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SUPPLEMENTARY FIGURE 1

Figure 1: Geometrical picture of the limit cycle. The phase plane has been scaled so that
the boundaries have unit length. The cycle meets the boundaries at a point κ0 and leaves
at a point κb.

SUPPLEMENTARY FIGURE 2

Figure 2: Diagram of one third of the phase-space, used in calculating the amplitude A.
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SUPPLEMENTARY FIGURE 3
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Figure 3: Numerical solutions for (a) ωTi and (b) ωTb, plotted against θ. Note how
Tb →∞ as θ → θc.

SUPPLEMENTARY FIGURE 4
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Figure 4: The three values of κb, κe and κ0 plotted against θ. Note how κe = κ0 when
θ = θc.
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SUPPLEMENTARY VIDEO 1
Simulation results of the time evolution of a system with N = 3, r = 1, ρ = 1 and
µ = 1.8. The system is initiated with 1000 particles at each node. (Top Left) The height
of the bars corresponds to the number of particles at each node. (Top Right) Trajectory
of the system in the phase-space. (Bottom) Heat plot of the time evolution.

SUPPLEMENTARY VIDEO 2
Simulation results of the time evolution of a system with N = 10, r = 1, ρ = 1 and
µ = 0. The system is initiated with 100 particles at each node. The height of the bars
corresponds to the number of particles at each node.

SUPPLEMENTARY VIDEO 3
Simulation results of the time evolution of a system with N = 10, r = 1, ρ = 1 and
µ = 0.18. The system is initiated with 100 particles at each node. The height of the bars
corresponds to the number of particles at each node.

SUPPLEMENTARY VIDEO 4
Simulation results of the time evolution of a system with N = 10, r = 1, ρ = 1 and
µ = 0.2. The system is initiated with 100 particles at each node. The height of the bars
corresponds to the number of particles at each node.

SUPPLEMENTARY VIDEO 5
Simulation results of the time evolution of a system with N = 10, r = 1, ρ = 1 and
µ = 0.5. The system is initiated with 100 particles at each node. The height of the bars
corresponds to the number of particles at each node.

SUPPLEMENTARY VIDEO 6
Simulation results of the time evolution of a system with N = 10, r = 1, ρ = 1 and
µ = 1. The system is initiated with 100 particles at each node. The height of the bars
corresponds to the number of particles at each node.

SUPPLEMENTARY VIDEO 7
Simulation results of the time evolution of a system with N = 10, r = 1, ρ = 1 and
µ = 2. The system is initiated with 100 particles at each node. The height of the bars
corresponds to the number of particles at each node.

SUPPLEMENTARY VIDEO 8
Simulation results of the time evolution of a system with N = 10, r = 1, ρ = 1 and
µ = 2.1. The system is initiated with 100 particles at each node. The height of the bars
corresponds to the number of particles at each node.

SUPPLEMENTARY VIDEO 9
Simulation results of the time evolution of a system with N = 10, r = 1, ρ = 1 and
µ = 2.2. The system is initiated with 100 particles at each node. The height of the bars
corresponds to the number of particles at each node.
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Supplementary Note 1 : Master Equation

The purpose of this section is to explicitly define the master equation for the dynamics
considered in the article. Define Pabc(t) to be the probability of being in the state n(t) =
(a, b, c) at time t and the rate at which the system moves from (a, b, c) to (i, j, k) as Γabc

ijk .

The diagonal term −Γabc
abc gives the rate at which the system leaves the configuration

(a, b, c). The master equation governing the evolution of the probabilities is

d

dt
Pijk(t) =

∑
abc

Γabc
ijkPabc(t), (1)

where the summation is over all possible configurations. Let Γabc
ijk ≡ Mabc

ijk + Babc
ijk +

Dabc
ijk , where the M, B and D are contributions from the migrations, births and deaths

respectively. These terms can be defined explicitly; the contribution from the migrations
being

Mabc
(a−1)(b+1)c =

1

2
(1 + ρ)ra, Mabc

(a−1)b(c+1) =
1

2
(1− ρ)ra,

Mabc
a(b−1)(c+1) =

1

2
(1 + ρ)rb, Mabc

(a+1)(b−1)c =
1

2
(1− ρ)rb,

Mabc
(a+1)b(c−1) =

1

2
(1 + ρ)rc, Mabc

a(b+1)(c−1) =
1

2
(1− ρ)rc,

Mabc
abc = −r(a+ b+ c). (2)

The contribution from the births is

Babc
(a+1)bc = µa, Babc

a(b+1)c = µb, Babc
ab(c+1) = µc, Babc

abc = −µ(a+ b+ c). (3)

