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The use of faecal glucocorticoid metabolites (fGCMs) has facilitated the development of non-invasive methods to study physio-
logical conditions of endangered wildlife populations. One limitation is that fGCM concentrations are known to change over
time and to vary according to different environmental conditions. The aim of this study was to perform a controlled dung
decay experiment to understand the impact of time (since defecation) and two common environmental variables (exposure to
water and direct sunlight) on fGCM concentrations of Asian elephants (Elephas maximus). Eighty dung piles from 10 Malaysian
elephants were randomly exposed to a 2 × 2 combination of treatments (wet–shade, dry–shade, wet–sun and dry–sun) and
repeatedly subsampled from the time of defecation through to 2 days post-defecation (n = 685 faecal subsamples). Overall,
the mean concentration of fGCMs was stable in samples of up to 8 h old from defecation time, regardless of environmental
treatment (water or direct sunlight); thereafter, the overall mean fGCM concentrations increased, peaking 1 day after defecation
(31.8% higher than at defecation time), and subsequently decreased (reaching values 9.2% below defecation time on the
second day). Overall, the treatment of sun exposure resulted in higher fGCM concentration compared with shade, whereas
water exposure (compared with no water exposure) had no impact on fGCM concentrations. Hence, in field studies we recom-
mend collecting dung samples <8 h old and recording shade conditions (e.g. sun vs. shade) as a covariate for the subsequent
interpretation of fGCM measurements. This study has helped to identify the optimal window for sampling in which we can
have a higher confidence in interpreting the results as being a genuine reflection of glucocorticoid status in the elephant.
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Introduction
Faecal endocrinology has important applications for wildlife
conservation because it facilitates the non-invasive monitoring
of adrenal activity in wild animal populations (Wasser et al.,
2000; Möstl and Palme, 2002; Sheriff et al., 2011; Watson
et al., 2013). The concentration of faecal glucocorticoid meta-
bolites (fGCMs) is a reliable indicator of biologically active
(‘free’) glucocorticoid metabolites circulating in an animal’s
body over a period of time and, importantly, wildlife faeces are
easier to collect than other biological samples, such as blood,
saliva or urine (Möstl and Palme, 2002; Touma and Palme,
2005). Studies of fGCMs have been conducted to investigate
a number of conservation-related questions for a range of
wildlife species, including African elephants (Loxodonta sp.;
Gobush et al., 2008; Viljoen et al., 2008; Pinter-Wollman
et al., 2009; Ganswindt et al., 2010) and Asian elephants
(Elephas maximus; Laws et al., 2007; Fanson et al., 2013;
Watson et al., 2013).

The hormone metabolite concentration in a faecal sample
can vary over time (e.g. in the time elapsed between defeca-
tion and sample collection by a researcher), and this vari-
ation is mediated by environmental factors such as ambient
temperature and moisture (Millspaugh and Washburn,
2004, 2003) as well as by the effects of bacterial activity (e.g.
Wasser et al., 2000; Möstl and Palme, 2002). For example,
fGCM concentration rapidly became unstable over time in
faeces of captive and wild orangutans (Pongo pygmaeus;
Muehlenbein et al., 2012) and showed fluctuations in faeces
of African savanna elephants (Loxodonta africana; Stead,
2000). Moreover, exposure to different temperatures and
humidity treatments had complex effects on the fGCM con-
centration in faeces of white-tailed deer (Odocoileus virginia-
nus; Washburn and Millspaugh, 2002), wild bears (Ursus
spp.; Stetz et al., 2013) and jaguars (Panthera onca; Mesa-
Cruz et al., 2014). These results highlight the importance of
assessing fGCM stability in field conditions in studies using
fGCM to monitor wildlife populations.

