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Abstract  

BACKGROUND & AIMS: We performed a genome-wide association study 

(GWAS) to identify genetic risk factors for drug-induced liver injury (DILI) from 

licensed drugs without previously reported genetic risk factors. 

 

METHODS: We performed a GWAS of 862 persons with DILI and 10588 

population-matched controls. The first set of cases was recruited prior to May 2009 in 

Europe (n=137) or the USA (n=274). The second set of cases were identified from 

May 2009 through May 2013 from international collaborative studies performed in 

Europe, the USA and South America. For the GWAS, we included only cases of 

European ancestry associated with a particular drug (but not flucloxacillin or 

amoxicillin-clavulanate). We used DNA samples from all subjects to analyze human 

leukocyte antigen (HLA) genes and single nucleotide polymorphisms (SNPs). After 

the discovery analysis was concluded, we validated our findings using data from 283 

European patients with diagnosis of DILI associated with various drugs.  

 

RESULTS: We associated DILI with rs114577328 (a proxy for A*33:01 a HLA class 

I allele; odds ratio [OR], 2.7; 95% CI, 1.9–3.8; P=2.4x10–8) and with rs72631567 on 

chromosome 2 (OR, 2.0; 95% CI, 1.6–2.5; P=9.7x10–9). The association with 

A*33:01 was mediated by large effects for terbinafine-, fenofibrate-, and ticlopidine-

related DILI. The variant on chromosome 2 was associated with DILI from a variety 

of drugs. Further phenotypic analysis indicated that the association between DILI and 

A*33:01 was significant, genome wide, for cholestatic and mixed DILI, but not for 

hepatocellular DILI; the polymorphism on chromosome 2 associated with cholestatic 

and mixed DILI as well as hepatocellular DILI. We identified an association between 

rs28521457 (within the LRBA gene) and only hepatocellular DILI (OR, 2.1; 95% CI, 

1.6–2.7; P=4.8x10–9). We did not associate any specific drug classes with genetic 

polymorphisms, except for statin-associated DILI, which was associated with 

rs116561224 on chromosome 18 (OR=5.4; 95% CI, 3.0–9.5; P=7.1x10–9). We 

validated the association between A*33:01 terbinafine- and sertraline-induced DILI. 

We could not validate the association between DILI and rs72631567, rs28521457, or 

rs116561224. 
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CONCLUSIONS: In a GWAS of persons of European descent with DILI, we 

associated HLA-A*33:01 with DILI due to terbinafine and possibly fenofibrate and 

ticlopidine. We identified polymorphisms that appear to be associated with DILI from 

statins, as well as 2 non–drug-specific risk factors.  

 

KEY WORDS: medication, liver damage, side effect, anti-fungal agent 
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Introduction 

Hepatotoxicity is the second most common cause of drug attrition during 

development as well as for post-marketing withdrawal,1 and idiosyncratic drug-

induced liver injury (DILI) accounts for 11%-17% of cases of acute liver failure in the 

United States and Europe.2, 3 The typical incidence of DILI varies from approximately 

1% with the anti-tumor necrosis factor agents4 to 0.04% with some widely used 

antimicrobials such as amoxicillin-clavulanate.5 During the past 15 years, increasing 

progress on identifying genetic risk factors for DILI has been made. In particular, 

associations with HLA class I and II alleles have been reported for DILI caused by a 

range of drugs, though a particular HLA genotype does not appear to be relevant to all 

forms of idiosyncratic DILI.6  

Previously, GWAS involving cohorts of DILI cases related to one particular drug only 

have resulted in identification of one or more drug-specific HLA risk alleles.7-11 A 

large study involving 783 DILI cases due to a range of different drugs also resulted in 

a genome-wide significant HLA signal, but this association was abolished once 296 

cases of DILI due to flucloxacillin and amoxicillin-clavulanate were excluded.12 This 

partly reflects the fact that amoxicillin-clavulanate is a very common cause of DILI 

worldwide and flucloxacillin is an equally common cause in a number of Northern 

European countries.13 Therefore, DNA collections from DILI cases generally will be 

highly enriched in cases relating to these two drugs, making detection of associations 

related to other compounds more difficult. 

We have expanded our previous study of DILI caused by a range of different drugs,12  

and after excluding cases relating to amoxicillin-clavulanate and flucloxacillin, we 

have more than doubled the number of cases with additions from Europe, Australia, 

South America and the United States. We now report that HLA-A*33:01 is associated 

with risk of DILI, particularly due to terbinafine, fenofibrate and ticlopidine and 

especially with a cholestatic or mixed phenotype. We have also found novel non-

major histocompatibility complex (MHC) related signals apparently shared across a 

range of different drugs; an intronic SNP, in the LPS-responsive vesicle trafficking, 

beach and anchor containing (LRBA) gene is associated with hepatocellular DILI and 

an intergenic SNP on chromosome 2, rs72631567, with DILI generally. An additional 
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drug-specific genome-wide significant signal which could not be confirmed is also 

reported. 

 

Materials and Methods 

DILI discovery cohort 

The cases in the study were from two separate recruitment phases. Phase I consists of 

411 cases included in a previous study (from DILIN, DILIGEN and Eudragene)12 and 

phase II more recently recruited cases (n=451) of which a small subset was included 

in a recent report.14 

Phase I cases. These cases included 413 DILI cases not due to amoxicillin-

clavulanate or flucloxacillin, with a defined casual drug and with causality score 

greater than possible (RUCAM score≥3) recruited in Europe (n=137) or the USA 

(n=274) prior to 2009. Clinical characteristics of these cases and methods used for 

genotyping have been described in detail previously.12 Additional exome chip 

analysis (Illumina Infinium HumanCoreExome BeadChip) was performed on 150 of 

these 413 cases at the Broad Institute, Boston. 

Phase II case recruitment-iDILIC. The iDILIC cases were recruited between May 

2009 and May 2013 as part of an international collaborative study involving 

recruitment centers in the United Kingdom (Newcastle, Nottingham, Liverpool, 

London, Dundee), Sweden (Uppsala and Gothenburg), Spain (Malaga and Barcelona), 

France (Montpellier), the Netherlands (Utrecht), Germany (Kiel), Australia 

(Brisbane), Switzerland (Zurich), Finland (Helsinki), Argentina (Rosario), Uruguay 

(Montevideo) and Chile (Santiago). All participants provided written informed 

consent and each study had been approved by the appropriate national or institutional 

ethical review boards. For the GWAS, only cases of European ancestry where there 

were at least 2 cases due to a particular drug available (when phase I cases from 

Europe and the USA were also considered) and where the DILI was not due to either 

flucloxacillin or amoxicillin-clavulanate were included (n=339). Clinical inclusion 

criteria for all cases were those described by Aithal et al.15  

Phase II case recruitment-DILIN. Details of the USA-based DILIN prospective 

study including IRB approval information have been described previously.16  A total 
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of 112 eligible new cases of European ancestry and ≥ 18 years were included in the 

current GWAS. These new cases were selected from the larger DILIN sample 

collection such that only cases relating to drugs also included among the iDILIC cases 

were represented. Laboratory inclusion criteria were as described previously.16 

Patients were excluded if there was known or suspected acetaminophen overdose, if 

there was a history of bone marrow or liver transplant prior to DILI onset or if there 

was a prior history of immune-related liver disease such as autoimmune hepatitis.   

Additional cases used for confirmation of associations 

After the discovery analysis was concluded, we enrolled an additional 283 European 

patients with diagnosis of DILI across multiple causal drugs (6 from iDILIC and 277 

from DILIN networks recruited subsequent to the GWAS). The causal drug 

distribution is reported in Table S1A. An additional 12 statin DILI samples from the 

Spanish iDILIC network and 3 UK-DILIGEN cases were recruited later in the study 

to confirm the class specific association (Table S1B). 

Out of the 283, we used 272 DILI cases to directly type SNPs associated across 

multiple drugs or specific for drugs/drug classes and 11 DILI cases for HLA typing to 

confirm HLA associations. An additional Chinese terbinafine DILI sample was also 

HLA typed. 

