
Funky Grooves: Declarative Programming of

Full-Fledged Musical Applications

Henrik Nilsson1 and Guerric Chupin2

1 School of Computer Science, University of Nottingham, Nottingham, UK,
nhn@cs.nott.ac.uk,

2 ENSTA ParisTech, Palaiseau, France,
guerric.chupin@ensta-paristech.fr

Abstract. There are many systems and languages for music that essen-
tially are declarative, often following the synchronous dataflow paradigm.
As these tools, however, are mainly aimed at artists, their application
focus tends to be narrow and their usefulness as general purpose tools
for developing musical applications limited, at least if one desires to
stay declarative. This paper demonstrates that Functional Reactive Pro-
gramming (FRP) in combination with Reactive Values and Relations
(RVR) is one way of addressing this gap. The former, in the synchronous
dataflow tradition, aligns with the temporal and declarative nature of
music, while the latter allows declarative interfacing with external com-
ponents as needed for full-fledged musical applications. The paper is a
case study around the development of an interactive cellular automaton
for composing groove-based music.

Keywords: functional reactive programming, reactive values and rela-
tions, synchronous dataflow, hybrid systems, music

1 Introduction

Time, simultaneity, and synchronisation are all inherent aspects of music. Fur-
ther, there is much that is declarative about music, such as musical notation
and many underpinning aspects of music theory. This suggests that a time-
aware, declarative paradigm like synchronous dataflow [5] might be a good fit
for musical applications. Indeed, there are numerous successful examples of lan-
guages and systems targeting music that broadly fall into that category, such as
CSound3, Max/MSP4, and Pure Data5 just to mention three.

However, systems like these primarily target artists and are not in themselves
general purpose languages. It may be possible to extend them to support novel
applications, but this usually involves non-declarative programming and working
around limitations such as lack of support for complex data structures [7, p.170]
or difficulties to express dynamically changing behaviour [7, p.156][1].

3 http://www.csounds.com/
4 https://cycling74.com/products/max/
5 https://puredata.info/



With this application paper, we aim to demonstrate that Functional Reactive
Programming (FRP) [8,13] in combination with Reactive Values and Relations
(RVR) [15] is a viable and compelling approach to developing full-fledged musical
applications in a declarative style, and, by extension, other kinds of interactive
applications where time and simultaneity are central. To cite Berry [2]:

From the points of view of modeling and programming, there is actually
not much difference between programming an airplane or an electronic
orchestra.

A more detailed account of this work is available as a technical report [12].
FRP combines the full power of polymorphic functional programming with

synchronous dataflow, thus catering for the aforementioned temporal aspects
while not being restricted by being tied to any specific application domain. Its
suitability for musical applications has been demonstrated a number of times. For
example, it constitutes an integral part of the computer music system Euterpea6,
which supports a broad range of musical applications [10], and it has been used
for implementing modular synthesizers [9].

Generally, though, the core logic is only one aspect of a modern, compelling
software application. In particular, musical applications usually require sophis-
ticated, tailored GUIs and musical I/O, such as audio or MIDI. In practice, such
requirements necessitate interfacing with large, complex, and often platform-
specific imperative frameworks. In contrast to earlier work [9], we do consider
external interfacing here: RVR was developed specifically to meet that need in
a declarative manner.

The paper constitutes a case study of the development of a medium-sized
musical application inspired by the reacTogon [4], an interactive (hardware)
cellular automaton for groove-based music. The FRP system used is Yampa [13].
To challenge our frameworks, we have adapted and extended the basic idea of the
reacTogon considerably to create a useful and flexible application that fits into a
contemporary studio setting. Through an overview of the developed application
and highlights of techniques and code fragments, we hope to convince the reader
that our approach works in practice for real applications and has many merits.
The source code for the application is publicly available on GitLab7.

