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This paper gives the first systematic perturbation analysis of the audio distortion and mean switching
period for a self-oscillating class-D amplifier. Explicit expressions are given for all the principal compo-
nents of audio distortion, for a general audio input signal; the specific example of a sinusoidal input is
also discussed in some detail, yielding an explicit closed-form expression for the total harmonic distortion
(THD). A class-D amplifier works by converting a low-frequency audio input signal to a high-frequency
train of rectangular pulses, whose widths are slowly modulated according to the audio signal. The audio-
frequency components of the pulse-train are designed to agree with those of the audio signal. In many
varieties of class-D amplifier, the pulse-train is generated using a carrier wave of fixed frequency, well
above the audio range. In other varieties, as here, there is no such fixed-frequency clock, and the local
frequency of the pulse-train varies in response to the audio input. Such self-oscillating designs pose a par-
ticular challenge for comprehensive mathematical modelling; we show that in order to properly account
for the local frequency variations, a warped-time transformation is necessary. The systematic nature of
our calculation means it can potentially be applied to a range of other self-oscillating topologies. Our
results for a general input allow ready calculation of distortion diagnostics such as the intermodulation
distortion (IMD), which prior analyses, based on sinusoidal input, cannot provide.

Keywords: class-D amplifier, mathematical model, astable integrating modulator, hysteresis-controlled
self-oscillating modulator, hysteresis comparator.

1. Introduction

Class-D amplifiers are nowadays used in a wide variety of consumer products (Berkhout & Dooper,
2010); in particular, their increasing adoption in mobile electronic devices derives from their high ef-
ficiency, which reduces heat generation and extends battery life. At the heart of a class-D amplifier is
the conversion of an audio signal (of relatively low frequency) to a train of rectangular pulses of much
higher frequency. The widths of these pulses are modulated according to the audio signal in such a way
that the low-frequency components in the pulse-train correspond closely to the audio signal itself. This
technique is pulse-width modulation (PWM) (Black, 1953).

Conventional PWM is achieved by comparing the audio signal (or some other signal in the circuit)
with a high-frequency carrier wave (typically a sawtooth or triangular wave); the output pulse-train then
switches whenever the difference between the two signals changes sign. In such designs, the quality of
the audio reproduction depends crucially on the precision with which the slopes of the carrier wave can
be made linear (Tan et al., 2003); this requirement for a highly linear, high-frequency carrier wave poses
a particular technological challenge. Furthermore, the presence of a fixed-frequency carrier wave gives
rise to strong high-frequency peaks in the power spectrum of the output, which can lead to undesirable
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electromagnetic interference (EMI) affecting nearby equipment.
In contrast, the self-oscillating variety of class-D amplifier, as treated in this paper, obviates the

need for a carrier wave (Green & Williams, 1992; Høyerby & Andersen, 2009; Lu & Gharpurey, 2011;
Piessens & Steyaert, 2005; Poulsen & Andersen, 2004; Putzeys, 2005, 2009; Yu et al., 2009). It is
thus potentially advantageous for low-cost implementation, since it eliminates the requirement for a
separate high-precision carrier-wave generator. A further benefit is that the frequency of the output
pulse-train tends to vary with the audio signal, so the high-frequency spectrum of the output is spread,
with consequent reduction in EMI. Power losses through switching can be reduced, since the switching
frequency drops at peaks in the magnitude of the input signal. Lu & Gharpurey (2011) also observe that
their self-oscillating class-D amplifier suffers less significant harmonic distortion than a conventional
carrier-wave-based design. It may be worthwhile to note the variety of terminology used in the engi-
neering literature to describe related self-oscillating designs; such terms include the astable integrating
multivibrator (AIM) (Poulsen & Andersen, 2004) and the sigma–delta modulator (Green & Williams,
1992).

