
Propagating wave correlations in complex systems

Stephen C Creagh, Gabriele Gradoni, Timo Hartmann and

Gregor Tanner

School of Mathematical Sciences, University of Nottingham, UK

E-mail: gregor.tanner@nottingham.ac.uk

Abstract. We describe a novel approach for computing wave correlation functions

inside finite spatial domains driven by complex and statistical sources. By exploiting

semiclassical approximations, we provide explicit algorithms to calculate the local

mean of these correlation functions in terms of the underlying classical dynamics. By

defining appropriate ensemble averages, we show that fluctuations about the mean

can be characterised in terms of classical correlations. We give in particular an

explicit expression relating fluctuations of diagonal contributions to those of the full

wave correlation function. The methods have a wide range of applications both in

quantum mechanics and for classical wave problems such as in vibro-acoustics and

electromagnetism. We apply the methods here to simple quantum systems, so-called

quantum maps, which model the behaviour of generic problems on Poincaré sections.

Although low-dimensional, these models exhibit a chaotic classical limit and share

common characteristics with wave propagation in complex structures.
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1. Introduction

There is a long tradition of describing statistical properties of wave fields and spectra

in terms of semiclassical or high-frequency techniques and random matrix arguments,

both for classical waves such as vibroacoustics [1, 2], electromagnetics [3, 4] and for

quantum mechanics [5, 6, 7, 8]. Spectral and wave function statistics are universal

under very general conditions and, in particular, if the system under consideration is

complex with an associated ray dynamics being chaotic [9]. The statistical properties

depend then only on a few generic parameters such as the mean level density, the mean

wave amplitude and underlying symmetries such as time-reversal symmetry. Deviations

from universality may occur due to non-chaotic dynamical features and for many wave

systems in practical engineering applications, these deviations are of great practical
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importance. In addition, the spatial dependence of mean field values is itself of interest,

particularly if absorption or other dissipative effects become relevant.

Classical wave problems – such as the vibro-acoustic response of complex built-

up structures or the electromagnetic wave field inside a complex cavity – have in

common that they are typically driven by complex, that is, spatially extended but finite,

stochastic, and broad-band sources. In addition, they are typically dissipative and are

often composed both of regular components (rectangular rooms, walls or corridors, for

example) and irregular components (such as cable bundles, circuit boards, moulded

vehicle parts or support beams) whose exact location, shape, and topology may be

uncertain. Such problems pose computational challenges for full numerical simulation,

particularly in the high frequency regime where the scale of a wavelength is small

compared to the size of the structure. The inherent uncertainty that one commonly

encounters in the intrinsic geometry may in any case make detailed characterisation of

the response irrelevant, even if it was computable.

We therefore take an approach in this paper which uses ray propagation to

predict averaged, coarse-grained features of the response, as well as providing statistical

information. The averages are not sensitive to structural changes, while providing

a platform for the prediction of more detailed statistical characteristics in a post-

processing step. The connection between ray propagation and wave-field correlations

is based here on transfer or boundary operator approaches [10]. Transfer operators

allow us to present the problem of wave propagation via multiple reflection in a format

which mirrors very closely the phase space mappings used for ray propagation (while in

principle allowing an exact solution). This transfer operator approach means that we

effectively characterise the problem in terms of a Poincaré-section representation, but

we emphasise this lower-dimensional representation can ultimately be mapped to the

full problem by using Green function identities (see [11]) for a detailed discussion of

propagation of a correlation function from a straight boundary in this context).

Furthermore, an explicit quantitative connection with phase space densities can

be made by presenting the correlation function as a Wigner function. The Wigner

distribution function (WDF) approach has been developed in the context of quantum

mechanics [12], but has found widespread applications also for microwaves [6] and in

optics [13, 14, 15]. The method introduced below exploits a connection between the field-

field correlation function (CF) and the WDF [16, 17, 18]. Both quantities have been

studied intensively in the physics and optics literature. For wave chaotic systems, Berry’s

conjecture postulates a universal CF equivalent to correlations in Gaussian random fields

[19, 20, 3]. Non-universal corrections can be retrieved by making a link between the

CF and the Green function of the system after suitable averaging [21, 22, 23, 24]. The

Wigner function formalism can be used to derive the ray-tracing limit for propagating

wave fields, see for example [11]. Higher-order (Airy-function) correction to a ray-tracing

approach as well as treating evanescent contributions have been discussed in [25, 16, 11].

In this paper, we will use the WDF approach inside finite domains which may be

regularly or irregularly shaped. Extending the treatment in [11], we will consider here
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multiple reflections and interference effects explicitly. We derive the ray-tracing limit

in this case and discuss various limits leading to deviations from a pure ray-tracing

approach. The ray-tracing component itself can be evaluated efficiently when combined

with fast phase-space propagation methods such the Dynamical Energy Analysis (DEA)

developed in the context of vibro-acoustics [26] and mesh-based implementation tools

such as Discrete Flow Mapping (DFM) techniques [27].

