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The cosmological evolution of topological defect networks can broadly be divided into two stages.
At early times they are friction-dominated due to particle scattering and therefore non-relativistic,
and may either be conformally stretched or evolve in the Kibble regime. At late times they are
relativistic and evolve in the well known linear scaling regime. In this work we show that a sufficiently
large Hubble damping (that is a sufficiently fast expansion rate) leads to a linear scaling regime where
the network is non-relativistic. This is therefore another realization of a Kibble scaling regime, and
also has a conformal stretching regime counterpart which we characterize for the first time. We
describe these regimes using analytic arguments in the context of the velocity-dependent one-scale
model, and we confirm them using high-resolution 40963 field theory simulations of domain wall
networks. We also use these simulations to improve the calibration of this analytic model for the
case of domain walls.

I. INTRODUCTION

A wide range of physical phenomena relies on the
concept of symmetry breaking. Condensed matter and
particle physics are good examples of contexts where
this mechanism has been fruitfully applied. Cosmology,
having deep connections with high energy phenomena in
particle physics, shares this tendency. In the cosmolo-
gical context, the full implications of symmetry break-
ings were first realized by Kibble [1]. In particular, the
result of a parity (or generically any discrete) symmetry
breaking in a cosmological framework is the formation
of domain wall structures, whose presence is tightly con-
strained by observational reasons: the current two-sigma
upper bound on their symmetry breaking scale, coming
from a full Markov Chain Monte Carlo analysis which
marginalizes over the relevant cosmological parameters,
is 0.93 MeV [2]. Several weaker constraints, coming from
more qualitative analyses or invoking additional simpli-
fying assumptions, have also been obtained in [3–7].

In addition to the opportunity to use these upper
bounds to constrain underlying particle physics models,
there are further motivations for the presence of light
domain walls, a recent one being in the context of the
symmetron screening mechanism for modified theories of
gravity [8, 9]. Last but not least, the scaling behavior
of domain wall networks has key similarities with that
of cosmic string and superstring networks, which in turn
are motivated by a number of fundamental theories of the
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early Universe, including brane inflation scenarios [10, 11]
and supersymmetric grand unified theories (GUT) [12].
Since domain wall networks can be simulated with better
resolution than the cosmic string networks and since both
of them have similar properties, we can use the former to
improve our understanding of the evolution of the latter.

The broad features of the cosmological evolution of to-
pological defect networks are well understood, and have
been extensively described [13]. They can be quantit-
atively described using the velocity-dependent one-scale
(VOS) model [14–16]. Broadly speaking, the evolution
can be divided into two stages. At early times the net-
works are friction-dominated due to particle scattering
and therefore non-relativistic. In this regime there are
two possibilities for their evolution: either they are con-
formally stretched (in which case energy losses are neg-
ligible) or they evolve in the Kibble regime [17, 18]. At
late times friction due to particle scattering becomes neg-
ligible and the networks become relativistic and evolve
in the well known linear scaling regime. The attractor
nature of this solution, and the fact that in this case the
scaling velocity is a substantial fraction of the speed of
light are well established, for example in the radiation
and matter eras.

In this work we revisit the issue of the role of damping
mechanisms on the evolution of defect networks. In par-
ticular, we show that a sufficiently large Hubble damping
(specifically, a power-law dependence of the scale factor
a ∝ tλ with λ below but close to unity) leads to a lin-
ear scaling regime where the network is non-relativistic.
This is therefore another realization of a Kibble scaling
regime, allowing us to interpret the linear scaling solu-
tion as the Kibble regime for Hubble-damped networks.
Moreover, there is also a stretching regime counterpart
for Hubble-damped networks, whose behavior we first de-
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rive analytically in a VOS model context and then con-
firm numerically.

