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Abstract. We investigate the atomic structure of Sn dimer chains grown on the
Si(100) surface using non-contact atomic force microscopy (NC-AFM) at cryogenic
temperatures. We find that similar to the native Si(100) dimer structure, the ground
state of the Sn dimer structure is buckled at low temperature. At 5 K we show that
the buckling state of the Sn dimers may be controllably, and reversibly, manipulated
with atomic precision by close approach of the tip, without modification of the
underlying substrate buckling structure. At intermediate cryogenic temperatures we
observe changes in the configuration of the dimer chains in the region where the tip-
sample interaction is very weak, suggesting that the energy barrier to transit between
configurations is su�ciently small to be surmounted at 78 K.

PACS numbers: 68.37.Ps, 81.16.Ta, 81.05.Cy, 68.35.Md
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1. Introduction

The study of the self-assembly of 1D nanostructures on the Si(100) surface [1, 2, 3] has

been motivated in part because of the attractive proposition of being able to form wires

of single atom width without the need for direct photolithographic patterning. This work

has for the most part been motivated by the significant interest in miniaturisation in the

semiconductor industry, and therefore had a strong focus on the electronic properties

of low dimensional structures on the atomic scale. These 1D structures also serve as

a fascinating set of prototypical systems for investigating single atom processes at the

atomic scale, and for testing the accuracy of ab initio simulations [4, 5, 6].

Although semiconductors are therefore usually more stable than metallic systems,

the reconstructions of some semiconductor surfaces nonetheless present a fascinating

experimental and theoretical challenge due to the bistable configuration of the atoms

at the surface. Indeed, as has been discussed extensively elsewhere, the Si(100) [7],

surface o↵ered a unique challenge in that the dimers that make up the surface are

known to be bistable at room temperature, resulting in an apparent symmetric phase

[8, 9, 10]. This bistability means that the surface is also extremely sensitive to

perturbation by the investigating probe [11, 12]. Therefore interpretation of imaging of

the surface has required significant theoretical input [13], and must be interpreted with

explicit consideration of both the surface temperature [9], and the imaging mechanism

[14, 15, 16].

Because the absorption of other group XIV elements at room temperature results

in self assembled structures that mirror the structure of the silicon surface itself, the

investigation of these structures present similar challenges to those encountered when

looking at the clean surface. Although the structures have been extensively investigated

at the atomic scale both experimentally by use of STM [3, 2, 5], and computationally

by ab initio calculation [4, 5, 6], a key limitation is the intrinsic convolution between

the electronic and topographic properties of the chains that results from the nature of

scannng tunnelling microscope (STM) imaging [6]. Although it is known that several

types of metal dimer chain should possess a buckled ground state [17, 2], as with

investigations of the silicon dimers there remains some debate as to how this buckling

should be a↵ected by the local surface structure.

The fundamental properties of these atomically defined structures are ideal

candidates for single atom manipulation experiments, generally concerned with the

ultimate ‘digital’ control over matter, and have been an active area of research since the

pioneering work by Eigler et al [18]. While manipulation experiments using STM have

undoubtedly demonstrated extreme levels of control over the positioning of single atoms

and molecules [19, 20, 21] many forms of manipulation utilise the application of high

electric fields, or the injection of tunnelling electrons, to induce excitation of the target

atom or molecule. Although this limits their application to metallic, or highly doped

semiconductor, substrates, the power of the technique in the engineering of functional

atomic scale devices has been clearly demonstrated by the fabrication of single atom
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transistors and atomically thin wires on passivated semiconductor surfaces [22, 23].

An alternative manipulation strategy involves the direct application of mechano-

chemical force to the targeted atoms or molecules via close approach of the scanning

probe tip. This mode can be utilised in STM experiments, but the close approach

of the tip can result in high current densities at finite sample bias, which introduces

the potential for perturbation via current induced excitation. Operation at zero bias

can help separate the contribution of the mechanical and current based e↵ects[24]

but requires the experiment be performed ‘blind’ as with no current there is no

experimental observable during conventional STM operation. Conversely, use of force-

based techniques such as non-contact atomic force microscopy (NC-AFM), which image

via measurement of force, rather than tunnel current, allow for routine atomic resolution