We will focus here on linear and stationary (frequency domain) scalar wave problems

using as reference point the wavenumber k or the frequency ω. When considering

quantum systems, we may identify the scale 1/k with ~; extensions to vector wave

equations is straightforward [28]. In Sec. 2, we introduce the concept of transfer

operators and write correlation functions of stationary wave fields in terms of these

operators. We derive relations between correlation functions and phase space densities

and verify the results with the help of a simple quantum map, the kicked Harper map

[29]. In Sec. 3, we extend the results to derive explicit expressions for the variance

around the ensemble mean in terms of classical phase space quantities. The results are

again validated numerically, here for a fully chaotic quantum map, the perturbed cat

map [30].

2. Transfer operator formulation and correlation functions

2.1. The transfer operator T̂

The wave problem under consideration is described in an operator formulation using

transfer operators T̂ defined on a (d − 1)-dimensional manifold, or surface of section

(SOS), where d is the dimension of the underlying space. As a concrete example, we

consider the Helmholtz equation in a d-dimensional region Ω ⊂ Rd

−∇2ψ − k2ψ = ψ0. (1)

Boundary conditions given on ∂Ω are assumed to take the form of a linear relationship

between the solution ψ itself and its normal derivative ∂ψ/∂n. We will in general use

∂Ω as the SOS although other choices are possible. We include an inhomogeneous

source term ψ0 here, which drives the wave dynamics. An operator formulation on

the boundary is naturally given in terms of boundary integral equations, which yield

relations between the wave function ψ and its normal derivative on the boundary. For

our purposes, it is more convenient to follow [10] and decompose the boundary field into

incoming and outgoing components

|ψ〉 = |ψ−〉+ |ψ+〉 (2)

as depicted in Fig. 1. Note that we use the ket notation for the solutions restricted to

the SOS given here by ∂Ω.

The solution to the inhomogeneous wave problem can now be cast in terms of

incoming waves at boundaries,

(1− T̂ ) |ψ−〉 = |ψ0
−〉 , (3)
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Figure 1: Boundary field decomposed into incoming and outgoing component.

where |ψ0
−〉 is the source wave field incoming on the boundary. Transfer operators can

be defined for generic wave systems and for generalised SOSs other than ∂Ω, see [31, 32].

An explicit construction of the exact T̂ is, however, often not straightforward and

implementations have been presented for model systems only [33, 34, 35, 10]. General

expressions for T̂ can be given explicitly in the semiclassical limit k (or ω) → ∞ in

terms of the so-called Bogomolny transfer operator [31, 36],

T (x, x′;ω) ≈
(
k

2πi

)(d−1)/2 ∑
rays

x′→x

D(x, x′) exp
(

ikS(x, x′;ω)− iµ
π

2

)
(4)

with

D(x, x′) =

√∣∣∣∣det

(
∂2S

∂x∂x′

)∣∣∣∣. (5)

The sum in (4) is over all rays passing through the interior to cross from point x′ to

point x on the (d− 1) dimensional SOS. The phase S(x, x′) is the classical action at a

fixed frequency ω of the ray and µ is a phase index arising due to boundary conditions

or ray caustics; S can be complex if there is damping. Note that, when considering the

Helmholtz case in a domain Ω, there is only one such ray trajectory from x′ → x. The

wave number k is introduced here for convenience; in the special case of the Helmholtz

equation (1), we have S(x, x′) ≡ k L(x, x′), the optical length of the chord connecting

x′ to x.

2.2. The correlation function Γ̂

We are primarily interested in classical wave problems driven by noisy, stochastic

sources. In this context, the natural solution of the problem is in terms of a two-point

correlation function

Γ(x1, x2) = 〈x1| Γ̂ |x2〉 ,

where Γ̂ can be interpreted as a density matrix of the system and x1 and x2 are

coordinates on the SOS. In the simplest case of coherent driving, we may consider

Γ̂ = |ψ−〉 〈ψ−|, with |ψ−〉 a solution of the form (2) for a specific source term and

at a given frequency. More generally, we consider driving by stochastic sources and

correspondingly density matrices obtained from, for example, frequency, spatial or time

averages (when considering time dependent, in particular, non-harmonic, stochastic
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sources) [37]. Note that we always assume here that T̂ itself is not explicitly time

dependent, even if the driving is.

Consider a source correlation function Γ0 with

Γ0(x1, x2) = 〈ψ−0 (x1)ψ−0 (x2)∗〉 , (6)

where ψ−0 (x) is the source wave field as defined in (2) and 〈.〉 denotes an ensemble

average over time intervals, frequency or local spatial averaging. Note, that while the

source distribution |ψ−0 〉 show strong spatial fluctuations, the averaged quantity Γ0 can

be a fairly smooth function of both x1 and x2. Starting from (3), we write the system

correlation function, including multiple reflections at boundaries, in terms of the source

correlation function and the transfer operator T̂ . That is,

Γ̂ = (1− T̂ )−1Γ̂0(1− T̂ †)−1. (7)

Formally, one can write this in terms of the source correlation function Γ0 being

propagated along outgoing waves and undergoing multiple reflections at boundaries.

After geometrically expanding the right hand side of Eq. (7), we write

Γ̂ =
∞∑

n,n′=0

T̂ nΓ̂0(T̂ †)n
′
= K̂ +

∞∑
m=1

(
T̂mK̂ + K̂(T̂ †)m

)
, (8)

where the nth iteration of the operator T̂ n is related to waves undergoing n reflections

at ∂Ω. The operator K̂ in (8) contains the diagonal contribution of the double sum and

is defined as

K̂ =
∞∑
n=0

K̂n =
∞∑
n=0

T̂ nΓ̂0(T̂ †)n. (9)

It contains the smooth part of the correlation function as will be shown below. The

terms K̂n can be interpreted as the nth iteration or reflection contribution to the smooth

part of the correlation function. Note that some damping is implicitly assumed here in

order for these sums to converge.