The numerical part of the present work can be con-
sidered as an extension of previous results [19–21]. We
carry out high-resolution 40963 field theory simula-
tions of domain wall networks in Friedmann-Lemâıtre-
Robertson-Walker (FLRW) backgrounds for very large
expansion rates, between λ = 0.97 and λ = 0.9999999.
This allows us to numerically confirm the presence of
the aforementioned stretching and Kibble (non relativ-
istic linear) scaling regimes for these networks.

The extended range of the expansion rates simulated
yields an additional benefit. The low velocities and high
densities of these fast expansion networks imply that
the averages of sets of simulations with the same expan-
sion rate but different initial conditions will have smaller
statistical uncertainties than those for slower expanding
boxes of the same size. Additionally, we have carried
out numerical tests allowing us to estimate the system-
atic uncertainties in the measurements of the numerical
quantities relevant for the calibration of the model. Both
of these allow us to further improve the calibration of the
VOS model for domain walls that was presented in [21].
Last but not least, we also carry out a consistency test
of the model by comparing the model parameters relev-
ant for the stretching regime with those obtained in the
linear scaling one.

II. SCALING REGIMES

The velocity-dependent one-scale (VOS) model
provides a quantitative thermodynamic description of
the evolution of a network of topological defects, based
on a lenghtscale L (to be thought of as the typical
separation, correlation length or curvature radius of
the defects) and a root-mean squared velocity v. The
evolution equations for both quantities are [16]

(4− n)
dL

dt
= (4− n)HL+ v2

L

`d
+ cv , (1)

dv

dt
= (1− v2)

(
k

L
− v

`d

)
. (2)

Here n is the dimension of the defect worldsheet (n =
1, 2, 3 for monopoles, cosmic strings and domain walls
respectively), H is the Hubble parameter, `d is a damping
length including the effects of expansion and friction due
to particle scattering

1

`d
= nH +

1

`f
, (3)

with the friction length given by

`f ∝ a1+n , (4)

and finally c and k are phenomenological parameters to
be calibrated against numerical simulations. Note that

as a first approximation these parameters may be taken
as constants, but this assumption needs to be relaxed if
one is interested in more accurate modeling [21].

Now, following Kibble [17, 18] we note that in damped
regimes the velocity is expected to change slowly. Then
from the velocity equation it follows that

v ∼ k `d
L

(5)

and substituting this in the evolution equation for the
correlation length we find

(4− n)
dL

dt
= (4− n)HL+ k(c+ k)

`d
L
, (6)

We now have four possible scenarios, depending on
whether the damping is provided by friction or by the
expansion of the universe, and on whether or not the
velocities are negligible.

Starting with the case where the damping length is
due to friction, `d = `f , as discussed in [14, 22] there is
a transient scaling solution

L ∝ a , v ∝ `f
a
∝ an (7)

this is known as the stretching regime, and corresponds to
the case where the network’s average velocity and dens-
ity are sufficiently small to make the probability of self-
intersections negligible. In this case the network is con-
formally stretched by the expansion. However, velocities
are increasing so this regime must be a transient, at least
in an expanding universe. If friction domination persists,
eventually these assumptions will no longer hold, and
the network will switch to the canonical Kibble regime
[17, 18]

L ∝ (`f t)
1/2

, v ∝
(
`f
t

)1/2

; (8)

here the energy losses are significant, and therefore the
correlation length grows faster than in the stretching re-
gime while the velocity grows more slowly.

Now let us repeat this analysis if the damping is simply
provided by the expansion of the universe; as we will
confirm numerically in what follows, a sufficiently fast
expansion rate is enough to make the defects move with
non-relativistic speeds. In this case the damping length
is `−1d = nH and we will consider generic expansion rates

a ∝ tλ ∝ τλ/(1−λ), where t and τ are, respectively, phys-
ical and conformal time. In this case the correlation
length equation becomes

(4− n)
dL

dt
= (4− n)HL+ k

c+ k

nHL
, (9)

and just like in the previous case we find two scaling
regimes. The transient scaling regime also corresponds
to conformal stretching

L ∝ a , v ∝ 1

nλ

t

a
∝ 1− λ

nλ
τ . (10)
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Figure 1. The evolution of the dimensionless density (ρτ , top
panel) and the rms speed (γv)2 (where γ is the Lorentz factor,
bottom panel) in 40963 domain wall simulations with different
expansion rates, from (1 − λ) = 0.03 to (1 − λ) = 10−7 (from
black-red to blue-purple). Each line is the average of the 10
simulations, with random initial conditions.