The contribution from the deaths is

Dabc
(a−1)bc = Dabc

a(b−1)c = Dabc
ab(c−1) =

1

3
µ(a+ b+ c), when a, b, c > 0,

Da0c
(a−1)0c = Da0c

a0(c−1) =
1

2
µ(a+ c), when a, c > 0,

Dab0
(a−1)b0 = Dab0

a(b−1)0 =
1

2
µ(a+ b), when a, b > 0,

D0bc
0(b−1)c = D0bc

0b(c−1) =
1

2
µ(b+ c), when b, c > 0,

Da00
(a−1)00 = µa, when a > 0,

D0b0
0(b−1)0 = µb, when b > 0,

D00c
00(c−1) = µc, when c > 0,

Dabc
abc = −µ(a+ b+ c). (4)
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Supplementary Note 2 : MATLAB code

The following MATLAB code is used to generate simulations using the Gillespie Algo-
rithm.

function[ output ] = BDM Loop( N, r, mu, rho, Pops1, T)

%% Description

% BDM Loop 1(N,r,mu,rho,Pops1,T) returns a data structure containing
% simulations of a birth-death-migration process on a loop network.
%
% N := Network size
% r := Migration rate
% mu := Birth rate
% rho := Preference of migratations
% Pops1 := Initial populations
% T := Number of events to be simulated
%
% Defult parameters:
% N = 3
% r = 1
% mu = 0
% rho = 1
% Pops1 = (100,100,...,100)
% T = 10ˆ5

%% Defult parameters

if nargin == 0
N = 3 ;
r = 1 ;
mu = 0 ;
rho = 1 ;
Pops1 = ones(1,N)*100;
T = 10ˆ5 ;

elseif nargin == 1
r = 1 ;
mu = 0 ;
rho = 1 ;
Pops1 = ones(1,N)*100;
T = 10ˆ5 ;

elseif nargin == 2
mu = 0 ;
rho = 1 ;
Pops1 = ones(1,N)*100;
T = 10ˆ5 ;

elseif nargin == 3
rho = 1 ;
Pops1 = ones(1,N)*100;
T = 10ˆ5 ;
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elseif nargin == 4
Pops1 = ones(1,N)*100;
T = 10ˆ5 ;

elseif nargin == 5
T = 10ˆ5 ;

end

%% Creating variables for data storage

Pops = zeros(T+1,N) ; % Populations matrix
Pops(1,:) = Pops1 ;

n = zeros(T+1,1) ; % Total populations vector
n(1) = sum(Pops(1,:));

times = zeros(T+1,1) ; % Event times vector

%% Creating the migration transition matrix

pf = (1+rho)/2 ; % Probability of forward migration
pb = (1-rho)/2 ; % Probability of backward migration
MP = zeros(N) ; % Transition matrix
for i=1:N

MP(i,:) = circshift([0,pf,zeros(1,N-3),pb],[0,i-1]) ;
end

%% Types of events and their associated probabilities

% Event types
types = {'birth' , 'death' , 'migration'};
% Probabilities
w = zeros(1,3);
w(1) = mu / (2*mu+r) ;
w(2) = mu / (2*mu+r) ;
w(3) = r / (2*mu+r) ;
% These are used a weights when choosing which type of event takes place

%% Simulating the populations and times

for i = 1:T
Pops(i+1,:) = Pops(i,:); % Initialise the population
type = types(randsample(1:3,1,true,w)); % choosing event type

if strcmp(type,'birth')
node = randsample(1:N,1,true,Pops(i,:)); % choosing node
Pops(i+1,node) = Pops(i,node) + 1; % adding particle

elseif strcmp(type,'death')
weight = Pops(i,:) > 0 ; % all nodes with one or more particles
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node = randsample(1:N,1,true,weight); % choosing node
Pops(i+1,node) = Pops(i,node) - 1; % removing particle

elseif strcmp(type,'migration')
node1 = randsample(1:N,1,true,Pops(i,:)); % choosing exit-node
Pops(i+1,node1) = Pops(i,node1) - 1; % removing particle
node2 = randsample(1:N,1,true,MP(node1,:)); % choosing in-node
Pops(i+1,node2) = Pops(i,node2) + 1; % adding particle

end

n(i+1) = sum(Pops(i+1,:)); % Total population
% The time between events is exponentially distributed with a rate
% equal to (2*mu+r)*n(i)
times(i+1) = times(i) + exprnd(1,1,1)/((2*mu+r)*n(i)) ; % event times

end

%% Creating a data structure containing the results

output = struct('NetworkSize',N,'MigrationRate',r,'BirthRate',mu,...
'Preference',rho,'Populations',Pops,'Times',times);
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Supplementary Method 1 : Expected populations