2 Background

2.1 Time in Music

Change over time is an inherent aspect of music. Further, at least when consid-
ered at some level of abstraction, such as a musical score or from the perspective
of music theory, music exhibits both discrete-time, and continuous-time aspects
[6, p.127]. In music theory, this is referred to as striated and smooth time, a
distinction usually attributed to the composer Pierre Boulez [3]. For example,

6 http://www.euterpea.com/
7 https://gitlab.com/chupin/arpeggigon



the notes in a musical score begin at discrete points in time. On the other hand,
crescendo is the gradual increase of the loudness, ritardando is the gradual de-
crease of the tempo, and portamento is the gradual change of the pitch from one
note to another. Contemporary electronic musical genres provide many other
examples of gradual change as an integral part of the music, such as smooth
filter sweeps or rhythmic changes of the volume.

Of course, there are many more aspects of time in music than discrete vs.
continuous [6, pp.123-130]. However, for musical applications, support for devel-
oping mixed discrete- and continuous-time systems, often referred to as hybrid

systems, is a good baseline.

2.2 Functional Reactive Programming and Yampa

Functional Reactive Programming (FRP) [8] is a declarative approach to imple-
menting reactive applications centred around programming with time-varying
values in the synchronous dataflow tradition [5]. In this paper, we are using the
arrows-based [11] FRP system Yampa [13]. It is realised as an embedding in
Haskell and it supports hybrid systems whose structure may change over time.
Thus, as discussed in Sect. 2.1, it is a good fit for musical applications. Further,
the arrows-based programming model is close to the visual “boxes and arrows”
approach. This also goes well with musical applications, as evidenced by systems
like Max/MSP and similar. We outline some of the basic aspects of Yampa in
the following for the benefit of readers not familiar with it. A more in-depth
account can be found in e.g. the accompanying technical report [12].

Yampa is based on two central concepts: signals and signal functions. A
signal is a function from time to values of some type:

Signal α ≈ Time → α

Time is (notionally) continuous, represented as a non-negative real number. (We
will return to discrete time shortly.) The type parameter α specifies the type of
values carried by the signal. A signal function is a function from Signal to Signal :

SF α β ≈ Signal α→ Signal β

When a value of type SF α β is applied to an input signal of type Signal α,
it produces an output signal of type Signal β. Signal functions are first class

entities in Yampa. Signals, however, are not: they only exist indirectly through
the notion of signal function.

Programming in Yampa consists of defining signal functions compositionally
using Yampa’s library of primitive signal functions and a set of combinators.
Some central arrow combinators are arr that lifts an ordinary function to a
stateless signal function, serial composition≫, parallel composition &&&, and the
fixed point combinator loop. Figure 1 illustrates these combinators pictorially. In
practice, Paterson’s arrow notation [14] is often used to facilitate writing arrow
code. It is a variation of Haskell’s do-notation and essentially allows diagrams
to be described textually by naming the arrows.



(a) arr f (b) f ≫ g (c) f&&&g (d) loop f

Fig. 1. Basic signal function combinators.

The Event type models discrete-time signals:

data Event a = NoEvent | Event a

A signal function whose output signal is of type Event T for some type T is
called an event source. The value carried by an event occurrence may be used
to convey information about the occurrence.

A family of switching primitives enable the system structure to change in
response to events. The simplest such primitive is switch:

switch :: SF a (b,Event c)→ (c → SF a b)→ SF a b

Once the switching event occurs, switch applies its second argument to the value
carried by the event and switches into the resulting signal function. Yampa also
includes parallel switching constructs that maintain dynamic collections of signal
functions connected in parallel [13].

2.3 Reactive Values and Relations

A Reactive Value (RV) [15] is a typed mutable value with access rights and
change notification. RVs provide a light-weight and uniform interface to GUI
widgets and other external components such as files and network devices. Each
entity is represented as a collection of RVs, each of which encloses an individual
property. RVs can be transformed and combined using a range of combinators,
including lifting of pure functions and lenses.

Reactive Relations (RR) specify how RVs are related separately from their
definitions. An RR may be uni- or bi-directional. Once RVs have been related,
changes will be propagated automatically among them to ensure that the stated
relation is respected.

