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Kinetically constrained spin systems play an important role in understanding key properties of the dynamics
of slowly relaxing materials, such as glasses. Recent experimental studies have revealed that manifest kinetic
constraints govern the evolution of strongly interacting gases of highly excited atoms in a noisy environment.
Motivated by this development we explore which types of kinetically constrained dynamics can generally emerge
in quantum spin systems subject to strong noise and show how, in this framework, constraints are accompanied
by conservation laws. We discuss an experimentally realizable case of a lattice gas, where the interplay between
those and the geometry of the lattice leads to collective behavior and time-scale separation even at infinite
temperature. This is in contrast to models of glass-forming substances which typically rely on low temperatures
and the consequent suppression of thermal activation.
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I. INTRODUCTION

Understanding and characterizing the dynamics of strongly
interacting many-body systems remains a relevant challenge.
This is even more the case in the context of systems
undergoing complex collective relaxation such as glass
formers which, under certain conditions (typically, below a
certain temperature), display extremely long relaxation times
[1–7]. One approach proposed to explain this dynamical
behavior assumes that on the microscopic level local
transitions are only permitted when certain conditions, e.g.,
very specific arrangements of particles, are satisfied. These
so-called kinetic constraints [4,8–11] can produce dramatic
effects on the dynamics: at sufficiently high densities or low
temperatures there are severe restrictions on the allowed
pathways that connect different many-body configurations.

Depending on the specific mechanism, kinetically con-
strained models (KCMs) can be grouped into classes [4],
such as constrained (dynamic) lattice gases [12,13], where
a particle’s diffusion is hindered by its neighbors, mimicking
excluded volume in dense fluids. Another instance is given by
facilitated spin models, such as the so-called East [14] and
Fredrickson-Andersen (FA) models [15], in which a spin’s
ability to update its state depends on the configuration of the
ones nearby. Most KCMs consist of stochastic processes which
end up in trivial steady states ρss (e.g., for the East and FA
models, ρss ∝ e−βN with N the number of excited (up) spins
and β the inverse temperature) but feature dynamical rules
which make the approach to stationarity highly intricate, often
resulting in the emergence of metastability [4,9,10,14,15].

Despite their success in capturing many aspects of slow
collective relaxation, it is hard to derive kinetic constraints
from first principles as they seem to be an effective feature
that only emerges in dense fluids after coarse-graining away
fast short-scale motion [16]. However, it was recently shown
that they naturally emerge in quantum optical systems [17–19],
specifically cold atomic gases, in the presence of strong inter-
actions and dephasing noise. In certain regimes, these systems
show aspects of the facilitation dynamics [20,21] inherent to
the FA and East models, as highlighted in recent experiments

[22,23]. KCMs have also been studied in the context of
quantum annealing [24,25]. Kinetic constraints, moreover,
govern the nonequilibrium dynamics of nuclear ensembles
undergoing so-called dynamic nuclear polarization [26]—a
process used to enhance the signal in magnetic resonance
imaging applications—and have been found relevant in studies
related to many-body localization [27,28].

Here we explore kinetic constraints that emerge in noisy
quantum systems from a general perspective. Typically, KCMs
rely on suppressed thermal activation to induce cooperative dy-
namics. This suppression mechanism is absent in noisy atomic
systems which are coupled to a bath of effectively infinite
temperature. We show that, nevertheless, strongly cooperative
and glasslike behaviors may emerge in this framework. First
we establish a connection between quantum optical systems
and KCMs on a general basis, the underlying mechanism of
which hinges upon the presence of (approximate) conservation
laws. The resulting fragmentation of the space of states can
make even the evolution towards an infinite temperature state
highly complex. To demonstrate this, we then discuss an
example of an effective reaction-diffusion process in which
the interplay between these conservation laws and the lattice
geometry induces cooperative diffusion. This experimentally
realizable case displays pronounced collective behavior, time-
scale separation, as well as ergodicity breaking due to the
dynamical reducibility of the state space—features that are
typically present in glassy dynamics.