imaging and manipulation at zero bias. Since NC-AFM utilises the measurement of

the change in resonant frequency of an oscillating cantilever to detect the interaction

between the tip and surface [25], it in principle o↵ers certain advantages over STM, as

it is primarily sensitive to the atomic scale topography, and chemical reactivity [26],

rather than the convolution of electronic structure and topography intrinsic to STM

measurement. Most fundamentally, its mode of operation allows for the possibility of

operation on insulating substrates, and measurement of the force during manipulation

procedures. These experiments allow valuable insight into the processes that occur

during manipulation via mechano-chemical manipulation [27, 28]. Because the forces are

highly localised in the tip-sample junction, force-based manipulation has the potential

to be more spatially precise than current-based manipulation techniques, which can in

turn be important in situations where the system is particularly sensitive to external

perturbation [11, 29, 30, 13, 11, 29].

From a fundamental science perspective, semiconductor systems o↵er important

advantages with regards to developments in single atom manipulation, as the energy

barriers involved in these systems are significantly higher than those typically

encountered on metal, or ionic crystal surfaces. Consequently, it has been shown

that use of semiconductors permits control of matter on the single atom level even

at room temperature, allowing access to processes that were previously restricted to

cryogenic temperatures. These have included lateral [27], and vertical [28] single atom

manipulation via mechano-chemical means, and resolving the intramolecular structure

of single molecules at room temperature [31]. Thus far, however, there have been a

very limited number of atomic resolution studies of metal chain structures [32, 33].

Nonetheless, these studies clearly demonstrate the potential for NC-AFM in identifying

the atomic structure, and chemical make-up of the chains, as compared to the data

obtained in the STM channel in the same studies.

In this paper, we use NC-AFM to investigate Sn dimer chains on Si(100) at 5 K.

Due to the high resolution o↵ered by this technique, and the stability a↵orded by low

temperature operation, we are able to unambiguously confirm the buckled ground state

of the dimers that make up the self assembled chains. Furthermore, via close approach

of the scanning probe tip, we are able to controllably manipulate this buckling state
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using mechano-chemical force [12]. We also show how modification of the scanning

parameters can result in an apparent symmetric dimer configuration, similar to the

transition observed during imaging of the Si(100) surface itself [11, 30]. Finally, data

acquired at an intermediate temperature suggests that the dimers in the chains are

structurally unstable even at 78 K. We compare and contrast these results to previous

room temperature and low temperature STM studies of similar systems, and ab initio

calculation of the energy barriers associated with the structures.

2. Experimental details

We used a commercial low temperature (LT) STM/NC-AFM instrument (Scienta

Omicron) operating in UHV cooled to either 5 K (LHe) or 78 K (LN2). Clean Si(100)

surfaces were prepared by standard flash annealing of arsenic doped silicon wafers to

1150�C, and then slow cooling from 900�C to room temperature. A low coverage of

Sn was prepared by exposing the room temperature silicon wafer to a molybdenum

crucible containing high purity Sn (Goodfellow Cambridge Ltd.) heated by electron

bombardment, for approximately 3 minutes.

Commercial qPlus [34] sensors (Scienta Omicron) with electrochemically etched

tungsten wire tips, were used, and introduced into the scan head without any ex

situ tip treatment. The tips were prepared on the silicon surface by standard STM

methods (voltage pulses, controlled contacts with the sample) before performing NC-

AFM experiments, and consequently we assume our tips are (bulk) silicon terminated.

Site-specific tip-sample forces were measured by performing �f (z) spectroscopy on

the feature of interest, and over the bare substrate, subtracting one from the other

(i.e. extraction of site-specific interactions [35, 36]) and subsequent inversion to force by

the Sader-Jarvis algorithm [37]. As noted previously [12], the assumption that the o↵

curves only contain long range force contributions is not strictly valid as we are able to

observe weak site-specific interaction with the surface (i.e. atomic contrast) in constant

height imaging due to the relatively long range extent of the silicon dangling bonds of

the exposed surface. As a result, all forces presented here should slightly underestimate

the true tip-sample interaction, but we believe this systematic underestimation to be

preferable to the greater uncertainties that would be introduced by attempting a long-

range fit of the van de Waals and electrostatic background [38, 39].

