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The emergence of waves in random 
discrete systems
John Pickton, Keith Iain Hopcraft & Eric Jakeman

Essential criteria for the emergence of wave-like manifestations occurring in an entirely discrete system 
are identified using a simple model for the movement of particles through a network. The dynamics are 
entirely stochastic and memoryless involving a birth-death-migration process. The requirements are 
that the network should have at least three nodes, that migration should have a directional bias, and 
that the particle dynamics have a non-local dependence. Well defined bifurcations mark transitions 
between amorphous, wave-like and collapsed states with an intermittent regime between the latter 
two.

Manifestations of wave behaviours are so ubiquitous and familiar that the underlying conditions enabling the 
disturbances to become established and persist may be taken for granted. These considerations are particularly 
relevant for systems of fundamentally discrete nature1–7 where the consequences that obtain from a continuum 
description cannot be assumed. This prompts enquiring what essential ingredients are required to describe wave 
disturbances. Before these can be identified, there must first be some ‘medium’ through which an ‘attribute’, be it 
energy, information, force… is conveyed in a defined direction. Moreover, that attribute must couple dynamically 
to the medium to account for the action and reaction of one upon the other. The concept of the ‘field’ is especially 
effective in achieving this aspect. Fields can combine both the medium and attribute within the same theoretical 
construct, and facilitate action or influence to occur at a distance. Indeed, once a field-theory is formulated, wave 
behaviours follow with almost inevitable consequence. The second issue is how, once initiated, the system can 
maintain a persistent state of coherent disturbance in the absence of coherent stimulation or any other forcing by 
an external agency. This then leads to seeking wave-like behaviours as an emergent quality, arising from intrinsic 
fluctuations that are affected by the structural configuration of the system and the dynamics that occur upon 
it. The purpose of this article is to identify necessary criteria for achieving this in isolated systems where both 
medium and attribute have a discrete nature and where the dynamics at the most fundamental level is entirely 
incoherent, stochastic and memoryless.

One fundamental representation of a discrete medium is a network8–12, being an arrangement of sites or nodes 
that are connected by edges, via which attributes may move from one node to another. The topology of the nodes 
and edges defines the spatial structure. The nodes are populated by particles that are a discrete representation of 
the attributes. For a discrete system it is a collection or ensemble of objects rather than the entities themselves 
(be they tangible particles or more abstract notions like an ensemble of states) that exhibit the characteristics of 
a wave-like perturbation from equilibrium13–20. The qualities exhibited by the disturbance from that equilibrium 
is described by the dynamics that govern the number of particles at a node, how they move from one node to 
another, and how these interact with the local and global constraints to which the particles are subjected.

The system investigated here is not intended to model a specific problem but rather to possess generic features 
that can be abstracted to particular instances. The dynamics of the system is depicted in Fig. 1 and is described by 
a Markov stochastic process21–23 comprising three elements, each of which can be identified with a key ingredient 
for emergent wave phenomena. The first element of the dynamics describes the movement of non-interacting 
particles, spontaneously migrating between the nodes of the network at a constant rate. The response and sub-
sequent evolution of this system to an initial perturbation from equilibrium (be it static or dynamic) is deter-
mined by the spectrum of its eigenvalues, one or more of which must have an imaginary part for wave behaviour 
to ensue. This requires that the chosen network comprise three or more nodes and have directed edges24. The 
simplest network possessing a complex eigenvalue on which this dynamic occurs is a closed loop formed from 
three nodes. This ‘atom’ therefore provides an essential ingredient upon which to build. And build we must, for 
the eigenvalues for such dynamics possess a negative real part causing any disturbances to decay. The incoherent 

University of Nottingham, School of Mathematical Sciences, Nottingham, NG7 2RD, UK. Correspondence and 
requests for materials should be addressed to J.P. (email: pmxjp5@nottingham.ac.uk)

