must hold for some executions of the action or plan or some
ways of achieving the goal. We denote the necessary and contingent precondi-
tions as pren(η) and prec(η), where η is an action, plan or goal, and stipulate
that pre(η) = pren(η) ∪ prec(η). Similarly, we denote necessary and contingent
in-conditions as inn(η) and inc(η), and necessary and contingent postcondi-
tions as postn(η) and postc(η), and stipulate that in(η) = inn(η) ∪ inc(η) and
post(η) = postn(η) ∪ postc(η). The necessary and contingent postconditions of
an action, plan, or goal are always disjoint, and the same applies to necessary
and contingent in-conditions, and to necessary and contingent preconditions.

While the relevant pre-, in- and postconditions form part of the definition of
an action, the conditions of plans and goals are derived from the conditions of
their actions and subgoals (in the case of plans) and from plans to achieve the
goal (in the case of goals). We give formal definitions of necessary and contingent
conditions for actions, plans, and goals in the sections below.

3.1 Actions

Actions are the basic steps an agent can perform in order to change its environ-
ment. Actions may be deterministic or non-deterministic. Deterministic actions



have a single outcome (postcondition), while the execution of a non-deterministic
action results in one of a set of possible outcomes (set of postconditions).

The precondition of an action α, pren(α) = φ, is always necessary (and
prec(α) = ∅). The in-condition of an action, inn(α) = υ, is also necessary
(and inc(α) = ∅). Deterministic actions have a single postcondition ψ. The
necessary postcondition of a deterministic action α is defined as postn(α) = ψ,
and the contingent postcondition is defined by postc(α) = ∅. The execution
of a non-deterministic action results in one of a set of possible postconditions
{ψ1, . . . , ψn}, ψi ⊆ Φ+. The necessary postcondition of a non-deterministic ac-
tion α is defined as postn(α) =

⋂
ψi ∈ {ψ1, . . . , ψn}, and the contingent post-

condition is defined by postc(α) =
⋃
ψi ∈ {ψ1, . . . , ψn} \ postn(α).7 We assume

that action specifications are consistent in the sense that each possible out-
come of an action is itself consistent, i.e., that ψi 6|= ⊥, 1 ≤ i ≤ n, and that
execution of an action does not invalidate the in-condition of the action, i.e.,
inn(α) ∪ postn(α) ∪ postc(α) 6|= ⊥.8

3.2 Plans

A plan π consists of a sequence of actions, subgoals, and parallel compositions
of actions and subgoals. That is, a plan is of the form π = α1; . . . ;αm, where
each αi is either an action, a subgoal or a parallel composition β1‖ . . . ‖βk, where
each βi is either an action or a subgoal. In the interests of generality, we make
no assumptions about the execution of a parallel composition of actions and
subgoals: steps β1, . . . , βk may be executed in parallel, i.e., they may overlap in
any of the ways defined in [1], or their execution may be arbitrarily interleaved.
For example, if βi is an action and βj a subgoal, then βi may be interleaved
with the actions appearing in the goal-plan tree for βj . However, we require
that there are no conflicts between the pre-, in- and postconditions of β1, . . . , βk
and, as a result, the overall postcondition of the parallel composition is “stable”,
i.e., for each βi, βj , 1 ≤ i ≤ k, 1 ≤ j ≤ k, i 6= j, the necessary and contingent
postconditions of βi must be consistent with the necessary and contingent pre-
in- and postconditions βj .

More precisely, the necessary postcondition of a parallel composition α =
β1‖ . . . ‖βk is defined as the union of the necessary postconditions of each of its
parallel steps (which, as above, are assumed to be “non-conflicting”):

postn(α) =

k⋃
i=1

postn(βi).

The contingent postcondition of a parallel composition is defined similarly, ex-
cept that we exclude any contingent postcondition literal of a step if it is also a

7 Note that this means the necessary conditions of an action may differ from its con-
tingent conditions.

8 For entailment, we sometimes treat a a set of literals as the conjunction of the literals
in the set.



necessary postcondition of some other step, i.e.,

postc(α) =

k⋃
i=1

postc(βi) \ postn(α).