Causality assessment   

The iDILIC cases were evaluated by application of the Council for International 

Organizations of Medical Science (CIOMS) scale, also called the Roussel Uclaf 

Causality Assessment Method (RUCAM)15 and by expert review by a panel of three 

hepatologists. The pattern of liver injury was classified according to the International 

Consensus Meeting Criteria.17 Only cases having at least possible causality (score ≥3) 

were included in the study. For all cases in DILIN, causality assessment was by 

expert consensus as previously described.16 

Controls  

Since DILI has a very low prevalence, we used general population samples as study 

controls. We selected 10588 European ancestry controls from multiple available 

sources; Welcome Trust Case Control Consortium (WTCCC) 
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(http://www.wtccc.org.uk), the population reference sample (POPRES)18, 

PGX4000119 and Spanish Bladder cancer cohort (phs000346.v1) from dbGAP.20 In 

order to increase the case/control ratio for Italian, Spanish and Swedish, we added 

samples from Hypergenes cohort 

(http://www.hypergenes.eu/dissemination.html#pub), the National Spanish DNA 

Bank (http://www.bancoadn.org/), Italian Penicillin Tolerant Controls (IPTC), and the 

Swedish Twin Registry (http://ki.se/en/research/the-swedish-twin-registry). 

Genotyping 

DNA preparation from Phase II cases. For iDILIC cases, DNA was prepared as 

described previously.8 DILIN DNA was extracted from lymphocytes and stored at the 

NIDDK biosample repository at Rutgers University, Piscataway, NJ.  

Genome-wide analysis. Genome-wide genotyping of the phase II and 150 phase I 

cases was performed by the Broad Institute, Boston by Illumina Infinium 

HumanCoreExome BeadChip. iDILIC and DILIN cases were genotyped in two 

separate batches.  A total of 505740 markers shared across the batches passed quality 

control (QC) and no samples were excluded for low quality profile. (see Supplemental 

Materials and Methods). Details on the genotype data available for each control 

collection are reported in Table S2. 

Imputation. SNP imputation was performed in batches dividing the cohorts 

according to genotyping platforms. Imputation methods are described in detail in the 

Supplementary Appendix. For HLA genotypes, four digit HLA alleles were inferred 

using HIBAG.21  

SNP genotyping. The top associated imputed SNPs were validated by SNP 

genotyping in subsets of iDILIC cases and in the overall DILIN cohort (see 

Supplementary Appendix). The SNPs were further confirmed in additional cases 

using TaqMan® predesigned and custom SNP genotyping assays (ThermoFisher 

Scientific, Waltham, MA) in accordance with the manufacturer's recommendations.  

HLA genotyping. High resolution genotyping of HLA-A, B, C, DRB1, DQA1 and 

DQB1 was performed on selected cases by Histogenetics (Ossining, New York). 

Sequencing data files were analyzed using Histogenetics’ proprietary analysis 

software (Histomatcher and HistoMagic) for HLA genotype calling. Allele 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 11

assignments are based on IMGT/HLA Database release version 2.21.0, dated April 

2008 (http://www.ebi.ac.uk/imgt/hla/). 

Statistical analysis 

The effect of population structure was assessed through principal components 

analysis (PCA) using the smartPCA program from the EIGENSTRAT package 

(version 3.0).22 Single marker and haplotype association analyses and heterogeneity 

test analyses were carried out by PLINK.23 The statistical association of each marker, 

HLA alleles and SNPs, was determined in a logistic regression framework with scores 

for the first seven principal components as covariates under an additive model using 

PLINK. We used the same statistical test for sub-population analyses, using two, 

seven and ten most significant principal components as covariates in Italian, Spanish 

and North European populations, respectively. We set the genome-wide traditional 

significance p-value threshold to 5.0x10-8 to correct for multiple testing.24  When we 

obtained genome-wide significant signals, we tested for independent effects from the 

neighboring variants by including the most associated variants as a covariate and then 

testing the significance of others in the region.  We also tested interaction effects 

among them by including interaction terms in the logistic regression. Differences in 

clinical characteristics among sample groups were tested by Fisher's exact test. All 

detailed analyses and Manhattan plots were performed with R (Version 3.0.2).25 

Regional plots were drawn by LocusZoom.26 

Results 

Clinical characteristics of the cases 

Clinical details of the DILI cases included in the main GWAS are summarized in 

Table 1. A variety of different causative drugs were represented but the most common 

was diclofenac with 67 cases, followed by nitrofurantoin with 64 cases. A few drugs, 

including azathioprine, isoniazid, fenofibrate, and diclofenac had significantly 

disproportionate number of cases in one of the two recruitment phases. Details of all 

the causative drugs are shown in Table S3.  

Overall analysis 
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The discovery cohort included 862 European ancestry DILI cases (411 from phase I12 

and 451 from Phase II) and 10,588 controls. PCA showed that all cases (including 

those from South America) clustered within three major groups (Italian, Spanish and 

Northern European) and matched with the population controls (Figure S1A). 

Consistent with the previous study,12 phase I cases were predominantly Northwest 

European. The most significant genome-wide associated SNPs were rs72631567 on 

chromosome 2 (OR=2.0, 95% CI =1.6-2.5, p-value=9.7x10-9) and rs114577328 in the 

MHC region of chromosome 6 (OR=2.7, 95% CI=1.9-3.8, p-value=2.4x10-8)(See 

Figure 1A, Table 2 and Figures S2 and S3). Data for both SNPs had been obtained by 

imputation in cases and controls and subsequently validated by SNP typing (see 

Supplementary Methods). The associations were consistent among geographic 

clusters and study phases (Table S4) and not due to artefact/s of population structure, 

missing genotypes rate (Table S5) or variability in imputation quality among 

populations or genotyping platforms (see Supplementary Methods). 

For the chromosome 2 SNP rs72631567, breakdown by drug showed that 10 

unrelated drug causes had an OR greater than 2.0 with at least two carriers (Table S6). 

Ciprofloxacin-related cases showed the strongest association (n=21, OR=7.4, 95% 

CI=17.3-161, p-value = 4.0x10-6).  

The chromosome 6 SNP rs114577328 is the SNP proxy of an uncommon HLA class I 

allele, HLA-A*33:01. Indeed this SNP was in near-perfect LD with A*33:01 (r2= 

0.98). From the imputed HLA allele assignments, a strong association with DILI for 

this allele is confirmed (OR=2.6; 95% CI=1.8-3.7, p-value=8.0x10-8, Figure S4). 

Including rs114577328 or A*33:01 as a covariate removed any association in the 

MHC region, indicating that there is only one MHC association signal (Figure S5). 

The A*33:01 association appears independent of the chromosome 2 signal, since 

rs72631567 when conditioned on A*33:01 showed an almost unchanged effect size 

(ORrs72631567 = 1.7, 95% CI= 1.25-2.2, p-value = 0.0006). There was no statistically 

significant interaction effect between the two signals (p-value = 0.5).  

Breakdown by drug showed DILI due to terbinafine was most strongly associated 

with the HLA-A*33:01 signal (OR=40.5, 95% CI=12.5-131.4, p-value=6.7x10-10) and 

a similarly strong association was seen with rs114577328 (OR=58.7, 95% CI=18.31-

188.2, p-value=7.3x10-12, Figure 1B and Figure S6). As summarized in Table 3, in 
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addition to terbinafine cases, cases due to six additional drugs showed an association 

with A*33:01 with p-values lower than 0.01. The largest case subset related to 

terbinafine but we found that A*33:01 was also a risk factor for ticlopidine 

(OR=163.1, 95% CI=16.2-1642.0, p-value=0.00002), methyldopa (OR=97.8, 95% 

CI=12.3-743.0, p-value=0.00001) and fenofibrate DILI (OR=58.7; 95% CI=12.3-

279.8; p-value=3.2x10-7). Indeed, although fewer positive carriers were observed, 

A*33:01 also seems to be a common risk factor for enalapril (OR=34.8), sertraline 

(OR=29) and erythromycin DILI (OR=10.2).  An erythromycin case was positive for 

A*33:03, an allele rare in European population controls (AF=0.002) which belongs to 

the A*33 group. Overall we found that 87% (n=36) of the A*33:01 positive carriers 

were also positive for HLA-B*14:02 and HLA-C*08:02. The haplotype showed a 

larger OR than A*33:01 as single marker in terbinafine (ORhaplotype =49.2, p-

value=9.54x10-11), ticlopidine (ORhaplotype =201; p-value= 7.2x10-6), fenofibrate 

(ORhaplotype 68.5; p-value=1.1x10-7) and erythromycin (ORhaplotype = 13.1; p-

value=0.002) DILI but not with DILI as a phenotype (ORhaplotype =2.7; p-value= 

1.6x10-7, Table S7). 