Received: 13 June 2016

Accepted: 24 October 2016

Published: xx xx xxxx

OPEN

mailto:pmxjp5@nottingham.ac.uk


www.nature.com/scientificreports/

2Scientific REPOrTs | 6: 21  | DOI: 10.1038/s41598-016-0022-3

and non-interacting nature of this migration process is dissipative and would lead to a dynamic equilibrium 
with all nodes uniformly populated on average. The second element of the dynamics is a local birth-process25 
whereby a single particle is added to a node at a rate proportional to the population at that node, characteristic 
of each particle independently giving birth at a constant rate. The birth-process provides a crucial imbalance in 
the populations at individual nodes by increasing the real part of the system’s eigenvalues. This thereby modu-
lates the migration of particles and can cause disturbances from equilibrium to grow. However a consequence of 
the birth-process is that the total population in the entire system will increase exponentially. The third and final 
element of the dynamics is a global death-process25 that is introduced to balance the birth-process by removing 
particles from the entire system at an equal rate. However unlike the birth-process, which is defined locally at 
each node, the deaths occur with equal probability from each populated node and are therefore defined globally 
over the entire network. This mechanism also instils coherence upon the system because each node is affected by 
the entire ensemble - the death process contains that property that is imbued by a field, albeit through being man-
ifested stochastically. When combined, these simple elements can produce a propagating and persistent coherent 
disturbance despite the underlying dynamics being entirely incoherent. This model proves to be surprisingly rich 
by virtue of containing two distinct bifurcations as a single control parameter changes, and these mark the transi-
tion between three distinct collective states: amorphous, wave-like and collapsed with an intermittent transitory 
phase between the latter two.

Results
The model and its behaviours.  We consider non-interacting particles that are constrained to a network of 
three nodes forming a closed loop. At any instant the ith node is populated by ni particles, one of which ‘migrates’ 
via a shared edge to an adjacent node at rate rni with probability (1 + ρ)/2 in one direction and (1 − ρ)/2 in 
the other, where −1 ≤ ρ ≤ 1 provides a bias to the direction of migration; when ρ = 0 there is no directional 
preference. The dynamics at each node is augmented by a birth-death-process that increases and decreases the 
population at that node by unity with rates μni and μZ−1(n1 + n2 + n3) respectively, where Z is the number of 
nodes that are populated at that instant - the death process cannot operate at an empty node. The death rate can 
be interpreted as sampling particles from the system at a total rate μ(n1 + n2 + n3) with equal probability from 
each non-empty node. The factor of Z−1 ensures that the total number of particles in the system follows a simple 
birth-death-process with equal birth- and death-rates26. The fine-tuning of the birth and death rates is not critical. 
Indeed the rates may differ through the introduction of a (Poisson) immigration process provided the death-rate 
exceeds the birth-rate26. However this introduces an extrinsic agency (albeit an incoherent one) to the system, 
and we are concerned with the emergence of order from intrinsic fluctuations - the detail will be different but the 
overall outcome similar.

The system at a time t is specified by the stochastic configuration vector =t n t n t n tn( ) ( ( ), ( ), ( ))1 2 3 , whose 
evolution can be envisaged as a random walk on a three-dimensional lattice whose axes are the, non-negative, 
number of particles at each node. The probabilities Pabc(t) = Pr{n(t) = (a,b,c)} of being in a particular state are 
completely determined by the master equation27,28,

Figure 1.  Illustration of the dynamics. Bars (blue) represent populations at each of the three nodes of the 
network. Small arrows correspond to migration rates of particles between nodes. Large arrows depict the rate of 
births and deaths of particles at each node.
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given some initial condition. Here Γijk
abc is the transfer rate from the state →a b c i j k( , , ) ( , , ) and −Γabc