However, the definition of the necessary pre- and in-conditions of a parallel
composition must to take into account the necessary and contingent postcondi-
tions of steps that may establish—by virtue of how steps may be interleaved or
overlapped—the pre- and in-conditions of other steps, i.e.,

conn(α) =
⋃

i∈{1,...,k}

(
conn(βi) \

⋃
j∈{1,...,k}\{i}

(postn(βj) ∪ postc(βj))
)
,

where con is either pre or in. That is, the necessary in-conditions of steps that
may be established by interleaving of other steps in the parallel composition are
not considered necessary. Finally, the contingent pre- (resp. in-) conditions of a
parallel composition are the contingent pre- (resp. in-) conditions of the parallel
steps, together with the necessary pre- (resp. in-) conditions of its steps that
may be established by other steps. That is, necessary in-conditions that may
be established by interleaving of other steps in the parallel composition become
contingent. Formally, we define

conc(α) =

k⋃
i=1

(
conc(βi) ∪ conn(βi)

)
\ conn(α)

where con is either pre or in.
We can now define the necessary and contingent pre-, in- and postconditions

of plans. The necessary precondition of a plan π = α1; . . . ;αm is defined as

pren(π) = pren(α1) ∪
m⋃
i=2

pren(αi) \
i−1⋃
j=1

postn(αj) ∪ postc(αj)


that is, the necessary preconditions of steps that are not established by the
necessary or contingent postconditions of previous steps. Necessary preconditions
must hold for all executions of π.9 Note that we do not assume that a plan
establishes all the preconditions of the steps in the plan. For example, a plan
to make coffee may assume that the agent is in the kitchen and that there
is coffee in the kitchen. However, we do assume that each plan π ensures a
‘free-choice’ among its ‘descendant’ plans (plans that achieve the subgoals of
π). For example, a plan to make coffee should not cause the agent to leave

9 As we are concerned with the executability of plans rather than their applicability
in a particular context, we do not include the context condition (belief context) of
a plan specified by a developer to be part of its precondition. However, in a well-
formed plan, the necessary precondition should form (part of) the context condition
of the plan.



the kitchen before the coffee is made, as that would then invalidate one or more
subplans, e.g. one that grinds the coffee. More precisely, for any step αk in a plan
π = α1; . . . ;αn, if there is an earlier step αi (i < k) and a literal l ∈ postn(αi)
such that ∼ l ∈ pren(αk) ∪ prec(αk) ∪ inn(αk) ∪ inc(αk), then there is also
an intermediate step αj (i < j < k) with ∼ l ∈ postn(αj) ∪ postc(αj), where
∼ l = ¬p if l = p and ∼ l = p if l = ¬p.

If π contains non-deterministic actions or subgoals, it may also have contin-
gent preconditions, i.e., preconditions which may have to be established depend-
ing on the outcome of a non-deterministic action (if the outcome of the action
fails to achieve the precondition of a later action in the plan) or the choice of plan
to achieve a subgoal. Thus, the contingent precondition of a plan π = α1; . . . ;αm

is defined as prec(π) = prec(α1) ∪

m⋃
i=2

(prec(αi) \
i−1⋃
j=1

postn(αj)
)
∪
((

pren(αi) \
i−1⋃
j=1

postn(αj)
)
∩

i−1⋃
j=1

postc(αj)
).

That is, the possible preconditions of each step not established by necessary
postconditions of previous steps, and the necessary preconditions of each step
that are (possibly) established by contingent postconditions of previous steps,
but not by their necessary postconditions. Observe that sets pren(π) and prec(π)
are mutually exclusive by definition.

The necessary in-condition of a plan π = α1; . . . ;αm is defined as

inn(π) =

m−1⋃
i=1

(inn(αi) ∩ inn(αi+1)).

That is, a necessary in-condition of a plan π is an in-condition that is necessary
for two or more consecutive steps in π. The rationale for this definition arises
from the role of in-conditions in scheduling. The in-condition of an action α
specifies which other actions may be scheduled in a parallel with the action
without negative interactions—only actions α′ whose postcondition does not
result in a negative interaction with the in-condition of α may be scheduled in
parallel with α. When reasoning with summary information at the plan level, we
seek to detect situations where the parallel or interleaved execution of actions
in a plan π′ may result in a negative interaction between the postcondition of
an action in π′ and the in-condition of actions in π′.

The contingent in-condition of a plan π = α1; . . . ;αm is defined as

inc(π) =

m⋃
i=1

(
inc(αi) ∪ inn(αi)

)
\ inn(π).