In this manuscript all NC-AFM images were acquired in true constant height mode,

or in the adaptive height mode recently introduced by Moreno et. al. [40]. Therefore the

images presented in the figures are�f maps. These are plotted in greyscale where darker

features represent a more negative �f and brighter features represent more positive

�f values. In our analysis we presume that more negative �f values correspond to

an increased attractive interaction between the tip and sample, and more positive �f

values represent less attractive (or repulsive) interactions. Some care must be taken with

this assignment as rigourously the assignment of the sign of the �f to the direction of

the force can in general only be performed after inversion of a complete �f (z) curve to
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force, as variation in the shape of the tip-sample potential, and the size of the oscillation

amplitude, can result in even qualitative changes in the evolution in �f constrast [41].

When performing experiments at 78 K, or acquiring grids of data over long periods of

time at 5 K, we used a custom-built atom tracking system [42, 43] to correct residual

thermal drift and piezoelectric creep. In all NC-AFM imaging we maintained a Vgap of

approximately 0 V, such that no tunnel current was detected.

3. Surface overview

Because the manipulation protocols described later in the paper utilise particular

intrinsic properties of the Si(100) surface and grown Sn chains, it is worth reviewing some

of the key features of both structures. The native Si(100) surface is now recognised to

form rows of alternately buckled silicon dimers, with each dimer having a topographically

higher (‘up’) and lower (‘down’) atom. The ordering of the dimers in consecutive rows

of the surface has two possible configurations, with in-phase and out-of-phase buckling

in the rows o↵ering the possibility of a p(2x2) and c(4x2) reconstruction respectively

(Figure 1 a)). Importantly, the barrier for dimers to change configuration (i.e. so

called ‘flip-flop’ motion) is easily surmounted by the available thermal energy at room

temperature. This very rapid motion results in an time-averaged apparent p(2x1) phase

at room temperature.

It has previously been shown that the silicon dimers can be manipulated at low

temperature, both by injection of tunnelling electrons [29, 16], and also by direct

chemical interaction with the scanning probe tip [12, 11]. In the latter case, this

manipulation is understood to occur when a chemical bond forms between the lower

atom of the dimer and the terminating atom of the scanning probe tip for the case of

reactive (e.g. silicon- or tungsten-terminated) probes. The formation of this bond ‘pulls’

the lower atom of the dimer up into contact with the probe, with a resultant ‘toggling’

of the buckling state of the dimer.

As noted above, deposition of metal adatoms onto the Si(100) surface results in

the growth of 1D chains for many di↵erent elements. Although more sophisticated

structures exist [33], most of these chains are formed of dimers of the deposited material

running perpendicular to the direction of the dimers rows of the silicon surface (Figure

1 b)). Depending on the material, these dimers are either symmetric, or buckled, like

the silicon dimers [32]. In this paper we only consider the case of Sn dimers, which

are thought to have a buckled configuration, and discuss their manipulation via an

analogous mechanism to that described for the native silicon dimers.

4. Results

4.1. STM and NC-AFM imaging

Figure 2 a) shows a large scale STM overview of the Si(100) surface after deposition of

a low coverage of Sn. The contrast we observe is broadly in line with previous studies



Mechano-chemical manipulation of Sn chains on Si(100) by NC-AFM 6

p(2x2) c(4x2)c(4x2)

0.77nm

0.38nm

<110>

<110>

Sn chain growth

a)

b)

Sn
Si

Top

Side

Figure 1. (a) Ball and stick model of the Si(100) surface showing the p(2x2) and
c(4x2) reconstructions that arise from di↵erences in the buckling orientation. The
scaling of the top-most layer has been exaggerated to highlight the di↵erence in the up
and down atoms of the dimers. The upper diagram shows a top down view, the lower
diagram shows an end on view looking down the rows. (b) Ball and stick model showing
the orientation of the Sn chain growth on the Si(100) surface, the same exaggerated
scaling between the up and down atoms has been applied.
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of the same system performed at room temperature [2] - we observe small chains of

dimers growing perpendicular to the direction of the silicon dimer rows, in addition to

a number of isolated dimer units oriented both perpendicular and parallel to the dimer

rows. Figure 2 b) shows a high resolution scan showing a chain of three, chain of two,

and single dimer units. The positioning of these structures is in line with previous

studies [2], confirming that the dimers in the chains sit above the trenches between the

rows of silicon dimers of the surface.We note that in line with some previous studies

we do not resolve the atomic structure of the dimers during STM imaging at relatively

large biases [32].