abc is the total 
transfer rate out of the state (a,b,c). Supplementary Note 1 defines these rates explicitly. Insight into the behaviour 
of the system is gained from Monte-Carlo simulated realizations29 of the dynamics for various parameter values. 
Figure 2 shows simulation results for a network with ρ = 1, r = 1 and values of μ taken in increasing order. 
Simulations are performed using the Gillespie algorithm30, which is exact for Markov processes, see 
Supplementary Note 1. The qualitative behaviour of the system is similar for all |ρ| > 0. For systems with relatively 
small rates of birth and death, the diffusive nature of the migration process dominates the overall behaviour of the 
system and the particles settle into an amorphous-state, spread uniformly between the three nodes of the network, 
seen in Fig. 2(a). Increasing μ results in an increased correlation between particles and causes larger fluctuations 
about this equilibrium. However when the birth and death rates are sufficiently large, the correlation between 
particles begins to manifest at the macroscopic level. The system undergoes a transition and enters a regime of 
wave-states where particles move in coherent fashion around the network, the population at each node periodi-
cally emptying and filling with particles, as shown in Fig. 2(b). Wave-like behaviour is shown to emerge, and 
persist, from an initial state where particles are uniformly spread around the network. Figure 2(e) shows that this 
collective phenomenon is not evident in the time evolution of the total population in the entire system. Further 
increase of the birth and death rates causes the system to enter an intermittent-state where the wave-behaviour is 
disrupted by particles temporarily lodging at single nodes, see Fig. 2(c). Increasing the birth and death rates fur-
ther eventually results in a collapsed-state with the bulk of the particles populating a single node, Fig. 2(d). The 
following sections explain these phenomena and their transitions quantitatively.

Analysis of the dynamics.  To explain the various behaviours of the system we use equation (1) to derive 
deterministic (macroscopic) equations that provide a first-order approximation of the system in the large popu-
lation limit, n(t) ≫ 1 27. This is done by considering the evolution mean population size at each nodes. The mean, 
denoted by 〈·〉, is an ensemble average of all available states, see the Supplementary Method 1 for details. The 

Figure 2.  Heat plot of simulated data for four different values of the birth rate μ with common migration 
rate r = 1, preference ρ = 1. Each simulation initiated with a population of 1000 particles at each node. Colour 
intensities in the rows correspond to the proportion of particles at each of the three nodes with the scales being 
given on the right. (a) Amorphous-state, μ = 0. (b) Wave-state, μ = 1.8 (θ = 0.6). (c) Intermittent-state, μ = 2.08 
(θ = 1.16). (d) Collapsed-state, μ = 2.2 (θ = 1.4). The control parameter θ = (2μ − 3r)/rρ is discussed in the 
analysis. (e) Total populations in each of the four simulations.
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stochastic nature of this system plays an important role in the derivation of the equations describing the evolution 
of the mean populations, due to the death process being dependent on the number of populated nodes. While it 
is possible to obtain higher order approximations of the system, however the deterministic equations successfully 
capture the types of behaviours that are observed in simulations.

Consideration of the mean dynamics reduces the dimension of the system because the total population 
remains constant on average, due to the equal rate of births and deaths. The system evolves as a trajectory in the 
two-dimensional phase-space, whose geometry forms a triangle given by

+ + = >n t n t n t n n t( ) ( ) ( ) , ( ) 0, (2)i1 2 3

where = + +n n n n(0) (0) (0)1 2 3  is the initial total population in the system. The interior of this phase-space 
corresponds to states where all nodes of the network are populated, the boundaries to when one of the nodes is 
depleted and the vertices to when all particles are located at a single node.

The derivation of the equation for the evolution of the mean populations 〈n(t)〉 is given in the Supplementary 
Method 1. We can treat the dynamics in the interior and on the boundaries separately. For describing the evolu-
tion in the interior it is useful to make the assumption that all of the nodes of the network are populated, i.e. ni > 0. 
The equation for the mean populations is then

ρ µ ρ µ µ= ≡


 + −





d
dt

t t r t rn n B n M I U( ) ( ) ( , , ) ( ) ( , ) 1
3

,
(3)interior 3 3

where Bintrerior is a 3 × 3 matrix formed from I3 the identity matrix that describes births, U3 with all elements unity 
which describes the death-process, and