Finally, we define the necessary and contingent postconditions of a plan. The
necessary postconditions of a plan π = α1; . . . ;αm is defined as

postn(π) = {l | ∃i : l ∈ postn(αi)∧∀j ∈ {i, . . . ,m} :∼ l 6∈ postn(αj)∪postc(αj)}.



That is, the necessary postconditions of each step not ‘undone’ by the necessary
or contingent postconditions of later steps. The contingent postcondition of a
plan π = α1; . . . ;αm is defined as postc(π) = post1c(π) ∪ post2c(π), where

post1c(π) = {l | ∃i : l ∈ postc(αi) ∧ ∀j ∈ {i, . . . ,m} :∼ l 6∈ postn(αj)}

and
post2c(π) = {l | ∃i : l ∈ postn(αi) ∧

∃j ∈ {i, . . . ,m} :∼ l ∈ postc(αj) ∧
∀j ∈ {i, . . . ,m} :∼ l 6∈ postn(αj)}.

That is, the contingent postcondition of a plan is either a contingent post-
condition of a step that is not ‘undone’ by the necessary postcondition of a later
step, or a necessary postcondition of a step that may be ‘undone’ by a contin-
gent postcondition of a later step. Observe that sets postn(π) and postc(π) are
mutually exclusive by definition.

3.3 Goals

A goal γ is associated with a set of plans π1, . . . , πn that achieve γ, and the pre-,
in- and postconditions of γ are derived from this set of associated plans. For
simplicity, we stipulate that goals with the same GoalType as γ do not appear
in the goal-plan tree rooted at γ.10

The necessary pre-, in- and postconditions of a goal γ associated with plans
π1, . . . , πn is defined as

conn(γ) =

n⋂
i=1

conn(πi),

where con is either pre, in or post . That is, necessary pre-, in-, or postconditions
must hold respectively before, during, or after all ways of achieving γ.

The contingent pre-, in-, and postconditions of a goal γ associated with plans
π1, . . . , πn is defined as

conc(γ) =
n⋃

i=1

conc(πi) ∪

 n⋃
j=1

conn(πj) \ conn(γ)


where con is either pre, in or post . That is, a pre-, in-, or postcondition is
contingent for γ if it is a contingent condition of a plan πi to achieve γ, or if it
is a necessary condition for a plan πj but not for γ itself (i.e., it is a necessary
condition of some but not all plans for γ.)

The definitions above capture the relationship between the pre-, in- and
postconditions of actions, plans and goals in a goal-plan tree. The conditions for
actions define which propositions must be true before, during and after either all

10 This is a standard assumption in computing summary information e.g., [6, 7, 17, 16].
The assumption can be relaxed, but the definitions of conditions below become more
complex.



executions of an action (necessary conditions), or some execution of the action
(contingent conditions). The conditions for plans define which propositions must
be true before, during and after either all executions of a plan, or some execution
of the plan. The necessary preconditions of a plan specify the states in which the
plan is applicable. The conditions for goals define which propositions must be
true before, during and after either all means of achieving a goal or some means
of achieving a goal.

4 Execution Conditions

In the previous section, we defined the necessary and contingent conditions for
the execution of a single goal-plan tree. In this section, we consider information
relevant to the execution of a set of goal plan trees.

If an agent always executes at most one goal-plan tree at a time, e.g., it ex-
ecutes its intentions in first-in-first-out order, then the execution conditions are
the same as those given in Section 3. However, in many application domains, an
agent’s goal-plan trees comprising a system or an agent’s user supplied domain
knowledge are executed in parallel. For example, in many BDI agent architec-
tures, the plans comprising the agent’s intentions are executed in parallel, e.g., by
executing one step of an intention at each cycle in a round robin fashion [3, 20].
Interactions between interleaved steps in plans in different goal-plan trees may
result in conflicts, i.e., the execution of a step in one plan makes the execution
of a step in another concurrently executing plan impossible.