Although self-oscillating class-D amplifiers are widely used, the corresponding mathematical analy-
sis is relatively limited. Two principal reasons for the difficulty in providing a comprehensive mathemat-
ical theory are (i) the presence of negative feedback (introduced to suppress, for example, the influence
of power-supply imperfections) and (ii) the presence of slow modulations in the pulse-train frequency.
Prior analyses (e.g., Green & Williams, 1992; Høyerby & Andersen, 2009; Lu & Gharpurey, 2011)
generally derive results for a constant (i.e., DC) input, s0, and infer analogous results for a time-varying
audio input, s(t), by substituting s(t) for s0 in the constant-input results, then making further approxi-
mations. The use of such a quasi-static assumption is understandable, because the audio signal typically
varies only slightly over one period of the switching of the pulse-train, and it seems to provide a reason-
able “leading-order” approximation to the operation of the device, albeit after some parameter fitting (Lu
& Gharpurey, 2011). Other analyses (Chang & Tan, 2011; Piessens & Steyaert, 2005) approximate the
behaviour of the comparator that generates the rectangular-wave output. However, it is difficult to quan-
tify the effects of the various (often rather ad hoc) approximations in prior treatments, and it is unclear
that all contributions to practically important quantities such as the total harmonic distortion (THD) have
been properly accounted for. Finally, because such approaches are not entirely systematic, it is unclear
how they can be extended to different amplifier topologies.

In this work, we present a systematic analysis for a simple, first-order, self-oscillating class-D am-
plifier with a single negative-feedback path and with a genuinely time-varying input. The architecture
of this self-oscillating amplifier is similar to that of a first-order continuous-time sigma–delta modula-
tor (Green & Williams, 1992). Our approach is based on perturbation methods, the small parameter ε
being proportional to the ratio of typical audio frequencies to typical switching frequencies; it requires
significant modification to the approach used in our previous treatments of class-D amplifiers (Cox &
Candy, 2005; Cox & Mouton, 2015; Cox et al., 2011, 2013; Yu et al., 2012), all of which have concerned
fixed-clock-frequency designs. Specifically, it is necessary to introduce a “warped-time” transformation
to account for slow modulation of the switching frequency. Furthermore, the form of this transformation
must be chosen so that the final, demodulation stage of the calculation can be carried out straightfor-
wardly.

Our results comprise a set of closed-form expressions for (i) the mean period of the output switching
and (ii) the audio components of the amplifier output, from which the distortion characteristics may be
determined. In particular, by construction the audio output expression guarantees to give all components
of distortion at each order in ε (by contrast, the ad hoc nature of previous approaches does not allow a
corresponding statement to be made there). A significant achievement of the present work is that such
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expressions are given for a general audio input. While results are illustrated for the important test case
of a sinusoidal input, from which the THD is calculated, the general expression provides a valuable
tool — not previously available — for engineers who wish to calculate measures of distortion beyond
just the THD, such as the intermodulation distortion (IMD) (Cox et al., 2011, 2013; Guo et al., 2014;
Metzler, 1993; Yu et al., 2012) that occurs when the input contains two or more frequencies.

The importance of quantifying the audio distortion is clear. But, from a practical perspective, it is
also important to have an accurate relation between switching frequency and input signal, particularly
in stereo applications, where a difference in switching frequency between the channels can inject low-
frequency intermodulation products into the audio band (Pillonnet et al., 2008). In addition, a decrease
in carrier frequency can significantly worsen the performance of the amplifier as the output power level
increases (Poulsen & Andersen, 2005), or even cause stability problems in a high-order design. Our
analysis allows one to determine (at least in principle) the signal–frequency relation to any order in ε ,
where previous approaches are limited to a leading-order estimate.

This paper is organised as follows. In Section 2, we formulate our mathematical model for a first-
order, self-oscillating class-D amplifier. This model is solved by perturbation methods in Section 3, in-
corporating the warped-time transformation; the main results for the audio output and the mean switch-
ing period are presented in Section 3.3. Our asymptotic results are compared with numerical simulations
in Section 4, with excellent agreement. We compare our results with those of Lu & Gharpurey (2011),
which are based on a quasi-static approximation, in Section 5. Finally, we give our conclusions in
Section 6.

2. Mathematical formulation

In this section, we set up our mathematical model for the self-oscillating amplifier. We emphasise the
crucial distinction between this work and the usual engineering approach, which is that at no point do
we adopt a quasi-static approximation; instead we take full account of the time-variation of the audio
input signal.