II. CONSTRUCTION OF KINETICALLY CONSTRAINED
SPIN SYSTEMS

We focus here on spin- 1
2 systems (with internal states |↑〉,

|↓〉) arranged on a regular lattice—whose L sites are labeled
by k—with the standard spin operators

σ+
k = |↑k〉〈↓k|, (1)

σ−
k = (σ+

k )†, (2)

σ z
k = [σ+

k ,σ−
k ]. (3)
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FIG. 1. Connectivity of the configuration space. Without noise
(left), i.e., dephasing rate γ = 0, classical configurations, |Cm〉, shown
as circles, are connected to each other by HQ with coupling strength
∝�. In this example HC is constructed such that the energy landscape
in configuration space is separated into two plateaus with energies ε1

(red) and ε2 (green). This choice leads, in the presence of strong noise
(right-hand side), to two weakly connected spaces. The transition
rates within and between the domains are � and �max, respectively.
For �max � � this results in an (approximate) ergodicity breaking.
For further explanation see text.

The coherent evolution is governed by a Hamiltonian H =
HC + HQ which we separate into a “classical” and a “quan-
tum” part. The former assumes the form

HC =
∑

k

uknk +
∑
k,j

vkj

2
nknj +

∑
k,j,i

wkjl

3!
nknjnl + · · · ,

(4)

where nk = (σ z
k + 1)/2 = |↑k〉〈↑k| and uk , vkj , and wkjl

can be interpreted as one-, two-, and three-body interaction
couplings. In general, it can be any function of the number
operators nk . HC defines an energetic landscape Em over the
classical (Fock) configurations |Cm〉 = | · · · ↑k−1 ↑k ↓k+1 · · · 〉
(m = 1, . . . ,2L) via HC|Cm〉 = Em|Cm〉. In Fig. 1, these con-
figurations are represented as circles and grouped in domains
of equal energy.

The quantum part acts as HQ|Cm〉 = ∑
n�=m amn|Cn〉 and

defines the “dynamical connectivity” of the configurations.
This is illustrated in Fig. 1 where the solid lines correspond to
the cases in which amn �= 0. Here we focus on two prototypical
examples: spin flipping, induced, e.g., by a laser on a two-level
atomic transition which is commonly implemented in Rydberg
atomic systems [29–31], and quantum tunneling of hard-core
bosons between nearest neighbors [32,33], which are described
by the Hamiltonians

H
(f )
Q = �

∑
k

σ x
k and H

(t)
Q = �

∑
〈k,j〉

σ−
k σ+

j , (5)

respectively. Here 〈k,j 〉 is shorthand for summing over nearest
neighbors only, σx

k = σ+
k + σ−

k , and � is the coupling strength
of the two processes (i.e., depending on the realization:
the laser Rabi frequency, the exchange coupling, or lattice
tunneling amplitude).

The system is in contact with an environment which induces
fast decoherence of quantum superpositions. We assume the
noise to be white and spatially uncorrelated, so that the
evolution of the density matrix ρ is governed by the Lindblad
equation [34,35]

ρ̇ = −i[H,ρ] + γ

L∑
k

(
nkρnk − 1

2
{nk,ρ}

)
, (6)

where {A,B} = AB + BA denotes anticommutation and γ is
the dephasing rate. This form of dissipation occurs naturally
in cold atom lattice experiments, stemming, e.g., from the
off-resonant scattering of photons from the optical-trapping
laser field [36], or from phase noise of the laser driving
[22,23,37]. We further set γ � �, relying on the possibility of
independently tuning these two parameters [32,36] (see also
the Supplemental Material [38]). This allows the adiabatic
elimination of HQ and the projection of the dynamics onto
the subspace of diagonal density matrices μ in the |Cm〉 basis
[17,39–43]. The reduced state μ can then be interpreted as a
probability distribution and evolves according to the classical
master equation

