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Abstract: This paper describes the beneficial effects of multiple layers of rubber-sand mixture (RSM). The plate load tests, 

using circular plate of 300 mm diameter, were performed at an outdoor test pit, dug in natural ground with dimensions of 

2000×2000 mm in plan and 720 mm in depth to facilitate realistic test conditions. The rubber used in the RSM layers was 

granulated rubber, produced from waste tires. The optimum thickness of the RSM layer was determined to be approximately 

0.4 times the footing diameter. By increasing the number of RSM layers, the bearing capacity of the foundation can be 

increased and the footing settlement reduced. The influence of the number of RSM layers on bearing capacity and settlement 

become almost insignificant beyond three layers of RSM, particularly at low settlement ratios. At a ratio of settlement to plate 

diameter of 4%, the values of bearing pressure for the installation with one, two, three and four layers of RSM were about 1.26, 

1.47, 1.52 and 1.54 times greater, respectively, than that for the unreinforced installation. Layers of the RSM reduced the 

vertical stress transferred through the foundation depth by distributing the load over a wider area. For example, at an applied 

footing pressure of 560 kPa, the transferred pressure at a depth of 570 mm were about 58%, 45% and 35% for one, two, and 

three layers of RSM, respectively, compared to the transferred stress in the unreinforced bed. By numerical analysis, it was 

found that the presence of soil-rubber layers resulted in expansion of passive zones in the foundation due to the effectiveness of 

the confinement provided by the rubber inclusions, and this tends to make the bed deflect less. On the basis of this study, the 

concept of using multiple RSM layers has not only been shown to improve the performance of foundations under heavy 

loading, but also, the environmental impacts of waste tires are attenuated by re-using their rubber as part of a composite soil 

material in civil engineering works.  
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1. Introduction  

In recent decades, the volume of scrap tire rubber in the world has increased significantly because 

of the globally developing vehicle industry and due to growing population (RRI, 2009; RMA, 2013). 

Consequently, their disposal has become a major environmental problem worldwide (Hennebert, 2014). 

Hundreds of millions of waste tires are either dumped in landfills or stockpiled, despoiling the 

environment (Cetin et al., 2012; Chiu, 2008). The increasing volumes mean that it is harder and more 

expensive to safely dispose them without threatening human health and environment. For instance, 

stockpiled waste tires are flammable, prone to fires that produce toxic fumes and which may then cause 

a major health hazard for both human beings and animals (Attom, 2006).   

To address the environmental concerns, the use of waste tires in the form of fibers, strips, chips, 

granulated, crumbed or shredded, are now considered as construction materials (Zhou et al., 2002; 

Tanchaisawat et al., 2010; Moghaddas Tafreshi et al., 2012; Edincliler and Cagatay, 2012, 2013; 

Munnoli et al., 2013; Prasad et al., 2014; Keskin and Laman, 2014; Diambra and Ibraim, 2014; Sol-

Sánchez, 2015; Karabash and Cabalar, 2015; Moghaddas Tafreshi and Norouzi, 2015; Brara, 2016). 

Using waste tires combined with soil is becoming popular due to the shortage of natural mineral 

resources and the increasing waste disposal costs of tires. In addition, when the chipped, shredded and 

granulated tire rubbers are mixed with soil (or the strips of tire used as reinforcement), the mixture 

might behave as reinforced soil, similar to geosynthetic-reinforced soil, which can be advantageously 

employed to increase soil strength, depending on the rubber content and the size of rubber particles 

(Hataf and Rahimi, 2005; Yoon et al., 2006; Tavakoli Mehrjardi et al., 2012; Moghaddas Tafreshi and 

Norouzi, 2012; Edincliler and Cagatay, 2013, Bali Reddy et al., 2016).  

Yoon et al. (2006) evaluated the feasibility of using tire shred–sand mixtures as a fill material in 

embankment construction. A test embankment was constructed using a 50/50 mixture, by volume of tire 

shreds and sand. They reported that, after 200 days of road traffic, the settlement stabilized at small 

values when compared with pure tire shreds and pure sand. Edincliler and Cagatay (2013) investigated 

the feasibility of reinforcing soil with extensible buffing rubber inclusions by observing the CBR 

performance of the mixtures. They reported that adding 5% of fiber-shaped buffing rubber by weight to 

http://link.springer.com/search?facet-author=%22A.+Diambra%22
http://link.springer.com/search?facet-author=%22E.+Ibraim%22
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sand formed a reinforced composition for use in geotechnical applications, improving the CBR value of 

soil. Moghaddas Tafreshi and Norouzi (2012), using a small scale test, found that the optimal thickness 

of a single layer of rubber-soil mixture was approximately 0.5 times the width of the footing to achieve 

the maximum improvement in bearing capacity of the foundation bed. They reported that an increase in 

the thickness of rubber-soil mixture beyond its optimum value increases the soil’s compressibility 

because of an increase in the total void space between the soil particles of the mixture and increases the 

settlement of the foundation bed. Consequently, the reinforcing effect of the rubber-soil mixture is 

decreased with a probably undesirable effect on the foundation response. 