On the other hand, the analogue of the Kibble regime is
precisely the standard linear scaling regime,

L =

√
k(c+ k)

(4− n)nλ(1− λ)
t , v =

√
4− n
n

1− λ
λ

k

k + c
.

(11)

The two friction-dominated regimes and the linear
scaling regime are all well known, but in what follows we
will use high-resolution field-theory simulations to study
the Hubble-damped stretching regime, as well as to con-
firm that it is a transient which eventually switches to
the linear regime.

III. FIELD THEORY SIMULATIONS

Our numerical simulations follow in the footsteps of
those reported in previous works [19–21]. We assume a
domain wall producing field theory model with a single
scalar field φ, in Friedmann-Lemaitre-Robertson-Walker
universes with power law expansion rates, a ∝ tλ. After
using the Press, Ryden and Spergel procedure [23] the
equation of motion in conformal time τ has the form

∂2φ

∂τ2
+ 3

d ln a

d ln τ

∂φ

∂τ
− ∂2φ

∂xi∂xi
= −∂V

∂φ
, (12)

where the potential has the form V = V0

(
φ2

φ2
0
− 1
)2

.

Numerically the fields are rescaled so that the minima
of the potential are at φ0 = ±1, while the local maximum
of the potential is at φ = 0 is V0 = π2/2W 2

0 (where
W0 = 10 is the initial wall thickness in grid units). Key
features of the simulation are as follows

• We use the WALLS code [19, 20], optimized for the
Intel Xeon Phi architecture and run on the COS-
MOS supercomputer.

• The box size of the simulations is 40963. Each
simulation starts with τi = 1 and is stopped at
τf = 2048 - when the horizon becomes half the box
size, ensuring that the periodic boundary condi-
tions of the simulation boxes do not affect the res-
ults. Each such simulation requires 1 Tb of memory
and takes about 4 hours of wall clock time to run
on 512 CPUs. The exact time required depends on
λ, with faster expansion rates requiring more time:
the reason is that these are denser networks, and
therefore the part of the code that determines the
wall densities and velocities takes longer.

• We explored a range of fast expansion rates, with
(1− λ) spanning the range

[
0.03− 10−7

]
. These

complement the simulations reported in [21], where
we reported on simulations of slower expansion
rates 0.1 ≤ λ ≤ 0.95. For each choice of expansion
rate we have carried out 10 different simulations
with random initial conditions, and the results we
present correspond to the average of each set of 10
runs.

Directly measured parameters from the simulations are
a dimensionless density ρτ = 0.889τ/ξc and a kinetic
energy (γυ)2, where ξc is the conformal correlation length

(the numerical factor of
√

2π/5 ∼ 0.889 stems from our
choices of parameters for the potential and the thickness
of the domain walls), υ is root mean square velocity of
the network and γ is Lorentz factor.

Figure 1 depicts these diagnostics for all the expansion
rates we have simulated. The different scaling regimes at
early and late times are clearly visible, as is the fact that
the transition between the early (transient) and the late
(attractor) one occurs later for faster expansion rates.
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Table I. Scaling properties of numerical simulations for domain wall networks with different expansion rates λ in the linear
scaling regime. In addition to the slope parameters µ and ν we also list the asymptotic values of the dimensionless density and
the wall energy, as well as the range of conformal times used in each set of simulations. One-sigma statistical uncertainties are
quoted throughout.