We finally remark that, once the correlation function has been characterised in a

boundary representation, as set out in this section, one can use Green function identities

to propagate this information to the interior. See [11] for a more detailed discussion

of such propagation of correlation functions from a straight boundary, including the

treatment of evanescent components, for example.

2.3. Relation to classical phase space densities

The quantities Γ̂0, Γ̂ and K̂ can be related to phase space densities using Wigner

transformation after additional averaging as demonstrated below and in Appendix A.

The WDF of an operator Γ̂ is defined as

WΓ(x, p) =

∫
ds e−ikps Γ

(
x+

s

2
, x− s

2

)
, (10)
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with back transformation given by

Γ(x1, x2) =

(
k

2π

)d−1 ∫
dp eik(x1−x2)p WΓ

(
x1 + x2

2
, p

)
. (11)

Here, k represents a wave number such as introduced in (1), (4) and d is the dimension

of the full, interior problem. It is shown in Appendix A, that for sufficiently smooth

initial phase space distributions WΓ0 = ρ0, the averaged Wigner transform of K̂n in (9)

is given in terms of the classical flow equations, see also [11, 38].

Classical phase space densities are driven by the phase space dynamics, in our case

a boundary map or more generally the Poincaré map of an SOS. The initial density

ρ0 = WΓ0 can then be associated with a boundary density of rays arriving directly from

a source distribution in the interior. Mapping the source ray density through subsequent

reflections leads to the iterated densities ρ0 → ρ1 → · · · ρn → · · · which can be described

in terms of the (linear) integral operator L defined in the lossless limit as [39]

L[ρn](X) = ρn−1(ϕ−1(X)) =

∫
dX ′δ(X − ϕ(X ′))ρn−1(X ′) (12)

(see below for the treatment of losses). Here, X = (x, p) denotes the collective phase

space coordinates on the SOS (with p the momentum conjugate to x) and ϕ : X ′ → X

is the classical map describing the flow of trajectories from the SOS back to itself after a

single reflection. We use that ϕ is Hamiltonian, and, in particular, phase space volume

preserving. The operator L is also referred to as the Frobenius-Perron (FP) operator

[39]. The integral representation in (12) is useful for considering effects like absorption

and mode conversion as well as uncertainty, see [40]. The ray-dynamical, or classical,

analogues of equations (9) are now provided by

ρ = Lρ+ ρ0 ⇒ ρ =
1

1− L
ρ0 =

∞∑
n=0

Ln ρ0 =
∞∑
n=0

ρn. (13)

From the relation derived in Appendix A, we can now write

〈WKn(X)〉 ≈ WΓ0

(
ϕ−n(X)

)
= Ln [ρ0] (X) = ρn(X), (14)

and we obtain for the Wigner function of the full K̂ operator to leading order

〈WK〉 =
∞∑
n=0

〈WKn〉 ≈
∞∑
n=0

Ln[ρ0] =
1

1− L
ρ0 = ρ . (15)

The averaging 〈·〉 is understood as defined in (6) and can be performed in terms of an

average over an ensemble of similar systems, appropriately chosen frequency averaging

or local (spatial) averaging, for example. In addition, it is assumed that the initial

density ρ0 = WΓ0 is a smooth function on the scale of ∆x∆k = 1.

For the full correlation function, we find that contributions to (8) with n 6= n′ are

removed by averaging so that we may assert in addition that

〈WΓ〉 = 〈WK〉 ≈ ρ. (16)
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The quantities Γ̂ and K̂ thus have the same mean when taking a suitable average and

this mean value is given by the classical equilibrium (phase space) density ρ obtained

from (15), that is,

〈Γ̂〉 = 〈K̂〉 ≈ W−1[ρ]. (17)

We will find in the next section, however, that fluctuations of Γ̂ about this mean are

much stronger than those of K̂, particularly in the limit of weak damping.

The averaged quantities in (17) contain detailed information about the system.

Powerful numerical tools have been developed for computing ρ, and thus indirectly

for the mean of Γ̂. Among those, the DEA technique together with the DFM

implementation on meshes is particularly suitable for complex structures, which has

been used in a range of engineering applications [26, 27, 41].

Note that, without losses, the FP operator L has a leading eigenvalue 1 and the

solution to Eq. (15) diverges. It is thus necessary - in order to arrive at mathematically

and physically meaningful solutions - to account for losses such as naturally occur

in wave systems due to wall absorption or absorption in the interior of Ω or due to

radiation through apertures. Absorption can be included in a FP operator formalism

by introducing, for example,

Lµ[ρ0](X) =

∫
e−µ(X′)δ (X − ϕ(X ′)) ρ0(X ′) (18)

= e−µ(ϕ−1(X))ρ0[ϕ−1(X)], (19)

where we require that the damping coefficient µ ≥ 0 is additive along the flow, mimicking

distributed losses in many real-life engineering systems. For interior damping, such as

for acoustic waves in air, we typically have µ(X) = µ0 L(X), where L is the length of a

trajectory segment between two reflections on the boundary starting at X and µ0 ≥ 0

is a real constant.