This section uses the master equation to derive the equations for the mean configurations
〈n(t)〉. The mean population size at each node are defined as

〈n1(t)〉 =
∑
ijk

iPijk(t), 〈n2(t)〉 =
∑
ijk

jPijk(t), 〈n3(t)〉 =
∑
ijk

kPijk(t), (5)

where the averaging is over all possible configurations at time t. The master equation (1)
can be used to obtain the equations that govern the evolution of the ensemble averages,

d

dt
〈n1〉 =

∑
ijk

i
d

dt
Pijk =

∑
abc

Pabc

∑
ijk

iΓabc
ijk (6)

and the other equations follow in a similar fashion.

Contribution from the migration process

Consider first the contribution from the migrations,

aMabc
abc = −r(a2 + ab+ ac),

(a− 1)Mabc
(a−1)(b+1)c =

1

2
(1 + ρ)r(a2 − a),

(a− 1)Mabc
(a−1)b(c+1) =

1

2
(1− ρ)r(a2 − a),

aMabc
a(b−1)(c+1) =

1

2
(1 + ρ)r(ab),

(a+ 1)Mabc
(a+1)(b−1)c =

1

2
(1− ρ)r(ab+ b),

(a+ 1)Mabc
(a+1)b(c−1) =

1

2
(1 + ρ)r(ac+ c),

aMabc
a(b+1)(c−1) =

1

2
(1− ρ)r(ac),

1

r

∑
ijk

iMabc
ijk = −a+

1

2
(1− ρ)b+

1

2
(1 + ρ)c. (7)

Thus in the absence of the births and deaths, (6) combined with (5) gives,

1

r

d

dt
〈n1〉 = −〈n1〉+

1

2
(1− ρ)〈n2〉+

1

2
(1 + ρ)〈n3〉. (8)

Similar equations are obtained for the other two populations and all three can be combined
into the one matrix equation,
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d

dt
〈n(t)〉 = 〈n(t)〉M(r, ρ). (9)

where M is defined in the main text.

Contribution from the birth process

Following a similar method to before obtains the effect of the births on the mean popu-
lations,

aBabc
abc = −µ(a2 + ab+ ac),

(a+ 1)Babc
(a+1)bc = µ(a2 + a),

aBabc
a(b+1)c = µab,

aBabc
ab(c+1) = µac,∑

ijk

iBabc
ijk = µa. (10)

Hence the contribution from the births is simply

d

dt
〈n1〉 = µ〈n1〉. (11)

From this equation it is clear that the birth process would result in an exponential increase
in the number of particles at each node. Similar equations for 〈n2〉 and 〈n3〉 can be
combined into the matrix equation

d

dt
〈n(t)〉 = 〈n(t)〉µI3. (12)

where I3 is the 3× 3 identity matrix.

Contribution from the death process

The death process only involves populated nodes. By proceeding in the same manner
as before, the following expression for 〈n1(t)〉 describes the contribution from the death
process,

− 1

µ

d

dt
〈n1〉 =

1

3

∑
abc>0

nPabc +
1

2

(∑
ab>0

nPab0 +
∑
ac>0

nPa0c

)
+
∑
a>0

nPa00, (13)
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where n = a + b + c. This equation involves the probabilities Pijk in a way that cannot
be rewritten in terms of the 〈ni〉. By making the assumption that all of the nodes are
populated the the effect of the death process is

d

dt
〈n(t)〉 = −〈n(t)〉1

3
µU3. (14)

where the matrix U3 has all elements equal to one. Combining this with the equations
for the migrations and the births results in a the equations used in the interior of the
phase space described in the text. When the population at the second node n2 is equal
to zero and the other two populations are non-zero. (13) instead gives

d

dt
〈n(t)〉 = −〈n(t)〉1

2
µU2. (15)

with U2 being the U3 matrix with the second column replaced by zeros. Combining
this with the equations for the migrations and the births gives the second equation that
is described in the main text, used for explaining the evolution of the system near the
boundaries of the phase-space.