Some researchers studied the behaviour of fiber-reinforced soil by computational methods. Babu et 

al. (2008) proposed an approach for considering the effect of random-oriented fibres in numerical 

analyses. The reinforcement mechanisms achieved by random fiber-reinforced sand are explained in 

terms of a microstructure that prevents the formation of distinct localized strain bands. Tavakoli 

Mehrjardi et al. (2015) studied the behaviour of pipes in a trench protected by geocell-reinforced sand 

and rubber-soil mixtures, under repeated loadings. The results demonstrated that combined use of the 

geocell layer and rubber-soil mixture can reduce soil surface settlement and pipe deflection and 

eventually provide a secure condition for buried pipes even under strong repeated loads. 

Since one-layer rubber-soil mixtures with optimum thickness could be effective in improving the 

behavior of a foundation (Moghaddas Tafreshi and Norouzi, 2012), it seems likely that multi-layered 

rubber-soil mixture, used in the active zone beneath the footing – perhaps over a depth of 1-2 times the 

footing diameter – can improve the foundation response by reducing deformations. Consequently, this 

paper seeks to investigate the concept of the beneficial effect of multiple rubber-soil mixture layers 

constructed in the foundation, as might be used in roads, highways, embankments, footings, etc. The 

vertical spacing between successive layers is particularly considered.  

In this paper the abbreviation “RSM” is used by the authors to describe “Rubber-Soil Mixture”. 

Additionally, a numerical study, representative of the full-scale model test, is reported. This was 

undertaken to understand the behaviour of multi-layered rubber-reinforced foundations so as to propose 
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empirical relationships of stress propagation through the unreinforced and reinforced foundation which 

were not easily achievable using results from the experimental model alone. 

2. Objectives 

The overall goal is to demonstrate the beneficial effects of multi-layered RSM with optimum of 

rubber content, optimum thickness of RSM layers and optimum vertical space between successive 

layers on the bearing capacity and settlement of foundation beds. Also, the effect of the RSM layers on 

the stress distribution and deformation profile with depth is investigated. The results consist of two 

parts including results of the plate load tests (Section 6.1) and of the 3-dimensional numerical modeling 

of the foundation bed (Section 6.2). 

3. Test Materials  

3.1. Backfill soil  

A sandy soil passing through the 38 mm sieve with a specific gravity, Gs, of 2.62 was used as 

backfill for the unreinforced layers and also to mix with rubber for construction of the RSM layers. This 

type of soil was sourced from a local quarry and satisfies the criteria and limitations recommended in 

ASTM D 2940-09. The soil grading is presented graphically in Fig. 1. This soil is classified as well 

graded sand (SW) in the Unified Soil Classification System (ASTM D 2487-11). Modified proctor 

compaction tests were performed on the soil, according to ASTM D 1557-12. A summary of soil 

properties is presented as Table 1. 

3.2. Rubber 

Granulated tire rubbers, clean and free of any steel and cord, were used in all the tests. The particles 

have a specific gravity, Gs, of 1.17, major dimensions of between 2 and 25 mm and a mean particle size 

of 14 mm. Figs. 1 and 2 show, respectively, the grading and a photograph of the rubber particles used in 

the tests. The rubbers particles were carefully blended with the soil, by a mixer and with manual 

intervention if necessary, so as to produce a reasonably uniform, non-segregated rubber-soil mixture.  

4. Test Setup  

Full-scale plate load tests, simulating small foundations, were performed to investigate the response 

of untreated soil and the soil-rubber mixture with respect to bearing capacity and settlement. The 
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schematic cross-section of the test set-up, including the model test pit, layers of the backfill soil, RSM 

layers, the loading system, data acquisition systems (including dial gauges and soil pressure cells) and 

the geometry of the test configurations (including the parameter definitions), are shown in Fig. 3. The 

following sections present the essential details of the test setup.   

4.1. Test pit and instrumentation 

All plate load tests were conducted in an outdoor test pit (see Acknowledgements). The test pit, 

measuring 2000 mm × 2000 mm in plan, and 720 mm in depth, was excavated in natural ground and 

into this were substituted the soil and RSM layers (Fig. 3).To measure the movement of the loading 

plate (footing model), throughout the tests, three linear dial gauges with an accuracy of 0.01% of full 

range (100 mm) were installed. Also, the foundation  was instrumented with three full bridge, 50 mm 

diameter diaphragm-type soil pressure cells (abbreviated to SPC) to measure the transferred vertical 

stress inside the foundation. According to the manufacturer, these had an accuracy of 0.01% of full 

range of 1000 kPa. The top soil pressure cell (abbreviated to “SPC 1”), middle soil pressure cell (SPC 

2”) and bottom soil pressure cell (“SPC 3”) are located, respectively, at depths of 210 mm, 390 mm and 

570 mm beneath the center of loading plate (Fig. 3). The instruments’ outputs were recorded in mV and 

then converted to real stress units using calibration factors supplied by the manufacturer.   