λ µ ν ξc/τ γv Fit range (τ)

0.97 −0.993 ± 0.001 0.006 ± 0.001 0.177 ± 0.001 0.102 ± 0.001 500 − 1500

0.98 −0.992 ± 0.001 0.005 ± 0.001 0.145 ± 0.001 0.083 ± 0.001 500 − 1500

0.99 −0.990 ± 0.0003 0.004 ± 0.001 0.103 ± 0.0004 0.059 ± 0.0002 500 − 1500

0.995 −0.992 ± 0.0003 0.001 ± 0.001 0.073 ± 0.0002 0.041 ± 0.0002 900 − 2046

0.997 −0.991 ± 0.0002 0.006 ± 0.0004 0.057 ± 0.0001 0.032 ± 0.0001 1050 − 2046

0.998 −0.989 ± 0.0002 0.013 ± 0.0002 0.046 ± 0.0001 0.026 ± 0.0001 1200 − 2046

0.999 −0.982 ± 0.0001 0.018 ± 0.0002 0.033 ± 0.0001 0.018 ± 0.0001 1350 − 2046

0.9995 −0.971 ± 0.0001 0.031 ± 0.0001 0.023 ± 0.0001 0.013 ± 4 · 10−5 1500 − 2046

0.9997 −0.960 ± 0.0001 0.044 ± 0.0001 0.018 ± 0.0001 0.010 ± 3 · 10−5 1650 − 2046

0.9998 −0.949 ± 0.00003 0.055 ± 0.0001 0.015 ± 3 · 10−5 0.008 ± 2 · 10−5 1800 − 2046

The oscillations in the convergence to the attractor solu-
tion, which were already noticed and discussed in [19–21],
are mainly due to our (numerical) choice of initial condi-
tions.

In this section we are mainly interested in the linear
scaling regime of the network. Visual inspection of Fig.
1 suggests that the networks reach this in the final part
of the simulation, and that the faster the expansion rate
the longer it takes for this regime to be reached. To
accurately characterize this regime, for the purposes of
further calibrating the VOS model, we need to find the
interval for each λ where the network has already reached
linear scaling behavior and still possesses enough walls to
enable good statistics. The last factor is a concern only
for comparatively slow expansion rates. When λ is close
to unity, and the rms velocity υ of walls is small, the
network does not lose much energy. Hence, even at the
very end of simulations there are enough walls for reliable
statistics. As in our previous work [21] let us introduce
the scaling diagnostic parameters µ and ν, defined as

1

ξc
∝ τµ (13)

γv ∝ τν , (14)

where for the scaling network µ = −1 and ν = 0. Table I
shows the results of this analysis, confirming that the
linear scaling regime is clearly reached for the (compar-
atively) slower of our expansion rates. Note that in all
these cases the network is scaling with a non-relativistic
speed. One can therefore think of this as a Kibble regime,
in the same physical sense originally described in [17, 18].
On the other hand, simulations for faster expansion rates
did not have enough time to fully reach the linear scaling
regime—we will consider them later in this work.

From table I it is also noteworthy that the statistical
error bars, which come from averages of ten simulations
with different (random) initial conditions, decrease sig-
nificantly as the expansion rate increases. Therefore, we

can anticipate that systematic errors intrinsic to the sim-
ulations (having to do with the discretization, the PRS
algorithm, the identification of the domain walls in the
box and the estimation of their velocities) will eventually
dominate the error budget for sufficiently large expan-
sion rates. It is therefore important to obtain estimates
of these systematic uncertainties.

In order to do this, we performed additional sets of
simulations for different choices of threshold for velocity
measurements. In the previously described simulations,
the velocity is estimated as an average over all points in
the box in which the field obeys |φ| < 0.5 (recall that the
minima of the potential are at φ = ±1). This has been
previously shown to be an optimal choice. As a test, we
have carried out further simulations for expansion rates
λ = 0.4 and λ = 0.999 with exactly the same initial con-
ditions (in other words, a fixed seed) but with thresholds
for the velocity calculation spanning the range from 0.25
to 0.75; this is illustrated in the top panel of Fig. 2, and
the results of these simulations are shown in its middle
and bottom panels.