2.4. Numerical illustration of averaged response using quantum map models

We will demonstrate the validity of the relations described in the last section with the

help of a simple model in which the transfer operator is simulated by

T̂ = vÛ ,

where Û is a unitary operator acting on a space of dimension N and the prefactor v,

satisfying 0 < v < 1, accounts for dissipation. In numerical investigations here and

in following sections, we choose Û to be the quantum analogue of a classical map on

the unit torus (see Appendix B for further details). By choosing maps with different

levels of chaotic behaviour, we aim to simulate the response of larger, complex systems

governed by classical wave theories. In these models, the dimension N takes on the role

of the wave number k as the large parameter.

In order to illustrate the average response set out in the preceding discussion,

we let Û take the form of a quantum kicked Harper (QKH) map in this section, see
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Figure 2: The phase space dynamics of the classical and quantum kicked Harper map

for N = 128 and without damping (v = 1); the initial distribution is chosen according

to Eq. (20) with x0=0.65, p0=0.5 and σx=σp=0.075. The left panel shows the classical

density ρn, where n is the number of iterations (using 107 particles). The right panel

shows the quantum Wigner function WKn on a 128×128 grid with (a) n = 0, (b) n = 1,

(c) n = 3, (d) n = 10 kicks. The blue regions denote negative values of the Wigner

function. A box of area h = 1/N has been included in part (a) in order to give a visual

sense of the quantum scale.

[42, 43, 44] or the review [29] (other maps are used when discussing fluctuations about the

mean later). The corresponding classical kicked Harper map exhibits a predominantly

chaotic dynamics but with small regular islands. Although these islands are small, their

presence leads to a significant degree of tanglement of the stable and unstable manifolds.

This gives rise to a strong dependence on initial source distributions when considering

correlation functions, which makes it a good test model for studying relations between

classical and wave operators.

The source Γ̂0 is chosen so that the associated Wigner distribution function takes

the form

WΓ0(x, p) = Ce−(1−cos 2π(x−x0))/(2πσx)2−(1−cos 2π(p−p0))/(2πσp)2 , (20)

where C is a normalisation constant chosen so that Tr Γ0 = 1 and σx and σp respectively

determine the variances in the x and p coordinates. For small enough σx and σp this is

a nearly Gaussian source distribution in phase space centred on X0 = (x0, p0), and is

associated with a corresponding nearly Gaussian source correlation function Γ0(x1, x2).

The time evolution of the Wigner transform WKn of K̂n is displayed in Fig. 2 and is

compared with the evolution of a classical phase space density with initial distribution

according to (20). The quantum evolution follows the classical dynamics closely for small
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Figure 3: The stationary phase space density ρ (left) is compared with the quantum

distributions WK (middle panel) and with the Wigner function of the full stationary

correlation function WΓ (right) for N = 128 and v = 0.9. The parameter for the initial

distribution are x0=0.65, p0=0.5 and σx=σp=0.075. In (b), an average over 152 different

values of the Harper map parameters (in a range of ±5%) is performed in the quantum

version but not in the classical version; no averaging has been done in (a) .

n as expected from Eq. (12) and detailed in Appendix A. Once the classical dynamics

foliates phase space down to phase space cells of area 1/N , wave fluctuations take over

and wash out the classical phase space structures, see Fig. 2d at n = 10. Note that,

after several interations of the map, the classical density is stretched along the unstable

manifolds of the system and tracks, for example, the folds and switchbacks in them

that arise from the small islands present. Some of these features are also seen in the

propagated Wigner function but the details are lost.

In Fig. 3, we compare the classical (stationary) phase space distribution ρ defined

in (13) with the Wigner transforms of K̂ and Γ̂ for a damping value v = 0.9. The

classical and wave results coincide remarkably well for ρ and WK even without further

averaging, see Fig. 3a, while only traces of the classical phase space structure are left

for WΓ in this case. When performing a further parameter average in the Harper map,

the quantum fluctuations are suppressed and the classical phase space structure comes

out more clearly, both for WK and WΓ, see Fig. 3b. The fluctuations in WΓ are in both

cases much larger than in WK , with similar differences to be expected for the original
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objects Γ̂ and K̂. We can in fact quantify the increased fluctuations in Γ̂ compared to

K̂ as a function of v, as will be described in the next section.

The results show that the classical phase space density gives the mean value for

both quantities WK and WΓ as expressed in (16). It also shows how well the classical

dynamics describes a wave operator such as WK down to a detailed description of the

complex phase space structure present in a mixed system like the kicked Harper map.

Note, that the wave fluctuations due to higher iterates of the map are suppressed here

due to the 10% damping (v = 0.9) introduced.

3. Fluctuations of K̂ and Γ̂ about the mean

Although K̂ and Γ̂ have the same average, the fluctuations about the mean are much

greater for Γ̂ than for K̂ as illustrated in Fig. 3, an effect which is greatly amplified in

the weak damping limit. In this section we quantify this effect for the simple model

T̂ = vÛ introduced in Sec. 2.4 by calculating mean values for Tr Γ̂2 and Tr K̂2. Formally,

these also provide us with variances of individual matrix elements Kij and Γij in any

given basis, using, for example,

〈|Γij|2〉N =
1

N2
Tr Γ̂2. (21)

Here 〈·〉N denotes an average over the N -dimensional basis on the space on which T̂ is

defined.