∂tμ =
∑

ν

4

sγ
�ν(l†νμlν + lνμl†ν − {lν,l†ν}μ), (7)

where the operators lν , the index ν, and the coefficient s

depend on the choice of HQ. In the case of spin flipping,
H

(f )
Q , the sum runs over the sites ν ≡ k, s = 1, and lk = �σ+

k .
For tunneling, instead, the sum runs over neighboring pairs
ν ≡ 〈kj 〉, s = 2, and lkj = �σ+

k σ−
j /

√
2. The rates �ν are

configuration dependent and read

1

�ν

= 1 +
(

2 δE

sγ

)2

, (8)

where δE is the “energy cost” of performing the lν-induced
transition (see Ref. [38]). More precisely, when lν |Cm〉 ∝ |Cn〉
then δE = En − Em. Note that the inverse process induced by
l†ν occurs at the same rate; therefore, Eq. (7) satisfies detailed
balance at infinite temperature and the steady-state distribution
μss is uniform (∝1 under ergodic conditions).

III. “HARD” AND “SOFT” KINETICALLY CONSTRAINED
MODELS

According to Eq. (8) the rate of a transition is maximal when
both involved states are on resonance, i.e., δE = 0. Conversely,
if |δE| � γ the transition rate is greatly suppressed. This
implies that, depending on the precise form of HC, particular
processes can be favored over others, constraining in turn the
dynamics to favor specific pathways in configuration space.

In the limit |δE|/γ → ∞ the suppression is total and the
corresponding transition is “blocked.” Ideally, in a context
where energy differences are either vanishing or infinite, one
obtains a hard constraint, and transitions induced by HQ

either take place at rate �max = 1 or never occur (� = 0).
As highlighted in Fig. 1, this causes the space to fragment
into disconnected parts (corresponding to different energies),
breaking ergodicity and producing a reducible dynamics.
Necessarily, any kinetic constraint prohibiting a transition
between two configurations (|C1〉 �→ |C2〉) can only admit a
hard realization if there is no sequence of allowed transitions
connecting them.

If such a pathway exists, (e.g., |C1〉 → |C3〉 → |C2〉), the
realization of a soft constraint [44] might still be possible. In
this case direct transitions between |C1〉 and |C2〉 cannot be
forbidden but merely suppressed. The degree of suppression
is determined by the minimal number q of allowed transitions
joining |C1〉 and |C2〉 and is �suppressed/�allowed � 1/q2.

052108-2



EMERGENT KINETIC CONSTRAINTS, ERGODICITY . . . PHYSICAL REVIEW E 94, 052108 (2016)

It may be of interest at this point to remark on the
differences between the mechanism highlighted here and the
one underlying quantum annealing of KCMs in previous
studies [24,25]. First, the long-time dynamics considered in
our work is not an annealed one, as the system heats up under
the action of the dephasing noise. This is in contrast to an
annealing procedure which seeks to decrease temperature.
Second, instead of relying on quantum tunneling through
potential barriers (between quasiresonant local states), our
approach to restrict the system’s dynamics to a specific
manifold of states relies on the suppression of transitions
to much higher or much lower energies, which effectively
reproduces constraints as sketched in Fig. 1.

IV. REACTION-DIFFUSION MODEL WITH CONSTANT
BONDS

Based on the above discussion, we construct here a KCM
which mimics a lattice gas with excluded volume effects. This
model admits a hard realization and is simple enough to be
experimentally realizable with cold atoms in an optical lattice
(see Refs. [36,45]). It consists of particles arranged on a trian-
gular lattice which feature nearest-neighbor tunneling, as given
by H

(t)
Q in Eq. (5), and strong nearest-neighbor interactions,

HC = U
∑

〈k,j〉 nknj . In the presence of dephasing this leads
to a stochastic process of excitations (up spins) hopping with
rates that depend on the interaction strength U . The number of
excitations N is conserved by construction. Taking the limit
U/γ → ∞ introduces a further conserved quantity, namely
the number B of neighboring pairs of excitations (bonds).
Consequently, excitations can only hop if doing so preserves
the number of bonds between them.