Making the plausible assumption that the effect of the
choice of thresholds on the velocity measurements is a re-
liable proxy for the systematic numerical uncertainties,
this test confirms our intuition that as the expansion rate
is increased the statistical uncertainties decrease much
faster than the systematic ones, and therefore the lat-
ter will dominate for sufficiently large expansion rates λ.
Specifically, we find that the systematic error for λ = 0.4
is

δυsyst,λ=0.4 = ±12.3× 10−4 , (15)

while for λ = 0.999 it is

δυsyst,λ=0.999 = ±4.7× 10−4 . (16)

Since the difference between systematic errors for differ-
ent λ is comparatively small, in what follows we will make
a linear interpolation in order to estimate the systematic
uncertainty for other expansion rates.
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Figure 2. Results from velocity measurements for different
choices of thresholds, illustrated in the top panel. The middle
panel presents the result for expansion rate λ = 0.4 and the
bottom one for λ = 0.999. Black lines represent the velocities
in the ten individual simulations with different initial condi-
tions, measured with a canonical 50% threshold, and provide
the statistical errors. Colored lines represent the velocity in
one of the ten simulations, measured using different thresholds
(specifically the solid red one is for the 25% threshold and the
solid green one is for 75% threshold), providing an estimate
of systematic uncertainties.

IV. CALIBRATION FOR LINEAR SCALING
REGIME

We can now improve upon the calibration of the VOS
model discussed in [21]. We will make use of the addi-
tional data discussed above, from the simulations that
reach the linear scaling regime, and combine with the
data from our previous paper. We also take into account
our estimate of the systematic uncertainties. Firstly, let
us recall that the physical correlation length in the VOS
model and the comoving one measured in our domain
wall simulations are related by L = a ξc. And if a ∝ tλ

we have

ξc
τ

= (1− λ)
L

t
= (1− λ)ε . (17)

The evolution equations for the standard VOS model cor-
respond to the particular n = 3 case of the generic model
discussed in Sect. II. However, as shown in our previous
work, assuming that the energy loss term c and the mo-
mentum parameter k (the influence of local curvature on
the network dynamics) are constants is not sufficient for
accurate modeling. A combination of analytic and nu-
merical arguments in [21] thus led to an extended VOS
model, whose evolution equations are

dL

dt
= (1 + 3υ2)HL+ cwυ + d[k0 − k(v)]r,

dυ

dt
= (1− υ2)

(
k(v)

L
− 3Hυ

)
, (18)

where

k(v) = k0
1−

(
qυ2
)β

1 + (qυ2)
β

(19)

and cw, d, q, k0, β and r are the free parameters to be
numerically calibrated.

Combining the new data in Table I with that in our
previous work, and adding the statistical and (estimated)
systematic uncertainties in quadrature for each expan-
sion rate, we obtain the best-fit values for each of these
model parameters indicated in Table II. For comparison,
this table also contains the values obtained in our pre-
vious work, as well as for the case where only the fast
expansion rates are used (with the caveat that this will
be the case where the results of our fit will be most vul-
nerable to our estimates of the systematic uncertainties).
A comparison between the model (with the best-fit val-
ues of each parameter) and the simulations is also shown
in Fig. 3.

It is worthy of note that the loop chopping efficiency is
still statistically consistent with zero, with the exception
of the case where only expansion rates λ ≥ 0.97 are used
in the fit in which case a non-zero value is preferred at
one sigma. This is in agreement with our expectations,
already discussed in [21], and confirms the expectation
that the production of ’wall blobs’ is a subdominant en-
ergy loss mechanism, unlike the analogous production of
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Table II. The best-fit values for the free parameters of the extended VOS model in our present analysis; for comparison, we
also show the values obtained in our previous work [21]. One-sigma statistical uncertainties are quoted throughout.