We verified the imputed A*33:01 genotype by sequence-based HLA typing in 35 

cases related to the main A*33:01-associated drugs (Table S8). The A*33:01 

predictions were confirmed in all cases except that one methyldopa case was negative 

for this allele (false positive) and an additional terbinafine case was a carrier (false 

negative). This validation result suggests that methyldopa might not share the HLA 

risk factor. The validation confirmed that all the A*33:01-positive terbinafine cases 

carried the complete HLA A*33:01-B*14:02-C*08:02 haplotype, increasing the 

strength of the haplotype association in the terbinafine DILI cases (ORhaplotype=70; p-

value=8.7x10-13) and in the overall analyses (ORhaplotype=2.8; p-value=5.1x10-8).  We 

also typed the A*33:01 proxy SNP across DILIN cases to confirm imputed genotypes. 

We found only one new carrier of the minor allele, not related to the major-A*33:01 

associated drugs. 

Analysis by type of injury and causative drugs 

We further investigated the association of genotypes with particular patterns of DILI 

by grouping the cases into hepatocellular (HC) and cholestatic/mixed (CM) pattern. 

The chromosome 2 association described above was similar in the two phenotypic 
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categories (direct comparison between CM cases vs HC cases, logistic p-value=0.5), 

although the effect was marginally stronger in the CM cases (Table 2). The 

association with rs114577328 was genome-wide significant only in the CM cases 

(n=323, OR=5.3, 95% CI=3.4-8.2, p-value=4.5x10-14, Figure 2B and Figure S6) and 

similarly with A*33:01 (OR=5.1; 95% CI=3.3-7.9, p-value=4.2x10-13, Figure 2B and 

Figure S6). Conditional analysis on the variant and HLA allele indicated only one 

genetic association was present in the region, as shown for the main analysis (Figure 

S7). There was no association between the proxy SNP or A*33:01 in the HC cases 

(n=474, OR for A*33:01=1.5, 95% CI=0.82-2.6, p-value=0.19, Table 2). The 

A*33:01-B*14:02-C*08:02 haplotype showed an ORhaplotype = 5.6; p-value = 2.5x10-13 

in CM cases.  

The CM only terbinafine-specific OR increased two fold compared with the value for 

all terbinafine cases (OR=88.1, 95% CI = 19.3-402.4, p-value = 7.5x10-9) since all the 

A*33:01 carriers belonged to this injury type. Following the injury correlation pattern 

established for terbinafine, A*33:01 appeared to be a stronger risk factor for CM 

injury than for HC injury also for fenofibrate, ticlopidine, enalapril and erythromycin-

related DILI. This was not the case for injury due to sertraline and methyldopa. These 

top seven drugs account for 51% (n=21) of all A*33:01 positive cases (Table S9). 

Sixteen other drugs account for the rest of the carriers showing slight enrichment in 

CM phenotypes, which showed a marginal association with A*33:01 (OR = 2.6, 95% 

CI = 1.4-4.9, p-value  =  0.003, Table S9 and Table S10). 

We detected a new HC-specific genome-wide significant signal on chromosome 4 

(Figure 2B). The signal lies within the LRBA (LPS-responsive vesicle trafficking, 

beach and anchor containing) gene with the imputed variant rs28521457, located in an 

intronic region, the most significant SNP (OR=2.1, 95% CI=1.6-2.7, p-value=4.8x10-

9)(Table 2 and Figure 2B). The allele frequency for this SNP in the CM cases (0.04) 

was comparable to that in controls with no evidence of association with this 

phenotype.  The risk allele was carried by more than 4% of the HC cases in cases due 

to a total of 45 drugs but in general, there were no drug-specific signals (Table S11).  

We also investigated associations with particular causative drugs or specific 

therapeutic classes where a group including more than 40 samples was available. 

Detail on the groups studied is summarized in Table S12. Genome-wide significance 
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was detected only for one group examined, the statins, with no significant signals for 

the other drug classes (Figure S8 and Table S13). In the case of the statins, 

rs116561224, a common intergenic SNP on chromosome 18, was genome-wide 

significant (OR=5.4, 95% CI=3.0-9.5, p-value=7.1x10-9, Figure 2C and Figure S9) 

with the signal mainly driven by simvastatin (Table S14). 

Confirmation of associations 

The European cohort used to confirm the associations (n=283) had a wider range of 

causal drugs, mostly different from the discovery cohort (Table S1). Later in time, we 

had access to 15 additional cases relating specifically to the statin cohort.  

The A*33:01 association was further investigated in the additional cases by directly 

genotyping rs114577328 in 272 cases and by direct HLA typing on 11 additional 

samples who developed DILI due to drugs for which we had detected an enrichment 

in A*33:01 alleles in the discovery cases. Overall, the rs114577328 carriers were 

enriched in cases from drugs previously associated with the allele (Table S15). Eight 

out of all 23 additional cases relating to drugs previously associated with A*33:01 

were shown to carry this allele or the proxy SNP (allele frequency 0.17) compared 

with an expected population frequency of 0.01. We specifically confirmed the 

association of A*33:01/rs114577328 with terbinafine having a carrier frequency of 

0.63 (5 out 8 terbinafine-related cases across both the injury types) and with sertraline 

at a carrier frequency of 0.75 (3 out 4 sertraline-related cases) (Table S15). Although 

fenofibrate had a high carriage rate for A*33:01 in the discovery cohort, none of the 7 

additional cases carried this allele or the proxy SNP. Few additional cases were 

available for other A*33:01-related drugs to confirm the association. 

Interestingly, a terbinafine DILI case from Finland was positive for A*33:05, a very 

rare allele in the general European population (AF = 0.0001, USA NMDP European 

Caucasian in http://www.allelefrequencies.net/, n=1,242,890) and Finnish27 

populations. An additional terbinafine DILI case of Chinese origin was positive for 

A*33:03. In total, 10 of the 24 additional cases (23 European cases and one single 

Chinese case) were carriers of an A*33 allele, in line with expectations based on the 

effects observed in the discovery sample. 
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We further genotyped rs72631567 and rs28521457 in 272 additional European cases. 

The rs72631567 and rs28521457 variants were found at AFs comparable to those for 

controls (AFrs72631567 = 0.022 and AFrs28521457 in HC only = 0.025) and so the 

association was not confirmed. However, rs72631567 carriers were slightly enriched 

in ciprofloxacin, atorvastatin and mercaptopurine-induced DILI cases, as in the 

discovery cohort, with ORs in the same direction in both cohorts (Table S16). 

Similarly, rs28521457 carriers seemed to be more common in the same subgroup of 

causal drugs in both cohorts (Table S17). This suggested a limited replication of the 

signal for these drugs. 

We also attempted to confirm the rs116561224 signal for statins. The number of 

additional cases available for this purpose was small (n=29, Table S1b) with only four 

simvastatin cases. None of the statin cases were positive for rs116561224 so the 

signal could not be confirmed. 

Discussion 

Our previous studies have been successful in identifying genetic risk factors for both 

flucloxacillin and amoxicillin-clavulanate DILI.4, 6 However, our most recent GWAS 

did not identify any risk factors that were common for DILI in general or specific 

genetic risk factors for DILI due to individual drugs which accounted for a smaller 

number of cases of DILI.12 The current study included 451 additional cases of DILI 

due to a wide variety of causative drugs, including at least 10 DILI cases relating to 

each of 22 different drugs. This increase in numbers and the exclusion of the 

amoxicillin-clavulanate and flucloxacillin cases together with use of improved 

imputation methods has enabled the detection and confirmation of a novel genome-

wide significant signal relating to a relatively rare HLA class I allele A*33:01. 

Though three other interesting signals were detected in the course of the study, an 

intergenic signal on chromosome 2, an intronic SNP in LRBA in HC cases only and a 

signal on chromosome 18 for statins, the failure to confirm these signals is a 

limitation. There are some indications that, as observed for HLA-A*33:01, the 

chromosome 2 and LRBA signals are shared across multiple unrelated drugs instead 

of being non-drug-specific risk variants. As supporting evidence, the chromosome 2 

signal has been consistently associated in both replication and discovery cohorts with 

DILI due to ciprofloxacin, atorvastatin and mercaptopurine. There remains a 
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possibility that replication could be achieved in a larger study involving a different 

mix of causative drugs but the degree of heterogeneity in drugs originally associated 

with the signals also increases the risk that these were chance observations.  