The equation describing the motion at the boundary where 〈n2〉 = 0 is a weighted sum
of (14) and (15) obtained by assuming n2 > 0 and the equation obtained from n2 = 0.
This is because the randomness of the system causes it to fluctuate between n2 > 0 and
n2 = 0. The appropriate weighting is w = Pr {n2 > 0} so that at the boundary the
contribution from the death process is given by

d

dt
〈n(t)〉 = −〈n(t)〉µ

[
1

3
wU3 +

1

2
(1− w)U2

]
. (16)

In particular for the mean population in node 1,

d

dt
〈n1〉 =

1

2
µn̄

(
1

3
w − 1

)
. (17)

An alternative derivation for w is provided to that given in the text, which uses the fact
that the state characterising n2(t) undergoes a random walk near the boundary. Increases
in n2(t) due to migrations and births occur at a rate u ≡ µn2 + r 1

2
(1+ρ)n1 + r 1

2
(1−ρ)n3,

which can be approximated by noting that n1, n3 >> n2 and ni ≈ 〈ni〉 in which case
u ≈ rρ〈n1〉 + r 1

2
(1 − ρ)n̄. Similarly decreases in n2(t) due to migrations and deaths

occur at a rate d ≡ 1
3
µn + rn2, which may be approximated by d ≈ 1

3
µn̄. Therefore

the population size n2 at the second node approximately follows an asymmetric random
walk, bounded below at zero. The stationary distribution of this process determines the
individual probabilities Pr {n2 = j}. When u > d the increases in n2 dominate decreases,
the system moves away from the boundary, the value of w is approximately one and
the equations for the interior for the phase-space are sufficient to describe the evolution

11



of the system. However, when u < d decreases in n2 dominate increases and there is a
stationary distribution of the process. This distribution is geometric with parameter u/d,
the individual probabilities given by

Pr {n2 = j} =
(

1− u

d

)(u
d

)j
. (18)

Hence we have found an estimation to the probability equivalent to that found in the
main text,

w = Pr {n2 > 0} = 1− Pr {n2 = 0} =
u

d
. (19)

Substituting this into (17) gives the effect of the death process on the mean evolution at
the boundary corresponding to 〈n2〉 = 0,

2
d

dt

〈n1〉
n̄

= −µ+ r

[
ρ
〈n1〉
n̄

+
1

2
(1− ρ)

]
. (20)

The effect from the migrations and the births are respectively,

2
d

dt

〈n1〉
n̄

= −r(3 + ρ)
〈n1〉
n̄
− r(1 + ρ),

d

dt

〈n1〉
n̄

= µ
〈n1〉
n̄
. (21)

Combining these equations together gives

2
d

dt

〈n1〉
n̄

= (2µ− 3r)

[
〈n1〉
n̄
− 1

2

]
+

1

2
rρ. (22)
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Supplementary Method 2 : Calculation of the frequency, ampli-
tude and the critical value θc

This section uses the two equations governing the evolution of the mean dynamics in the
interior and on the boundaries of the phase space to calculate the frequency and amplitude
of the system in its wave-state. These also allow evaluation of the critical value θc for the
cut-off of the wave state. To determine the frequency of the cycle requires calculating
the time Ti spent by the system moving between neighbouring boundaries and the time
Tb spent by the system moving along a boundary, achieved by analysing the geometry of
the limit cycle in the phase-space. It is useful to scale the lengths so that each edge of
the triangular phase-space has unit length, i.e. dividing by a factor of n̄. The geometrical
picture of the limit cycle in the phase-space is given in Supplementary Fig. 1.

The parameters θ, κb and κe are defined in the main text and we define δ and ω to be
the real and imaginary part of the eigenvalue σ1 respectively;

δ ≡ µ− 3

2
r, ω ≡

√
3

2
rρ, θ̂ ≡ θ√

3
=
δ

ω
,

κb ≡
1

2

(
1 +

θ

3

)
and κe ≡

1

2

(
1− 1

θ

)
. (23)

Calculating the frequency

Evaluation of Tb, the time spent on the boundary, requires the solution of (22), which
can be rewritten as

1

δ

d

dt

〈n1〉
n̄

=
〈n1〉
n̄
− κe, (24)

with the initial condition 〈n1(0)〉 = κ0n̄ corresponding to the point at which the trajectory
reaches the boundary. The trajectory leaves the boundary when 〈n1(Tb)〉 = κbn̄. The
solution to (24) satisfying this is

exp (−δTb) =
κ0 − κe
κb − κe

, (25)

which requires κ0. Consider the part of the limit cycle in the interior of the phase space,
shown in Supplementary Fig. 1, where R is defined as the distance of the trajectory from
the centre of the phase-space,

R(t) =

∣∣∣∣〈n(t)〉
n̄
− 1

3
(1, 1, 1)

∣∣∣∣ . (26)
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Trajectories in the interior of the phase-space follow exponential spirals so R(t) increases
exponentially fast, at a rate δ. Setting t = 0 to be the instant at which the trajectory
leaves the boundary gives