4.2. Backfill compaction 

In order to compact the layers of the foundation including soil and RSM layers, a walk-behind 

vibrating plate compactor, 450 mm in width, was used. To achieve the required density of backfill 

layers, the soil and RSM mixture layers were compacted at a thickness of 60 mm and at the optimum 

moisture content of 5.7% with one and three passes of the compactor, respectively. In all, twenty layers 

required compaction. In order to try to keep the compaction effort, and consequently the compaction 

energy, constant the forward velocity of the compactor was kept constant. To better assess the layers’ 

compaction, cone tests in accordance with ASTM D 1557-12 were performed in some installations, to 

check the densities and moisture contents of the compacted soil layers and RSM layers. The density 

values measured in the three cone tests revealed density differences ≤ 1.8%. The average measured 

(recovered) moisture content of the layers was between 5.4% and 5.8%. To prevent loss of moisture 
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from the backfill during the load test, the exposed backfill was covered by a waterproof paper. The 

average measured dry densities (average of three sand cone tests) of soil and RSM layers after 

compaction were about 16.52 kN/m3 (approximately 80% of maximum soil dry density), and 13.6 

kN/m3, respectively.  

4.3. Loading system 

The plate loading system was a hand-operated hydraulic jack, supported against a strong reaction 

beam spanning the width of the test pit, with the capability of applying a stepwise controlled load up to 

50 kN. The diameter, D, and thickness of the loading plate were 300 mm and 25.4 mm, respectively, 

according to ASTM D1196-04. The standard declares that the circular steel plate should be not less than 

25.4 mm in thickness, having a diameter between 150 and 750 mm. The steel rigid circular plate was 

placed at the centre of the ground surface. In all tests, the load was applied monotonically to the model 

footing at a rate of 1.5 kPa per second until reaching 1000 kPa or until backfill failure. In the absent of a 

clear-cut failure, the footing was loaded to reach a footing settlement of 75 mm (s/D=25%). Fig. 4 

depicts a photograph of the test setup and operator.  

5. Test program 

To investigate the beneficial effect of RSM layers on the behaviour of foundation, three test series 

including one, two, three and four layers of RSM (Test Series 2, 3, and 4), as well as an unreinforced 

condition  (Test Series 1) with monotonically increasing load, were conducted. Details of the tests 

configurations are given in Table 2. "Test Series 1" provided a control case to which the response of all 

other foundation arrangements could be referenced. The optimum value of rubber content in a rubber-

soil mixture is obtained from the results of "Test Series 2" which used one layer of RSM with no soil 

cover (u/D=0). In this Test Series, the rubber content (Rc) in the rubber-soil mixture was varied between 

4% and 16%, by mass of the mixture, in 2% steps. "Test Series 3" was performed to obtain the optimum 

value of the thickness of RSM layers (hrs/D) using one layer of RSM. The beneficial effect of number of 

multiple RSM layers (N=1, 2, 3, 4) was examined in Test Series 4.  

Depth of the first layer of RSM beneath the loading plate (u) in Test Series 3 and 4 and thickness of 

the soil layer between the mixture layers (h) in Test Series 4 were selected to be 0.2D (based on Yoon et 
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al., (2008)). The width of the RSM layers (b) is expressed in non-dimensional form (b/D) with respect 

to loading plate diameter (D=300 mm). In line with the findings of Dash et al. (2003), Yoon et al. 

(2008) and Thakur et al. (2012) for 3D reinforcement (i.e. geocell and tire-cell), the parameter b/D was 

kept constant in all the tests at b/D=5 on the basis that reinforcement and RSM layers beneath the 

footing might have, approximately, the same basic mechanisms of foundation reinforcement.  

In order to assess the utility of the apparatus, the accuracy of the measurements, the repeatability of 

the system, the reliability of the results and finally to verify the consistency of the test data, many of the 

tests described in Table 2 were repeated at least twice. The results obtained revealed a close match 

between results of the two or three trial tests with maximum differences in results of around 4~7%. This 

difference was considered to be small and is subsequently neglected. The consistency of the results 

demonstrates that the mixture of soil and rubber, the test procedure and the technique adopted can 

produce repeatable tests within the bounds that may be expected from geotechnical and pavement 

testing apparatuses.  

In order to prevent damage of the soil pressure cells (SPC), they are installed only for Test Series 1 

and 4 (i.e. for the foundation beds with one layer of RSM in Test Series 2 and 3, no pressure cells are 

installed). 

6. Results and discussion 

6.1. Experimental results 

In this section, the results of plate load tests are presented along with a discussion, highlighting 

effects of the different parameters such as rubber content, number of RSM layer and its thickness. Here, 

the performance improvement of the foundation is represented by considering the bearing pressure, 

settlement and the pressure distribution down through the foundation. 

6.1.1. The effect of the rubber content (Rc) 

To investigate the effect of the rubber content on foundation performance, Test Series 2 was 

implemented, placing one layer of rubber-soil mixture, beneath the footing base (with no soil cover, 

u/D=0). The thickness of the RSM layer, hrs, was selected as 60 mm (hrs/D=0.2). The variation of 
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bearing pressure with rubber content at different values of settlement is depicted in Fig. 5. This figure 

reveals that rubber content is more effective in improving the footing bearing capacity at higher footing 

settlements. Also, the reinforcement effect achieved by adding the rubber is highly dependent on the 

rate of shear strain. From this figure, it can be concluded that there is an optimum rubber content, about 

8%, irrespective of the loading plate’s settlement which delivers the maximum increase in the bearing 

capacity. This rubber content is in the middle of the range of 6-10% as reported by Prasad and Prasada 

Raju (2009) and Munnoli et al (2013). 