3 The Arpeggigon

Our application is called Arpeggigon, from arpeggio and hexagon. It was inspired
by Mark Burton’s hardware reacTogon: a “chain reactive performance arpeggia-
tor” [4]. However, we have expanded considerably upon the basic idea to create
a software application we believe is both genuinely useful in a contemporary
studio setting and a credible test case for our approach.



Fig. 2. The Arpeggigon

3.1 The reacTogon

Central to the design of the reacTogon is the Harmonic Table8: a way to arrange
musical notes on a hexagonal grid. The various directions correspond to different
musically meaningful intervals. For example, each step along the vertical axis
corresponds to a perfect fifth. The reacTogon uses this layout to implement a
cellular automaton. See Fig. 2 for our adaptation of the idea. Tokens of a few
different kinds are placed on the grid, at most one token per cell. These tokens
govern how play heads move around the grid, as well as the initial position and
direction of the play heads. When a play head hits a token, the kind of token
determines what happens next. First, for most tokens, a note corresponding to
the position of the token is played. Second, either the direction of the play head
is changed, it is split into new play heads, or it is absorbed. Thus, arpeggiated
chords or other sequences of notes are described. These can further be transposed
in response to playing a keyboard, allowing the reacTogon to be performed.

3.2 Features and Architecture

Our Arpeggigon is a software realization of the reacTogon concept. The main
features our Arpeggigon provides over the reacTogon are:

– Multiple layers: one or more cellular automata run in parallel. Layers can be
added, removed, and edited dynamically through a tabbed GUI.

– Extended attributes for tokens, such as note length, accent, and slide.
– Per-cell repeat count for local modification of the topology of the grid.
– MIDI integration.
– Saving and loading of configurations.

8 https://en.wikipedia.org/wiki/Harmonic table note layout



User GUI

Common

Control

MIDI

Keyboard
Layers

MIDI

Translator

MIDI

Synthesizer

Fig. 3. The Arpeggigon architecture

Figure 2 shows a screenshot. Dynamic addition and removal of layers means
that both the core logic of the application and the GUI must support structural
changes while the application is running. Note the different kinds of tokens to the
right of the grid. They can be dragged and dropped onto the grid to configure a
layer, even while the Arpeggigon is running. The play heads are coloured green.

Figure 3 illustrates the architecture of the Arpeggigon. The rectangles rep-
resent the main system components. The thin arrows represent internal commu-
nication, the thick ones MIDI I/O, and the dashed ones user interaction.

GUI is the graphical user interface. It includes a model of the state of global
parameters, such as the overall system tempo, and the current configuration
of each layer. Common Control is responsible for system-wide aspects, such as
generating a global clock (reflecting the system tempo) that keeps the layers syn-
chronised. Layers is the instances of the actual automata, each generating notes.
MIDI Translator translates high-level internal note events and control signals into
low-level MIDI messages, merging and serialising the output from all layers.

GUI communicates the current system configuration to Common Control and
Layers. Note that this data is time-varying as the user can change the configura-
tion any time. Layers needs to communicate the positions of the play heads back
to GUI for animation purposes. This is thus also a time-varying signal.

4 Implementation

4.1 Layers

At its core, each layer of the Arpeggigon is a cellular automaton that advances
one step per layer beat. Its semantics is embodied by a transition function:

advanceHeads :: Board → BeatNo → RelPitch → Strength → [PlayHead ]
→ ([PlayHead ], [Note ])

In essence, given the current configuration of tokens on the hexagonal grid,
henceforth the board, it maps the state of the play heads (position, direction,
and a repeat counter) to an updated play head state and a list of notes to be
played at this beat. The number of play heads may change as a play head may



be split or absorbed. The remaining parameters give the current transposition of
the layer, the strength with which notes should be played, and the beat number
within a bar allowing specific notes in a bar to be accented (played stronger).