Figure 1 shows the specific circuit design examined in this paper. The output is a high-frequency
rectangular pulse-train g(t), scaled so that g(t) takes the values ±1. The widths of the output pulses are
modulated in such a way that the low-frequency components of g(t) should closely reproduce those of
−s(t), where s(t) is the audio input signal, scaled so that −1 < s(t) < 1. (The minus sign difference
between input and output generates no audible consequences.) The design in Fig. 1 incorporates negative
feedback: the output and input are summed, and this “error” signal is integrated to give h(t), so that

dh

dt
=−c(s(t)+g(t)), (1)

where c is a positive constant. In view of the need to integrate s(t) when solving (1), we introduce f (t)
such that

s(t) = f ′(t).

The integrated error signal is then summed with a multiple of the output and fed to the noninverting
input of a comparator, whose inverting input is fixed at 0. The output of the comparator takes the values
±1 according to which of its inputs has the larger signal: specifically,

g(t) =

{

+1 if h(t)+Hg(t)> 0,
−1 if h(t)+Hg(t)< 0,

(2)
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 c dt� ∫

FIG. 1. Hysteresis-controlled, self-oscillating, first-order, class-D amplifier. See text for details.

where H is a positive constant. The positive feedback path surrounding the comparator generates hys-
teresis, and H is termed the hysteresis factor (Lu & Gharpurey, 2011). It is readily determined that in
the absence of any audio input (i.e., for s(t)≡ 0) the device oscillates with quiescent switching period

T0 ≡
4H

c
. (3)

More generally, if the input is constant, say s(t) ≡ s0, then the switching period is readily found to be
T0/(1− s2

0) (cf. Green & Williams, 1992; Poulsen & Andersen, 2005).

We denote the times at which the output switches by An and Bn, for integers n, with

g(t) =

{

+1 for Bn < t < An+1,
−1 for An < t < Bn.

(4)

Then by integrating (1) separately over the time intervals An < t < Bn and Bn < t < An+1 and imposing
the switching conditions

h(An)+H = 0 and h(Bn)−H = 0,

we find that the amplifier is governed by the nonlinear difference equations

− f (Bn)+ f (An)+Bn −An=2H/c, (5)

f (An+1)− f (Bn)+An+1 −Bn=2H/c. (6)

Note that these expressions hold for a general (that is, not necessarily sinusoidal) audio input signal s(t).
Solution of these equations and determination of the corresponding audio components of the output form
the subject of the remainder of this paper.

3. Solving the model

3.1. Preliminaries

It is helpful in solving (5) and (6) to write An and Bn in the form

An = (n+αn)T, Bn = (n+βn)T, (7)
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where T is some nominal switching period, which will be discussed further below. For amplifiers with
a fixed-frequency carrier-wave, T is simply the period of that wave and, furthermore, αn and βn each lie
in the interval (0,1), for all n. In the present, self-oscillating case, however, the “local switching period”
(which may be defined, for example, as An+1 −An) varies according to the input signal. Thus (since T

is constant) αn and βn are no longer constrained to lie in (0,1); indeed, since the audio signal varies
slowly compared with the switching, αn and βn may be expected to become large, as the local switching
period drifts (for many switching periods) from its mean.

Before attempting to solve (5) and (6) for An and Bn, it is useful to consider the final, demodulation
stage of the calculation, which involves extracting the audio components of the amplifier output from
these switching times. This will motivate the efficient (but otherwise rather unintuitive) form in which
we seek expressions for the An and Bn.

We begin by noting that the amplifier output takes the form (Cox, 2009; Cox & Candy, 2005; Cox
et al., 2011)

g(t) =
∞

∑
n=−∞

{

ψ(t;Bn,An+1)−ψ(t;An,Bn)
}

, (8)

where the “top-hat” function ψ is given by

ψ(t; t1, t2) =

{

1 for t1 < t < t2,
0 otherwise.