Asian elephants are the largest terrestrial animals in
Southeast Asia and a species of great ecological significance
(Campos-Arceiz and Blake, 2011; Campos-Arceiz et al., 2012)
that have become endangered as a result of the rapid decline
of their populations in recent decades (Choudhury et al.,
2008). The conservation of Southeast Asian elephants is ham-
pered by a poor understanding of their ecology and behaviour
and the difficulty of studying them in tropical rainforests
(Blake and Hedges, 2004). With the general aim of defining
appropriate sampling protocols to study wild elephant popula-
tions in Southeast Asia, here we present a study to determine
fGCM stability in semi-natural conditions in Peninsular
Malaysia. Our objectives were as follows (i) to determine how
long the fGCM concentration in Asian elephant faeces
remains stable after defecation; and (ii) to determine whether
fGCM stability is affected by exposure to sunlight and/or
water. To address these questions, we conducted a dung decay

experiment with elephants in semi-natural habitats in
Peninsular Malaysia.

Materials and methods
Animals
Faecal samples were collected from 10 elephants: eight
females (seven adults and one sub-adult) and two males
(both sub-adults), from Kuala Gandah National Elephant
Conservation Centre (NECC) in Pahang, Peninsular Malaysia.
Elephants in our sample were all older than 10 years; we clas-
sified as sub-adults those with an estimated age of <15 years.
All the elephants were housed in the same paddock area at
night, in similar environmental conditions. The elephants were
fed a consistent diet of grasses supplemented with papaya and
sugarcane; during the day, they were also allowed to graze on
different patches of grasslands. At noon, elephants were given
a daily bath in a river.

Collection of faecal samples
The dung piles (n = 80, three to nine boli each) were collected
from the 10 study individuals for five consecutive days (13–17
January 2013) between 04.00 and 09.00 h. Following defeca-
tion by any of the elephants, the dung piles were collected and
sampled immediately (hereafter known as ‘time 0’ samples)
before being randomly assigned to one of the 2 × 2 treatment
combinations [wet–shade (n = 21 faecal piles), wet–sun
(n = 20), dry–shade (n = 17) and dry–sun (n = 22)]. For ‘wet’
samples, 1 litre of purified water was poured over the dung
pile just after the time 0 sample was taken; for ‘dry’ samples,
no water was added; for ‘shade’ samples, the dung piles were
placed in an area under a tree canopy (70–100% canopy cov-
er); and for ‘sun’ samples, the dung piles were placed in an
open field (0% canopy cover). At night (19.00–04.00 h) and
during two brief episodes of rain, we covered all the samples
with plastic sheets (placed over each dung pile) to avoid rain-
fall affecting our experimental treatments. During the experi-
ment, the nearest weather station (Felda PPP Tun Razak,
03°50′N, 102°34′E) recorded daily averages of 6.4 ± 2.5 h of
sunlight, 25.5°C temperature, 4 ± 8 mm of rainfall and
80 ± 2% relative humidity.

To collect faecal subsamples (n = 685 from the 80 dung
piles) for hormone analysis, we used scissors to cut three
small openings in different parts of the dung pile (usually on
different boli) and removed faecal matter from the centre of
the bolus using forceps; we then placed the sample in a zip-
lock bag, mixed thoroughly, and kept it frozen at −20°C
until laboratory analysis. Each dung pile was coded with a
unique identity (ID) number. Hormone sample bags were
labelled with dung pile ID, date and time of sampling. Faecal
subsamples were taken at a range of times, with sampling
occurring more intensively within the first half of the day of
defecation to capture initial changes in fGCM and less fre-
quently thereafter, as follows: time 0 (fresh defecation), 0–2,
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2–4, 4–6, 6–8, 8–11 and 11–16 h and 1, 1.5 and 2 days after
defecation. Dung piles collected at the start of the day (e.g.
at 04.00 h) were sub-sampled more frequently than dung
piles collected later in the day (e.g. at 09.00 h), hence the
number of subsamples differed between dung piles.

Hormone analysis in the laboratory
The faecal subsamples were extracted using a wet-weight
extraction technique adapted from Walker et al. (2002) and
described elsewhere (Watson et al., 2013; Edwards et al.,
2014), whereby 0.5 g of faecal matter was extracted with 5 ml
of 90% methanol, shaken overnight, dried and reconstituted in
1 ml of 100% methanol, and stored at −20°C until being ana-
lysed with a corticosterone enzyme immunoassay (CJM006;
supplied by Coralie Munro, University of California Davis,
CA, USA). The assay has been biologically and biochemically
validated for use in Asian elephants (Watson et al., 2013). The
corticosterone antiserum CJM006 cross-reactivities are pub-
lished elsewhere (Watson et al., 2013), and only data with an
intra-assay coefficient of variation of <10% and inter-assay
coefficient of variation of <15% were accepted and used for
statistical analysis.