Figure 2 c) and d) show the NC-AFM topography, and simultaneously acquired

adaptive constant height image taken using a tip which primarily shows attractive

interaction with the Sn dimers and the silicon surface. We note that the primary

advantage of the adaptive height mode is that it is possible to acquire the adaptive

constant height images on both terraces of the surface, whereas traditional slow feedback

pseudo-constant height imaging normally permits contrast only to be resolved on the

upper terrace. In particular, we note that the scan is stable despite a very strong

interaction with some of the dimers, including close approach resulting in lateral

manipulation in places. The adaptive constant height image shows the configuration of

the chains and dimers of the surface with atomic resolution. In particular, in addition

to the chains we also observe a number of isolated dimers oriented parallel to, and

absorbed on top of, the dimer rows. These appear to interact more strongly with the

tip due to their topographically higher position. These parallel dimers have previously

been calculated to be a metastable state for isolated dimers on the surface [17], and

we speculate that we observe them here perhaps in part due to our low temperature

operation and low surface coverage, which may result in a larger proportion of kinetically

trapped species. While the interaction here is primarily attractive at close approach, we

note that over the perpendicular chains careful examination reveals a mix of attractive

and repulsive features, which we discuss in more detail later in the paper.

In line with our observation of multiple contrast modes on the bare silicon surface

[44], we also observe a range of interactions, and imaging modes on the Sn dimers due

to di↵erent tip structures. An example of this is shown in Figure 2 e) and f), which

again show topography, and simultaneously acquired adaptive constant height images

of a small Sn chain, and a nearby silicon step edge, acquired with a tip that shows a

primarily repulsive interaction. In particular, we note that both the Sn dimers, and the

silicon atoms of the upper terrace both image as repulsive features, strongly suggesting

that this image was acquired with a passivated tip similar to those observed during

constant height imaging on the Si(111) surface [39].

4.2. Controlled manipulation at 5K

Figure 3 shows experimental data acquired during manipulation of the buckling state of

a Sn dimer, highlighting the data processing steps, and proposed manipulation protocol,
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Figure 2. Imaging of Sn chains on Si(100) by STM and NC-AFM. (a) Large scale,
and (b) high resolution STM images of the Si(100) surface showing a low coverage of
Sn chains. Vgap= -2 V, It = 10 pA, A0 = 0.6 nm. (c) Large scale constant �f NC-
AFM topographic image, and (d) simultaneously acquired adaptive height �f image
taken with a tip showing an attractive interaction with the Sn chains. �f = - 7.3 Hz,
�z = - 0.2 nm, A0 = 0.2 nm, Vgap = 0 V. (e) Constant �f NC-AFM topographic
image, and (f) simultaneously acquired adaptive height �f image taken with a tip
showing a repulsive interaction with the Sn chains. �f = - 30 Hz, �z = -0.19 nm, A0

= 0.2 nm, Vgap =0 V.
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similar to that described previously for the controlled manipulation of the silicon dimers

[12]. In this experiment, the tip was placed over the ‘down’ atom of a Sn dimer and

gradually approached, whilst measuring the frequency shift of the tuning fork. A gradual

increase in the frequency shift is observed, indicating a gradually increasing attractive

interaction (marked 1) on the plot). At a certain point, we observe a sharp jump in

the frequency shift (marked 2)), indicating that the lower dimer had jumped up into

contact with the probe apex. Upon retracting the tip we observe hysteresis between

the approach and retract curves (marked 3)), a signature previously identified as a

successful dimer flip, as it indicates the tip is now withdrawing over the ‘up’ atom of the

dimer. In the same graph we plot the frequency shift recorded o↵ the chain, which we

subtract from the frequency shift curves acquired during manipulation to generate the

site-specific force curves. The site-specific force curves for the manipulation are plotted

on the same axis, but we explicitly note that force values for the approach curve plotted

after the jump (see red arrow) are not reliable, and are included for transparency in the

data processing steps only. In subsequent force-distance curves in this manuscript we

truncate the force data after the jump.