Clusters of excitations become bound structures, whose
dynamical behavior strongly depends on their shape. Two
primary examples are shown in Fig. 2. The first is a “polymer,”
consisting of two or more excitations arranged along a chain,
which can only diffuse via slow, cooperative motion [46]. The

FIG. 2. Illustrations of key processes governing the dynamics
of the reaction-diffusion model with constant bonds. The black
dots represent excitations and a thick line on the lattice represents
a bond. Arrows denote possible moves and point at the resulting
configurations. A polymer (left) is a chain of connected excitations,
and shown is the way in which it can diffuse across the lattice. A
plaquette (right) is formed by three excitations filling the vertices of
a triangular tile. We showcase its reaction with a monomer.

FIG. 3. Stationary plaquette density P(t → ∞) against the num-
ber of bonds B for a 10 × 10 lattice with N = 10, obtained via
two different averaging procedures: Black dots are calculated from
a uniform random sampling of configurations at fixed (N,B). The
remaining data points are averages over different realizations of the
dynamics via a kinetic Monte Carlo procedure, differing by the initial
condition: green crosses indicate a single cluster plus monomers,
where the former is chosen to be as compact as possible; red circles
indicate a single polymer plus monomers. The inset shows how the
cluster present at B = 13 can react with a monomer and the one at
B = 12 with a dimer. The numerical error here is smaller than the
size of the markers and thus not displayed.

second is a “plaquette,” three excitations at the vertices of the
same triangular tile. The plaquette is the simplest example of
an immobile structure which cannot diffuse by itself, since
any hop would result in the net loss of (at least) a bond. It
can, however, react with “monomers” (isolated excitations)
or other mobile structures (see right-hand side of Fig. 2).
This leads to an assisted diffusion which is reminiscent of
the strongly cooperative motion found in many glassy models
[4,9,10,14,15].

Interestingly, N and B do not exhaust all the conservation
laws of this model. There are additional, subtler ones that
further split the space of configurations. Consider, for example,
the case N = B = 3, which encompasses all possibilities of
placing a single plaquette in the lattice: since plaquettes are
unable to move on their own, all these states are dynamically
disconnected. This finer structure is generally related to
the formation of immobile clusters and thus emerges at
high numbers of bonds, B � N . This is exemplified in
Fig. 3, where we compare results obtained from dynamical
simulations with estimates based upon assuming that the
steady state is an equilibrium “microcanonical shell” at fixed
(N,B). Without this additional dynamical reduction, the two
predictions would coincide. Shown is the plaquette density
P = (number of plaquettes/2L) in a 10 × 10 lattice with N =
10 excitations and different values of B from 0 to 17. The black
dots are averages obtained from uniform random samplings
of states at fixed (N,B). The other data sets correspond to
long-time values of P extracted from kinetic Monte Carlo
simulations of the dynamics. The initial conditions are chosen
either to have all bonds taken by a single polymer structure
(red circles), which is only possible up to B = N − 1 = 9,
or to have all bonds taken by the smallest possible cluster
(green crosses). In both cases, the remaining excitations are
introduced as monomers.
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FIG. 4. Dynamics of the imbalance I (solid) and plaquette
density P (dashed) for a 20 × 20 lattice with N = 10. All cases are
initialized with a single (B + 1) polymer and N − B − 1 monomers
for B = 3, 4, 8, and 9. The relaxation time increases with B. At
low B, the plaquette density overshoots its stationary value and
correspondingly the decay of the imbalance speeds up. This highlights
the advantage in liberating monomers (or smaller structure) by
forming plaquettes. The subsequent assisted diffusion of plaquettes
acts on much longer time scales and eventually reduces P to its
stationary value. The shaded area marks the separation between two
regimes in the dynamics, the earliest dominated by plaquette creation
and monomer diffusion, the latest by assisted diffusion of plaquettes.
The errors on I and P are of order 10−5 and 10−6, respectively.