ρ
ρ ρ
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that accounts for the migrations. By symmetry, equation (3) has an equilibrium point at the centre of the 
phase-space n n n( , , )1

3
 which corresponds to particles being uniformly spread around the network, as in the 

amorphous-state. Indeed this configuration is an eigenvector of Bintrerior with associated eigenvalue σ0 = 0. The 
behaviour of the system about this equilibrium is then determined by the two remaining eigenvalues which form 
a complex conjugate pair

σ µ ρ≡ − ± .r i r3
2

3
2 (5)1,2

Trajectories follow exponential spirals centred at the equilibrium point. The real part of the eigenvalues deter-
mines whether the trajectory on the spiral is towards or away from the equilibrium point. The imaginary part 
of the eigenvalues gives the angular frequency of the trajectory about the equilibrium point, which is zero when 
there is no directional preference to the migrations, ρ = 0.

For birth-death rates satisfying µ < r3
2

, the real part the eigenvalues is negative so the equilibrium point is 
stable and trajectories are directed towards the centre of the phase-space, see Fig. 3(a), and realizations of the 
system evolve to the amorphous-state with particles spread uniformly around the network, Fig. 2(a).

When µ = r3
2

 the system undergoes a Hopf bifurcation31,32, that marks the transition to the wave-state. 
Increasing the birth-death rates so that µ > r3

2
, the equilibrium point of equation (3) becomes unstable and tra-

jectories in the phase-space spiral away from the centre and towards the boundaries. At the boundary equation 
(3) is no longer valid and an equation to describe the evolution of the system on the boundaries is required. 

Figure 3.  Trajectory of the mean state in the phase-space. Circles (green) represent stable equilibrium points. 
Diamonds (red) represent unstable equilibrium points. (a) Amorphous-state - points (i) and (ii) are starting 
and finishing points respectively. (b) wave-state - (i) is the starting point, (ii) is where the second node empties, 
(iii) is where the population in the second node begins to repopulate and (iv) is where third node empties. (c) 
collapsed-state - (i′) is the starting point, (ii′) is where the second node empties and (iii′) is where all particles 
are at the third node.
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Because each boundary will have an equivalent equation, we suppose that the system reaches the boundary where 
〈n2〉 = 0. By assuming that n2 = 0 we deduce the equation

ρ µ ρ µ µ= ≡


 + −





d
dt

t t r t rn n B n M I U( ) ( ) ( , , ) ( ) ( , ) 1
2

,
(6)boundary 3 2

where U2 is the U3 matrix with its second column replaced be zeros, and describes the global death-process that 
occurs at the still-populated nodes - note the pre-factor 1

2
. To describe the evolution of the trajectory in the vicin-

ity of the boundary, equation (6) which is valid when n2 = 0, must be combined with equation (3), which is valid 
when n2 > 0, to account for the random fluctuations of the number of particles at the second node. The evolution 
of the mean state 〈n(t)〉 at the boundary is then described by a weighted sum of (3) and (6), the weights being w 
and 1 − w respectively where w = Pr{n2 > 0}. A condition for the trajectory to move along the boundary is that 
〈n2〉 remains at 0, so that =n 0d

dt 2 . This can be used to determine w as:

µ
ρ ρ=
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
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
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.w r n

n
3
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2 1
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1

An alternative derivation of this equation is given in the Supplementary Method 1. The requirement 0 ≤ w ≤ 1 
implies that equation (7) has a solution when

θ κ≤


 +


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1
2

1
3

,
(8)b

1

where θ = (2μ − 3r)/rρ serves as a control parameter involving all three dynamical parameters of the system. At 
points on the boundary such that κ>n nb1 , the trajectory evolves according to equation (3) and leaves the 
boundary - the population n2 growing away from zero. However, at points such that κ<n nb1  the trajectory is 
confined to the vicinity of the boundary as the population n2 is maintained near zero. The evolution of the system 
along the boundary is then given by