Using the scanl -like Yampa function accumBy , advanceHeads is readily lifted
into an event-processing signal function:

automaton :: [PlayHead ]→ SF (Board ,DynamicLayerCtrl ,Event BeatNo)
(Event [Note ], [PlayHead ])

The static parameter is the initial state of the play heads. The first of the three
input signals carries the current configuration of the board, originating from GUI

(Fig. 3). The second carries a record of dynamic control parameters for the layer,
including transposition, play strength, and the length of a layer beat, originating
from GUI and MIDI Keyboard. These two are continuous-time signals, reflecting
the fact that the configuration of the board can change and a key be struck on
the MIDI keyboard at any time, not just at a beat. The third is the discrete-time
layer beat clock, from Common Control, carrying the beat number within a bar.
The output signals are the notes to be played, to be sent to MIDI Translator, and
the state of the play heads for animation purposes, to be sent back to GUI. Note
the close correspondence to the architecture in Fig. 3.

4.2 Synchronisation

As an example of turning Yampa’s continuous-time capabilities to musical ap-
plications, consider automating gradual tempo changes. Imagine two sliders to
set a fast and a slow tempo, a button to select between them, and a further
slider to set the rate at which the tempo should change. The following signal
function derives a smoothly changing tempo from these controls, regulated to
within 0.1 bpm of the desired tempo. Note the feedback (enabled by rec):

smoothTempo :: Tempo → SF (Bool ,Tempo,Tempo,Rate) Tempo

smoothTempo tempo0 = proc (select1 , tempo1 , tempo2 , rate)→ do

rec

let desiredTempo = if select1 then tempo1 else tempo2

diff = desiredTempo − currentTempo

rate ′ = if diff > 0.1 then rate

else if diff <−0.1 then − rate

else 0
currentTempo ← arr (+tempo0 ) ≪ integral −≺ rate ′

returnA−≺ currentTempo

4.3 GUI and Interaction

The GUI of the Arpeggigon is written using the cross-platform widget toolkit
GTK+. The Arpeggigon does not generate any audio by itself; it needs to be
connected to an external, MIDI-capable hardware or software synthesizer. MIDI
I/O is handled by the JACK Audio Connection Kit.



All code for interfacing with the external world is structured using reactive
values and relations (RVR). Much of this code is of course monadic (in the IO
monad). However, as it is mostly concerned with creating and interconnecting
interface entities, the code has a fairly declarative reading as a sequence of entity
definitions and specifications of how they are related.

As a case in point, consider the following code for the system tempo slider:

globalSettings :: IO (VBox ,ReactiveFieldReadWrite IO Int)
globalSettings = do

globalSettingsBox ← vBoxNew False 10
tempoAdj ← adjustmentNew 120 40 200 1 1 1
tempoLabel ← labelNew (Just "Tempo")
boxPackStart globalSettingsBox tempoLabel PackNatural 0
tempoScale ← hScaleNew tempoAdj

boxPackStart globalSettingsBox tempoScale PackNatural 0
scaleSetDigits tempoScale 0
let tempoRV =
bijection (floor , fromIntegral) ‘liftRW ‘ scaleValueReactive tempoScale

return (globalSettingsBox , tempoRV )

In essence, this code defines a box, a label, and a slider, and visually relates
them by placing the last two inside the box. This is all standard GTK+. A
read/write, integer-valued reactive value (RV) is finally defined and related to
the real-valued value of the slider: scaleValueReactive associates a slider with
an RV, while liftRW derives a new RV from an existing one by specifying two
conversion functions, one for reading and one for writing.

Finally, the RVR part and the Yampa part of the Arpeggigon are connected
by the following function:

yampaReactiveDual ::
a → SF a b → IO (ReactiveFieldWrite IO a,ReactiveFieldRead IO b)

This creates two reactive values: one for the input and one for the output of the
signal function. After writing a value to the input, the corresponding output at
that point in time can be read.