Increasing the rubber content more than 8% makes the system response much softer (as also reported 

by Prasad and Prasada Raju (2009) and Edincliler et al. (2012)), tending to increase the deformability of 

the foundation beyond the value for the unreinforced soil. This replacement of the soil grains by a 

compressible material, like rubber, changes the composite’s behaviour from a soil-like behaviour 

towards a rubber-like behaviour (i.e. an increase in settlement and a reduction in bearing capacity). 

6.1.2. The effect of the thickness of RSM layer (hrs/D) 

Fig. 6a shows the applied pressure-settlement response (Tests Series 1 and 3) of the foundation with 

as a function of the thickness of a RSM layer, hrs/D, when the content of granulated rubber is 8% and 

the layer is placed at a depth of 0.2 (u/D=0.2) beneath the footing. As can be seen, in all tests, no clear 

failure point is evident from the pressure-settlement behavior. It is clear that, regardless of the level of 

settlement, when increasing the thickness of the RSM layer, both stiffness and bearing pressure were 

considerably improved compared to the values measured on untreated soils.  

To gain a better assessment of the RSM layer performance, the variation of bearing capacity with 

thickness of RSM layer (hrs/D) is plotted for different footing settlement ratios (s/D=2%, 4%, 6%, 8%, 

10% and 12%) in Fig. 6b. The maximum footing settlement equals 12% of footing diameter, a rather 

large value. However, the discussion in this paper concentrates on the behavior at more tolerable 

settlement ratio values (e.g. s/D=4%). From Fig. 6b it can be seen that, with an increase in hrs/D ratio, 

the bearing capacity increases until, approximately, hrs/D=0.4, after which its value decreases, 

irrespective of footing settlement ratio. For example, at a settlement ratio of s/D=4%, the bearing 

pressure increases by about 25%, 27%, 13% and 5% compared to that of the unreinforced bed, for RSM 
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layer thickness ratios, hrs/D, equal to 0.2, 0.4, 0.6 and 0.8, respectively. This example suggests that a 

foundation system with a RSM layer thickness of more than 0.8 times the footing diameter (hrs/D>0.8) 

probably experiences punching failure resulting in a significant reduction in bearing pressure value, 

even less than that of the unreinforced bed. An alternative explanation is that the large thicknesses of 

RSM will make the system response much softer (Moghaddas Tafreshi and Norouzi 2012, 2015), 

causing more deflection to occur, such that no reinforcement effect can be seen.   

6.1.3. The effect of the number of RSM layers (N) 

To investigate the effect of the number of RSM layers on the foundation response, three additional 

tests, including two, three and four layers of RSM, were conducted at the optimum thickness of 

hrs/D=0.4. They were placed at u/D=h/D=0.2 (see Table 2, Test Series 4). Fig. 7a presents the response 

of the loading plate in unreinforced and reinforced conditions. It is clearly observed that, as the number 

of RSM layers increases (i.e. as the depth of the reinforced zone increases), both stiffness and bearing 

capacity at a specified settlement increased, substantially. Similarly, at any given bearing pressure, the 

value of the settlement decreases with increase in the number of RSM layers. These changes could be 

attributed to the internal confinement provided by RSM layers in the active zone beneath the footing 

base, which restricts lateral displacement of different layers and, hence, tends to increase the bearing 

capacity. The concept of confinement due to fibre reinforcement, which has been termed ‘internal 

confinement’, was explained by Yang (1974). In the present situation, the confinement effect may be 

attributed to the mobilized tensile strength of the rubber particles exploited by interaction between 

aggregate and rubber particles. 

In order to make a direct comparison between the results for the unreinforced and multi-layered 

RSM beds, the bearing pressure values for different numbers of RSM layers, corresponding to the 

different settlement ratios, are plotted in Fig. 7b. It can be seen that as the number of RSM layers 

increases, the bearing pressure increases steadily, regardless of the settlement ratio. For instance, at a 

settlement ratio of s/D=4%, the bearing capacity values are ≈293, 340, 353 and 358 kPa for one, two, 

three and four layers of RSM – increases, respectively, in bearing capacity of about 26%, 47%, 52% 

and 54% over the unreinforced bed’s bearing capacity of 232kPa. This example shows that the rate of 
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enhancement in load carrying capacity of the footing reduces with increase in number of RSM layers 

(N) such that one can anticipate the improvement rates will become insignificant with any further 

increase in the number of RSM layers. The reason is that the significantly stressed zone beneath the 

footing is estimated to be about 1-2 times the footing diameter/width into which only two/three layers 

of RSM can be placed. Any RSM placed below this zone will then only deliver marginal improvement 

in the foundation’s response.  