Given a set of goal-plan trees, the scheduling problem is to determine which
step of which goal-plan tree to execute next, so as to minimise the number of
execution conflicts.11 Scheduling aims to minimise the number of plan failures
resulting from choices made by the agent regarding the order of execution of a set
of goal-plan trees, thus allowing the largest number of goals to be achieved.12 Our
aim here is not to solve the scheduling problem; for example, we do not consider
the problem of which plan an agent should adopt for a given (sub)goal—this is
the concern of deliberation scheduling. Rather, we focus on defining conditions
that must or may hold on all possible future executions of a set of goal-plan trees.
As such, the conditions we define should be taken into account by any sched-
uler, but are neutral with respect to the actual form of deliberation scheduling
adopted. It turns out that, in our setting, the information relevant for schedul-
ing differs from the conditions on the well-formedness of a goal-plan tree defined

11 Scheduling may also be used to maximise the number of positive interactions between
goal-plan trees, as in, e.g., [17, 23]; we do not consider positive interactions here.

12 Plans may fail for reasons that are outside the control of the agent, e.g., due to
changes in the environment, or actions of other agents violating the conditions of
a plan. Several approaches, e.g., [18, 19, 21] have been proposed which attempt to
avoid such failures. However, the information about goal-plan trees required by these
approaches (essentially the the percentage of world states for which there is some
applicable plan for any subgoal within an intention) is different from that required
for scheduling, and we do not consider them further here.



in the previous section. The definitions of execution conditions below therefore
depart from those in, e.g., [16, 15].

To define the execution conditions for a goal-plan tree, we need some auxiliary
notions. Given a set of goal-plan trees T = {τ1, . . . , τn}, an execution context for
T is a set of pairs I = {(τ1, ρ1), . . . , (τn, ρn)}, where each ρi defines the set of
possible future execution paths for τi. Each ρi corresponds to the point execution
has reached in the goal-plan tree τi, and hence the possible paths future execution
of τi may follow. (I essentially corresponds to the intentions of a BDI agent.)
Initially, each ρi points to the top-level goal of the corresponding goal-plan tree
τi. As execution of τi proceeds, plans are selected, restricting the possible future
execution paths to a subtree of τi captured by ρi. In the interests of brevity, and
where no confusion can arise, we shall refer to possible future execution paths
simply as possible execution paths.

An initial set of possible execution paths ρ0 for a goal-plan tree τ is a
sequence (πi, α1), . . . , (πi, αk), where πi = α1; . . . ;αk is the selected plan for
the top-level goal of τ . As execution progresses, a set of possible execution
paths ρ = (π1, α1), (π2, α2), . . . , (πm, αm) evolves as follows. The successor set
of possible execution paths ρ′ of ρ is (π2, α2), . . . , (πm, αm) if α1 is an action,
and ρ′ = (π′1, α

′
1), . . . , (π′1, α

′
n), (π2, α2), . . . , (πm, αm) if α1 is a subgoal γ1 and

π′1 = α′1; . . . ;α′n is the plan selected for γ1. Only sets of possible execution paths
which are the initial set of possible execution paths in τ (corresponding to the
top-level of goal of τ) or are obtained by the progression step described above
are sets of possible execution paths in τ .

We can now define the necessary and contingent execution conditions of an
execution context. Informally, the necessary execution conditions of a set of
possible execution paths ρi, are those conditions that must hold or be achieved
at some point in all possible future executions of a goal-plan tree τi starting from
ρi, and the contingent execution conditions are those conditions that must hold
or be achieved at some point of time in at least one possible future execution
(but not all executions) of τi starting from ρi. When executing the set of goal-
plan trees in T in parallel, such execution conditions must be protected — if the
execution conditions of two sets of possible execution paths ρi and ρj intersect,
then interleaving steps in ρi and ρj may result in conflicts.

4.1 Actions

As actions are atomic, the necessary and contingent execution conditions of an
action α are identical to the corresponding necessary and contingent conditions
for α (we denote execution conditions with a ∗):

con∗n(α) = conn(α) con∗c(α) = conc(α)

where con∗n and conn are either pre∗n and pren , in∗n and inn or post∗n and postn
respectively, and similarly con∗c and conc are either pre∗c and prec , in∗c and inc

or post∗c and postc.



4.2 Plans

The necessary and contingent execution conditions of a plan π differ from the
corresponding necessary and contingent conditions for π. As steps in plans in
different goal-plan trees may be arbitrarily interleaved, we need to protect all
the preconditions in a plan, even if they are established by a preceding step in
the same plan, as the condition may be invalidated by a step in a plan in another
goal-plan tree.