Data analysis
The fGCM concentrations were log10 transformed and ana-
lysed using cross-classified linear mixed models to determine
relevant random effects and assess the effect of the fixed factor
treatments. One dung pile was removed from the data set and
subsequent analyses because it had been sampled fewer than
four times during the study, and three other dung piles were
removed because they were considered to contain some
extreme outliers (fGCM concentration >80 ng/g). The removal
of these dung piles did not affect the outcome of the final
model selection. The final data set, therefore, included data
from 76 faecal piles with a total of 660 subsamples. The fixed
factors of interest were as follows: (i) time since defecation, as
a categorical variable [time 0 (fresh defecation), 0–2, 2–4, 4–6,
6–8, 8–11 and 11–16 h and 1, 1.5 and 2 days after defecation];
(ii) water (wet vs. dry); (iii) shade (shade vs. sun); and (iv) the
interaction between water and shade. The random factors con-
sidered were as follows: (i) variation within elephant indivi-
duals (n = 10); (ii) variation within dung piles (n = 76); and
(iii) variation within days of collection (n = 5). The variation
within dung piles was considered to be nested within the vari-
ation of individual elephants.

We used time as a categorical variable instead of a con-
tinuous variable (in quadratic form) to make it easier to
detect the point in time at which fGCM became different in
comparison to time 0. To test the effect of time since defeca-
tion on fGCM concentration, we set the contrast to compare
all time points against time 0 values.

All linear mixed models were fitted using the function lmer
in the package lme4 (Bates et al., 2015) in the R statistical
environment (version 3.1.1; R Core Team, 2014). The

optimal model was determined by dropping of the vari-
ables in the model one by one and comparing its significance
with the model using likelihood ratio (LR) tests (Galecki and
Burzykowski, 2013; Zuur et al., 2009). First, to choose the
random covariates to retain in the final model, a restricted
estimated maximum likelihood and combination of LR tests,
Akaike information criterion and Bayesian information criter-
ion was used (Zuur et al., 2009). The effects of the fixed fac-
tors were assessed on the model using maximum likelihood by
dropping the fixed factors one at a time and comparing the
new model with the previous one. Again, we kept the fixed
factors that were significant for the model based on LR tests
and information from the Akaike information criterion and
Bayesian information criterion.

We used a supporting R package, lmerTest (Kuznetsova
et al., 2015) with Satterthwaite approximation to estimate
degrees of freedom to calculate P-values and confidence
intervals for the model parameters. Density plots from simu-
lated models were obtained (repeated 1000 values), which
plotted the effect of fixed factors and random effects in the
model for comparison (Orelien and Edwards, 2008; Galecki
and Burzykowski, 2013). Finally, we checked the model’s
assumption of homogeneity and normality of residuals using
Pearson standardized residuals.

Results
The overall mean ± SD concentration of fGCM at time 0
(fresh defecation) was 17.35 ± 6.23 ng/g, and it remained

Figure 1: Changes in faecal glucocorticoid metabolite (fGCM)
concentrations in Asian elephant dung (n = 76 dung piles, n = 660
faecal subsamples) from the time of defecation (time 0) to 2 days post-
defecation. Samples under direct sun exposure (red) showed higher
fGCM concentrations compared with samples under shade (green).
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stable for up to 8 h after defecation, with fluctuations within
±6.0% from the time 0 mean (Fig. 1). After 8 h, the mean
fGCM concentration increased considerably, being 13.20%
higher at 8–11 h after defecation, 26.17% higher at 11–16 h,
and reaching its peak 1 day after defecation at values
31.82% higher than time 0. Thereafter, the fGCM concen-
tration decreased, showing values slightly higher (14.52%)
than time 0 after 1.5 days and dropping below time 0 values
(−9.16%; 15.76 ± 5.93 ng/g) 2 days after defecation (Fig. 1).