6.1.4. The pressure transferred in depth of foundation bed 

The variation of measured pressure inside the unreinforced and multi-layered RSM beds at the three 

levels of 210 mm (“SPC 1”), 390 mm (“SPC 2”), and 570 mm (“SPC 3”) beneath the center of footing 

(see Fig. 3) is illustrated in Fig. 8. In this figure, the pressure values at applied surface pressures of 280 

and 560 kPa are plotted with dotted and solid lines, respectively. The significant reduction of pressure 

inside the foundation bed is easily observed. This reduction is irrespective of the number of RSM layers 

and of the magnitude of applied load. For example, for a foundation bed containing three layers of RSM 

(N=3) at an applied pressure of 280 kPa, the pressure measured at depths of 210, 390 and 570 mm are 

176.6, 42.7 and 15.8 kPa, respectively. 

The pressure measured by the top soil pressure cell (“SPC 1”), at a depth of 210 mm, is only 

affected by the first layer of RSM (N=1). The presence or absence of the second or third layer RSM has 

no significant effect on its reading. Similarly, the pressures measured by the middle and bottom soil 

pressure cells (“SPC 2 and “SPC 3”) are affected, respectively, only by the first two layers (N=1, 2) and 

only by the first three layers (N=1, 2, 3). Thus, the stress at any depth is only affected by the 

construction above it and never by that below.  

Fig. 8 also shows that the proportion of the applied surface pressure transferred down to a depth of 

570 mm beneath the centre of footing base, as measured by the bottom soil pressure cell (“SPC 3”), 

considerably decreases relative to the unreinforced bed. It appears that an increase in the number of 

RSM layers improves the foundation’s ability to spread load, regardless of the level of applied load 

(Tavakoli Mehrjardi et al., 2015). For example, at an applied pressure of 560 kPa, the vertical stress at a 

depth of 570 mm was 149.3, 87.5, 67.1 and 52.2 kPa for the unreinforced bed, and RSM beds with one, 



 
 

 

 

 

11 

two and three layers of RSM, respectively. It also appears that the in-soil stress increases non-linearly 

with increase in the applied surface stress.   

Taken together, the results presented in Figs. 5 to 8 reveal that use of RSM layers in a foundation 

reduces in-soil stresses and restricts vertical displacements. Insufficient data is available to categorically 

determine the mechanism by which this is achieved, but the response is consistent with the mechanism, 

known as the “confinement effect” in literature of soil reinforcement (Yang, 1974). This mechanism 

occurs when a reinforced layer acts like a large mat, spreading an applied load over an extended area, 

instead of directly at the point of contact. It provides a composite soil/reinforcement slab with higher 

flexural stiffness (Dash et al., 2003, Thakur et al., 2012), higher modulus, and load support capabilities 

within the zone that is significantly stressed by the foundation loading – consequently decreasing the 

magnitude of the distributed pressure on the vertical axis beneath the foundation.  

6.2. Numerical Analysis 

The numerical simulations for the analysis of multi-layered rubber-reinforced foundation were 

performed using the finite difference code FLAC-3D (2002). The geometry of the model, its calibration, 

its verification and a parametric study are discussed in the following sections.  

6.2.1 Model Geometry  

To calibrate and verify the multi-layered soil-rubber system, two different geometries were used. A 

cylindrical pattern was used to simulate the triaxial test in a calibration stage. Thereafter, the obtained 

material properties were applied to a numerical model representing the experimental model (see Fig. 3). 

Fig. 9 shows the meshing area of numerical model (in this example for a bed with three layers of RSM). 

The domain was divided into 17200 elements and 19866 grid points. The displacement of the outer 

boundary was restrained only in the direction at 90° to the boundary while that of the base was 

restricted in all directions.  

6.2.2 Model Calibration 

As part of the calibration, several triaxial tests were performed to assess the properties of the 

unreinforced and rubber-reinforced soil layers. The soil, rubber material and the density of the 

unreinforced and rubber-reinforced soil used in the plate loading tests were replicated in the triaxial 
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tests. Six triaxial tests on unreinforced and rubber reinforced soil samples with 8% rubber (as optimal 

rubber content), at three confining pressures of 50, 100 and 150 kPa were conducted. The triaxial 

samples had a diameter of 100 mm and a height of 200 mm. An elastic-perfectly plastic associative 

Mohr-Coulomb constitutive model was used to simulate the observed behaviour of unreinforced and 

rubber-reinforced layers. Even though more sophisticated elasto-plastic constitutive models exist, the 

Mohr-Coulomb model was deemed satisfactory in the present case as the anticipated stress paths are 

mainly dominated by shear failure when significant load is applied to the soil. To calibrate the 

parameters of the chosen plasticity model, the following points were considered: 

a) Gotteland et al. (2005) investigated some triaxial tests on rubber-soil mixture and found that, 

with an increasing proportion of rubber volume in samples, the trend of most specimens was to 

yield a decrease of both cohesion and friction angle. 

b) The dilation angle of all composites was assumed to be two-third of the value of friction angle 

in the corresponding composite material as suggested by Alimardani Lavasan and Ghazavi (2008). 