Explicit expressions can be given for these quantities, as outlined in the remainder

of this section. In particular, if we average over a parameter such as frequency (or

system dimension in the quantum map model), we can demonstrate that fluctuations

in Γ̂ scale simply with fluctuations in K̂, according to

〈Tr Γ̂2〉 =
1 + v2

1− v2
〈Tr K̂2〉. (22)

This expression is quite general and is equally valid in chaotic and integrable limits, for

example. It is also true irrespective of whether the system has time reversal symmetry

or not. It provides a direct quantitative measure of the greater fluctuations seen in Γ̂,

relative to those of K̂, as v → 1. Furthermore, we will see that the fluctuations of K̂

itself can be obtained using information that is readily available from propagation of

a corresponding classical density, as performed in complex structures using the DEA

method, for example.

Using (21), the scaling relationship (22) provides an equivalent scaling

〈|Γij|2〉N =
1 + v2

1− v2
〈|Kij|2〉N (23)

of the relative sizes of corresponding matrix elements. It should be noted that in

practice such averages over all matrix elements are dominated by diagonal elements

in the weak damping limit or when the source intensity is extended over length scales
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much larger than a wavelength: however, it can be shown using alternative but more

involved calculations, not reported here, that these results can also be applied element

by element. Finally, any statement involving such traces can be expressed also as a

relation between Wigner functions. For example, (22) can also be expressed in the

form,

〈|WΓ(x, p)|2〉 =
1 + v2

1− v2
〈|WK(x, p)|2〉 (24)

using standard properties of Wigner functions. This relation provides an explicit

quantitative statement of the qualitative observations made in Fig. 3.

3.1. The variance of the diagonal part K̂

We consider K̂ first and write Eq. (9) as

K̂ =
∞∑
n=0

v2n Γ̂n =
∞∑
n=0

v2n ÛnΓ̂0Û
−n

with Γ̂n = v−2nK̂n representing the smooth n-step correlation function as in Eq. (9).

Using the cyclic permutability of the trace we may write,

Tr(K̂2) =
∞∑

n,n′=0

v2(n+n′)Tr
[
Ûn−n′Γ̂0Û

n′−nΓ̂0

]
(25)

=
∞∑

n,n′=0

v2(n+n′)A(n− n′), (26)

where

A(n) = Tr
(

Γ̂0Γ̂n

)
is the n-step return probability. Note that A(n) = TrΓ̂0Γ̂n = TrΓ̂nΓ̂0 = TrΓ̂0Γ̂−n =

A(−n). After reordering the double sum, this may be written in the form

Tr(K̂2) =
1

1− v4

∞∑
n=−∞

v2|n|A(n) . (27)

So far the calculation is exact and completely independent of the classical limit.

The quantity A(n) can again be related to the classical phase space dynamics using

A(n) = Tr
(

Γ̂0Γ̂n

)
=

(
k

2π

)d−1 ∫
dX WΓ0(X)WΓn(X) . (28)

We now make the approximation used in (12) that, on averaging, the fluctuations in

A(n) are removed and that it may be approximated by its classical or ray-dynamical

analogue, the classical phase space autocorrelation function

〈A(n)〉 ≈ Acl(n) =

∫
dX ρn(X)ρ0(X) . (29)
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Here, ρ0 is the correspondingly averaged classical phase space density of the source and

ρn = Lnρ0 its nth-reflection iterate. Then

〈Tr(K̂2)〉 ≈ 1

1− v4

∞∑
n=−∞

v2|n|Acl(n).

For strongly chaotic systems, the autocorrelation function decays exponentially as

Acl(n) ∼ a0 + a1 exp(−γcorn), (30)

where γcor denotes the correlation exponent and a0, a1 are constants depending on the

initial density ρ0 (e−γcor typically being the 2nd largest eigenvalue of the FP operator.)

Note that, for strong damping, it suffices to know the autocorrelation function A(n) for

relatively small n in order to compute Tr(K̂2). In this case one finds that the exact A(n)

may be well approximated by its ray-dynamical analogue Acl(n) even without averaging

and that the result above then also holds for individual maps. (Of course, the trace

operation itself performs an average over basis states even if no further averaging is

performed.)

3.2. The variance of the correlation function Γ̂

To get an equivalent expression for the variance of the full correlation function of the

stationary wave field, Γ̂, we start from Eq. (8), giving

Γ̂ =
∞∑

n1,n2=0

vn1+n2 Ûn1Γ̂0Û
−n2

from which we obtain (using cyclic permutability of the trace again)

Tr Γ̂2 =
∞∑

n1,...,n4=0

vn1+n2+n3+n4Tr
[
Ûn1Γ̂0Û

−n2Ûn3Γ̂0Û
−n4

]
=

∞∑
n1,...,n4=0

vn1+n2+n3+n4Tr
[
Ûn1−n4Γ̂0Û

−n2+n3Γ̂0

]
. (31)

We argue next that, after averaging,

〈Tr [ÛnΓ̂0Û
−n′Γ̂0]〉 = δnn′〈A(n)〉

due to the phase difference that one necessarily finds in contributions to Ûn and