(9)

Applying the Poisson resummation identity,

∞

∑
n=−∞

Φ(n) =
∞

∑
n=−∞

∫ ∞

−∞
e2πinτ Φ(τ)dτ , (10)

to (8) yields

g(t) =
∞

∑
n=−∞

∫ ∞

−∞
e2πinτ

{

ψ(t;B(τ),A(τ +1))−ψ(t;A(τ),B(τ))
}

dτ , (11)

where the smooth functions A and B are such that

A(n) = An, B(n) = Bn. (12)

Note that, while only these sampled values of A and B have physical significance, the mathematical
analysis below is rendered considerably more straightforward by seeking expressions for A and B for all
real values of their arguments.

To make progress in evaluating (11), we note (7) and suppose that we have written the variables αn

and βn in the form
αn = a(An), βn = b(Bn), (13)

for some functions a and b. This rather strange-looking step is motivated by our previous analysis of
natural sampling in an open-loop class-D amplifier (Cox, 2009; Cox & Candy, 2005); its utility will
become clear below, when we derive a formula for the audio components of the output. We extend the
definitions in (7) and (13) in the natural way, so that

A(τ) = (τ +a(A(τ)))T and B(τ) = (τ +b(B(τ)))T,

for all real τ .
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In evaluating the right-hand side of (11), we note that ψ(t;A(τ),B(τ)) = 0 outside the interval
A(τ) < t < B(τ). In view of the preceding discussion, the lower limit, t = A(τ), may equivalently be
written t = (τ + a(t))T , so that τ = t/T − a(t). Likewise, the upper limit, t = B(τ), may be written
τ = t/T −b(t). Similar considerations apply to the term in (11) involving ψ(t;B(τ),A(τ +1)), with the
limit t = A(τ +1) being equivalent to τ = t/T −1−a(t). The amplifier output thus takes the form

g(t) =
∞

∑
n=−∞

∫ ∞

−∞
e2πinτ

{

ψ(τ; t/T −1−a(t), t/T −b(t))−ψ(τ; t/T −b(t), t/T −a(t))
}

dτ .

Hence

g(t) = 1−2(b(t)−a(t))+
∞

∑
n=−∞

′ e2πint/T

nπi

(

e−2πinb(t)− e2πina(t)
)

, (14)

where the prime indicates that the term n = 0 is omitted from the sum. If we suppose (as is the case
in practice) that the frequencies associated with the switching of the output are significantly above the
audio band, then the audio component of the output, ga(t), corresponds to omitting the sum from (14),
so that

ga(t) = 1−2(b(t)−a(t)). (15)

This expression for the audio output is particularly simple, once the functions a and b introduced in (13)
have been determined.

3.2. Solving the model for the output switching times

We thus seek to solve the governing difference equations (5) and (6) to give the switching times accord-
ing to implicit equations of the form

An = (n+a(An))T, Bn = (n+b(Bn))T, (16)

since then the audio output follows immediately from (15). In doing so, we introduce a “typical”
(angular) frequency ω , for the audio signal. Thus we adopt a scaled time θ = ωt and write the input
signal as

s(t) = S(θ).

Correspondingly, we write f (t) = F(θ)/ω so that S(θ) = F ′(θ).
Then the switching equations (5) and (6) become the nonlinear difference equations

−F(ωBn)+F(ωAn)+ωBn −ωAn = ε/2, (17)

F(ωAn+1)−F(ωBn)+ωAn+1 −ωBn = ε/2, (18)

where we have introduced

ε =
4Hω

c
≪ 1. (19)

We see that ε = ωT0, where T0 is the quiescent switching period, given in (3); the smallness of the
parameter ε , which is crucial to the remainder of our analysis, embodies the assumed disparity between
audio and switching frequencies.

To find An in the requisite form, we introduce into (17) and (18) the quantities

ηn = ωAn, γn = ω(Bn −An), δn = ω(An+1 −An), (20)
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so that (17) and (18) become

−F(ηn + γn)+F(ηn)+ γn = ε/2, (21)

F(ηn +δn)−F(ηn + γn)+δn − γn = ε/2. (22)

By standard perturbation techniques, (21) may be solved for γn in powers of the small parameter ε
to give

γn =
ε

2(1−S(ηn))
+

ε2S′(ηn)

8(1−S(ηn))3
+

ε3(3(S′(ηn))2 +S′′(ηn)(1−S(ηn))

48(1−S(ηn))5
+O(ε4).