λ Systematics Reference cw d r k0 q β

0.5 ≤ λ ≤ 0.9 No [21] 0.00 ± 0.03 0.29 ± 0.01 1.30 ± 0.06 1.72 ± 0.03 4.10 ± 0.17 1.65 ± 0.12

0.2 ≤ λ ≤ 0.95 No [21] 0.00 ± 0.01 0.28 ± 0.01 1.30 ± 0.02 1.73 ± 0.01 4.27 ± 0.10 1.69 ± 0.08

0.97 ≤ λ ≤ 0.9998 Yes This work 0.01 ± 0.01 0.10 ± 0.09 1.34 ± 0.25 1.82 ± 0.02 1.20 ± 0.72 0.94 ± 0.38

0.2 ≤ λ ≤ 0.9998 Yes This work 0.00 ± 0.08 0.26 ± 0.02 1.42 ± 0.04 1.77 ± 0.03 3.35 ± 0.32 1.08 ± 0.07

loops in cosmic string networks. As for the other fit-
ted parameters, we find general agreement with our pre-
vious analysis: the only parameter that is significantly
changed is β, which leads to a corresponding shift (and
an increased error bar) for q, with which it is clearly cor-
related. Shifts in the remaining parameters are within
about one standard deviation.

It is particularly suggestive that a value of β = 1
provides a good fit to the simulations. In this case the
momentum parameter has the simpler form

k(v) = k0
1− qυ2

1 + qυ2
, (20)

to be contrasted with the analogous parameter for cosmic
strings

ks(v) ∝ k0,s
1− 8υ6

1 + 8υ6
. (21)

It is tempting to speculate that the velocity dependence
in the former would be associated with energy losses
due to scalar radiation [24], which are indeed domin-
ant in our simulations from which this calibration has
emerged. Similarly, the velocity dependence in the latter
could be associated with quadrupole radiation—which is
implicitly assumed as an energy loss mechanism in the
phenomenological modeling which, together with a com-
parison with Goto-Nambu string simulations, led to the
analogous expression for strings [15]. Exploring this hy-
pothesis is beyond the scope of the present paper, but it
is certainly worthy of future study.

V. THE CONFORMAL STRETCHING REGIME

We now turn our attention to the early part of our
field theory simulations. The analysis of Sect. II leads us
to expect a conformal stretching regime which translated
into the numerically measured quantities should corres-
pond to

ρw ∝ const. , v ∝ 1− λ
λ

τ ; (22)

naturally the Lorentz factor is irrelevant for non-
relativistic speeds. The proportionality factor can be
more quantitatively calculated from the VOS model
equations themselves, cf. Eqs. (18), and we find

v =
15

2π

1− λ
1 + 2λ

k0ρwτ , (23)

Figure 3. Velocity v and conformal correlation length di-
vided by conformal time ξc/τ obtained from the extended
VOS model with the best-fit parameters indicated in the last
line of II, compared to the data from the numerical simula-
tions for different expansion rates.

where we have used our definition of k(v) in Eq. (19)—
which in the non-relativistic limit is simply k0—and again
the numerical factor stems from our choices of parameters
for the potential and the thickness of the domain walls.

A simple visual inspection of Fig. 1 already indicates
that such a transient regime indeed occurs at early times
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Table III. Scaling properties of numerical simulations for domain wall networks with different expansion rates λ in the conformal
stretching regime. In addition to the slope parameters µ and ν we also list the asymptotic values of the (constant) comoving
correlation length and the slope of the wall energy, as well as the range of conformal times used for the fits in each set of
simulations. One-sigma statistical uncertainties are quoted throughout.