To obtain the appropriate parameters, the numerical model was used to replicate the triaxial tests on 

the unreinforced and rubber-reinforced samples. By using a trial-and-error technique, adjusting the 

input parameters until the results of the numerical analysis closely matched those obtained from the 

triaxial tests, representative values of bulk modulus (K), shear modulus (G), cohesion (c), friction angle 

(φ), dilation angle (ψ) and density (ρ), were obtained. Fig. 10 compares the stress-strain responses of 

unreinforced and rubber-reinforced samples obtained from the calibration of numerical simulations and 

the experimental data measured from the same test configurations. As can be seen, there is, generally, a 

favorable match between the numerical results and the triaxial tests for both backfills. The soil 

properties (unreinforced and with 8% rubber inclusions by weight), as adopted for the numerical 

analysis of the unreinforced and multi-layered rubber-reinforced foundations, are presented in Table 3. 

6.2.3 Model Verification 

After calibration, models (incorporating the materials with the characteristics presented in Table 3 

were used to simulate the unreinforced and multi-layered rubber-soil foundations. The loading was 

applied at a constant, low, rate of 1.5 kPa per second in the vertical direction to simulate the non-
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dynamic, monotonically applied, plate loading process. Fig. 11 illustrates a small part of results at this 

stage of the study, comparing the pressure-settlement of the unreinforced bed and of the multiple-layer 

reinforced beds, as obtained from numerical analysis and from the experimental tests. A relatively good 

match can be observed between the numerical and experimental results. Fig. 12 is presented to compare 

pressure through the depth of the foundation beds, at applied pressures of 280 and 560 kPa, obtained 

from the numerical and experimental results for both unreinforced and reinforced beds. Clearly, the 

numerical model is able to simulate the physical tests results with a high accuracy and, therefore, 

provides a reliable means of performing analyses additional to those performed experimentally. 

To help assess the stress and deformation distribution across the depth of the foundation bed, Figs. 

13 and 14 illustrate the results of an applied pressure of 560 kPa. Fig. 14 shows that the presence of 

soil-rubber layers resulted in heaving around the footing. This may be because of expansion of the 

passive zones in the reinforced foundation due to the effectiveness of the confinement provided by 

rubber inclusions. In the unreinforced condition, part of the passive zone provided by the backfill has 

been lost, resulting in a reduction in bearing capacity compared with that of the reinforced bed (see Fig. 

7(a)). This can be expected to make the bed deflect more. Tavakoli Mehrjardi et al. (2016) observed that 

the failure zones in a reinforced slope formed after a greater volume than in an unreinforced slope 

which might increase the likelihood that confinement be increased by the reinforcement. 

As can be seen from Fig. 15, the intensity of shear strains beneath the footing has been reduced by 

using soil-rubber layers in the foundation. This might be due to reduction in surface soil settlements, 

leading to an attenuation of the the observed shear strains beneath the footing. Also, it can be concluded 

that the failure mechanism has been changed from shear punching to global shear failure by reinforcing 

the foundation and having an increased number of reinforcement layers. Ebrahimian and Nourzad 

(2013) similarly concluded that, in triaxial tests, large shear deformations were associated with a narrow 

band at the middle of the sample’s layer, where failure may start. 

To gain a better assessment of the stress distribution within both the unreinforced and RSM beds, 

Fig. 16 was presented. This figure shows the vertical stress distribution on horizontal planes at depths of 
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60, 210, 390 and 570 mm from the ground surface, respectively. The applied surface pressure in all 

cases remained 560 kPa. Regardless of the number of RSM layers, the variation of vertical stress on a 

specified plane formed a ring-shaped stress distribution with its maximum on the centerline of loading, 

reducing with radial distance. For example, for a foundation bed containing three layers of RSM (N=3), 

the pressure measured at the centerline of the loading surface and at depths of 60, 210, 390 and 570 mm 

were about 553, 355, 158 and 98 kPa, respectively. Pancar and Akpinar (2012) by using some pressure 

cells in a foundation, also found out that the stress distribution was ring-shaped, having its maximum on 

the centerline.    

Table 4 shows the stress distribution angle (the angle of the stress shadow to the vertical), calculated 

from Fig. 16, for each sort of foundation. Although, the stress spread in different sorts of reinforced 

foundations are similar, but it shows that the RSM system can reduce the vertical stress at depth by 

increasing the stress distribution angle. In respect of the stress distribution angle presented in Table 4, 

the stress can be considered to be distributed over a circular area with a diameter estimated by Eq. (1). 

d sD D nh   
(1) 

Where, 

Dd: assumed equivalent diameter of stress distribution area at a specified depth of foundation  

D: Footing diameter  

hs: specified depth of the foundation  

n: load spreading factor which ≈ 1.92, 1.98, 2.24 and 2.27 for unreinforced foundation, RSM (N=1), 

RSM (N=2) and RSM (N=3) respectively. In the line with the presented findings, Tavakoli Mehrjardi et 

al. (2015) proposed a load spreading factor of n=1.5 for unreinforced backfill. 