Given this solution for γn, we may then solve (22) similarly to give

δn =
ε

1−S2(ηn)
+

ε2S′(ηn)(S2(ηn)+4S(ηn)−1)

4(1−S2(ηn))3
+O(ε3). (23)

The next step is to find ηn, which then immediately provides An from (20). To do so, we note, from
(20), that ηn satisfies the difference equation

ηn+1 −ηn = δn. (24)

To solve this equation, we introduce smooth functions η and δ such that

η(εn) = ηn, δ (εn) = δn; (25)

then the difference equation (24) becomes

η(τ + ε)−η(τ) = δ (τ), (26)

with, from (23),

δ (τ)∼
ε

1−S2(η(τ))
+

ε2S′(η(τ))(S2(η(τ))+4S(η(τ))−1)

4(1−S2(η(τ)))3
. (27)

The most natural approach would now arguably be to solve (26) for η(τ) as a power series in ε . How-
ever, it turns out that this does not yield An in the required form. So instead we introduce the inverse

function y (so that y(η(τ)) = τ), in terms of which (26) becomes

τ + ε = y(η(τ)+δ (τ)),

which may be solved to give y in the form

y(η) = Pη + y0(η)+ εy1(η)+ ε2y2(η)+ ε3y3(η)+O(ε4), (28)

where the yn(η) are all bounded functions of η .
It is worth pausing to interpret (28). If we set τ = εn and, correspondingly, η = ωAn, we find, from

(20) and (25) that (28) becomes

εn = y(ωAn) = PωAn + y0(ωAn)+ εy1(ωAn)+ ε2y2(ωAn)+ · · ·
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and hence
An =

ε

Pω

(

n− ε−1y0(ωAn)− y1(ωAn)− εy2(ωAn)− · · ·
)

.

This is precisely the implicit definition of An as required in (16).
It is remarkable that the yn may next be determined, in closed form, for a general audio input. We

find, after much algebra, that

y0(η)=
∫

〈

S2(η)
〉

−S2(η)dη , (29)

y1(η)=
S(η)

4
, (30)

y2(η)=
S(η)S′(η)

24(1−S2(η))
+

1

48

∫

〈

(S′(η))2

1−S2(η)

〉

−
(S′(η))2

1−S2(η)
dη , (31)

y3(η)=−
S′′(η)

192(1−S2(η))
−

S(η)(S′(η))2

96(1−S2(η))2
. (32)

Here ⟨· · ·⟩ denotes the average value. Note that yn(η) is odd or even in S according to whether the index
n is, respectively, odd or even. The constant P turns out to be given by

P = 1−
〈

S2(η)
〉

−
ε2

48

〈

(S′(η))2

1−S2(η)

〉

+O(ε4). (33)

In the special case of sinusoidal input, with

s(t) = s0 sinωt, (34)

hence S(η) = s0 sinη , these expressions become

y0(η)=
1
4 s2

0 sin2η , (35)

y1(η)=
s0 sinη

4
, (36)

y2(η)=
(1− s2

0)
1/2
{

tan−1((1− s2
0)

1/2 tanη)−η
}

48
+

s2
0 sin2η

48(1− s2
0 sin2 η)

, (37)

y3(η)=
(1−2s2

0 + s2
0 sin2 η)s0 sinη

192(1− s2
0 sin2 η)2

. (38)

We have thus succeeded in obtaining An in the form (16), with mean switching period

T =
ε

Pω
∼

4H

c⟨1− s2(t)− (1/3)(H/c)2(s′(t))2/(1− s2(t))⟩
(39)

and
a(An) =−ε−1y0(ωAn)− y1(ωAn)− εy2(ωAn)− · · · . (40)

Having determined a(An), we now turn to finding b(Bn). This may largely be accomplished by
recycling the calculation above. We begin by substituting

φn = ωBn, ξn = ω(An+1 −Bn), ζn = ω(Bn+1 −Bn)
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in (17) and (18) and manipulating the results to give