1 − λ µ ν ξc γv/τ(10−6) Fit range (τ)

3 · 10−6 −0.001 ± 0.001 0.997 ± 0.217 0.900 ± 0.001 3.792 ± 0.357 1 − 76

2 · 10−6 −0.005 ± 0.003 0.967 ± 0.125 0.905 ± 0.006 2.502 ± 0.142 1 − 226

1 · 10−6 −0.007 ± 0.004 0.955 ± 0.099 0.908 ± 0.008 1.245 ± 0.058 1 − 376

5 · 10−7 −0.007 ± 0.003 0.956 ± 0.085 0.908 ± 0.008 0.623 ± 0.025 1 − 526

3 · 10−7 −0.007 ± 0.003 0.956 ± 0.075 0.908 ± 0.008 0.374 ± 0.014 1 − 676

2 · 10−7 −0.006 ± 0.003 0.956 ± 0.068 0.907 ± 0.008 0.249 ± 0.009 1 − 826

1 · 10−7 −0.004 ± 0.002 0.968 ± 0.061 0.905 ± 0.005 0.125 ± 0.004 1 − 976

of our simulations, and as expected it lasts longer for
faster expansion rates. In order to further quantify this
behavior we will again use the scaling diagnostic para-
meters µ and ν defined in Eqs. (13) and (14). For the
conformal stretching regime we expect µ = 0 and ν = 1.
Table III shows the results of this analysis and fully con-
firms the presence of this regime, for the faster expansion
rates for which it persists longer.

Moreover, Eq. (23) also allows us to carry out a further
test of the VOS model calibration, since we can use it to
numerically measure the value of the parameter k0. This
is a useful consistency test, since in the analysis in the
previous section k0 as well as the other model paramet-
ers were determined using data from the linear scaling
regime, and the same is true of our earlier work [21] (al-
though in this previous work we have also shown that the
calibrated model accurately described the transition from
a radiation to a matter dominated universe, in which case
the network is not scaling). Here we find that

k0 = 1.76± 0.11 , (24)

which is fully consistent with the results of Table II. Fig-
ure 4 shows the conformal stretching part of the evolution
of our simulations, plotted together with the predictions
of the VOS model with its best-fit parameters.

VI. CONCLUSIONS

In this work we revisited the role of damping mech-
anisms in the cosmological evolution of topological de-
fect networks, comparing and contrasting friction due to
particle scattering and the expansion of the universe as
damping mechanisms capable of making the evolution of
the networks be non-relativistic. In both cases the net-
work can either be conformally stretched or evolve in
a Kibble scaling regime [17, 18]. In particular we have
explicitly demonstrated that a sufficiently large Hubble
damping (that is a sufficiently fast expansion rate) even-
tually leads to a linear scaling regime where the network
is non-relativistic, but this is typically preceded by a
stretching regime counterpart which we characterize for
the first time.

Figure 4. Comparing the analytic solution of the VOS model,
with the free parameters fixed at their best-fit values, for do-
main walls in the stretching regime (red dashed lines) with
the result of our field theory numerical simulations for high
values of λ (blue solid lines).

Our analytic study was done in the context of the ca-
nonical VOS model [16], but also confirmed with state-
of-the-art 40963 field theory simulations of domain wall
networks, the analysis of which is a continuation of our
previous work [21]. Specifically we have for the first time
simulated domain wall networks in universes with very
fast expansion rates (from 1− λ = 0.03 to 1− λ = 10−7,
for a ∝ tλ). In addition to confirming to high accuracy
the two scaling regimes, we have also used these simu-
lations to improve the calibration of the VOS model for
the case of domain walls. This improvement stems both
from the wider range of expansion rates now available
and from the inclusion of an estimated systematic uncer-
tainty in our error budget.

In the future it will be interesting to exploit recent
progress in computing power and code optimization and
use these high-resolution simulations to gain a better un-
derstanding of the energy loss mechanisms of these net-
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works. While for the case of domain walls our work
establishes the dominance of scalar radiation, the ana-
logous question remains unanswered for cosmic strings.
In the latter case the contribution of the loop chopping
term is known to be more important, but significant dif-
ferences remain between the results of field theory and
Goto-Nambu simulations. Although they may partially
be explained by the different spatial resolution and dy-
namical range of both types of simulations, it is not clear
that numerical differences provide a satisfactory explan-
ation. A fully calibrated VOS model will allow a direct
comparison between both types of simulations, enabling
a test of their consistency. We hope to address this issue
in future publications.
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