The necessary execution pre-, in- and postcondition of a parallel composition
α = β1‖ . . . ‖βk is therefore the union of the necessary execution conditions of
each βi, i.e.,

con∗n(α) =

k⋃
i=1

con∗n(βi)

where con∗n is either pre∗n , in∗n or post∗n.
The contingent pre-, in- and post- execution conditions of a parallel compo-

sition is also defined as the union of contingent execution conditions of each βi,
except that we exclude any contingent postcondition literal of a step if it is also
a necessary postcondition of some other step, i.e.,

con∗c(α) =

k⋃
i=1

con∗c(βi) \ con∗n(α).

The necessary and contingent execution preconditions of a plan (or plan
suffix) π = α1; . . . ;αm are therefore given by

pre∗n(π) =

m⋃
i=1

pre∗n(αi) pre∗c (π) =

m⋃
i=1

pre∗c (αi) \ pre∗n(π).

Similarly, the postconditions of interest are no longer the ‘eventual’ postcon-
ditions of the plan, since the postcondition of an action αi ‘undone’ by a later
step αj , i < j in π may be ‘visible’ to a step in a plan in another goal-plan tree.
The necessary and contingent execution postconditions of π are therefore given
by

post∗n(π) =

m⋃
i=1

post∗n(αi) post∗c(π) =

m⋃
i=1

post∗c(αi) \ post∗n(π).

In contrast, the necessary and contingent execution in-conditions of π are
the same as the necessary and contingent in-conditions of π: in∗n(π) = inn(π),
in∗c(π) = inc(π). (Since inn(π) and inc(π) define conditions that must hold
between the execution of steps in π, they also apply to the interleaving of plan
steps.)

4.3 Goals

As with plans, the necessary and contingent execution conditions of a goal γ
associated with plans π1, . . . , πn differ from the corresponding necessary and



contingent conditions for γ. (The conditions of goals are defined in terms of the
conditions of their associated plans.)

The necessary pre-, in- and post- execution conditions of a goal γ associated
with plans π1, . . . , πn is defined as

con∗n(γ) =

n⋂
i=1

con∗n(πi),

where con is either pre, in or post . That is, necessary pre-, in-, or post- execution
conditions must hold respectively before, during, or after all ways of achieving
γ.

The contingent pre-, in-, and post- execution conditions of a goal γ associated
with plans π1, . . . , πn is defined as

con∗c(γ) =

n⋃
i=1

con∗c(πi) ∪

 n⋃
j=1

con∗n(πj) \ con∗n(γ)

 ,
where con is either pre, in or post . That is, a pre-, in-, or postcondition is
contingent for γ if it is a contingent condition of a plan πi to achieve γ, or if it
is a necessary condition for a plan πj but not for γ itself (i.e., it is a necessary
condition of some but not all plans for γ.)

4.4 Sets of Execution Paths

We can now define the necessary and contingent execution conditions of a set of
possible execution paths ρ = (π1, α1), . . . , (πk, αk) of a goal-plan tree τ . These
conditions can be used to reason about possible conflicts that may arise in the
execution of each pair of goal-plan trees in a set of goal-plan trees.

The necessary execution precondition of a set of possible execution paths ρ
is given by

pre∗n(ρ) =

k⋃
i=1

pre∗n(αi).

That is, we must protect the necessary preconditions of all steps in ρ. The
contingent execution precondition of ρ is given by

pre∗c (ρ) =

k⋃
i=1

pre∗c (αi) \ pre∗n(ρ).

Contingent preconditions are those that may need to be established during exe-
cution, depending on the choice of plan to achieve a goal.

The necessary execution in-condition of a set of possible execution paths ρ
is given by

in∗n(ρ) =

k⋃
i=1

in∗n(αi) ∪
k⋃

i=1

inn(πi).



That is, we must protect the in-conditions of all steps in ρ, and in addition we
also need to protect the in-conditions of all currently executing plans in ρ. The
contingent execution in-condition of ρ is given by

in∗c(ρ) =

k⋃
i=1

in∗c(αi) ∪
k⋃

i=1

inc(πi) \ in∗n(ρ).

The necessary and contingent execution postconditions of a set of possible
execution paths ρ is given by

post∗n(ρ) =

k⋃
i=1

post∗n(αi) post∗c(ρ) =

k⋃
i=1

post∗c(αi) \ post∗n(ρ).