At a sufficiently low number of bonds, B, there are no appre-
ciable deviations and most configurations with the same (N,B)
are dynamically connected. For B = 12 and 16, however, the
“cluster initialization” displays a higher stationary plaquette
density than the naive equilibrium value. For instance, the
initial cluster at B = 12 is chosen to be the “filled hexagon”
displayed in the top-left corner of Fig. 3. Monomers cannot
react with it, since each of the outer excitations forms three
bonds. In order to break it apart, the assistance of a dimer (or
longer polymer) is required. Therefore, this structure is inert,
while the remaining monomers explore the rest of the lattice
via ordinary diffusion. Note, however, that adding bonds does
not necessarily make a structure less prone to dissolution: for
B = 13 the initial cluster can react with monomers via the
mechanism displayed in Fig. 3, starting from the top-right
configuration.

The presence of complex structures which cannot move by
themselves and can only undergo assisted diffusion results in
a separation of time scales in the dynamics, as displayed in
Fig. 4. There we report the evolution of the imbalance

I =
∑
〈k,j〉

|〈nk〉 − 〈nj 〉|2, (9)

a measure of the nonuniformity of the system, and the plaquette
density P(t) as a function of time for a 20 × 20 lattice,
N = 10, and prepared at t = 0 in a single-polymer state
with B = 3, 4, 8, and 9. These configurations can explore
the entire lattice and thus restore translational invariance for
sufficiently long times, implying I(t → ∞) → 0. The early
dynamics is dominated by diffusion of the original structures
(predominantly monomers) and formation of plaquettes. For
the low-B cases, around t ≈ 10γ /�2 the plaquette density
reaches its maximum, which is higher than its stationary value.
Correspondingly, the imbalance relaxation speeds up, which
can be understood as follows: the formation of clusters such

as plaquettes breaks down polymers to shorter ones, which
display higher mobility and diffuse faster. For instance, for
B = 3, once a plaquette is formed an additional monomer
is released (see Fig. 2) and monomers are the most efficient
objects at exploring the lattice. Consequently, the higher the
plaquette density, the higher the rate of relaxation of the
imbalance. On longer time scales, further plaquette-monomer
reactions relax P to its actual stationary value.

V. FACILITATED SPIN MODELS

For completeness, we comment here on the realizability of
the aforementioned (one-dimensional) FA and East models [4].
Both feature facilitated spin flipping [H (f )

Q in Eq. (5)], whereby
an excitation (up spin) enables the flipping of its neighbors,
e.g., ↑↑↓�↑↓↓ (whereas ↓↑↓��↓↓↓). In the East model,
facilitation is further constrained and can only take place to
an excitation’s right. Neither model admits a hard realization.
To see this we consider the transition ↑↓↓↓→↑↓↑↓ which
must be forbidden in both models. However, both config-
urations can be connected via a sequence of allowed steps
↑↓↓↓→↑↑↓↓→↑↑↑↓→↑↓↑↓. The FA model still admits a
soft realization [choosing HC = U

∑
k nk(1 − 2nk+1/3)] with

�suppressed/�allowed � 1/9.
Furthermore, for the facilitated dynamics inherent to the

FA and East models to display glassy features, it is crucial that
the density of excitations (up spins) remains low. Conversely,
under Eq. (7) the state invariably evolves towards equilibrium
at infinite temperature, which poses a severe restriction to
its applicability in this case. However, introducing additional
noise sources might provide a way around, as it may change
the nature of the stationary state (see Refs. [17,21,37,47,48]).

VI. CONCLUSIONS

Kinetically constrained models were originally introduced
to capture the basic properties of slow-relaxing materials, yet
have largely remained an idealized construct. Here we have
shown that in the presence of strong noise these constraints
emerge rather naturally in the dynamics of experimentally
realizable open quantum systems.

An interesting question is whether, and how, the collective
behavior discussed here changes when quantum coherence
is not entirely washed out by the noise. This could be
systematically addressed in an experimental realization of the
discussed reaction-diffusion model with cold atoms in lattices
[49–51], thereby providing a handle for exploring quantum
effects in glassy relaxation [52,53]. This could also shed light
on the interplay between quantum and classical fluctuations
on collective phenomena, as e.g. recently discussed in Refs.
[54,55].
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P. Büchler, and T. Pfau, J. Phys. B 45, 113001 (2012).

[31] H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macrı̀,
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