5 Conclusions

This paper demonstrated how Functional Reactive Programming in combination
with Reactive Values and Relations can be used to develop a realistic, non-trivial
musical application. On the whole, we found that these two frameworks together
were very well suited for this task. The performance was good, including critical
aspects like jitter, without much effort so far having been spent on optimisation.
Heap usage and overall memory footprint was modest. See the accompanying
technical report for details [12]. Further, as most of the techniques we demon-
strated are not limited to a musical context, we suggest that this is a good
approach for programming time-aware, interactive applications in general.



Acknowledgments. The authors would like to thank Ivan Perez and Henning
Thielemann for support and advice with the reactive libraries and the Haskell
JACK bindings respectively, Michel Mauny for co-supervising the second au-
thor’s summer internship with the Functional Programming Laboratory in Not-
tingham, and François Pessaux and anonymous reviewers for helpful feedback.

References

1. Guillaume Baudart, Louis Mandel, and Marc Pouzet. Programming mixed music
in ReactiveML. In 1st Workshop on Functional Art, Music, Modeling and Design
(FARM), pages 11–22, Boston, USA, September 2013. ACM.

2. Gerard Berry. Formally unifying modeling and design for embedded systems —
A personal view. In 7th International Symposium on Leveraging Applications of
Formal Methods, Verification and Validation (ISoLA), Part II, number 9953 in
Lecture Notes in Computer Science, pages 134–149. Springer, 2016.

3. Pierre Boulez. Penser la musique aujourd’hui. Gallimard, 1964.
4. Mark Burton. The reacTogon: a chain reactive performance arpeggiator.

https://www.youtube.com/watch?v=AklKy2NDpqs, 2007.
5. Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John A. Plaice. LUSTRE: A

declarative language for programming synchronous systems. In 14th Symposium
on Principles of Programming Languages (POPL), New York, NY, 1987. ACM.

6. Arshia Cont. Antescofo: Anticipatory synchronization and control of interac-
tive parameters in computer music. In International Computer Music Conference
(ICMC), pages 33–40, Belfast, Ireland, August 2008.

7. Arshia Cont. Modeling Musical Anticipation: From the Time of Music to Music of
Time. PhD thesis, University of California San Diego (UCSD) and University of
Pierre et Marie Curie (Paris VI), 2008.

8. Conal Elliott and Paul Hudak. Functional reactive animation. In 2nd International
Conference on Functional Programming (ICFP), pages 163–173, June 1997.

9. George Giorgidze and Henrik Nilsson. Switched-on Yampa: Declarative program-
ming of modular synthesizers. In Practical Aspects of Declarative Languages
(PADL) 2008, volume 4902 of Lecture Notes in Computer Science, pages 282–298,
San Francisco, CA, USA, January 2008. Springer-Verlag.

10. Paul Hudak, Donya Quick, Mark Santolucito, and Daniel Winograd-Cort. Real-
time interactive music in Haskell. In 3rd International Workshop on Functional
Art, Music, Modelling and Design (FARM), pages 15–16, Vancouver, BC, Canada,
September 2015. ACM.

11. John Hughes. Generalising monads to arrows. Science of Computer Programming,
37:67–111, May 2000.

12. Henrik Nilsson and Guerric Chupin. The Arpeggigon: Declarative pro-
gramming of a full-fledged musical application. Technical Report,
http://eprints.nottingham.ac.uk/38657, November 2016.

13. Henrik Nilsson, Antony Courtney, and John Peterson. Functional reactive pro-
gramming, continued. In Haskell Workshop, pages 51–64, Pittsburgh, PA, USA,
October 2002. ACM.

14. Ross Paterson. A new notation for arrows. In International Conference on Func-
tional Programming (ICFP), pages 229–240, Firenze, Italy, September 2001.

15. Ivan Perez and Henrik Nilsson. Bridging the GUI gap with reactive values and
relations. In 8th ACM SIGPLAN Symposium on Haskell, pages 47–58, Vancouver,
Canada, 2015. ACM.