Finally, the necessary execution conditions of a set of possible execution paths
ρ are given by

cond∗n(ρ) = pre∗n(ρ) ∪ in∗n(ρ) ∪ post∗n(ρ),

and the contingent execution conditions of ρ are given by

cond∗c(ρ) = pre∗c (ρ) ∪ in∗c(ρ) ∪ post∗c(ρ).

Conflicts may occur when we have complementary literals in the execution
conditions of two sets of possible execution paths, ρi and ρj , i.e., when

∃ l ∈ cond∗x(ρi) ∧ ∼ l ∈ cond∗x(ρj),

where cond∗x is either cond∗n or cond∗c . Clearly, there are different cases. For
example, conflicts between the necessary execution conditions of two execution
paths may be a more serious problem than conflicts between contingent execution
conditions.

If no conflicts (as defined above) occur between two sets of possible execu-
tion paths ρi and ρj , then the next step in either (or both) ρi and ρj may be
safely executed. On the other hand, if there are conflicts between the two sets of
possible execution paths, then we could still interleave their execution such that
they do not interfere with one another, e.g., by borrowing techniques from [16].
For example, if the conflict between ρi and ρj is due to complementary literals
in in∗n(ρi) and post∗n(ρj), then we could delay the execution of ρj until ρi pro-
gresses to a point where there is no longer a conflict with ρj . This is because ρj
might otherwise interfere with the in-condition of a plan that is currently being
pursued.13 If the conflict between ρi and ρj is due to complementary literals in

13 Note that if ρi and ρj are considered in order of the priority of the associated top-
level goal (or ties are broken arbitrarily), deadlock (as defined in [16, 15]) cannot
arise, even if there are complementary literals in in∗

n(ρj) and post∗n(ρi). However,
this may result in conditions of the lower priority set of possible execution paths
being violated. In such cases, more sophisticated intention scheduling techniques,
e.g., [22, 21] may be able to find an interleaving that protects the conditions of both
sets of possible execution paths.



pre∗c (ρi) and post∗c(ρj), an optimistic approach would be to first execute ρj until
it progresses to a point where a conflict no longer occurs with ρi, and only then
begin executing ρi. This assumes that either execution of ρj does not actually
bring about the conflicting literal, or that if it is brought about, execution of
ρi is such that the conflicting contingent precondition is not required, or a step
within ρi itself asserts the negation of the conflicting literal.

5 Conclusion and Future Work

This paper has provided definitions of pre-, in-, and postconditions of actions,
plans, and goals, for an extended goal-plan tree that supports the execution of
steps (goals and actions) in parallel, as well as the specification of both determin-
istic and non-deterministic actions. Our definitions essentially capture ‘static’
and ‘dynamic’ notions of conditions, which are derived from the primitive ones
specified within the basic actions that form plans. We believe that ‘static’ prop-
erties defined by our notions will facilitate authoring agent programs, particu-
larly because it is important to know the properties of the individual “building
blocks” (goal-plan trees) that are available when composing a new plan. We have
used our ‘dynamic’ notions of conditions to derive the conditions that must be
protected by any scheduler, when interleaving two or more goal-plan trees.

We foresee two main directions for future work. First, we could allow for a
step in a plan to necessarily invalidate one or more (though not all) ‘descendant’
(sub)plans of a later step, and accordingly extend our notions of the necessary
and contingent postconditions of a plan. This extension would involve identifying
which postconditions in the later step are never asserted due to the conflict (and
are thereby neither necessary nor contingent postconditions), and which ones
are always asserted due to the conflict, by virtue of certain descendant plans
being always inapplicable. Second, we could explore how to generate a schedule
for interleaving two or more goal-plan trees, while respecting the conditions that
we have identified as needing to be protected.

References

1. James F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM,
26(11):832–843, 1983.

2. Jorge A. Baier, Christian Fritz, and Sheila A. McIlraith. Exploiting procedural
domain control knowledge in state-of-the-art planners. In Proceedings of the In-
ternational Conference on Automated Planning and Scheduling (ICAPS), pages
26–33, 2007.

3. Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldridge. Programming
multi-agent systems in AgentSpeak using Jason. Wiley Series in Agent Technology.
Wiley, 2007.

4. Adi Botea, Markus Enzenberger, Martin Müller, and Jonathan Schaeffer. Macro-
FF: Improving AI planning with automatically learned macro-operators. Journal
of Artificial Intelligence Research (JAIR), 24:581–621, 2005.