Ûn′ when n 6= n′. On average, the sum in (31) is then dominated by terms with

n1 − n4 = n2 − n3 = n and, after reordering, we may write

〈Tr(Γ̂2)〉 =
∞∑

n=−∞

∞∑
n2,n4=0

v2(n2+n4)v2|n|〈A(n)〉

=
1

(1− v2)2

∞∑
n=−∞

v2|n|〈A(n)〉 (32)

=
1 + v2

1− v2
〈Tr(K̂2)〉, (33)



13

as previously reported in (22). Note that this condition has been derived based on

neglecting interfering contributions which are wiped out by appropriate averaging. We

have not made any further assumptions about the underlying classical dynamics and

the relations (22) – (24) are universal, independent of whether the system dynamics is

regular, chaotic or mixed. In particular, the variance of Γ̂ always exceeds that of K̂,

only approaching the same value in the limit of strong damping, v → 0.

We note that relation between wave fluctuations (as a function of energy or

frequency) and classical decay rates is a well established concept and has been discussed

in the context of fluctuations in scattering cross sections [45, 46] or conductance

fluctuations for transport through open chaotic cavities [47], see also [48]. The relevant

classical quantity is here the classical escape rate γesc, which in our setting corresponds

to the rate of dissipation γesc = − log v. A generalised treatment involving the full

spectrum of the FP operator is given in [49]. Our result highlights the influence of

higher order eigenvalues of the FP operator on the variances in Eqs. (27) and (32) such

as through the classical decay of correlation contributions, Eq. (30). The main result of

this section is, however, the relation (33) relating the fluctuations in the ’smooth’ part,

K̂, to the fluctuations in the total correlation function. Together with (17) and (29),

we can now relate the first and second moments of the distributions of both Γ̂ and K̂ to

classical phase space observables such as the stationary phase space density ρ and the

classical phase space autocorrelation function Acl(n). These quantities depend of course

on the underlying classical dynamics.

3.3. Numerical illustration of fluctuations using quantum map models

The fluctuations of K̂ and Γ̂ are now illustrated using a quantum map model. As asserted

in the preceding discussion, averages (27) and (32) and the corresponding variances are

insensitive to the underlying symmetries and to how chaotic or integrable the system is,

although the detailed distributions are not.

In this section, we use a perturbed cat map [30], in which a quantum cat map

[50, 51, 52] is perturbed with a QKH map of the form used in Sec. 2.4 (see Appendix

B for more details). The perturbation is large enough to break any underlying time-

reversal or spatial symmetries of the quantum version of the cat map, but small enough

that the overall classical dynamics is still completely chaotic. A source term Γ0 is used

which corresponds to the nearly Gaussian density given in (20), with σx = σp = 1/2.

It is centred on a period-one fixed point X0 = (x0, p0) near the origin of phase space,

which slows the short-time decay of the autocorrelation function A(n).

Corresponding numerically computed values of Tr K̂2 and Tr Γ̂2 are shown as circles

and triangles respectively in Fig. 4 as v → 1. As v is varied, the dimension N of the

quantum map is also changed, so that typical variations can be seen in individual values

of Tr K̂2 and Tr Γ̂2 around the averages (27) and (32), presented in the figure as solid

curves. Over the range shown, individual values of Tr K̂2 follow the average prediction

(27) quite closely. The trace operation is effectively self-averaging in this case. In
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Figure 4: Growth in the fluctuations of K̂ and Γ̂ are illustrated as v → 1, measured

respectively by TrK2 and Tr Γ2. Calculations are for a nearly Gaussian source density

Γ0 driving a perturbed cat map and centred on a fixed point (of period one). Solid

curves are the averaged predictions (27) and (32) based on the classical autocorrelation

function A(n). Circles and triangles are respectively evaluations of TrK2 and Tr Γ2 for

individual values of N : as v is varied, N is stepped from N = 200 to N = 400. Note

that the averages (27) and (32) are independent of N : we let N change in this figure

simply to give a sense of the typical variation about the predicted mean for individual

maps. This aspect is illustrated more explicitly in Fig. 5

contrast, although (32) is found to be a good predictor of average behaviour, individual

values of Tr Γ̂2 are seen to fluctuate significantly about the mean, and to an increasing

extent as v approaches one.

In fact, it is found in Fig. 4 that most individual values of Tr Γ̂2 fall significantly

below the mean (32) when v is very close to one, with the average being achieved because

increasingly rare individual cases arise with exceptionally large values. This can be

understood simply in terms of the physics of the weakly damped resonant response of

the system and is illustrated in more detail in Fig. 5. Here we present fluctuations with

changing N of Tr Γ̂2 for the particular values v = 0.995 and v = 0.999 of the damping

parameter, represented respectively by crosses and circles. The smallest individual

values of Tr Γ̂2 are insensitive to v in this illustration. Physically, these correspond

to instances of the system being off resonance and changing only slightly as v makes the

final steps towards unity. In the weak damping limit, where resonances are very narrow,

this accounts for most parameter values. However, the minority of cases which are at
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Figure 5: Fluctuations in Tr Γ̂2 are shown as N varies between 200 and 400 for v = 0.995

and v = 0.999, represented respectively by crosses and circles. The corresponding

average values are shown as horizontal dashed and solid lines, respectively. The smallest

values of Tr Γ̂2 are insensitive to the value of v (the crosses are near the circles at the

bottom of the graph), but the largest values change significantly as v approaches unity.

or near resonance respond very wildly to changing v and become dramatically larger as

v is increased. These instances of resonant response bring the average value of Tr Γ̂2 up

to its predicted level (32), represented in Fig. 5 by the horizontal lines.