ρθ
θ
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1 1

An equation for the population at the third node can be obtained from = −n n n3 1 . The direction in which 
the trajectory moves along the boundary depends on the sign of the right-hand-side of equation (9), which van-
ishes when 〈n1〉 has the critical value

θ
κ=



 −



 ≡

n
n

1
2

1 1 ,
(10)e

1

a point which corresponds to an unstable equilibrium point on the boundary. Consider the trajectory depicted in 
Fig. 3(b) that is initially at a point (i) and meets the boundary at point (ii) corresponding to where the first and 
third nodes are occupied, where the right-hand-side of equation (9) is assumed positive. There are two ways in 
which this can happen. The first occurs unconditionally if 0 < θ < 1, the second if θ > 1 and κ>n ne1 . The rate 
of change of 〈n1〉 is then positive, so that 〈n1〉 will increase, and 〈n3〉 decrease, until the condition (8) is violated at 
point (iii). The trajectory then leaves the boundary of the phase space, and is once again described by equation (6) 
until it intersects the next boundary at (iv), corresponding to where only the first and second nodes are populated. 
Provided that at point (iv) κ>n ne2 , the trajectory will behave as before, leading to a limit cycle being estab-
lished that represents a wave of particles travelling around the network. The realization in Fig. 2(b) shows this 
coherent disturbance emerging out of an initial amorphous-state. Supplementary Video 1 demonstrates the cor-
responding time evolution dynamically, in both the phase-space and in a histogram showing the number of par-
ticles at each node.

Consider now the case depicted in Fig. 3(c) which can also occur if θ > 1. The trajectory of the system is initi-
ated from the state (i′), intersecting the boundary at (ii′) where κ<n ne1 , which corresponds to the 
right-hand-side of equation (9) being negative. The rate of change of 〈n1〉 is negative, with result that the trajec-
tory moves in the direction of increasing 〈n3〉. The trajectory will continue along the boundary until it reaches the 
vertex of the triangle (iii′) corresponding to only the third node being occupied by particles. The system is then 
trapped in this collapsed state, as demonstrated by the realization in Fig. 2(d).

Collapsed and wave behaviours can both occur if θ > 1. However there is a critical value of θ = θc above which 
the wave-state can no longer exist. This corresponds to the value of θ for which a limit cycle intersects each 
boundary at the point where κ=n ni e . The Supplementary Method 2 shows that this occurs at the solution of 
the transcendental equation

θ π





 + =l

3 6
0,

(11)
c

where l(x) ≡ log(x)/x, the numerical solution of which is θc ≈ 1.2037, and consequently a coherent wave-state can-
not exist for θ above this value. If θ > θc the system must fall into the collapsed-state. If 1 < θ < θc both wave- and 
collapsed-states can coexist.
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Monte-Carlo simulations of the dynamics for values of θ in the regime 1 < θ < θc display intermittent switch-
ing between wave- and collapsed-behaviours as shown in Fig. 2(c). This interchange is caused by fluctuations of a 
realization about the trajectory describing the mean tn( ) . The fluctuations arise because the dynamics are inher-
ently stochastic and discrete, and their magnitude is determined by the number of particles in the system. The 
intermittent behaviour is not explained by the deterministic equations that provide a leading order approximation 
to the evolution of the system. The greater the number of particles, the less frequent the interchanges between the 
macroscopic states will be.

Characteristics of the wave-state.  The final task is to determine the frequency and amplitude of the 
oscillations in the regime 0 < θ < θc for which the wave-states can occur. The wave-states are those whose trajec-
tories in the phase-space spend part of their time within the interior following an exponential spiral, and moving 
along the boundary following equation (9), or its equivalent depending upon which boundary the motion is 
occurring. Calculating these residency times enables a frequency f and an amplitude ≡A n nmax /1  to be deter-
mined. Supplementary Method 2 shows that A = A(θ) and ρ θ= ˆf r f ( ) where A and f̂  are solutions of transcen-
dental equations requiring numerical evaluation. These scaling functions show that the quantitative value of the 
amplitude and frequency depend on θ alone and that rρ, the characteristic rate at which particles migrate around 
the network in a defined direction, provides a natural scaling for the time. In Fig. 4 the full (blue) line shows the 
frequency plotted as a function of θ, which has a good agreement with the (red) crosses that show the frequency 
determined from 10 Monte Carlo simulated realisations of the system with the network populated with an initial 
population of 30,000 particles; the bars on these data are standard deviations. The frequency decreases with 
increasing θ, falling rapidly to zero in the vicinity of θ = θc. Indeed it can be shown that as θ → θc, 