The analysis of random effects showed that individual
dung piles (χ²1 = 255.4, adjusted P < 0.001) and individual
elephants (χ²1 = 9.27, adjusted P < 0.001) were influential
effects. The covariate ‘day of collection’ was not influential
on the data and was dropped from the model (χ²1 = 0.00,
adjusted P = 0.50; Fig. 2). The analysis for the fixed factors,
time (χ²1 = 183.82, P < 0.001) and shade (shade vs. sun),
had significant effects (χ²1 = 7.12, P = 0.008; Figs 1 and 2
and Table 1), with sun exposure resulting in higher fGCM
concentration compared with shade exposure (Fig. 1). The
treatment of water did not have a significant effect on fCGM

concentrations (χ²1 = 0.18, P = 0.67). Additionally, the
interactions between (i) water, shade, and time; (ii) water
and time; (iii) shade and time; and (iv) water and shade treat-
ments had no impact on fGCM concentration (P > 0.05).
The final linear mixed models found that time categories
<8 h were not significant (P ≥ 0.54), whereas categories >8 h
were significantly different from time 0 (P < 0.001; Fig. 1).
The results of the final model (Table 1) were confirmed by
the model simulation, which demonstrated that fGCM con-
centration values remained stable for up to 8 h after defeca-
tion but not afterwards, and supported our retention of
elephant and dung pile (nested within elephant) as random
effects and shade as a significant fixed factor.

Discussion
We found that fGCM concentrations in Asian elephants’ fae-
ces were stable for up to 8 h in semi-natural conditions in the
rainforests of Southeast Asia, hence allowing us to design a
reliable protocol for dung sampling for the monitoring of

Figure 2: Density plots from simulated model data (n = 1000) were generated to estimate P-values for fixed and random effects. The value of
fixed effect coefficient ‘β’ for each time sector compared with categorical time 0 (i.e. fresh defecation) and shade results is the difference of shade
in comparison to ‘sun exposure’. If the β-value is centred around zero (red vertical line) then there little difference between the two categories; if
the value is far from zero, then the difference between the two categories is large. In terms of changes of fGCM over time, this figure shows that
the fGCM concentration remains stable for up to 8 h after defecation, but thereafter there are large differences from the time 0 baseline. The
random effects ‘intercepts’ (dung piles and individual elephants) were compared with ‘intercept = 0’ and are significant for the model.
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adrenal activity in wild elephants. This is especially relevant
when tracking wild elephants with GPS satellite collars in the
thick forest. In the event that the observer could not deter-
mine the exact moment when the elephant defecates, the age
of the dung pile can be estimated conservatively based on
when the elephant was in a particular location.

The large sample size from this study provides confidence
in our results regarding the changes in fGCMs that occurred
in elephant faeces up to 2 days old. It is important to note that
the fGCM concentration became elevated after 8 h, and more
rapidly when exposed to direct sunlight. The previous per-
formance (biological validation) of this assay on captive Asian
elephants suggests that fGCM concentrations >25 ng/g reflect
elevated glucocorticoid concentrations associated with a
significant challenge (Watson et al., 2013). If the effect of
time elapsed since defecation is ignored in a field study,
researchers might erroneously conclude that a particular
animal has elevated adrenal activity when it is in fact an
artefact of the sample’s age or of exposure to environmen-
tal conditions. Future field studies should therefore consider
dung decay in their study design to determine the suitable
window for sample collection, as well as interpreting and
comparing fGCM results separately for faecal samples col-
lected in shaded locations and those collected in open areas
directly exposed to the sun.

The biological mechanisms that influence the changes in
fGCMs over time could be caused by bacterial activity or
transformation and breakdown of the glucocorticoid’s

molecular structure, resulting in differences in affinity with the
antibody in the assay (Palme, 2005). Steroid hormones in the
environment can be removed from the environment through
sorption (absorption and adsorption), photolytic degradation
(chemical decomposition in sunlight) or microbial activity
(Snow et al., 2013). For example, in a loam soil sample mixed
with 80% sterilized soil, the degradation of 17β-estradiol to
estrone was much slower than in fully unsterilized soil, imply-
ing that soil microorganisms play an important role in the deg-
radation of steroid hormones (Xuan et al., 2008; Snow et al.,
2009).