R(Ti) = R(0) exp (δTi) = R(0) exp
(
θ̂ ωTi

)
(27)

Using Pythagoras’ theorem together with κb − 1
2

= 1
6
θ gives

R(0)2 =

(
κb −

1

2

)2

+
1

12
=

1

12

(
θ2

3
+ 1

)
, (28)

R(Ti)
2 =

(
1

2
− κ0

)2

+
1

12
, (29)

which from (27) gives

κ0 =
1

2
−
√

3

6

√(
θ̂2 + 1

)
exp

(
2θ̂ ωTi

)
− 1. (30)

To evaluate Ti note that ω gives the angular frequency and thus ωTi is the angle swept
by trajectory while it moves between the boundaries. Defining the two angles α and β
shown in the Supplementary Fig. 1 gives

R(0)

R(Ti)
=

cos β

cosα
= cos

(
ωTi −

2π

3

)
− tanα sin

(
ωTi −

2π

3

)
, (31)

where we have used α + ωTi + β = 2π/3. Recognising that tanα = θ̂ gives

exp
(
−θ̂ ωTi

)
= cos

(
2π

3
− ωTi

)
+ θ̂ sin

(
2π

3
− ωTi

)
. (32)

This equation shows that ωTi is a function of θ̂, or equivalently θ, with numerical solutions
shown in Supplementary Fig. 3(a). From (30), κ0 = κ0(θ, ωTi) = κ0(θ). Therefore κb, κe
and κ0 are all functions of the single parameter θ, see Supplementary Fig. 4.

Finally ωTb is found from (25) to also depend only on θ, the plot of which is given
by Supplementary Fig. 3(b). The total time for the trajectory to make one traversal
around the limit cycle is given by 3Ti + 3Tb and so the frequency of the oscillations in the
wave-state is given by

f ≡ 1

3Ti + 3Tb
= rρ

[√
3

6

1

ωTi + ωTb

]
, (33)

giving f(r, ρ, θ) = rρf̂(θ). So the bias ρ for direction of the particle migrations has the
effect of scaling time.
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Calculating the amplitude

The amplitude A of the limit cycle is defined as the maximum value of the 〈ni〉/n̄ over
a whole period of the cycle. Supplementary Fig. 2 shows one third of the phase-space,
containing the corner where 〈n1〉 = n̄. The value of the amplitude is found at a point
P2 where the trajectory is tangential to the lines of constant 〈n1〉. These lines make an
angle π/3 with the two boundaries. As the trajectory is tangent to the boundary when
it leaves, the point where 〈n1〉 = n̄ will be at an angle π/3 from the point P1 where the
trajectory leaves the boundary, as shown in Supplementary Fig. 2. Therefore the two
triangles OP1Q1 and OP2Q2 are similar. Hence

√
3
3
−
√
3
2

(1− A)
√
3
6

=
R (π/3ω)

R(0)
= exp

(
π

3

δ

ω

)
, (34)

and consequently

A =
1

3

[
1 + exp

(π
3
θ̂
)]
. (35)

There is a value of θ̂ for which the point P2 meets the boundary where 〈n1〉 = κ0n̄. This
occurs when 1−A = κ0, or equivalently when ωTi = π/3 which, inserting into (32) gives

exp
(
−π

3
θ̂
)

=
1

2
+

√
3

2
θ̂. (36)

The numerical solution to this equation is θ̂ ≈ 0.2821, or equivalently θ ≈ 0.4885. For θ
larger than this value, the point P2 would be found outside of the boundaries of the phase
space. It then follows that the amplitude A is found at the point where the trajectory
meets the boundary, i.e. A(θ) = 1− κ0(θ).

Calculating θc

The critical value of θ = θc at which the limit cycle can no longer exist corresponds to
when κ0 = κep, i.e. the trajectory reaches the boundary at the equilibrium point. Using
(29) gives

R(Ti)
2 =

(
1

2
− κep

)2

+
1

12
=

(
1

2θ

)2

+
1

12
=

(
1

2θ

)2(
1 +

θ2

3

)
. (37)

Combining this with (28),

exp
(
−θ̂ ωTi

)
=

R(0)

R(Ti)
=

θ√
3

= θ̂. (38)
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Hence θ̂ can be equated with the right-hand-side of (32) to give

θ̂

(
1− sin

(
2π

3
− ωTi

))
= cos

(
2π

3
− ωTi

)
, (39)

which is true when ωTi = π/6. (38) then gives

log θ̂

θ̂
= −π

6
, (40)

the solution to which is approximately 0.6950. Multiplying this by
√

3 gives the corre-
sponding value of θ = θc ≈ 1.2037.
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