θ θ θ− − −ˆ ~f ( ) (log )c
1, indicative of the system condensing into the collapsed state. The amplitude is shown 

by the dashed (green) line with the (red) crosses and bars showing the values and their standard deviations 
obtained from the Monte-Carlo simulation. The amplitude increases with θ and at θ = θc changes discontinuously 
into the collapsed-state. The fluctuations in both A and f can be seen to grow as θ → θc.

Extension to an N-node loop.  The simple model discussed here can be easily extended to more general 
networks, in particular to larger loop networks with N nodes. In this case the two dimensional phase-space given 
by equation (2) would be replaced by the N − 1 dimensional simplex ∑ == n 1i

N
i1 , 〈ni〉 > 0. The evolution in the 

interior of this simplex, i.e. when all nodes are populated, would be given by an equivalent of equation (3) with 
the matrices instead being of size N × N. Again there would be an equilibrium at the centre of the phase-space 
corresponding to the amorphous-state with all particles being spread uniformly around the network. The stability 
of this equilibrium would be determined by the non-zero eigenvalues, which come in complex conjugate pairs, 
given by

σ µ π ρ π
≡ − + +r r k

N
ir k

N
cos 2 sin 2 ,

(12)k

where k = 1, 2, …, N−1. The equilibrium is stable when all of the eigenvalues have a negative real part and the 
system settles into an amorphous-state. Simulation results for a system with N = 10, r = 1 and ρ = 1 are shown in 
the Supplementary Videos 2 and 3. A transition out of the amorphous-state occurs as two of the eigenvalues, with 
k = 1 and N − 1, cross the imaginary axis, i.e. if µ ≥ − π( )r 1 cos

N
2 . Thus the transition is independent of the 
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Figure 4.  Frequency (solid blue) and amplitude (dashed green) of the limit cycle. Crosses (red) show the 
estimated means, with the bars giving the estimated standard deviations. The region between the dashed vertical 
lines indicates the intermittent regime.

http://2
http://2
http://3


www.nature.com/scientificreports/

7Scientific REPOrTs | 6: 21  | DOI: 10.1038/s41598-016-0022-3

directional preference ρ. As the size of the network becomes large, this bifurcation point approaches zero so the 
transition occurs for progressively smaller birth and death rates. For a network with N = 10, r = 1 and ρ = 1 the 
transition occurs when µ ≈ .0 19 and the Supplementary Video 4 shows such a system just above this bifurcation 
point. Whether or not the system enters into the regime of wave-states is dependent on the imaginary part of the 
two eigenvalues. No oscillation occurs when ρ = 0 because the eigenvalues are real and the system transitions into 
a collapsed-state with all of the particles located at a single node. However when ρ ≠ 1 wave-like behaviour will 
emerge in the form of particles moving coherently around the network, demonstrated in the Supplementary 
Videos 5 and 6 for a network with N = 10, r = 1 and ρ = 1. It is notable that the width of the disturbance reduces 
with an increasing birth-death rate μ.

Explaining the transition of the system out of the wave-states into a collapsed-state would require deriving 
the equations that govern system at the boundaries of the phase-space. However, by running simulations for 
various network sizes N it is observed that the size of the network does not have a significant effect on the second 
bifurcation. Supplementary Videos 7, 8 and 9 demonstrate the transition into the collapsed-state for a system 
with N = 10, r = 1 and ρ = 1, which can be compared with Fig. 2(c) and (d) where N = 3, r = 1 and ρ = 1. This 
similarity between systems with different sized networks is essentially because the death process, which is the only 
non-local component to the dynamics, depends on the number of populated nodes. If all of the particles located 
at a single node, the dynamics are independent of the number of non-populated nodes and the system size would 
be irrelevant.