Clearly then, the average fluctuations predicted in this paper present only a

partial characterisation of the system response in the weak damping limit. A complete

description demands a characterisation of the distribution of values. This lies outside

the scope of the current discussion but will be reported in a future publication.

The calculations in this section do provide, however, a simple characterisation of the

variability of the response of the system about the mean.

4. Conclusion

Ray tracing methods often provide the only feasible means of treating wave propagation

in the high-frequency limit. Recently developed DEA methods have in particular

provided an effective means of implementing such phase-space transport in very large,

complex structures. They provide an effective description of the local averaged response

of large systems to driving by sources that are themselves also often complex and

statistically characterised. However, such methods used in isolation miss important

physical phenomena related to interference and to higher order effects such as diffraction.
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The aim of this paper has been to establish and exploit an entirely wave-based

analogue of this phase-space transport problem so that wave effects such as multi-path

interference can be incorporated into large-scale simulations with complex and noisy

forcing. We have argued that an effective platform for the calculation of such wave effects

can be built on the relationship between correlation functions and Wigner functions

that has been established in the contexts of quantum mechanics and optics. Two-

point correlation functions provide an effective means of exploiting available information

about spatial localisation and directionality of waves radiated from a noisy, complex

source. They have proven to be an effective way of characterising EM emissions from

electronic circuitry through direct measurement, see for example [37]. Correlation

function propagators then provide a completely wave-based analogue of phase-space

transport approaches such as DEA.

Importantly, this allows us to provide a statistical description of fluctuations due

to interference in the response of a forced wave problem, using only information that is

readily available from a direct phase-space simulation. In particular, the global variance

of the wave correlation function can be described in terms of an autocorrelation function

of propagated phase-space densities. In essence this allows us to boot-strap phase-space

transport simulations to predict fluctuation about the mean of the response of the

system, as well as the mean itself. The approach has been tested on simple quantum

map models based on a representation of wave transport by boundary transfer operators,

but using a framework that we believe will scale up effectively to much larger systems.

Achieved results are relevant in the statistical characterisation of large vibro-acoustics

and electromagnetic structures, including reverberation chambers operated at arbitrary

frequencies.
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Appendix A. The evolution of correlation functions

We will give here a derivation of Eq. (14) valid in the semiclassical limit (see also [38]).

Starting from Eq. (9), we write K̂n = T̂ nΓ̂0(T̂ n)† in x representation as

Kn(x1, x2) =

∫
dx′1dx′2 T

n(x1, x
′
1)K0(x′1, x

′
2)(T n)†(x′2, x2),

where we set K0 = Γ0 for convenience. We employ the short-wavelength approximation

T n(x, x′) ≈
(
k

2πi

)(d−1)/2∑
α

Dα(x, x′) eikSα(x,x′) (A.1)
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of the operator T̂ n, where the sum index α runs over all trajectories from x′ to x that

encounter the SOS n times, while other quantities are defined as in (4) and (5) with

obvious modifications. For notational compactness, the phase factor µ is assumed to be

absorbed into the definition of the amplitude here. Using the transformation

x1 = x+
s

2
; x′1 = x′ +

s′

2
; (A.2)

x2 = x− s

2
; x′2 = x′ − s′

2
;

and starting from the semiclassical expression (A.1), we obtain

Kn

(
x+

s

2
, x− s

2

)
≈
(
k

2π

)d−1 ∫
dx′ds′

∑
αβ

Dα

(
x+

s

2
, x′ +

s′

2

)
D∗β

(
x− s

2
, x′ − s′

2

)
× eik(Sα(x+s/2,x′+s′/2)−Sβ(x−s/2,x′−s′/2))K0

(
x′ +

s′

2
, x′ − s′

2

)
,

(A.3)

where α and β label n-bounce orbits from x′1 to x1 and from x′2 to x2, respectively.

At this point, we need to make two crucial assumptions about the quantities of

interest. First, we concentrate on the averaged response, so that orbit combinations

with topologically distinct α and β, which arrive with significant noncancelling phase

differences, are washed out. We are then left just with the diagonal contributions in

which an orbit α coincides with an orbit β up to a slight deformation. In the following

we therefore set α = β. Second, we assume that the source has a sufficiently short

correlation length that propagation can be approximated using Taylor expansions of

the surviving amplitude and phase contributions, truncated at the terms

Dα

(
x+

s

2
, x′ +

s′

2

)
D∗α

(
x− s

2
, x′ − s′

2

)
≈ |Dα(x, x′)|2

and

Sα

(
x+

s

2
, x′ +

s′

2

)
− Sα

(
x− s

2
, x′ − s′

2

)
≈ pα(x, x′)s− p′α(x, x′)s′.

Here, p′α(x, x′) = −∂Sα(x, x′)/∂x′ and pα(x, x′) = ∂S(x, x′)/∂x [53] are respectively

the initial and final momenta of the n-bounce trajectory from x′ to x labelled by α.