It is not clear why water exposure resulted in an elevation
in fGCM concentrations in some studies (Washburn and
Millspaugh, 2002; Mesa-Cruz et al., 2014) but not in the pre-
sent study. Some possible reasons are as follows: (i) water
might cause changes in metabolite immunoactivity that can be
picked up by some enzyme immunoassays or radioimmunoas-
says but not by others (Mesa-Cruz et al., 2014); (ii) there
could be differences in faecal forms (e.g. elephant dung is
voluminous and highly fibrous, bird faeces are in the form of
powder, and deer faeces are small dense pellets) or other
unmeasured variables that might be influencing the interaction
between water and the metabolism of the glucocorticoids pre-
sent in the faeces; (iii) the high humidity in the tropical environ-
ment might also affect samples not treated with water and thus
confound the effect of the water treatment; and (iv) it is pos-
sible that the amount of water used in our experiment was
insufficient to affect fGCM concentrations. Given that elephant

Table 1: Results from the final model, with P-values for the fixed factors and confidence intervals for intercepts and slope (β coefficient)
generated from lme4 and lmerTest package

Type Factor Coefficent (SE) d.f. t-value 95% Confidence interval P-value

Fixed Intercept 1.244 (0.026) 17.70 47.71 1.193–1.297 <0.00001

Shade −0.039 (0.022) 68.0 −2.73 −0.106 to −0.017 0.008

<2 h −0.061 (0.014) 580.4 −0.21 −0.031 to 0.025 0.83

2–4 h −0.0031 (0.015) 577.9 −0.62 −0.040 to 0.021 0.54

4–6 h −0.009 (0.016) 577.7 −0.17 −0.033 to 0.028 0.86

6–8 h −0.002 (0.016) 579.6 0.01 −0.030 to 0.031 0.99

8–11 h 0.000 (0.016) 577.4 3.75 0.028 to 0.088 0.0002

11–16 h 0.056 (0.016) 579.7 6.15 0.067–0.130 0.00001

1 day 0.099 (0.015) 575.4 8.38 0.093–0.150 0.00001

1.5 days 0.122 (0.015) 576.2 4.37 0.036–0.095 0.00001

2.0 days 0.066 (0.015) 575.7 −2.65 −0.068 to 0.010 0.008

Random Elephant 0.056 0.009–0.093 <0.001

Dung pile 0.089 0.071–0.109

Random effect residual 0.086 0.084–0.094

The parameters for random factors were obtained through simulation (×1000) by comparing the final model with both random factors and null model without ran-
dom factors.
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dung is full of fibre, it contains natural moisture and it has
a protective mucus on the outer layer, so the addition of
water might not have a major influence on the fGCMs in
the centre of the boli, from where the samples were taken.
In the present study, we used purified water as a proxy for
rainwater. We acknowledge that there are chemical differ-
ences between both and recommend that future studies
should use forest rainwater to investigate the effect of rain
on fGCM stability.

Although we conducted this experiment with captive ele-
phants, whose diet and daily activities differ from those of
wild individuals, we think that our results are relevant for
studies on wild elephants. Similar studies would be impossible
to carry out using dung from wild elephants in the tropical
rainforests of Southeast Asia because in these environments:
(i) elephants occur at low densities; (ii) direct observation is
unfeasible; and (iii) getting near elephants to collect freshly
defecated dung would involve a high physical risk for the
researchers. The NECC has the biggest captive elephant popu-
lation in Peninsular Malaysia, and we were able to have access
to eight females (65 dung piles) and two male elephants (15
dung piles) in the present study. Although this sample size is
adequate to study fluctuations in fGCM in individual dung
piles over time, future studies could look into individual vari-
ability in fGCM in relationship to ‘stress treatments’ (see con-
textual interpretation of fGCM; Madliger and Love, 2014)
and try to sample from a larger population with equal
representation from different age groups and sex. Overall, our
results have important implications for studies of free-ranging
wildlife, highlighting that the time since defecation and the
effect of environmental factors affect fGCM concentration;
hence, they should be important considerations in field fGCM
sampling protocol design.
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