Interestingly, unlike previously recognized HLA associations for DILI, A*33:01 also 

appears to be a risk factor for DILI due to several, structurally unrelated drugs. Our 

results also suggest that a haplotype comprising A*33:01, B*14:02, and C*08:02 may 

participate in concert to confer risk for DILI, as opposed to A*33:01 alone. However, 

because these alleles are so highly correlated, our current sample size does not allow 

us to distinguish between these possible explanations by genetic association evidence 

alone. This conceivable hypothesis could be further verified in a larger study, or by 

experiments with recombinant HLA proteins.28 

In the case of terbinafine where the A*33:01 association showed genome-wide 

significance for cases relating to this drug only, information on the underlying 

mechanism for hepatotoxicity is limited, N-dealkylation leads to the formation of an 

aldehyde metabolite, TBF-A, and this metabolite shows reactivity with glutathione.29 

It has been proposed that the GSH-adduct is transported across the canalicular 

membrane and concentrated in the bile where it may cause damage to biliary 

epithelial cells. There is limited data from the various case reports on an underlying 

inflammatory mechanism but it has been demonstrated that treatment of monocytes 

with terbinafine results in the release of the proinflammatory cytokines IL-8 and 

TNF-alpha.30 Metabolism of terbinafine is complex involving several different 

cytochromes P450.31 However, there was no evidence from the GWAS for a role for 

either CYP genes or innate immunity genes in the terbinafine DILI cases studied. 

The other drugs showing the most convincing associations with A*33:01 were 

fenofibrate, ticlopidine and sertraline. Failure to see individual genome-wide 

significant associations with these drugs is likely to be due to fewer cases being 

available than for terbinafine. The A*33:01 association was seen for 3 of 7 cases due 

to fenofibrate, all with CM DILI. The literature on fenofibrate DILI is quite limited, 

but it appears that this drug is extensively metabolized, mainly by CYP3A4,32 and 

there is a report of a drug interaction resulting in cholestatic injury33 together with 

other isolated reports of idiosyncratic cholestatic DILI.34 
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Ticlopidine-related DILI has been well studied previously, including two studies 

investigating genetic risk factors in Japanese individuals. Cholestatic liver injury also 

predominates in this form of DILI.35, 36 Ticlopidine is subject to extensive metabolism 

by several cytochrome P450 isoforms and carboxyesterase.37 A study in rats suggests 

that adducts are formed following metabolism by cytochrome P450 with evidence for 

toxicity after biliary excretion of glutathione-conjugated metabolites via MRP2-

facilitated transport.38 In previous studies, 22 Japanese patients with ticlopidine DILI 

showed an association with an HLA haplotype including A*33:03 (odds ratio 13).39 In 

line with current observations, the association was strongest with cholestatic cases 

with 12 out of 14 cases positive for A*33:03. It should be noted that A*33:03 is 

relatively common in Japan with approximately 10 to 15% of individuals carrying this 

allele. 

The observations on the HLA association for Japanese ticlopidine DILI cases were 

followed up by a report that those carrying a -2320T>C polymorphism in CYP2B6 

were more susceptible to ticlopidine DILI due to high CYP2B6 expression (OR 2, p-

value=0.04).40 The CYP2B6 polymorphism (rs7254579)41 is less frequent in 

Europeans than in Asians  (MAFcau = 0.29, MAFasian = 0.45) and its low effect size 

limited our ability to replicate the association in this small European ticlopidine DILI 

population, but the non-significant effect is in the same direction as the previous study 

(OR=2.8, 95% CI=0.7-10.18, p-value=0.11). 

In contrast with the three drug examples above, sertraline is associated predominantly 

with HC DILI.42-44 In line with this phenotypic association, there is evidence that 

sertraline can cause mitochondrial damage28 and induce endoplasmic reticulum 

stress45 in liver cells. There are parallels with a previous example of a HLA risk factor 

(DRB1*15:01) which is associated with predominantly CM DILI with amoxicillin-

clavulanate but HC DILI with lumiracoxib.9, 10  

In line with the Japanese report of a role for A*33:03 in ticlopidine DILI39 and a case 

report showing an association between A*33 and tiopronin-induced cholestasis in a 

Chinese patient,46 we found two DILI cases positive for A*33:03 after direct HLA 

typing. One of these was a Chinese terbinafine DILI case and the second a European-

American with erythromycin DILI. In our imputed GWAS dataset, A*33:03 was 

carried by eight DILI cases due to a range of drugs in our cohort and showed an 
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apparent risk effect for CM DILI but this was not genome-wide significant (OR=2.1, 

95% CI=1.02-4.6, p-value=0.04). Another A*33 allele, A*33:05, was also represented 

in a terbinafine case from Finland. There is very strong homology between these three 

HLA-A*33 alleles at the protein sequence level with A*33:03 differing at only two 

positions from A*33:01 (Tyr instead of His at position 171 and Lys instead of Arg at 

position 186) and A*33:05 differing at only one position (Arg at 54 in place of Gln). 

In particular, all three alleles conserve the key residues for specific peptide binding 

within the B and F pockets.47 This is in contrast to a related HLA allele A*31:01, 

which is associated with carbamazepine-induced skin rash,48 but does not appear to be 

a risk factor for DILI, where the B pocket sequence, though homologous, is not 

conserved.47 

As mentioned above, the association of a common HLA allele with DILI due to  

chemically-unrelated compounds had been observed previously for DRB1*15:0110 

with amoxicillin-clavulanate and lumiracoxib and for DRB1*07:0149 with DILI from 

lapatinib and ximelagatran. The association of A*33:01 with DILI in general and 

secondary to a number of structurally dissimilar compounds is consistent with these 

observations. Together with recent findings from in vitro studies on T-cell responses 

to flucloxacillin and amoxicillin-clavulanate,50, 51 these observations support the 

hypothesis that either the parent drug or metabolites bind covalently to cellular or 

circulating proteins to form adducts in a mechanism that is probably slightly different 

to the direct drug effect seen with hypersensitivity reactions to abacavir.52 Adduct 

formation may then allow binding to the peptide binding groove of HLA molecules 

leading to activation and differentiation of T-cells with a consequent adaptive immune 

response-mediated liver injury. Evidence that the majority of the drugs showing the 

A*33:01 association undergo hepatic metabolism and biliary excretion may explain 

the stronger association of A*33:01 with CM DILI and could indicate that, unlike in 

the case of flucloxacillin and amoxicillin-clavulanate, metabolites contribute to the 

toxicity mechanism. Further investigation of potential interaction of both the various 

drugs and their metabolites with the A*33:01 gene product by molecular modelling 

and in vitro studies on T cells as previously undertaken for flucloxacillin50 would be 

of interest. 

The novel association of HC DILI with LRBA is interesting because this gene is a 

biologically plausible DILI candidate. LRBA deficiency due to rare mutations is 
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associated with primary immunodeficiency of variable severity with a particular 

feature of decreased regulatory T cell (Treg) levels, other immunodeficiencies and 

inherited autoimmune disease.53-56 Patients with mutations in LRBA leading to 

immunodeficiency have been demonstrated to show loss of cytotoxic T lymphocyte 

antigen-4 (CTLA4).57 Studies in a mouse model suggest that low CTLA4 is a risk 

factor for DILI.58 Unlike the HLA-A*33:01 association, no genome-wide significant 

associations for single drugs were detected with the LRBA SNP and there were no 

obvious features in common between cases positive for the variant other than the HC 

phenotype. It remains possible that this association could be replicated if a larger 

cohort were available.  

The intergenic signal on chromosome 2 is from a region 800 kb upstream from 

SOX11, is independent of A*33:01 and associated with an almost two-fold risk of 

DILI with the top SNP showing a frequency of 0.02 in Europeans. This risk factor 

seems to be shared across unrelated drugs among which ciprofloxacin showed the 

strongest association. The ENCODE project suggests there are no regulatory elements 

in this region so the basis for the signal is unclear. Neither rs72631567 nor any of its 

LD SNPs (r2>0.5) are known eQTL variants (http://www.gtexportal.org/). The failure 

to confirm this association and the absence of any apparent biological basis suggests 

the observed significance could have been a chance finding. 