The condition that the correlation length is sufficiently short translates in the Wigner

representation to the condition that the dependence on p of the Wigner function is

sufficiently slow. Note that even very smooth initial densities wrinkle under chaotic

evolution so that rapid oscillations develop as n increased. For a fixed underlying

dynamics, the truncated Taylor expansions above may therefore fail for moderately

large n. By using the derived identities below for longer times we are therefore implicitly

assuming that there is also sufficient averaging over system parameters that very fine-

scale classical features are smoothed out in propagated densities.
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With these assumptions we obtain〈
Kn

(
x+

s

2
, x− s

2

)〉
≈
(
k

2π

)d−1 ∫
dx′ds′

∑
α〈

|Dα(x, x′)|2eik(pαs−p′αs′)K0

(
x′ +

s′

2
, x′ − s′

2

)〉
.

Using the definition of Dα given in (5), we may write

∑
α

∫
dx′|Dα(x, x′)|2 {·} =

(
k

2π

)d−1 ∫
dp {·} ,

where on the left we sum over all orbits arriving at x, labelled by initial position x′ and

topology α. On the right we reformulate the same sum as a simple integration over the

momentum p at arrival (in which there is no need for the label α since x and p uniquely

determine the orbit topology). Using this reformulation of the sum we can write

〈
Kn

(
x+

s

2
, x− s

2

)〉
≈
(
k

2π

)d−1 ∫
dp ds′

〈
eik(ps−p′s′) K0

(
x′ +

s′

2
, x′ − s′

2

)〉
=

(
k

2π

)d−1 ∫
dp eikps 〈WK0(x

′, p′)〉
(A.4)

with WK0(x
′, p′) denoting the Wigner transform of K0 as defined in (10). Note that

X ′ = (x′, p′) in (A.4) is now a function of X = (x, p) through the relation X = ϕn(X ′),

with ϕ defining the dynamics on the SOS (see Sec. 2.2). After applying the Wigner

transformation on both sides of Eq. (A.4) and evaluating the resulting δ-function, we

obtain

〈WKn(X)〉 =
〈
WK0

(
ϕ−n(X)

)〉
, (A.5)

which mirrors the action of the classical FP operator.

Appendix B. Conventions for quantum maps

Here we summarise the quantum maps used in Secs. 2.4 and 3.3 to test correlation

function propagation. We use maps defined on a toral phase space with unit period in

each of the phase space coordinates x and p.

We begin with the classically-defined kicked map defined by

x = x′ +G′(p′)

p = p′ − F ′(x), (modulo 1)

where the primes on F and G denote differentiation. This map can be viewed as being

the result of using unit-time flow under the Hamiltonian G(p), followed by unit-time flow

under the Hamiltonian F (x). The illustrations in Figs. 2-3 assumed G′(p) = a sin 2πp
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and F ′(x) = b sin 2πx and a = −2b = 2/π, in which case the map is a kicked Harper

map, which will be the nomenclature we use henceforth. These maps provide generic

examples with predominantly chaotic dynamics mixed with small regular islands for the

chosen parameter values.

The corresponding quantum map is then defined on a Hilbert space of dimension

N = 1/(2π~) such that

ÛQKH = e−2πN iF (x̂)e−2πN iG(p̂).

The geometry of phase space is reflected in the detailed quantisation of the position

and momentum operators x̂ and p̂, and on the boundary conditions imposed on

quantum states. We can use a position basis x̂ |xi〉 = xi |xi〉, with quantised positions

xi = (i + αx)/N , whose index i runs over i = 0, · · · , N − 1. Alternatively, we can

use a momentum basis p̂ |pi〉 = pi |pi〉 on the same index set with quantised momenta

pi = (i+αp)/N and related to the position basis by 〈xl|pj〉 = e2πN ixlpj/
√
N . The shifts αx

and αp are determined by the boundary conditions satisfied by states under translation

across the torus. The direct wavefunction ψ(xi) = 〈xi|ψ〉 satisfies ψ(xi+1) = e2πiαpψ(xi).

The momentum representation ϕ(pi) = 〈pi|ψ〉 satisfies ϕ(pi + 1) = e−2πiαxϕ(pi). All of

the maps used in this paper use either αx = αp = 0 or αx = αp = 1/2 and, in particular,

Figs. 2-3 assumed αx = αp = 0.

Alternatively, cat maps and their quantisations provide examples of fully chaotic,

hyperbolic dynamical systems. Quantisations of the simple cat map exhibit nongeneric

degeneracies but these can be removed by perturbations which retain the fully chaotic

dynamics. In particular, we use a perturbed cat map

ÛPC = ÛCÛQKH,

where ÛQKH is a quantum kicked Harper map and ÛC, defined by

〈xj|ÛC |xl〉 =
1√
N

e2πN i(x2j−xjxl+x2l /2),

quantises the (unperturbed) cat map

x = x′ + p′

p = x′ + 2p′ (modulo 1).

This quantisation is well-defined for even N with αx = αp = 0 and for odd N with

αx = αp = 1/2. The QKH map used for the numerical illustration in Sec. 3.3 was also

of this form with G′(p) = a sin 2πp, F ′(x) = −b sin 2πx and a = b = 0.1. This choice

completely eliminates symmetries in the combined map, while presenting a small enough

perturbation of the cat map that the dynamics is fully chaotic.
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