7. Conclusion 

A series of circular plate load tests were conducted to assess the ability of rubber-soil mixture 

(RSM) layers to provide potential foundation improvement. Benefits were assessed in terms of 

increased bearing capacity, decreased settlement of footings and reduced pressure profile. Based on the 

results described, the following conclusions can be made: 

(1) The optimum percentage of waste tire rubber is around 8% of weight of the mixture matrix. 
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(2) The optimum thickness of RSM layer, to achieve the maximum improvement in bearing pressure 

and settlement of a footing, is approximately 0.4 times footing diameter.  

(3) With increase in the number of RSM layers, the bearing pressure of the footing increases and the 

footing settlement decreases due, in part, to better load spreading of the composite system. The 

values of bearing pressure for the RSM beds with one, two, three and four layers of RSM, at a 

settlement ratio of s/D=4%, are about 1.26, 1.47. 1.52, and 1.54 times greater, respectively, than for 

the reference, unreinforced bed. The rate of enhancement in load carrying capacity of the footing 

was reduced with increase in the number of RSM layers. Performance improvement became almost 

insignificant beyond three RSM layers, particularly at low settlement ratios. 

(4) The inclusion of a RSM layer beneath the loading plate leads to a significant reduction in the 

vertical stress transferred down through the foundation bed by distributing the load over a wider 

area. However, adding further RSM layers gives substantially less additional load spreading benefit 

such that a 4th layer is unlikely to give any additional benefit. For the pressure of 560 kPa applied on 

the footing, the transferred pressure at the depth of 570 mm are about 58%, 45% and 35% for the 

RSM bed with one, two, and three layers of RSM, respectively, compared to the pressure in the 

unreinforced bed.  

(5) The pressure transferred to a given depth in the foundation bed varies non-linearly with applied 

pressure on the footing surface. For the foundation bed with two layers of RSM, the pressure values 

at the level of 390 mm beneath the center of footing grew by a factor of 2.35 when the level of the 

applied pressure only doubled.  

(6) Numerical analysis shows that the presence of soil-rubber layers resulted in expansion of the passive 

zones due to the effectiveness of the confinement provided by the rubber inclusions and that this 

tends to make the bed deflect less. In addition, the RSM system reduces the vertical stress at any 

particular depth by increasing the effective stress distribution angle.    

Generally, the results of this study provide considerable encouragement for the application of 

multiple layers of RSM (with optimum rubber content (Rc), optimum thickness of RSM layers (hrs/D), 

optimum embedded depth of the first layer of RSM (u/D) and optimum thickness of the soil layer 
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between the RSM layers (h/D)) for filed-scale footings. However, the tests results are obtained for only 

one type of soil, one type and size of rubber and one size of footing diameter. Thus, specific 

applications using the quantitative results should only be made after considering these limitations. In 

studies on large- and small-scale tests of the behaviour of granular soil reinforced by planar 

reinforcement, Adams and Collin (1997) and Milligan et al. (1986) showed that the general mechanisms 

and behaviour observed in the small tests could be reproduced at large-scale. Therefore, insights into 

the basic mechanism of a foundation bed protected by RSM layers may be used to guide further studies 

on larger scale tests and centrifugal model tests. However, the results will aid planning of tests using 

different types and sizes of rubber, different sizes and shapes of footing, and different types and sizes of 

soil could be useful for future study. Also, the numerical studies have increased understanding of 

behaviour and will aid the development of design guidance in the application of multi-layered RSM. To 

gain a better understanding of the system, the rubber particles between the soil particles should be 

simulated more realistically or a more compatible constitutive model of the rubber-soil mixture should 

be developed, in any future study. 
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LIST OF SYMBOLS 

Nomenclature 

b Width of the RSM layers 

c Cohesion of soil 

Cu Coefficient of uniformity 

Cc Coefficient of curvature 

D Loading plate diameter 

 Dd assumed equivalent diameter of stress distribution area in a specified depth of foundation  

D10 Effective grain size (mm) 

D30 Diameter through which 30% of the total soil mass is passing (mm) 

D60 Diameter through which 60% of the total soil mass is passing (mm) 

G, Shear modulus of soil 

Gs Specific gravity of soil 

h Vertical spacing of the RSM layers  

hrs Height of the rubber-soil mixture layers  

hs  Specified depth of the foundation 

 K bulk modulus of soil 

N Number of  RSM layers 

n Load spreading factor  

Rc  Rubber content 

s Footing settlement  

u Embedded depth of the first layer of RSM 

ρ Soil density 

ψ Dilation angle  

φ Angle of frictional resistance of soil  

RSM Rubber Soil Mixture 
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SPC  Soil pressure cell 

SPC 1  Top Soil Pressure Cell 

SPC 2  Middle Soil Pressure Cell 

SPC 3  Bottom Soil Pressure Cell 
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Table 1 The physical properties of backfill soil 