Figure 4 shows high-resolution constant height slices acquired at 5 K on a small

chain with a tip showing a primarily attractive interaction with the upper atoms of the

Sn dimers. In order to avoid perturbing the chain during imaging, a relatively large

tip-sample separation was maintained, and consequently the lower atom of the dimer,

and the surface structure, is not easily resolved in the raw data. In order to confirm

the buckling state of the dimers, we performed the manipulation protocol outlined in

Figure 3, approaching the tip over the lower atom of the dimer. Manipulation of the

dimer was confirmed by subsequent imaging (Figure 4b)) which now shows the up atom

of the dimer shifted to the location under the manipulation position. We performed two

subsequent manipulations (Figure 4b), Figure 4c)), and then confirmed the stability of

the new configuration in a subsequent scan without manipulation (Figure 4d)). Further

manipulations were performed to restore the original configuration of the chain (Figure

4 e), Figure 4 f)) and we were able to demonstrate the reproducibility of the process by

repeating some of the earlier manipulations (Figure 4 g), Figure 4 h)).

In Figure 5 we present an analysis of the threshold force measured between the tip

and sample required to initiate the dimer flipping. As noted above, we follow the same

convention as in previous works, and plot the approach curves up to the point at which

we detect the change in dimer configuration, as the change in the tip-sample potential

means that the inversion to force is no longer reliable [45, 28, 12]. Upon retraction we

note a uniformly larger tip-sample force, which indicates the tip is retracting over what

is now the upper atom of the dimer. As for the manipulation of the silicon dimers of the

surface, we observe a spread in the threshold force required to flip the dimer between

di↵erent configurations (Figure 5a)). In these plots abbreviated captions indicate the

direction of data acquisition with ‘fwd’ indicating a forward curve (i.e. tip approaching

the surface) and ‘back’ indicating a backward curve (i.e. tip retracting from the surface).

In Figure 5a) the plots labelled ‘reverse’ indicate that the manipulation is the
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reverse manipulation process (i.e. the manipulation restores the original buckling

configuration after a earlier manipulation on the same dimer). In these instances a

di↵erence in threshold force could indicate that the energy barriers between the two

configurations are not symmetric. However, we stress that we also see statistical

variation between manipulation events that should in principle require the same force.

This is demonstrated in Figure 5b) where plots labelled ‘repeat’ indicate near-identical

manipulations over the dimer in the same configuration as the initial manipulation.

These data suggest that the variation in the threshold force is as sensitive to the precise

positioning of the tip over the target atom as to the local environment of the dimer.

Nonetheless, we can clearly determine that for this tip the threshold force required to

initiate the dimer flip lies between 100 and 400 pN.

In contrast, force spectroscopy performed on the up atoms of the dimers shows a

uniform behaviour (Figure 5 c)). We note that the dimer to the left of the image (dimer

i) has a slightly di↵erent configuration to dimers ii and iii, as the minimum in the force

curves is shifted approximately 50 pm towards the surface. While the almost identical

magnitude of the force strongly suggests the same chemical identity of the atom, the

di↵erence in its bonding configuration to the surface is also confirmed by the failure of

attempted manipulation of the dimer during force spectroscopy over the position of the

‘down’ atom. Most likely this di↵erence arises from the positioning of the dimer close

to what appears to be a surface defect. Importantly, we can exclude the possibility that

the feature is a di↵erent material (such as an adsorbed OH group) due to the identical

magnitude of the forces, and note that a single Sn atom should not only adsorb on top

of the rows, but also be relatively unstable [2], neither of which match the properties of

the feature identified as dimer i.

In Figure 6 we highlight the reproducibility of this manipulation technique on

another dimer chain, using a tip demonstrating slightly di↵erent contrast. In these plots

we use the same naming and labelling conventions throughout as for Figure 5. Although

this tip systematically demonstrated larger tip-sample forces, and larger threshold forces

required to initiate manipulation, we find that the spread in the force needed to initiate

the manipulation in di↵erent configurations and at di↵erent positions is roughly the

same, varying from approximately 400 pN - 800 pN.