F(φn +ξn)−F(φn)+ξn = ε/2, (41)

−F(φn +ζn)+F(φn +ξn)+ζn −ξn = ε/2. (42)

By comparing (41) with (21), we see that if γn = Γ (S(ηn)) then ξn = Γ (−S(φn)). Furthermore, by
comparing (42) with (22), we see that if δn = ∆(S(ηn)) then ζn = ∆(−S(φn)). Thus S is replaced by
−S when moving from the calculation of a to the calculation of b. Furthermore, at each stage in the
calculation of b(t) as a series in powers of ε , we integrate with respect to t, and hence introduce a
constant of integration; thus we see that

b(t;S) = a(t;−S)+ constant.

By substituting S = 0 in this expression, in which case a and b are constant functions, with b(t) =
a(t)+1/2, we obtain the value of the constant of integration as 1/2. Thus

b(Bn) =−ε−1y0(ωBn)+
1
2 + y1(ωBn)− εy2(ωBn)+ ε2y3(ωBn)− · · · . (43)

3.3. Results for audio output and mean switching period

Having calculated the switching times of the output, we now construct the audio component of the
output, which is, from (15),

ga(t) = 1−2(b(t)−a(t)) =−4y1(ωt)−4ε2y3(ωt)+O(ε4). (44)

For a sinusoidal input of the form (34), the audio output thus becomes

ga(t)∼−s0 sinωt −

(

Hω

c

)2 s0 sinωt(1−2s2
0 + s2

0 sin2 ωt)

3(1− s2
0 sin2 ωt)2

(45)

=−s0 sinωt −

(

Hω

c

)2 ∞

∑
m=0

C2m+1 sin((2m+1)ωt), (46)

where

C2m+1 =
2(2m+1)((1− s2

0)
1/2 −1)ms0

3((1− s2
0)

1/2 +1)m+1
, (47)

and a derivation of these Fourier-series coefficients is given in the appendix. We note that the leading
distortion terms are thus quadratic in the audio frequency ω .

For a general input s(t), the audio output is, correspondingly,

ga(t)∼−s(t)+
H2

3c2

(

s′′(t)

1− s2(t)
+

2s(t)(s′(t))2

(1− s2(t))2

)

(48)

=−s(t)+
H2

3c2

d2

dt2
tanh−1 s(t). (49)

The expressions in (45)/(46) and (48)/(49) represent the culmination of the calculation described above;
they provide in closed-form the leading components of distortion for the self-oscillating class-D ampli-
fier in Fig. 1.
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Finally, the leading-order mean switching period satisfies

T ∼
4H

⟨1− s2(t)⟩c
,

which, in the case of sinusoidal input s(t) = s0 sinωt, becomes the known result (Green & Williams,
1992; Lu & Gharpurey, 2011)

T ∼
4H

(1− 1
2 s2

0)c
. (50)

Our analysis then provides the first correction to this result, which gives, from (39),

T ∼
4H

(1− 1
2 s2

0)c

{

1+
ω2H2/c2

3(1− 1
2 s2

0)
(1− (1− s2

0)
1/2)

}

. (51)

3.4. Total harmonic distortion

For the case of sinusoidal input, a common diagnostic of the audio fidelity is the total harmonic distor-

tion, given here to O(ε2) by

THD% =
(Hω/c)2

√

C2
3 +C2

5 + · · ·

s0
×100%.

where the coefficients C3, . . . are given in (47). It turns out that the infinite sum in this expression may
be evaluated in closed form, giving

THD% =
H2ω2

c2

√

1+(1− s2
0)

2

18(1− s2
0)

3/2
−

4

9(1+(1− s2
0)

1/2)2
×100%.

In practice, however, one would truncate the sum to include only those harmonics within the range of
human hearing (typically 20Hz–20kHz); thus the number of terms included would depend on the audio
frequency.

4. Comparison with simulations

In this section, we compare our analytical results with simulations using MATLAB Simulink. The
parameter values chosen are c = 105 and H = 0.05. In addition, we present some analytical results for a
conventional (i.e., carrier-wave-based) first-order PWM design for comparison purposes. The switching
frequency of the conventional design is set to 500kHz, which is the idle switching frequency of the
self-oscillating design (assuming, as throughout this section, that we adopt seconds as our unit of time).