Most data for individual drug classes that were comparatively well represented in our 

cohort were entirely negative but the finding of a signal for statins which was driven 

by several class members was entirely novel. Similar to the more general signal seen 

on chromosome 2, the chromosome 18 is intergenic with the closest known gene, 

cadherin 19 located approx. 300000 bp downstream. Although functionally such a 

protein could be of relevance to the liver injury process,59 any biological significance 

seems tenuous. The failure to confirm the signal in additional cases could be due to 

the availability of only a small cohort of additional cases which reflects the rarity of 

this form of DILI.60  

In conclusion, this study has detected a novel HLA association (HLA-A*33:01) in 

cases of DILI due to a number of different drugs, together with several novel non-

HLA signals. Overall sensitivity and specificity of the A*33:01 allele as a predictor of 

DILI is low but our findings may be important for future drug treatment in cases of 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 21

DILI due to one of the drugs for which the A*33:01 association is relevant. Follow-up 

studies are required to further explore the intergenic signal on chromosome 2, the 

biologically interesting signal in LRBA and the rs116561224 signal for statins in 

larger cohorts. 
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Figure legends 
 

Figure 1 Manhattan plots displaying the association results of (A) the overall analysis 

(n=864); (B) terbinafine only cases (n=14 cases). SNPs in green have a significance 

level less than 5x10-6 and red have a significance level less than 5x10-8. 

 
 

Figure 2 Manhattan plot displaying the association results for (A) Cholestatic/Mixed 

only cases (n=323); (B) Hepatocellular only cases (n=474 cases); (C) Statin cases 

(n=59). SNPs in green have a significance level less than 5x10-6 and red have a 

significance level less than 5x10-8. 
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Tables 

Table 1. Clinical details of the DILI cases included in the GWAS 
 
CHARACTERISTICS Phase 1 Phase 2 Combined 

 
 (n=411) (n=451) (n=862) 
Clinical information       
Age (mean years) 51 54 53 
% Female 63.0% 60.5% 61.8% 
ALT (mean IU/L) 895.1 757.7 822.2 
ALP (mean IU/L) 388.2 282.5 330.6 
Latency (mean days) 201.7 177.4 188.2 
    
Injury type       
Cholestatic 76 87 163 
Hepatocellular  202 272 474 
Mixed 69 91 160 
Not available* 64 1 65 
    
Genotype chip       
Illumina 1 M 261  261 
Illumina 1M/Illumina Infinium HumanCoreExome 
BeadChip  

150  150 

Illumina Infinium HumanCoreExome BeadChip   447 447 
Illumina HumanOmniExpress BeadChip   4 4 
    
Country of birth       
USA 274 112 386 
UK 71 79 150 
Spain 16 95 111 
Sweden  81 81 
France 30 7 37 
Germany  20 20 
Italy 16 1 17 
Others 4 56 60 

 
 
*Because of the retrospective nature of the phase I study, minimal clinical information needed to 
establish the type of injury were not available for a subset of initial NSAID DILI cases from 
DILIGEN because of missing ALP and upper limit of normal values. 
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Table 2. Association effect size of  rs72631567,  A*33:01 and  rs28521457 across different liver 
injury patterns 
 

COHORTs Variant OR 95% CI P AF 
Cases 

AF 
Controls 

Entire 
DILI cohort 

rs72631567  2.0 1.6-2.5 9.7x10-9  0.05 0.03 

A*33:01 2.6 1.8-3.7 7.0x10-8  0.02 0.01 

rs28521457  1.5 1.3-1.9 7.0x10-8  0.06 0.04 

Cholestatic 
and Mixed 
DILI cohort 

rs72631567  2.4 1.7-3.4 9.5x10-7 0.06 0.03 

A*33:01 5.0 3.3-7.9 4.2x10-13 0.04 0.01 

rs28521457  1.0 0.7-1.5 0.9 0.04 0.04 

Hepatocellular 
DILI cohort 

rs72631567  1.6 1.2-2.3 2.5x10-3 0.04 0.03 

A*33:01 1.5 0.8-2.6 0.19 0.01 0.011 

rs28521457  2.1 1.6-2.7 4.8x10-9 0.08 0.040 

 
 
COHORTs = type of comparison; Variant = associated variant; OR=Odds Ratio; 95% CI = 95% 
Confidence Interval of the odds ratio; P=logistic p-value; AF = allele frequency 
  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Table 3. Association effect size of A*33:01 signal for the causal drugs enriched in A*33:01 
positive carriers 
 

DRUGs 
Number 
of cases 
tested 

Number 
of 

A*33:01 
alleles 

in cases 

OR 95% CI P CF 

TICLOPIDINE 5 4 163.1 
16.2-
1642 

0.00002 0.8 

METHYLDOPA 4 2 97.8 
12.8-
743.8 

0.00001 0.5 

FENOFIBRATE 7 4 58.7 
12.3-
279.8 

3.2*10-7 0.43 

TERBINAFINE 14 6 40.5 
12.5-
131.4 

6.7*10-10  0.43 

ENALAPRIL 4 2 34.8 3.9-302.9 0.001 0.5 
SERTRALINE 5 2 29 4-207.2 0.0008 0.4 
ERYTHROMYCIN 10 2 10.2 2-51.7 0.005 0.2 

 
 
DRUGs=Causal drug involved; OR=Odds Ratio; 95% CI = 95% Confidence Interval of the odds 
ratio; P=logistic p-value; CF= Carrier Frequency 
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Supplementary Methods 

Imputation 

The imputation was performed in batches dividing the cohorts according to 

genotyping platforms. For each batch, we first phased the data by SHAPEIT (version 

v2.r727),1-2. Then, imputation was carried out using IMPUTE2 (version 3) with 1000 

Genomes Project (release v33) ethnically mixed dataset as the reference panel.4 5 We 

retained imputed genotypes with: (a) posterior probability > 0.9 in each genotyping 

batch, (b) no significant difference in missingness between cases and controls (χ2 

test, p-value > 0.0001), (c) no significant deviation from Hardy-Weinberg 

expectations (p-value > 0.0001), (d) no variants missing greater than 5% of genotypes 

in any single genotyping batch and (e) info score greater than 0.8 in each genotyping 

batch, (f) MAF in the 1000 Genomes Project ≥ 0.01. Batch effects for imputed SNPs 

were corrected by testing for association between ethnically-matched controls typed 

by different platforms (using logistic regression). SNPs with association p-values less 

than 0.005 were excluded from the analysis. For each cohort, four digit HLA alleles 

were also inferred using HIBAG6 with the reference predictor panels specific for each 

genotyped chip.7 

Genome-wide association study QC for each cohort 

QC was conducted at both single marker and subject levels before performing the 

SNP imputation. Any marker that did not pass the following criteria was excluded 

from analysis: (i) genotype call rate in the batch of subjects greater than 95%, (ii) 

missing genotype rate greater than 5%, (ii) p-value for Hardy-Weinberg equilibrium 

greater than 10-7 in controls (if applicable). Any subject that did not pass the 

following criteria was excluded from analysis: (i) missing genotype rate < 0.05 among 
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the SNPs that passed QC; (ii) not a sample duplicate or closely related based on 

estimated identity-by-descent (IBD) using PLINK v 1.07  

Quality controls on the A*33:01 association 

To assess whether the A*33:01 signal was an artefact of population structure, we 

tested population-specific association. Although the allele is rarer in Northern 

Europeans, with no difference between Sweden and the UK (Allele Frequency (AF)uk 

= 0.004; AFsw = 0.003), the OR was comparable across the three major clusters (Table 

S3). The heterogeneity test cannot reject the null hypothesis (χ2 method p-value of 

0.06). We also confirmed that the association was not due to synthetic differences in 

imputation performance relating to the genotype chips. The AF was comparable 

across the three control groups genotyped by different platforms (AF1M = 0.01, AFHEC 

= 0.018, AFOE = 0.013). Logistic regression to test for differences between genotype 

platforms among control samples showed no difference in the Spanish (p-value=0.44) 

or Italian (p-value=0.9) subsets.  