After the controlled manipulation experiments shown in Figure 6, we acquired

a three-dimensional dataset over the same chain by performing series of constant

height scans at decreasing tip-sample separation in 7 pm intervals, the results of

which are shown in Figure 7. Similar to the bare Si(100) surface, at larger tip-sample

separations we first observe the buckled structure, while upon close approach we observe

uncontrolled manipulation of the dimers during the scan. As a result of this uncontrolled

manipulation an apparent symmetric appearance of the dimers is observed. Analysis of

the � f (z) curves acquired from the 3-D dataset shows a similar trend to that acquired

during single � f (z) spectroscopy curves, with a jump in frequency shift observed over

the down atom of the dimer.
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Figure 3. (a) Raw �f (z) plots curves acquired during dimer-flip manipulation, and
�f (z) curve acquired o↵ the chain. The site-specific forces extracted from the resultant
site-specific �f (z) are also plotted. Note that force values plotted after the jump (red
arrow) are not reliable and are shown here for guidance only. (b) Configuration of the
tip surface junction at di↵erent positions on the �f (z) curve. 1) Approach curve - tip
far from lower atom of dimer. 2) Approach curve - at position of the jump in �f, the
lower atom of the dimer moves up into contact with the probe apex and the dimer has
changed configuration. 3) Retract curve - the tip has retracted and the dimer remains
in the new configuration.

4.3. Coupling and stability of the chains

A key result of the manipulation experiments presented in Figures 4 - 6 is that the

Sn dimers appear to be relatively well decoupled from each other, as mechanical

perturbation of one dimer does not seem to a↵ect the buckling structure of adjacent

dimers. This is in contrast to the behaviour of adjacent silicon dimers within the dimer

rows of the surface, which exhibit a high degree of mechanical and electronic coupling.

Although an analysis of how the strain field is modified during buckling is beyond the

scope of this investigation, intuitively this di↵erence may be understood by considering

that each dimer in the Sn chain is spaced from the other by an entire silicon dimer row.

The mechanical and electronic coupling across the dimer rows is much weaker than

than along the rows, and this spacing may serve to decouple the Sn dimers. Perhaps

somewhat more surprising is the analysis of the e↵ect of the manipulation on the silicon

surface. In Figure 8 we show images taken from the same manipulation sequence as

Figure 4, but filtered to remove high-frequency noise, and presented in a reverse colour

scale, to improve contrast. By thresholding the image to highlight the silicon surface,

it is possible to see that manipulation of the buckling state of the Sn dimers does not

appear to modify the buckling configuration of the underlying silicon substrate. This

is particularly surprising given the direct mechanical coupling of the Sn atoms to the

underlying silicon dimers, and the well-known sensitivity of the silicon dimers in the

rows to modifications in the strain field even at relatively large distances. Presumably

either the intrinsic barrier to perturb the underlying substrate remains too high to

surmount at 5 K, or the barrier is artificially raised by pining of the dimer position,
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Figure 4. (Left) Constant height �f images showing controlled manipulation of the
buckling state of dimers in a chain adsorbed on the Si(100) surface. Note that only
the ‘up’ atom of each dimer is imaged due to the di↵erence in height between the
two atoms. (Right) Side view of ball and stick model showing configuration of the Sn
dimers in each scan. The crosses (left) and arrows (right) indicate the atom targeted
for manipulation in each scan. (Top) Top down view of Sn chain ball-and-stick model
and labelling of dimers. (a) Initial configuration. (b) Flip dimer ii. (c) Flip dimer iii.
(d) Flip dimer ii. (e) No manipulation. (f) Flip Dimer iii (restores original buckling
configuration). (g) Flip Dimer ii. (h) Flip Dimer iii. A0 = 200 pm, Vgap = 0 V. Data
acquired at 5K.
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perhaps due to the bonding to the subsequent Sn dimer in the chain. This is somewhat

contrary to results on higher coverage surfaces, where Sn chains have been shown to pin

the buckling of other nearby chains [2], presumably via a strain interaction through the

silicon surface.