Figure 2 shows the average switching frequency Fs ≡ T−1 for a sinusoidal input as in (34), against the
modulation index, s0. We take s0 ∈ [0.1,0.9] and set the input signal frequency to 5kHz (so ω = 104π).
As illustrated in Fig. 2, the agreement between the analytical results and the MATLAB simulations is
excellent.

Figure 3 shows the THD performance against the modulation index. Again, we take s0 ∈ [0.1,0.9]
and set the input frequency to 5kHz. The THD results are calculated based on all the harmonics within
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FIG. 2. Average switching frequency Fs against modulation index s0 for a sinusoidal input signal of frequency 5kHz. Plotted are
results from MATLAB simulations (+ symbol) and analysis (× symbol), using (51). The two sets of results are indistinguishable
on the plot.
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FIG. 3. THD% against modulation index s0 for a sinusoidal input signal of frequency 5kHz. Results from MATLAB simulation
and analysis are, respectively, indicated by the symbols + and × (these results are indistinguishable on the plot); the symbol !
indicates results for conventional PWM.
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FIG. 4. THD% against frequency of the input signal, which has modulation index s0 = 0.7. Results from MATLAB simulation
and analysis are, respectively, indicated by the symbols + and × (the difference is apparent only for the highest frequency used
here); the symbol ! indicates results for conventional PWM.

the audio range, thus for a 5kHz input we need include only the third harmonic. MATLAB simulation
results for a conventional first-order class-D amplifier are provided for comparison. As illustrated in
Fig. 3, the agreement between the analytical results and the MATLAB simulations is excellent. Com-
pared with the conventional PWM topology, the self-oscillating design achieves better linearity at low
modulation index, but the advantage reduces with increasing input signal magnitude. This observation
is consistent with that reported in Poulsen & Andersen (2004).

The dependence of the THD on the input signal frequency is illustrated in Fig. 4. Here, the mod-
ulation index of the input signal is fixed at s0 = 0.7. The input signal frequency Fi = ω/(2π) varies
from 1kHz to 6kHz. To a very good approximation, the THD curve varies quadratically with frequency,
which represents the same trend as that of a conventional PWM design. This plot also illustrates that
the intrinsic distortion of the self-oscillating design is less than that of the conventional PWM design.

5. Discussion

It is of interest to compare our results with those of Lu & Gharpurey (2011), who present a detailed
analysis of the amplifier design in Fig. 1, based on the quasi-static assumption of Green & Williams
(1992). The latter authors make the approximation that results derived for DC input may be applied
to the case of time-varying audio input. As we have indicated in the Introduction, this is likely to be
a reasonable leading-order approximation, in view of the relatively slow time scale of the audio signal
(compared with the switching) but cannot be the basis for an entirely systematic analysis.

In fact, the quasi-static approximation proves remarkably good in this case. For example, for the
parameters of the previous section, there is less than 0.02% difference between the leading-order mean
switching period in (50) and the first correction in (51), over the range of s0.

For the distortion calculation, Lu and Gharpurey calculate the amplitude of the sin3ωt term in (46)
to be (in our notation)

−s0J1(ωcT 2s2
0/32)ω/

√

c2 +ω2 ∼−
(ωT )2s3

0

64
,



14 S. M. COX, J. YU, W. L. GOH AND M. T. TAN

where the right-hand side of this expression results from (i) applying ω2 ≪ c2 and (ii) Taylor-expanding
the Bessel function J1 and keeping the leading term, for consistency with our leading-order contribution
to the third-harmonic distortion term in (46). This result relies on their fitting one parameter (their loop-
gain ratio G) by simulation. (We note that a quasi-static approach is also used by Risbo & Neesgaard
(2006) to determine the third-harmonic distortion in the fixed-frequency carrier-wave case; unlike the
analysis of Lu and Gharpurey, no parameter-fitting is required.) Our corresponding result, from (46), is
(with no parameter-fitting necessary)

−
(ωT )2s0

8

(1− s2
0/2)2(1− (1− s2

0)
1/2)

((1− s2
0)

1/2 +1)2
.