Description Backfill 

soil 

Coefficient of uniformity, Cu 33.82 

Coefficient of curvature, Cc 2.36 

Effective grain size, D10 (mm) 0.17 

D30 (mm) 1.52 

D60 (mm) 5.75 

Specify Gravity (Gs) 2.62 

Maximum dry density (kN/m3) 20.62 

Optimum moisture content (%) 5.7 

Angle of frictional resistance, _ (degree) at wet 

density of 17.44 kN/m3 (≈ 80% of maximum dry density) using triaxial test 

38 

 

Table 2 Scheme of the static load tests for unreinforced beds and beds containing RSM layers 

Test 

Series 

Type of 

foundation 

bed 

Values of parameters studied in tests No. of Tests Purpose of the tests 

N hrs/D Rc (%) 

1** Unreinforced ---- ----  1+1* To quantify the improvements in 

Test Series 1, 2 and 3 

2 

Containing 

RSM layer(s) 

1 0.2 4%, 6%, 8%, 

10%, 

12%, 

14%, 

16% 

7+4* To arrive at optimum value of 

rubber content (u/D=0) 

3 1 0.2, 0.4, 0.6, 

0.8 

8% 4+3* To arrive at the optimum values of 

hrs/D (u/D=0.2) 

4** 2, 3, 4 0.4 8% 3+3* To determine the effect of number 

of RSM layers (u/D=h/D=0.2) 

*The tests which were performed two or three times to verify the repeatability of the test data 

**The Tests Series which the soil pressure cells were installed. 

Parameters definitions (D: Loading plate diameter, u: Embedded depth of the first RSM layer, hrs: Height of RSM 

layers, h: Vertical spacing of the RSM layers, Rc: Rubber content, N: Number of RSM layers). 

 

Table 3 Details of material properties used in the present study obtained from calibration (Triaxial test) 

Backfill K (Mpa) G (Mpa) C (kPa)  (Deg.) ψ (Deg.)  ( kN/m3) 

Unreinforced Soil 9.7 3.9 6.5 34 7 1.62 

Rubber Soil Mixture (RSM) (Rc=8%) 6.3 3 20 34 5 1.45 

 

 

Table 4 Stress distribution angle for each sort of foundation 

Foundation Condition Unreinforced RSM (N=1) RSM (N=2) RSM (N=3) 

Stress distribution angle (Deg.) 43.8 44.7 47.2 48.4 
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Fig. 1 Particle size distribution curves for backfill soil and granulated rubber (determined according to 

ASTM D422-07) 

 

 

 

 

 

 

 

 

 

Fig. 2 A view of granulated tire rubber used 
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Fig. 3 Schematic cross-section of the test set-up of the foundation bed (Not to scale) containing a model 

test pit trench, soil and RSM layers, the loading plate model, loading system, dial gauges and soil 

pressure cells (“SPC 1”, “SPC 2”, and “SPC 3”) inside the foundation bed.  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4  Photograph of test installation prior to loading include reaction beam, load plate, hydraulic jack 

and three dial gauges 
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Fig. 5 Variation of bearing pressure with rubber content for one layer of rubber-soil mixture at different 

values of settlement 
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(a) Footing settlement  (b) Thickness of RSM layer 

Fig. 6. Variation of bearing pressure with footing settlement and with thickness of RSM layer at different 

footing settlement ratio, s/D 
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Fig. 7  Variation of bearing pressure with footing settlement and number of RSM layers at different 

footing settlement ratio, s/D 
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Fig. 8 Variation of measured pressure in depth of unreinforced and RSM 

beds at applied pressures of 280 and 560 kPa 
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Fig. 9 Meshing area of numerical model for rubber reinforced bed with three layers 

of RSM and circular surface loading 
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(a) Unreinforced bed (b) RMS bed 

Fig. 10 Comparison between numerical and experimental results at calibration stage 
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(a) Unreinforced bed (N=0) 

 

(b) RSM bed (N=1) 
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(c) RSM bed (N=2) 

 

(d) RSM bed (N=3) 

Fig. 11 Comparison of pressure-settlement variation obtained from numerical and experimental results for 

different layers of RSM 
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(a) Unreinforced bed (N=0) 

 

(b) RSM bed (N=1) 
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(c) RSM bed (N=2) 

 

(d) RSM bed (N=3) 

Fig. 12 Comparison of measured pressure in depth of foundation beds at applied pressures of 280 and 560 kPa, 

obtained from numerical and experimental results  
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(a) Unreinforced bed (N=0) 

 

(b) RSM bed (N=1) 

  
(c) RSM bed (N=2) 

 

(d) RSM bed (N=3) 

Fig. 13 Vertical stress distribution in foundation bed obtained from numerical results 
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(a) Unreinforced bed (N=0) 

 

(b) RSM bed (N=1) 

  

(c) RSM bed (N=2) 

 

(d) RSM bed (N=3) 

Fig. 14 Vertical settlements contours in foundation bed obtained from numerical results 
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(a) Unreinforced bed (N=0) 

 
(b) RSM bed (N=1) 

  
(c) RSM bed (N=2) 

 
(d) RSM bed (N=3) 

Fig. 15 Shear strain contours in foundation bed obtained from numerical results 
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(c) RSM (N=2)    

 

(d) RSM (N=3) 

Fig. 16 Stress distribution for different depth of foundation bed 

 

 