4.4. Stability of the buckling state at intermediate temperatures

in Figure 9 we present a dataset acquired at 78 K, consisting of data taken from a

series of constant height slices acquired at decreasing tip-sample distance. Far from

the surface (Figure 9 a)) the chain images as di↵use attractive features. By applying a

moderate low pass filter it is nonetheless possible to see small changes in the location of

the minima of the images (highlighted in Figure 9c)). Because of the extremely weak

interaction at this distance (particularly over the down atom of the dimer) we interpret

these features as changes in the buckling state of the dimer chain occurring without

mechano-chemical manipulation via interaction with the tip. Scans at close approach

confirm that manipulation via chemical interaction with the tip can still occur, but

only seems to occur approximately 80 to 100 pm closer to the chain (Figure 9 b)) than

the sequence shown in Figure 9 a). While we cannot conclusively rule out some kind of

modification of the energy barriers of the system due to a long-range interaction with the

tip (perhaps via some kind of long-range electrostatic or dipole interaction) this data

suggests that the energy barriers of the system are such that some residual thermal

flipping of the dimers still occurs at 78 K. As briefly mentioned in discussion of Figure

2 d), at close approach this tip demonstrates a mix of attractive and repulsive features.

This mix of features is non-trivial to interpret as it does not fit the contrast predicted

by either a ‘pure’ attractive or repulsive model. We speculate that this contrast is

connected to the charge transfer that occurs between the upper and lower atoms of

the dimers, and how this distorted charge distribution interacts with tips that are only

partially passivated (perhaps by metal atoms adsorbed from the chains). We stress

however that a definitive interpretation of this contrast mode will nonetheless require

significant input from ab-initio simulation methods.

5. Discussion

By considering the literature of ab-initio simulation of metal chain formation and

structure, and specifically the energies calculated in these studies, some insight may

be gained with regards to the experimental results presented above. The energy barrier

for thermally activated flipping of the Sn dimer has been estimated at between 0.06 eV

(for an isolated dimer) and 0.16 eV (for a dimer forming part of a chain) [17]. This

should be compared to barriers calculated for the native silicon dimers of around 0.2

eV [46, 12]. Consequently, it should be expected that the Sn dimers are somewhat less

stable than the silicon dimers at the same temperature. Qualitatively this matches our

results, since we do not observe changes in the silicon dimer buckling at 78 K in clean
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Figure 5. Site-specific tip-sample force plotted against tip-sample distance (i.e. F(z))
for di↵erent locations, acquired during the dimer flip sequence shown in Figure 4. (a)
Threshold force required to initiate a change in dimer configuration, and same data
for the reverse manipulation, for dimers ii and iii. Note forces after the change in
configuration are not plotted as the force inversion is not well defined after the change
in the tip-sample junction. (b) Variation in threshold force required to initiate the
same change in dimer configuration. Here, the manipulations on each dimer were in
principle identical, and therefore the variation in threshold force is most likely due
to variation in the precise positioning of the tip over the down atom of the dimer.
(c) Forces measured over the ‘up’ atoms of dimers i, ii and iii. In these cases no
manipulation occurred. Note that the vertical position of the force minimum over i is
significantly closer to the surface than for the other dimers, suggesting there is some
conformational di↵erence in the dimer. This is supported by the observation that
attempts to flip dimer i failed, and no jump in force was detected during approach
over the ‘down’ atom position (also plotted).



Mechano-chemical manipulation of Sn chains on Si(100) by NC-AFM 15

Sn Si

X

X

X

X

a)

b)

c)

d)

e)

-10-12-14-16-18-20 Hz

iii iii

-0.1 -0.05 0 0.05 0.1 0.15 0.2
z [nm]

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

F 
[n

N
]

i fwd
i back
i fwd reverse
i back reverse
ii fwd
ii back
i fwd repeat
i back repeat

-0.1 -0.05 0 0.05 0.1 0.15 0.2
z [nm]

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

F 
[n

N
]

i fwd
i back
ii fwd
ii back

f)

g)

Figure 6. (Left) Constant height �f images showing controlled manipulation of
the buckling state of dimers with a di↵erent tip. (Right) Side view of ball and
stick model showing configuration of the Sn dimers in each scan. The crosses (left)
and arrows (right) indicate the atom targeted for manipulation in each scan. (a)
Initial configuration. (b) Flip dimer i. (c) Flip dimer i (restores original buckling
configuration). (d) Flip dimer ii. (f) Flip dimer i . (g) Force curves acquired during
dimer flips. (h) Force curves acquired over ‘up’ atoms of dimers. A0 = 200 pm, Vgap

= 0 V. Data acquired at 5K.