Validation of the predicted genotypes 

We validated the predictions of the most associated SNPs within the discovery 

samples by matching the predicted and the typed genotypes. We calculated the 

concordance rate as the percentage of accurately predicted genotypes over the total 

number of samples typed in the validation based on specimen’s availability. In 

particular, the rs72631567 genotypes were validated in 564 discovery cases (386 

DILIN cases and 178 iDILIC) with respectively 99.7% and 100% concordance. Both 

the rs114577328 and rs28458792 genotypes were fully validated in 386 DILIN cases 

with 100% concordance. The two most associated SNPs in the statin comparison, 

rs116561224 and rs28458792, were typed in 25 iDILIC statin cases and rs116561224 

only was typed in 378 DILIN samples across multiple causal drugs. The concordance 
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was 100% for iDILIC cases and 97.6% for DILIN cases. In both cohorts this 

genotyping was performed by TaqMan® predesigned and custom SNP genotyping 

assays (ThermoFisher Scientific, Waltham, MA) in accordance with the 

manufacturer's recommendations. 
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Supplementary Figures 

 

 
 
Figure S1. Scatterplots representing the first two principal components of the current 
study cohort. The homogenous distribution between cases and controls across the 
three major European clusters is shown. In panel (a) cases from phase II are 
highlighted in red and the cases from phase I in orange. In panel (b) the 
cholestatic/mixed cases are highlighted in red and the hepatocellular cases in blue.  
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Figure S2. Regional Manhattan plots for chromosome 2 and 4 in the region of the 
rs72631567 and rs28521457 signals. (A) Chromosome 2 for the overall cohort, (B) 
Chromosome 2 for the overall cohort conditioned on rs72631567. (C) Chromosome 4 
for the HC only cohort, (D) Chromosome 4 for the HC only cohort conditioned on 
rs28521457. 
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Figure S3. QQ plots. (a) for the overall original analysis (b) after eliminating variants 
in MHC region. The QQ plot in the (b) panel highlights the signal on chromosome 2. 
The inflation factor is 1.05 after correction and 4.65 before correction. 
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Figure S4. Scatterplot representing the first two principal components of the current 
study cohort. The A*33:01-positive cases and their injury type are highlighted. 
A*33:01-positive cases are homogenously distributed in all the major population 
clusters.   
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Figure S5. MHC Regional Manhattan plots for (a) the overall cohort (b) the same 
cohort conditioned on A*33:01 (purple dot) and (c) the same cohort conditioned on 
rs114577328 (purple dot).  
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Figure S6. QQ plot for (a) Terbinafine cases only, (b) Cholestatic/Mixed cases only, 
(c) Hepatocellular cases only. 
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Figure S7. MHC Region Manhattan plots for (a) all cholestatic/mixed cases (b) the 
same cases conditioned on rs114577328 (purple dot), the top SNP (c) the same cases 
conditioned on A*33:01 (purple dot), the top HLA allele 
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Figure S8. Manhattan plots for DILI due to (A) Anti-TB drugs, (B) 
Fluoroquinolones, (C) NSAIDs, (D) Diclofenac (E) Nitrofurantoin. 
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Figure S9. Regional Manhattan plots for chromosome 18 in the area of the 
rs116561224 signal for (a) statin-induced DILI cases and (b) the same cases with 
conditioning on rs116561224 
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Table S1.  Causal drugs in the replication cohort.  

 

DRUG = causal drug; PD=presence of the drug in the discovery cohort; TOT = total number of cases. 
The list in A panel includes only drugs for which at least 3 cases were available. The category "other" 
includes a total of 98 different drugs. The drugs highlighted in bold are the drugs found to be 
associated with A*33:01. 
 
Panel A shows the breakdown of causal drugs for the replication cohort and the 
methods utilized to replicate the main results. 272 DILIN samples underwent to direct 
SNPs typing while 12 samples whose DILI was due to A*33:01-associated drugs 
underwent HLA typing. Panel B shows the breakdown of causal drugs for the statin-
specific replication cohort: besides the 14 samples previously collected within 272 
DILIN samples we add extra 15 iDILIC statin cases.   

A

DRUG PD SNP typing HLA typing TOT

SulfamethoxazoleW/Trimethoprimyes 17 17
Nitrofurantoin yes 15 15
Isoniazid yes 11 11
Ciprofloxacin yes 9 9
Azathioprine yes 8 8
Atorvastatin yes 8 8
Minocycline yes 7 7
Infliximab yes 7 7
Cefazolin yes 6 6
Terbinafine yes 6 2 8
Levofloxacin yes 6 6
Azithromycin yes 5 5
Carbamazepine yes 5 5
Mercaptopurine yes 4 4
Fenofibrate yes 4 3 7
Oxaliplatin 4 4
Lisinopril 4 4
Methylprednisolone 3 3
Exemestane 3 3
Flavocoxid 3 3
Metformin 3 3
Pravastatin yes 3 3
Sulfasalazine 3 3
Vancomycin 3 3
Sertraline yes 1 3 4
Methyldopa yes 1 2 3
Erytromycin yes - 1 1
Others (98 drugs) 123 123
TOTAL 272 11 283

B

DRUG PD DILIN iDILIC TOT

Atorvastatin yes 8 8 16
Pravastatin yes 3 3 6
Fluvastatin yes 1 1
Rosuvastatin yes 1

Lovastatin yes 1

Simvastatin yes 1 3 4
Total 14 15 27
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Table S2. Genotyping details for the DILI control cohorts 
 

 
 

COHORT #SAMPLEs CHIP

Welcome Trust Case Control Consortium (WTCCC) 4824 Illumina 1M  BeadChip
Spanish Cohort (phs000346.v1) 2077 Illumina 1M  BeadChip
Hypergenes 901 Illumina 1M  BeadChip
Swedish Twin Registry 1499 Illumina HumanOmniExpress BeadChip

209 Illumina 1M Duo/Illumina Infinium HumanCoreExome  BeadChip
173 Illumina Infinium HumanCoreExome  BeadChip

iSAEC Italian Penicillin Tolerant Controls 147 Illumina HumanOmniExpress BeadChip 
PGX40001 103 Illumina 1M Duo  BeadChip
POPulation REference Sample (POPRES) 655 Illumina 1M Duo  BeadChip

National Spanish DNA Bank
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Table S3. Causative drugs across the overall DILI cohort  
 

 
 
Phase 1 = number of cases extracted from previous DILI study (Urban TJ et al. 
Pharmacogenet Genomics 2012;22:784-95 (reference 12 in main text); Phase 2 = 
number of new cases; Combined = total number of cases; P = Fisher's Exact test p-
value to test the disproportions between the two cohorts. 
 
 The list includes only drugs for which at least 4 cases were available. The category 
"other" includes a total of 140 different drugs.   

DRUGs Phase1 Phase2 Combined P

DICLOFENAC 29 38 67 0.37
NITROFURANTOIN 28 36 64 0.44
ISONIAZID 16 20 36 0.61
AZATHIOPRINE 6 21 27 <0.01
MINOCYCLINE 10 17 27 0.24
SULFAMETHOXAZOLE/TRIMETHOPRIM 12 14 26 0.84
ATORVASTATIN 4 19 23 <0.01
CIPROFLOXACIN 5 16 21 0.03
NIMESULIDE 12 8 20 0.37
VALPROICACID 14 4 18 0.02
SIMVASTATIN 5 12 17 0.14
ISONIAZID/PYRAZINAMIDE/RIFAMPIN 6 9 15 0.80
IBUPROFEN 4 10 14 0.18
TERBINAFINE 4 10 14 0.18
AZITHROMYCIN 3 10 13 0.09
CEFAZOLIN 7 6 13 0.79
ISONIAZID/PYRAZINAMIDE/RIFAMPIN/ETHAMBUTOL 6 6 12 1.00
LEVOFLOXACIN 5 6 11 1.00
PHENYTOIN 9 2 11 <0.01
ERYTHROMYCIN 2 8 10 0.11
IMATINIB 2 8 10 0.11
CELECOXIB 9 9 <0.01
MERCAPTOPURINE 5 4 9 0.75
NAPROXEN 2 7 9 0.18
METHIMAZOLE 2 6 8 0.29
ANABOLIC STEROID 7 7 <0.01
CARBAMAZEPINE 2 5 7 0.28
DULOXETINE 7 7 <0.01
ESTRADIOL/LEVONORGESTREL 2 5 7 0.45
FENOFIBRATE 4 3 7 0.72
FLUVASTATIN 2 5 7 0.45
METHOTREXATE 3 4 7 1.00
MOXIFLOXACIN 2 5 7 0.45
ROFECOXIB 4 3 7 0.72
TELITHROMYCIN 7 7 <0.01
DISULFIRAM 1 5 6 0.22
FLUPIRTIN 6 6 0.03
INFLIXIMAB 1 5 6 0.22
LAMOTRIGINE 5 1 6 0.12
DOXYCYCLINE 2 3 5 1.00
OMEPRAZOLE 2 3 5 1.00
PIROXICAM 3 2 5 0.68
ROSUVASTATIN 1 4 5 0.37
SERTRALINE 5 5 0.06
TICLOPIDINE 1 4 5 0.37
ENALAPRIL 1 3 4 0.62
METHYLDOPA 4 4 0.06
MONTELUKAST 1 3 4 0.62
NICOTINICACID 4 4 0.06
PRAVASTATIN 2 2 4 1.00
SEVOFLURANE 1 3 4 0.62
VENLAFAXINE 4 4 0.12
OTHER 135 71 204 <0.01