Discussion
The purpose of this article is to use a simple model to identify the essential ingredients required for a discrete 
attribute to emerge from intrinsic fluctuations as a periodic and self-sustaining disturbance that moves coherently 
through a discrete medium. The medium is represented by a network of nodes connected by edges, and the attrib-
ute is represented by particles that are subjected to a stochastic birth-death-migration process. The migration 
process describes the coupling between the particles and the network structure and causes particles to diffuse over 
the network into an amorphous-state. In contrast the births and deaths provide a coupling amongst the particles 
and cause them to collect into a single node in a collapsed-state.

The combination of migration process and the birth-death process can result in the emergence of 
wave-phenomena provided the system satisfies two requirements of the spatial structure; the network must com-
prise at least three nodes and the migrations must have a directional preference. This is because the system must 
have complex eigenvalues, the imaginary part of which are completely determined by the migrations and is inde-
pendent of the birth-death process, see (5). No directional preference to migrations corresponds to a symmetric 
matrix in place of (4) which necessarily has real eigenvalues. Similarly a two node network only has one non-zero 
eigenvalue which must be real.

The strength of the present model is its simplicity and the insights it provides. Firstly we have chosen to 
define the dynamics as Markov stochastic processes so that the system does not have any memory of its past. 
The time intervals between particle migrations, births or deaths are then independent and exponentially dis-
tributed. Defining the dynamics differently would imply that the system stores information about its past state 
and this will impose correlations upon the particle behaviours. A lack of memory does not allow dead/delay 
times which introduce intrinsic time-scales into the system33. The second notable feature of the model is that 
both the migration and the birth process are characteristic of non-interacting particles - each particle migrates 
or gives birth at a fixed rate. This means that the resultant effect of these processes at a single node of the net-
work scales linearly with the population size at that node. If instead the rate of migrations from each node 
were independent of the population size, i.e. constant, the process would no longer be diffusive and would 
lack the mechanism by which wave-like behaviour is established on the network. Similarly the birth process 
allows larger populations to grow faster than smaller ones, a key ingredient in preventing the decay of periodic 
behaviour. The third feature of the model is the mechanism by which action or influence occurs at a distance. 
In systems with continuous state-spaces this property is often described by a field. In the present model this is 
facilitated by the death process. The emergence of wave-like behaviour requires non-local information to be 
available at each node.

The analysis presented in this paper shows that the observed phenomena are well explained by assum-
ing the number of particles in the system is essentially infinite, describing the dynamics macroscopically. 
The emergence of wave-like behaviour is then characterised by the appearance of a limit cycle in the solution 
phase-space. However, it has been shown that oscillations my also exist in systems with relatively moderate 
number of particles even when the macroscopic equations do not have a periodic solution, a phenomena some-
times referred to as ‘amplification’34,35. The wave-state is stochastic, emerging from and being sustained by 
intrinsic fluctuations occurring on the network. Although similar in manifestation, the cause of the wave-state 
is distinct from that described by stochastic resonance36,37. Here a system is coupled to an extrinsic, weak 
coherent drive whose characteristic frequencies coincide with some eigen-frequencies of the network, i.e. the 
spectrum of the noise.

Nonlinearity in the dynamics is solely due to the constraints imposed on the death process. An alternative 
way to introduce nonlinearity is to include quadratic effects, where particles migrate from the ith node to the jth 
node at a rate proportional to ninj, essentially representing forces between particles. It has been demonstrated 
that such systems can display wave-like behaviour38, providing the interactions are not symmetric. More recently 
these models have been used to study condensation phenomena39 similar to the collapsed-state demonstrated in 
Fig. 2(d). Thus the present model captures both condensation and wave phenomena without explicitly defining 
a force between particles.
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