regions of the surface, except at very close approach when we mechanically perturb the

dimers. However, we note that using these figures in a simple Arrhenius estimation

of the lifetime for the flipping suggests a rocking rate on the order of 100 Hz for the

Sn dimers. Since the rocking we observe is detectable in scans taking on the order

of 10 to 30 minutes (i.e. a sub-Hertz rocking rate), it seems likely that these barriers

are somewhat under estimated. We must also highlight that similar to the intrinsic

silicon dimers, there is likely to be significant variation in the barriers as a result of the

local strain in the surface, and that our observations must be considered in the context

of observed buckling in some Sn dimer chains at room temperature. As discussed in

Glueckstein et al. [2] buckling at room temperature was only observed for chains which

had neighbouring chains within two lattice spacings, suggesting that the buckling was

pinned in a similar fashion to the pinning of the Si dimers of the surface by adsorbates

and defects. This raises interesting questions as to how the dimer flipping behaviour

we observe may di↵er for samples with a higher Sn chain coverage, and also as to

how the strain field between the chains might operate given our failure to observe any

perturbation of the surface after flipping the Sn dimer states.
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Figure 7. �f (z) plots extracted from 3D �f dataset over atoms of Sn dimer, and over
the Si substrate. Plotted below the graph are representative constant height �f images
extracted from the dataset at the heights labelled 1-5 on the graph. The position of
the �f (z) plots is marked by the crosses on image 1. �f (z) plots are averages taken
over a 5 x 5 pixel area. A0 = 200 pm, Vgap = 0 V. Data acquired at 5K.

6. Conclusions

We have presented data demonstrating the controlled manipulation of the buckling

configuration of Sn dimers on the Si(100) surface using mechano-chemical means, at 5

K. Our results show the Sn dimers to be surprisingly well decoupled, both from the

other dimers in the chain, and the surface dimers of the silicon surface. As a result

the buckling configuration of the chains can be controlled arbitrarily, unlike the dimers

of the rows on the Si(100)-c(4x2) surface. We have measured the threshold tip-sample

force required to initiate the confirmation change for di↵erent tips, and shown how

the dimers assume an apparent symmetric structure when imaged at close approach,

similar to the Si(100) surface dimers. At intermediate cryogenic temperatures we are

able to observe changes in confirmation at a tip-sample distance that should preclude

tip-induced manipulation. This suggests the energy barrier between buckling states for

the Sn dimers can be surmounted even at 78 K.
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d)b)

a)

Figure 8. Filtered (20 pt gaussian) constant height �f images of Sn dimer chain
on Si(100) (NB: plotted in reverse colour scale to improve contrast (white features
are more attractive)). Taken from the same dataset as Figure 4. (a) Original chain
configuration, (b) Same image, colour scale adjusted to show silicon surface. (c) Chain
configuration after two controlled dimer flips. (d) As (c), but showing surface state.
Note that despite reversing the buckling configuration of two dimers in the chain the
configuration of the silicon dimers of the surface is unchanged. A0 = 200 pm, Vgap =
0 V. Data acquired at 5K.

Close approachWeak interaction

∆z = -0.05 nm

∆z = -0.06 nm

∆z = -0.07 nm

∆z = -0.06 nm

∆z = +0.06 nm

∆z = +0.05 nm

∆z = +0.04 nm

∆z = +0.03 nm 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x [nm]

-0.98

-0.96

-0.94

-0.92

-0.9

-0.88

-0.86

-0.84

-0.82

- 
∆

 f 
/ 
∆

 f
m

in

∆z = +0.06 nm
∆z = +0.05 nm
∆z = +0.04 nm
∆z = +0.03 nm

a) c)b)

Figure 9. Filtered (9 pt gaussian) constant height �f images of Sn dimer chain on
Si(100) (a) Contrast far from chain at decreasing tip-sample height. At all heights the
chain images as a di↵use attractive feature. (b) Same chain imaged at close approach.
At this distance internal contrast in the chain is seen, and individual (indicated by
red arrow), or multiple dimers are mechanically manipulated during the scans (c)
Line profiles of normalised �f taken across the chain in the weakly interacting regime.
Arrows indicate where changes occur in the chain between di↵erent scans. A0 = 200
pm, Vgap = 0 V. Data acquired at 78 K.
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