TOTAL 411 451 862 -
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Table S4. Effect of the A*33:01, rs72631567 and rs28521457 signals across 
populations and recruitment phases 
 

 
 
PHASE=recruitment phase; OR=Odds ratio; 95%CI=95% Confidence Interval; 
P=logistic p-value; AF=Allele Frequency 
  

Marker COHORTs PHASE OR 95% CI P AF Cases
AF 

Controls
I 2.29 1.31-4 0.003 0.02 0.01
II 2.96 1.94-4.52 4.7*10-7 0.03 -

I 4.73 2.38-9.38 8.4*10-6 0.03 -
II 5.76 3.36-9.88 1.8*10-10 0.04 -

North European Cohort I +II 2.64 1.48-4.69 0.001 0.01 0.00

Spanish Cohort I +II 1.96 1.02-3.75 0.04 0.05 0.03

Italian Cohort I +II 5.69 2.43-13.33 6.1*10-5 0.07 0.01

I 2.02 1.45-2.82 3.6*10-5 0.05 0.03

II 1.99 1.45-2.71 1.1*10-5 0.05 -

North European Cohort I +II 1.65 1.215-2.236 0.001 0.04 0.03

Spanish Cohort I +II 2.12 1.21-3.75 0.009 0.06 0.03

Italian Cohort I +II 3.21 1.57-6.52 0.001 0.09 0.03

European DILI cohort I +II 1.56 1.26-1.94 5.0*10-5 0.06 0.04

I 2.48 1.74-3.54 4.6*10-7 0.09 -

II 1.93 1.32-2.65 0.0003 0.07 -

North European Hepatocellular DILI I +II 1.91 1.41-2.56 2.0*10-5 0.07 0.04
Spanish Hepatocellular DILI I +II 2.25 1.2-4.23 0.01 0.08 0.02
Italian Hepatocellular DILI I +II 1.93 0.44-8.46 0.38 0.08 0.04

Hepatocellular DILI cohort
rs28521457

European DILI cohort

Cholestatic and Mixed DILI cohort

rs72631567

European DILI cohort

A*33:01
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Table S5. Missing genotypes rate for the most associated SNPs within case and 
control groups in the comparisons where SNPs were significant 
 

 
 
P= X2 p-value of missing genotype rate between cases and controls 

  

SNP CHR missing rate in cases missing rate in controls P

rs114577328 6 0 0.0002 1.0

rs72631567 2 0.007 0.005 0.3
rs28521457 4 0 0.0009 1.0
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Table S6. Causative drugs across the rs72631567 signal on chromosome 2 
 

 
 
OR=Odds Ratio; 95%CI=95% confidence interval; P=logistic p-value; AF=Minor 
Allele Frequency in cases; 
 
  

DRUGS
No. 

Cases
Tested

OR 95% CI P AF

FLUVASTATIN 7 10.15 2.58-39.85 0.0009 0.21
FENOFIBRATE 7 8.85 1.80-43.63 0.0074 0.17
LAMOTRIGINE 6 9.40 1.53-57.61 0.02 0.17

CIPROFLOXACIN 21 7.41 3.16-17.36 4.0x10-6 0.14
ISONIAZID/PYRAZIN 12 5.80 1.70-19.75 0.005 0.14
AZITHROMYCIN 13 4.92 1.39-17.39 0.01 0.12
MERCAPTOPURINE 9 4.16 0.51-34.08 0.2 0.11
ATORVASTATIN 23 3.33 1.16-9.55 0.02 0.09
ISONIAZID 36 3.42 1.45-8.07 0.005 0.08
NITROFURANTOIN 64 2.33 1.08-5.0 0.03 0.06
CONTROL 10588 - - - 0.03
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Table S7. Summary of A*33:01-B*14:02-C*08:02 haplotype specific analysis across 
study cohorts 
 

 
HF CAs=Haplotype Frequency in cases; HF CTLs=Haplotype Frequency in controls; 
OR=Odds Ratio; P=logistic p-value 
 
 
  

DRUGs OR P HF CAs HF CTLs

OVERALL ANALYSIS 2.7 1.8x10
-7 0.02 0.009

CHOLESTATIC-MIXED ANALYSIS 5.7 3.9x10
-13 0.04

TERBINAFINE 49.2 9.5x10
-11 0.21

TICLOPIDINE 201.0 7.2x10
-6 0.40

FENOFIBRATE 68.5 1.1x10
-7 0.29

ERITHROMYCIN 13.1 0.002 0.10
ENALAPRIL 11.4 0.1 0.13
METHILDOPA 41.5 0.002 0.13
SERTRALINE 11.6 0.04 0.10



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 25

Table S8. Summary of the validation by direct HLA typing 
 

 
FN=False Negative; FP=False Positive  
  

Predictions
COHORT #subjects (#CARRIERs) # subjects Not-CARRIERs (FN) CARRIERs (FP)

TERBINAFINE 14 (6) 13 6 (1) 6 (0)
FENOFIBRATE 7 (3) 6 3 (0) 3 (0)
METHYLDOPA 4 (2) 3 2 (0) 0 (1)
SERTRALINE 5 (2) 3 3 (0) -
ENALAPRIL 4 (2) 2 1 (0) 1 (0)
ERYTHROMYCIN 10 (2) 6 6 (0) -
TICLOPIDINE 5 (4) 2 - 2 (0)

Validations
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Table S9. The A*33:01 signal across the main six A*33:01-associated drugs by type 
of injury 

 

#DRUG=causal drug; TI = type of injury; OR=Odds Ratio; 95% CI = 95% 
confidence interval; P=logistic p-value  

*For groups with 3 subjects the association has been tested by Fisher's Exact test. 

  

DRUG TI
No. 

Cases
Tested

OR 95% CI P

TICLOPIDINE CM* 3 93.5 18.78-465.9 2.37E-05
HC 2 36.5 1.77-750.9 0.02

METHYLDOPA CM - - - -
HC 3 54.4 4.7-635.7 0.001

FENOFIBRATE CM 7 58.7 12.3-279.8 3.2*10-7

HC 0 - - -
TERBINAFINE CM 9 88.1 19.28-402.4 7.57E-09

HC 5 - - -
ENALAPRIL CM* 3 46.8 8.52-256.6 1.65E-03

HP 1 - - -
SERTRALINE CM 1 - - -

HC 4 40.1 4.8-335.9 0.0006
ERYTHROMYCIN CM 4 24.1 2.2-264 0.009

HC 5 9.2 0.9-91.1 0.06
OTHERS ALL 815 1.4 0.9-2.2 0.17

CM 279 2.6 1.4-4.9 0.003
HC 438 1.0 0.5-2 0.9
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Table S10. List of all causal drugs where at least one case carries a A*33:01 allele 
 

   
 
#Carriers = total number of A*33:01 positive carriers 
 
  

DRUGs # Carriers

DRONEDARONE 1
PIPERACILLINSODIUM/TAZOBACTAM 1
LAMOTRIGINE 1
MOXIFLOXACIN 1
METHIMAZOLE 1
CELECOXIB 1
IBUPROFEN 1
CEFAZOLIN 1
ISONIAZID 2
GENERIC COMBINATIONS OF NUTRIENTS 1
VALPROIC ACID 1
DICLOFENAC 3
ATORVASTATIN 1
AZATHIOPRINE 1
SULFAMETHOXAZOLE/TRIMETHOPRIM 1
NITROFURANTOIN 2
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Table S11. The most represented causative drugs across the rs28521457 signal on 
chromosome 4 
 

 
 
OR=Odds Ratio; 95%CI=95% confidence interval; P=logistic p-value; AF=Allele 
Frequency in cases 
 
The table shows the causal drugs with more than two positive carriers only. 
 