5. David Chapman. Planning for conjunctive goals. Artificial Intelligence, 32(3):333–
377, 1987.

6. Bradley J. Clement and Edmund H. Durfee. Theory for coordinating concurrent
hierarchical planning agents using summary information. In Proceedings of the
National Conference on Artificial Intelligence (AAAI), pages 495–502, 1999.

7. Bradley J. Clement, Edmund H. Durfee, and Anthony C. Barrett. Abstract rea-
soning for planning and coordination. Journal of Artificial Intelligence Research
(JAIR), 28:453–515, 2007.

8. Lavindra de Silva, Sebastian Sardina, and Lin Padgham. First Principles Plan-
ning in BDI systems. In Proceedings of the International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pages 1105–1112, 2009.

9. Lavindra de Silva, Sebastian Sardina, and Lin Padgham. Summary information
for reasoning about hierarchical plans. In Proceedings of the European Conference
on Artificial Intelligence (ECAI), pages 1300–1308, 2016.

10. Kutluhan Erol, James Hendler, and Dana S. Nau. HTN planning: Complexity and
expressivity. In Proceedings of the National Conference on Artificial Intelligence
(AAAI), pages 1123–1128, 1994.

11. Christian Fritz, Jorge A. Baier, and Sheila A. McIlraith. ConGolog, Sin Trans:
Compiling ConGolog into Basic Action Theories for planning and beyond. In
Proceedings of the International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR), pages 600–610, 2008.

12. Subbarao Kambhampati, Amol Dattatraya Mali, and Biplav Srivastava. Hybrid
planning for partially hierarchical domains. In Proceedings of the National Con-
ference on Artificial Intelligence (AAAI), pages 882–888, 1998.

13. Massimo Paolucci, Onn Shehory, Katia P. Sycara, Dirk Kalp, and Anandeep
Pannu. A planning component for RETSINA agents. In International Workshop
on Intelligent Agents VI, Agent Theories, Architectures, and Languages (ATAL),,
pages 147–161. Springer-Verlag, 2000.

14. Sebastian Sardina, Lavindra de Silva, and Lin Padgham. Hierarchical planning
in BDI agent programming languages: A formal approach. In Proceedings of the
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pages 1001–1008, 2006.

15. John Thangarajah and Lin Padgham. Computationally effective reasoning about
goal interactions. Journal of Automated Reasoning, 47(1):17–56, 2011.

16. John Thangarajah, Lin Padgham, and Michael Winikoff. Detecting and avoiding
interference between goals in intelligent agents. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), pages 721–726, 2003.

17. John Thangarajah, Lin Padgham, and Michael Winikoff. Detecting and exploiting
positive goal interaction in intelligent agents. In Proceedings of the International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages
401–408, 2003.

18. John Thangarajah, Sebastian Sardina, and Lin Padgham. Measuring plan coverage
and overlap for agent reasoning. In Proceedings of the International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS), pages 1049–1056,
2012.

19. Max Waters, Lin Padgham, and Sebastian Sardina. Evaluating coverage based
intention selection. In Proceedings of the International Joint Conference on Au-
tonomous Agents and Multi-agent Systems (AAMAS), pages 957–964, 2014.

20. Michael Winikoff. JACK Intelligent Agents: An Industrial Strength Platform. In
Multi-Agent Programming, pages 175–193. Springer, 2005.



21. Yuan Yao and Brian Logan. Action-level intention selection for BDI agents. In Pro-
ceedings of the 15th International Conference on Autonomous Agents and Multia-
gent Systems (AAMAS 2016), pages 1227–1235, Singapore, May 2016. IFAAMAS,
IFAAMAS.

22. Yuan Yao, Brian Logan, and John Thangarajah. SP-MCTS-based intention
scheduling for BDI agents. In Proceedings of the European Conference on Arti-
ficial Intelligence (ECAI), pages 1133–1134, 2014.

23. Yuan Yao, Brian Logan, and John Thangarajah. Robust execution of BDI agent
programs by exploiting synergies between intentions. In Proceedings of the Thir-
tieth AAAI Conference on Artificial Intelligence (AAAI-16), pages 2558–2564,
Phoenix, USA, February 2016. AAAI, AAAI Press.