The ratio between these quantities turns out to be very close to 1 for reasonable values of s0. Indeed,
for all 0 < s0 < 0.9 (where s0 = 0.9 is the maximum value used in Lu and Gharpurey’s simulations) the
ratio lies between 0.9 and 1, corresponding to a difference between our predictions and theirs of less
that 1dB.

Overall, then, the quasi-static approach adopted by Lu and Gharpurey proves remarkably accurate
in this case in characterising the third-harmonic distortion; however, it is not clear that it accurately
characterises other components of the distortion. Furthermore, it remains to be seen whether a similar
accuracy holds when quasi-static models are applied to other self-oscillating designs. Finally, we em-
phasise that it is clearly preferable to have a systematic mathematical model (as described in this paper)
that is not reliant on parameter-fitting.

6. Conclusions

In this paper, we have presented a systematic perturbation analysis of a first-order, hysteresis-controlled,
self-oscillating, class-D amplifier. We have determined closed-form expressions for the mean switching
period and the principal components of the audio output, both for a general input signal and for the
special case of a sinusoidal input. We have corroborated our asymptotic results through demonstrated
agreement with simulations.

The general expressions we have derived for (i) the audio output and (ii) the mean switching period
provide valuable new tools for engineers. The former is of particular utility because it can be used
to calculate the IMD, or other distortion characteristics beyond simply the THD which arises for a
sinusoidal input; these broader distortion measures can represent better the extent to which the distortion
detracts from the listening experience (Cox et al., 2013; Metzler, 1993; Yu et al., 2012). Similarly, the
latter allows more precise determination of the modulation to the switching period for realistic input
signals, rather than for a single sinusoid. Our correction to the leading-order result of Lu & Gharpurey
(2011) for the mean switching period appears to make a trivial difference to the result (around 0.02%),
but given the high frequency of oscillation of the output pulse train, even such a small discrepancy can
lead to significant intermodulation products in the audio band in stereo applications.

Finally, we note that our treatment possesses significant advantages over prior approaches, in requir-
ing neither a quasi-static approximation nor parameter-fitting. The techniques set out above can clearly
be extended to other designs of self-oscillating class-D amplifier or sigma–delta modulator, including
higher-order designs. The key steps — the systematic perturbation expansion and the warped-time
transformation that renders the demodulation calculation straightforward — provide the means for cap-
turing all the distortion terms at each asymptotic order and for likewise capturing all contributions to the
modulation of the switching frequency.
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Fourier coefficients for the audio output

In Section 3.3, we quoted the Fourier-series coefficients for

Z(x)≡
s0 sinx(1−2s2

0 + s2
0 sin2 x)

3(1− s2
0 sin2 x)2

.

Here we derive them. One way to proceed is the following. We note that Z is an odd function and that
Z(π − x) = Z(x), hence we may write

Z(x) =
∞

∑
m=0

C2m+1 sin(2m+1)x,

for some coefficients C2m+1. If we consider the Fourier sine series

P(x) =
∞

∑
m=0

(2m+1)pm sin(2m+1)x

for some constant p ∈ (−1,1), we see that

P(x)=−ℜ

(

d

dx

(

eix
∞

∑
m=0

pme2imx

))

=−ℜ

(

d

dx

eix

1− pe2ix

)

=ℑ

(

(e−ix + peix)(eix − pe−ix)2

|e−ix − peix|4

)

=
(1− p)(1+6p+ p2 −4psin2 x)sinx

((1− p)2 +4psin2 x)2
.

Then by setting p =−(1−q)/(1+q), where q =
√

1− s2
0, we have

P(x) =
(1+q)(1−2s2

0 + s2
0 sin2 x)sinx

2(1− s2
0 sin2 x)2

=
3(1+q)Z(x)

2s0
.

Hence

C2m+1 =
2(2m+1)((1− s2

0)
1/2 −1)ms0

3((1− s2
0)

1/2 +1)m+1
,

as claimed.
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