 

DRUGS
No. Cases

Tested
OR 95% CI P AF

CELECOXIB 2 50.56 3.378-756.8 0.004 0.50

EBROTIDINE 3 11.42 2.098-62.18 0.005 0.33

NIMESULIDE 4 8.51 1.73-41.82 0.008 0.25

ISONIAZID/PYRAZINAMIDE/RIFAMPIN/ETHAMBUTOL 9 7.39 2.406-22.7 0.0005 0.22

MERCAPTOPURINE 7 6.65 1.835-24.1 0.004 0.21

TELITHROMYCIN 5 6.22 1.36-28.43 0.02 0.20

IMATINIB 10 4.59 1.308-16.08 0.02 0.15

DICLOFENAC 35 2.40 1.024-5.604 0.04 0.09

SIMVASTATIN 12 2.19 0.5164-9.264 0.29 0.08

MINOCYCLINE 19 2.17 0.6713-7.028 0.20 0.08

ISONIAZID 32 2.15 0.8605-5.351 0.10 0.08

OTHERS 119 - - - 0.16

CONTROLS 10588 - - - 0.04
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Table S12. Summary of drug and class comparisons with more than 40 samples  

DRUG/CLASS #CASES 

NSAIDs 144 

ANTI TUBERCULOSIS DRUGs 67 

DICLOFENAC 67 

NITROFURANTOIN 64 

STATINs 59 

FLUOROQUINOLONEs 43 
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Table S13. The most associated variants for each drug in the class-specific analysis 

 

COMPARISON = causal drug/class; CHR=chromosome; BP=base-pair position; 
OR=Odds Ratio; 95%CI=95% confidence interval; P=logistic p-value 
 

COMPARISON SNP CHR BP OR 95% CI P

NITROFURANTOIN rs72696020 14 88571907 7.18 3.52-14.66 6.16E-08

NITROFURANTOIN rs72696089 14 88588493 6.98 3.42-14.24 9.48E-08
NITROFURANTOIN rs6694270 1 19120377 2.59 1.81-3.71 1.85E-07
NITROFURANTOIN rs10404821 19 51161088 2.56 1.80-3.65 1.98E-07
NITROFURANTOIN rs61858823 10 66855253 5.63 2.88-11.02 4.52E-07
DICLOFENAC rs114811931 5 160684731 6.59 3.54-12.28 2.76E-09
DICLOFENAC rs113206698 10 94577904 3.79 2.25-6.39 5.61E-07
DICLOFENAC rs115266745 3 821213 6.80 3.19-14.48 6.59E-07
DICLOFENAC rs149014830 5 120876337 6.04 2.96-12.3 7.24E-07
DICLOFENAC rs116316305 5 120853119 6.03 2.96-12.28 7.4E-07
ANTI TUBERCULOSIS DRUGs rs117491755 9 119643656 3.92 2.35-6.51 1.43E-07
ANTI TUBERCULOSIS DRUGs rs143575776 9 9593742 4.96 2.70-9.09 2.17E-07
ANTI TUBERCULOSIS DRUGs rs73122578 3 79359633 2.42 1.71-3.40 4.48E-07
ANTI TUBERCULOSIS DRUGs rs78671883 9 9558149 4.65 2.55-8.47 4.84E-07
ANTI TUBERCULOSIS DRUGs rs73124503 3 79368237 2.42 1.71-3.41 5.12E-07
FLUOROQUINOLONEs rs186920977 2 56649930 7.22 3.47-15.01 1.17E-07
FLUOROQUINOLONEs rs144941777 2 56672204 7.22 3.47-15.01 1.17E-07
FLUOROQUINOLONEs rs191153876 3 123637182 7.33 3.46-15.5 1.85E-07
FLUOROQUINOLONEs rs116606120 5 28665952 8.60 3.79-19.5 2.54E-07
FLUOROQUINOLONEs rs112655218 18 9841515 4.54 2.55-8.09 2.8E-07
NSAIDs rs185305928 1 6905711 4.55 2.55-8.11 2.66E-07
NSAIDs rs2240395 7 139718147 1.84 1.45-2.31 2.72E-07
NSAIDs rs113607154 1 7004613 4.42 2.47-7.82 3.37E-07
NSAIDs rs597480 11 85436868 1.84 1.45-2.32 3.9E-07
NSAIDs rs2025009 14 68843605 1.81 1.43-2.29 6.77E-07
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Table S14. Causative drugs associated with rs116561224 signal in the statin cohort 

 

DRUG = Causal drug; AF = Allele frequency 

  

DRUG
No. 

Cases
Tested

AF

SIMVASTATIN 17 0.21
ROSUVASTATIN 5 0.20
PRAVASTATIN 4 0.13
ATORVASTATIN 22 0.09
FLUVASTATIN 7 0.07
LOVASTATIN 3 0.00
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Table S15. Causative drugs associated with the rs114577328/A*33:01 signal in the 
additional case set 

  

DRUG = causal drug; PD=presence of the drug in the discovery cohort; DC = Drug with at least one 
positive carrier in the discovery cohort; SNP #TOT (#CARRIERs) = total number of cases (total 
number of rs114577328/A*33:01 carriers) among the samples who underwent SNP typing; HLA #TOT 
(#CARRIERs) = total number of cases (total number of rs114577328/A*33:01 carriers) among the 
samples who underwent HLA typing; TOT= total number of samples that underwent SNP and HLA 
typing; CF = carriage frequency. 

 

  

DRUG PD DC
SNP #TOT 

(#CARRIERs)
HLA #TOT 

(#CARRIERs)
TOT CF

Terbinafine yes yes 6 (5) 2 (0) 8 0.63

Azathioprine yes yes 8 (2) - 8 0.25
Exemestane 3 (2) - 3 0.67
Amiodarone yes 2 (1) - 2 0.50
Daptomycin 2 (1) - 2 0.50
Fenofibrate yes yes 4 (0) 3 (0) 7 0
Erytromycin yes yes 1 (0) 1 0
Ticlopidine - - - - - -
Methildopa yes yes 1 (0) 2 (0) 3 0
Enalapril - - - - - -
Sertraline yes yes 1 (1) 3 (2) 4 0.75
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Table S16. Causative drugs associated with the chromosome 2 rs72631567 signal in 
the additional case set 

 

DRUG = causal drug; PD=presence of the drug in the discovery cohort; DC = Drug with at least one 
positive carrier in the discovery cohort; TOT = total number of cases; AF = Minor allele frequency. 
Drugs also associated with an increased AF in the discovery cohort are indicated in bold. 

 

 

 

 

 

 

  

DRUG PD DC
No. 

Cases
Tested

AF

Cefotetan 1 0.50

Amiodarone yes 2 0.25
Escitalopram yes 2 0.25
Ethinylestradiol/Norgestimate yes yes 2 0.25
Mercaptopurine yes yes 4 0.13
Cefazolin yes yes 6 0.08
Minocycline yes yes 7 0.07
Azathioprine yes yes 8 0.06
Atorvastatin yes yes 8 0.06
Ciprofloxacin yes yes 9 0.06
Isoniazid yes yes 11 0.05
Sulfamethoxazole/Trimethoprim yes yes 17 0.03
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Table S17. Causative drugs associated with the chromosome 4 rs28521457 signal in 
the additional case set 

 

DRUG = causal drug; PD=presence of the drug in the discovery cohort; DC = Drug with at least one 
positive carrier in the discovery cohort; TOT = total number of cases; AF = Minor allele frequency. 

 

  

DRUG PD DC
No. 

Cases
Tested

AF

Minocycline yes yes 7 0.07

Clindamycin yes 1 0.50
Dronedarone yes yes 2 0.25
Ketoconazole 1 0.50
Methylprednisolone 3 0.17
Nefazodone 1 0.50
Nitrofurantoin yes yes 11 0.05




